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Abstract
User authentication systems based on cardiovascular biosig-
nals have gained prominence in recent years, as these signals
are presumed to be difficult to forge. We challenge this assump-
tion by showing that an observer who has access to one type of
cardiac data – such as a user’s pulse waveform, readily obtain-
able from video and commercial smartwatches – can design a
spoofing attack strong enough to fool authentication systems
based on other cardiovascular biosignals. We present BioForge,
an approach that leverages a cycle-consistent generative adver-
sarial network to synthesize realistic physiological signals for
a given user without relying on simultaneously collected su-
pervision data. We evaluate BioForge on multiple open-access
datasets and an array of verification systems, many of which
can be fooled over 50% of the time in 10 or fewer attempts. No-
tably, we are able to fool systems that rely not just on heart rate
and peak locations but also on the morphology of the wave-
forms. We additionally showcase how BioForge can be used
to spoof authentication systems from biosignal data extracted
from video clips of a target user. Our work demonstrates that
authentication systems should not rely on the secrecy of car-
diovascular biosignals.

1 Introduction
Recent advances in biosensing and health monitoring have
spurred interest in using physiological data as the basis for user
authentication systems. In particular, commercial interest in
cardiovascular monitoring has stimulated research in authen-
tication systems based on cardiovascular biosignals. Many
commercially available wearables (e.g., smartwatches, fitness
trackers) advertise the ability to monitor a user’s cardiovascu-
lar data: small, inexpensive, and high-quality sensors allow for
the collection of electrocardiograms (ECGs), photoplethys-
mograms (pulse waveforms or PPGs), seismocardiograms
(SCGs), and ballistocardiograms (BCGs) for cardiovascular
health monitoring.

Leveraging these sensors to design authentication systems
has gained traction for three main reasons. First, the known dis-
advantages of current authentication methods have motivated

the study of other, more seamless input modalities [9, 21, 59].
Secondly, state-of-the-art machine learning methods have
demonstrated remarkable effectiveness in extracting informa-
tion from physiological time-series data. Traditional authenti-
cation systems based on cardiovascular biosignals tend to rely
heavily on manual features (e.g., heartbeat segmentation, peak-
to-peak distances, spectral analysis); recent deep-learning
methods not only perform better but also reduce or eliminate
the need for manual feature selection [30, 37, 47]. These ad-
vancements have enabled the development of “end-to-end”
authentication systems that extract relevant features for user
identity prediction along with training the system.

Third, biosignals are assumed to be confidential: an ob-
server cannot easily obtain a user’s physiological data and mas-
querade as that user [30, 37]. Previous work [15] has shown
that biometric devices can be compromised if an adversary has
access to similar recordings of a target user’s biosignal: the
BrokenHearted attack demonstrated this vulnerability in 2017
against the Nymi band, a commercially available ECG au-
thentication device in trials at the time with MasterCard [15].
However, system designers assume that physiological signals
are difficult to obtain since measurements typically require
physical contact with the user. Recent work in video-based,
remote estimation of PPG data has chipped away at this as-
sumption [36, 38]. This, however, has still not impeded new
research on biosignal-based authentication, with hundreds of
mentions of ECG and PPG authentication have been published
each year over the past decade with no signs of slowing down;
see Figure 2.

In this paper, we show that the key assumption of confiden-
tiality for biosignals is false and that the uniquely identifying
features found in a user’s cardiovascular signal, such as the
ECG, can be consistently leaked from other types of cardio-
vascular signals from that user. We design black-box spoofing
attacks on a wide array of biosignal-based authentication
systems to demonstrate that an observer who has some physio-
logical information (obtainable through compromised devices,
a leaked database, or even videos of a user) can synthesize a
target biosignal to masquerade as the given user. We refer to
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Figure 1: Overview of our BioForge approach. Top: We assume that a user authentication system has been trained on measured biosignal data (e.g., ECGs).
Reference templates (or the entire trained model) are stored for retrieval the next time users wish to authenticate themselves. Bottom: Our attack methodology
comprises two stages. First, a biosignal generator is trained for a given pair of modalities (e.g., source: PPG, target: ECG). This data is obtained from public datasets
or leaked data, such as from health wearables or video clips, and does not need to contain examples from the intended victim. Then, the adversary acquires some
true source data from the victim user (again from videos or a data leak), generates spoofed target data using the trained model, and presents the spoofed data to the
trained authentication system. The stored templates or model are retrieved for the system to compare against the spoofed data to either accept or reject the attempt.

our overall approach as BioForge.
Our approach is comprised of three parts: First, we develop

a generative model to synthesize fake, but realistic, biosignal
data from another biosignal modality. We call these target
and source signals, respectively. This approach is system-
agnostic: we do not require details of the target authentication
system, and it uses unpaired data, i.e., we do not require
simultaneously-recorded source-target biosignals. In partic-
ular, our model builds on the CycleGAN architecture for unsu-
pervised image-to-image translation [53,64], which we extend
with a contrastive loss term to favor the learning of similar neu-
ral representations for biosignals coming from the same user.

Secondly, we implement a wide array of authentication
systems published over the past five years and evaluate the
success of the forged biosignals created using our generative
model in fooling the state-of-the-art authentication techniques.
The (offline) user enrollment and the two phases of the attack
are illustrated in Figure 1. We primarily focus our evaluation

Figure 2: New papers published each year on Google Scholar that mention
"authentication" along with either "ECG" (left bars) or "PPG" (right bars)

on ECG-based authentication systems because of their pop-
ularity due to both the richness of the ECG signal and the
wide availability of single-lead ECG sensors in commercial
wearables. We also consider systems based on PPGs: pulse
waveforms obtained from sensors in many wearable devices
with heart monitoring features. To demonstrate the universal-
ity of our approach, we additionally evaluate systems based on
SCG and BCG signals obtained from accelerometers. We find
that spoofed data is able to fool most of these systems within
10 or fewer attempts at authentication.

Finally, we showcase how BioForge can leverage video
data to break biosignal authentication systems. We extract re-
mote PPG (rPPG) traces from videos of target users and train
BioForge to generate spoofed ECGs from the video-derived
traces. We show how these spoofed signals can successfully
compromise various authentication systems. Our evaluations
illustrate the inherent weakness of biosignal-based authentica-
tion systems to spoofing attacks and serve as a warning against
the use of these systems in real-world applications.

In summary, our contributions are as follows:
1. We develop a generative model that can synthesize re-

alistic target biosignals from a different cardiovascular
biosignal modality in an unsupervised manner.

2. We demonstrate that synthesized ECG traces from PPGs
can fool an array of state-of-the-art ECG-based authen-
tication systems.

3. We show the potential for this architecture to generate
realistic PPG, BCG, and SCG traces that can fool the
corresponding authentication systems.

4. We demonstrate an end-to-end attack that, starting solely
from video clips of target users, successfully breaks an
array of ECG-based authentication systems.
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Figure 3: Example traces of each biosignal modality

2 Background
In this section, we provide an overview of the cardiovascular
signals of interest and existing techniques for leveraging their
statistical properties to develop authentication systems.

2.1 Cardiovascular Biosignals
Cardiovascular biosignals are physiological time-series mea-
surements of cardiac activity. These measurements can be
taken from a variety of sensors, on or near the body, and can
relay information about heart rate, blood pressure, pulse vol-
ume, oxygen saturation, and the general cardiovascular health
of the subject. The most recognizable biosignals are electro-
cardiograms (ECGs internationally; EKGs in the U.S.) and
photoplethysmograms (pulse waves, or PPGs). Latif et al. [35]
and Rathore et al. [50] outline the relationships among at least
eight types of measurements. For our study, we narrow our
focus to the most commonly studied waveforms that have a
well-understood morphology, ease of collection, and generally
accepted definition: ECG, PPG, SCG (seismocardiogram),
and BCG (ballistocardiogram). ECGs are measured via elec-
trodes, PPGs via light reflection or absorbance, and SCGs and
BCGs via accelerometers. These four kinds of waveforms are
illustrated in Figure 3.
ECG (Electrocardiogram) is a measurement of the heart’s
electrical activity via recording action potentials from elec-
trodes placed on the skin. The ECG is sufficiently rich to cap-
ture the full cardiac cycle, composed of muscle depolarization
and repolarization and, as such, it is considered a gold stan-
dard for diagnosing cardiovascular diseases in clinical settings.
While medical ECG devices consist of 12 leads, an increas-
ing number of wearable devices feature 1-lead ECG sensors.
These require at least two points of contact to complete the
electrical circuit (e.g., for wrist-worn devices, typically the
user needs to touch a sensor with the other hand).
PPG (Photoplethsmogram) is a recording of the changes in
blood volume and content, typically obtained by an LED and
photodiode pair used to measure the reflection or absorption
of light by various components in peripheral blood. The PPG
signal is most often used to determine oxygen saturation and
heart rate. Conventional sensors (aka pulse oximeters) obtain

this measurement at the fingertip, but other common sensor
placements include the wrist (for smartwatches), ear, and foot.
When PPG is derived from video, we refer to the biosignal as
“remote” PPG, or rPPG. An rPPG signal is an approximation
of PPG derived by tracking the slight fluctuation of red chan-
nel values in segments of an individual’s face from full-color
video recordings.
SCG (Seismocardiogram) is a recording of the vibrations
of the chest induced by a heartbeat, typically obtained via an
accelerometer placed on the chest.
BSC (Ballistocardiogram) also uses an accelerometer to
sense hearbeat-induced vibrations. In contrast to the SCG, the
BCG is intended to capture the response at the body’s center
of mass. Accelerometers for BCG are integrated into chairs,
beds, or flat plate scales intended for a user to stand on, and
a typical BCG trace is aggregated from multiple sensors.

2.2 Biosignal-based Authentication
Biosignal-based authentication systems leverage the unique
statistical properties of physiological waveforms to identify or
verify users. A wealth of literature over the past two decades has
explored techniques for extracting features from cardiac biosig-
nals [30, 47]. Proposed systems typically consist of the follow-
ing components in a pipeline: sensing, filtering, segmentation,
feature extraction, and template matching. In short, signals are
first filtered and then segmented to isolate information about
individual cardiac cycles. Features relevant to authentication
are subsequently extracted from the segments. During the so-
called enrollment phase (illustrated in the top half of Figure 1),
the extracted features are aggregated to form a user template,
which is then stored in a database. When the user later attempts
to authenticate themselves, the same process for sensing, filter-
ing, segmentation, and feature extraction is used to build a “test
template” to compare against the reference template. A match-
ing algorithm is then used to determine whether the test and
reference templates are similar enough to authenticate the user.

Surveys by Li et al. [37], Odinaka et al. [47] , In-
gale et al. [30], and Melzi et al. [44] have detailed the state-of-
art in sensing and signal-processing techniques for designing
authentication systems based on PPGs and ECGs. Of partic-
ular note is the evidence in support of using single-lead biosig-
nals, which facilitates systems built around wearable devices.
Additionally, these surveys enumerate the various segmen-
tation and feature extraction techniques from cardiovascular
data, most of which focus on determining significant (fiducial)
points of the cardiac cycle. Recent end-to-end deep learning
approaches learn unique features from the entire morphology
of the waveform, rather than relying on manual annotations.
Identification vs. Verification Some systems are primarily de-
signed to perform closed-set user identification: a known set of
users is fixed, and the system is responsible for predicting the
identity of the test subject. These models perform multi-class
prediction: given a new test sample, the model is expected
to output the known user index most closely associated with
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the presented sample. A different approach, termed verifica-
tion, seeks to determine whether the test sample belongs to
the intended subject. As such, verification systems output a
binary prediction rather than the user index. Verification can
be realized through recognition, i.e., checking whether or not
the test sample and a stored reference sample belong to the
same subject, or through one-vs-all identification, where we
use a closed-set identification model and check whether the
predicted identity corresponds to the intended one. Our work
is suited to both types of systems.

3 BioForge
We design a spoofing attack on biosignal-based biometric au-
thentication systems, assuming access to a signal of a different
modality. Figure 1 presents the workflow of the attack, which
occurs in two stages: training and presentation. First, a gen-
erative model is trained on unpaired segments of source and
target biosignals using a Contrastive CycleGAN architecture.
Then, at attack time, a user’s synthetic target biosignal is gener-
ated and presented to the authentication system. For concision,
Figure 1 only illustrates spoofing ECG (target modality) from
PPG (source modality). Our evaluation, however, explores
spoofing multiple cardiovascular signal modalities (various
target and source types). We detail our threat model in Sec-
tion 3.1 and the generative model in Section 3.2.

3.1 Threat Model
We assume that a user authentication system has been trained
on biosignal data, and we seek to synthesize data that can fool
the system. This process is shown in Figure 1. We make the
following assumptions about the adversary:

1. The adversary has black-box access to the authentica-
tion system, with solely the ability to present synthe-
sized traces from an arbitrary waveform generator as
input to the system. Note that in our evaluation, we re-
implemented the authentication systems only to evaluate
them; no information about the systems is used to gen-
erate the spoofed samples.

2. The adversary has access to datasets of source and target
cardiovascular samples to train the CycleGAN models.
For better generalization, these datasets should contain
samples from a variety of subjects (with subject identifier
labels1), but the biosignals do not need to be simultane-
ously recorded. Also, source and target data do not need
to originate from the same sets of users nor from recorded
signals. As we discuss in Section 4.1, such datasets are
widely available online.

3. The adversary has access to some type of cardiovascu-
lar biosignal from the target user (a signal of a different
modality than what is used by the authentication system).
In this study, we evaluate scenarios where the adversary
has access to either PPG, ECG, SCG, or BCG as source
data. We believe that this assumption is realistic. Data

1This is required by our contrastive loss update.

Figure 4: Overview of one half of the signal generation model. The com-
ponents shown involve translating a Source signal to a Target form using a
Generator network GT . The discriminator networks Dt

T and D f
T are trained

at the same time to distinguish between real and synthetic data. We simulta-
neously train the inverse mapping: GS, Dt

S and D f
S for translating from Target

to Source modalities. The loss functions associating with the inverse are
Ladv(GS,Dt

T ), Ladv(GS,Dt
T ), Lcycle(GT ,GT ′ ), and Lcon(GS).

leakages in the healthcare sector are alarmingly common
and on the rise. Between 2009-2023, healthcare organi-
zations suffered more than 5,000 data breaches, affecting
more than 400 million medical records [6]. Recently re-
ported leaks of biosignal data from devices by Fitbit and
Apple [16, 42] demonstrate a significant likelihood that
an attacker obtains access to some type of cardiovascular
data. The situation is exacerbated by a rapidly growing
market for commercial health devices, including many
products with less rigorous security than those from
major brands. Moreover, as discussed in Section 2, the at-
tacker can acquire PPG signals even remotely from video
data, and such signals can be directly used by our method.

3.2 Biosignal Generation Model
The proposed biosignal generation model is based on the
CardioGAN model [53] with an additional contrastive loss
component [34]. CardioGAN leverages the CycleGAN archi-
tecture [64] to translate signals between different modalities
in an unsupervised manner (i.e., with unpaired data), which
in turn builds on the popular GAN model [20].

A GAN is comprised of a generator and a discriminator
network, which are trained simultaneously in a competitive
scheme. The generator aims to improve its ability to generate
realistic data to fool the discriminator, and the discriminator
aims to improve its ability to distinguish between real and
generated data. The two models are updated in an alternating
fashion. After training, only the generator is used to synthe-
size data. A CycleGAN network consists of two (conditional)
GANs that are trained in tandem to enforce a condition of
cyclical consistency (in addition to the usual GAN discrim-
inator loss). These generators are GT : S → T , the generator
that translates source data into target data, and GS :T →S, the
generator that translates target data into source data. Cycle
consistency imposes that a source signal s should be close to
GS(GT (s)), i.e., when s is translated into the target modality
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through GT , and then back to the source modality with GS, the
resulting signal should be close to the original signal s. The
same condition is enforced for a target signal t and its cycle-
translation GT (GS(t)). This two-step process allows training
generators without requiring pairs of supervised training data,
which may not be available (as in our case). We show one half
of the model (relative to the S-to-T translation) in Figure 4.

Each generator is based on the CardioGAN design [53],
which combines elements of a U-Net with self-attention mech-
anisms [48] to encourage the network to focus on critical
sections of the waveforms. Each generator follows an encoder-
decoder architecture consisting of multiple convolutional
downsampling, attention, and upsampling layers. CardioGAN
introduces two discriminators (instead of one) to preserve
time- and frequency-domain information of the generated
signals. In particular, the generator GT (GS) is paired with two
discriminators Dt

T and D f
T (Dt

S and D f
S ): the former works in

the time domain and is trained to distinguish between true sig-
nals t (s) and synthetic ones GT (s) (GS(t)); the latter operates
in the frequency domain and discriminates between DFT(t)
(DFT(s)) and DFT(GT (s)) (DFT(GS(t))), where DFT(·) is
the discrete Fourier transform.

Each discriminator’s architecture consists of the same
downsampling convolutional layers used for the encoder
portion of the generators. The discriminator’s output repre-
sents the probability that the given input comes from real data.
Generators and discriminators are updated using three loss
functions, defined below only for the half involving GT , Dt

T
and D f

T . These are the GAN loss relative to the time domain,
Ladv(GT ,Dt

s), the GAN loss relative to the frequency domain,
Ladv(GT ,D

f
s ), and the cycle-consistency loss (involving only

the time domain), Lcyclic(GT ,GS):

Ladv(GT ,Dt
T )=Et [log(Dt

T (t))]

+Es[log(1−Dt
T (GT (s)))] (1)

Ladv(GT ,D
f
T )=Et [log(D f

T (t))]

+Es[log(1−D f
T (GT (s)))] (2)

Lcyclic(GT ,GS)=Es[∥GS(GT (s))−s∥1] (3)

where ∥·∥1 is the L1-norm. Loss functions for the in-
verse mapping are defined analogously. We denote with
Ladv(GT ,Dt

T ,S ,T ), Ladv(GT ,D
f
T ,S ,T ), and Lcyclic(GT ,GS,S)

the empirical approximations of the above expectations via
unpaired batches of source signals S and target signals T .

On top of the CardioGAN model, we additionally adopt a
supervised contrastive loss component. Its purpose is to ensure
that the latent features of the generators (i.e., the bottlenecks)
are similar for signals coming from the same patient. In doing
so, we condition the network to extract a representation of the
subject that remains (close to) invariant despite signal vari-
ability. This invariant representation can be seen as a proxy
for a subject’s identifying features; i.e., if two signals have
similar latent features, then they likely belong to the same

subject. The same principle is applied in popular biometrics
and face recognition architectures such as Hadsell et al. [22]
and Schroff et al. [55].

In particular, we consider the SupCon loss from [34] (us-
ing the implementation by [45]) for its ability to handle an
arbitrary number of positive and negative pairs in a batch of
signals. Given a batch of signals D and a signal x ∈ D, we
denote with [x]⊆D\{x} the set of signals other than x but that
belong to the same subject as x. For a signal x and generator G,
we denote with zG(x) the latent representation associated with
G(x). Then, the contrastive loss relative to G and D is given by

Lcon(G,D)=− ∑
x∈D

1
[x] ∑

p∈[x]
log

[
exp zG(x)·zG(p)

τ

∑x′∈D\{x}exp zG(x)·zG(x′)
τ

]
(4)

where zG(x) · zG(p) denotes the dot product between vec-
tors and zG(x) and zG(p) and is used as a similarity measure.
Hence, the softmax argument of the log function represents
a smooth approximation of whether p has the highest sim-
ilarity to x across all signals in the batch. The temperature
τ>0 controls such smoothness (larger τ, less smooth). We set
τ=0.1 in our evaluation. It is clear to see that minimizing (4)
corresponds, for each x∈D, to maximizing the (dot-product)
similarity between the representations of x and all signals in
[x], consequently minimizing the similarity with signals not
in [x] (thanks to the softmax term).

Finally, we update the networks’ weights in two separate
steps to avoid interference between different loss functions:
first, in the direction of the GAN and cyclic losses to improve
the quality of the generated signals (see Equation 5 below),
then, in that of the contrastive loss to capture key identifying
information (see Equation 6). For batches of source and target
signals S and T , the final losses become:

LGAN =α(Ladv(GT ,Dt
S,S ,T )+Ladv(GS,Dt

S,T ,S))

+β(Ladv(GT ,D
f
T ,S ,T )+Ladv(GS,D

f
S ,T ,S))

+γ(Lcyclic(GT ,GS,S)+Lcyclic(GS,GT ,T )) (5)

and

Lcon=Lcon(GS,S)+Lcon(GT ,T ) (6)

where α,β,γ> 0 are hyper-parameters for combining the in-
dividual loss components in the first update.

4 Evaluation
In this section, we present the results of our evaluation. We first
describe the open-access datasets and authentication systems
chosen to demonstrate our approach in Section 4.1 and 4.2,
along with performance on true data. Section 4.3 presents
details on the training and performance of the CycleGAN
model. Next, we present our comprehensive evaluation of the
BioForge approach in Section 4.4-4.6. Finally, Section 4.7
presents our findings from a study using PPG traces extracted
from video clips.
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4.1 Datasets
We performed our primary evaluation on four publicly avail-
able datasets that contain simultaneous measurements of multi-
ple cardiovascular signals. These datasets represent collections
from a variety of device types (clinical vs wrist-worn wear-
ables), sampling frequencies (64Hz to 5000Hz), and partic-
ipants (varied in age and gender). We note that we do not need
paired (simultaneously recorded) data to train our generative
model and run the attack, but we do need paired recordings to
understand and evaluate the performance of our approach. We
use data from one modality (e.g., ECG) to train the authentica-
tion systems and data from a second modality (e.g., PPG) as a
source to generate forged data to present to the trained system.
We include four datasets for ECG/PPG translation, one dataset
for ECG/SCG translation, and one dataset for ECG/PPG/BCG
translation. We additionally evaluated the ability for Bio-
Forge to succeed using a biosignal extracted solely from video
clips of a target user. For this purpose, we use the MANHOB-
HCITagging dataset [57], which includes video/ECG pairings.
BIDMC [19, 49] contains clinical PPG and ECG readings
from 53 ICU patients. Each recording is 8 minutes long, and
both PPG and ECG are sampled at 125 Hz. BIDMC is a subset
of the larger MIMIC II matched waveform database, which
contains thousands of vital sign recordings collected bedside
in adult and neonatal ICUs.
CAPNO [33] contains clinical PPG and ECG readings from
42 hospitalized children and adults. Each recording is 8 min-
utes long and all traces are sampled at 300Hz. This is a subset
of the larger CapnoBASE benchmark dataset, used to develop
algorithms for monitoring CO2 breath saturation and respi-
ratory rate.
DALIA [51] contains PPG and ECG signals from 15 people
wearing portable devices. ECGs are obtained from a chest-
worn device (RespiBAN2) and PPGs were obtained from a
wrist-worn device (Empatica E43). Each recording is about
2 hours. PPG was recorded at 64Hz and ECG was recorded
at 700Hz.
WESAD [54] contains PPG and ECG signals from 15 people
wearing the same ECG and PPG devices used for the DALIA
dataset. Each recording is about 1 hour long.
CEBSDB [17, 19] contains SCG and ECG signals for 20
participants in a lab environment recorded using the Biopac
MP36 system4. Each recording is about 5 minutes. The SCG
data is an aggregation of measurements obtained from a tri-
axial accelerometer and filtered between 0.5Hz and 100Hz.
All data was recorded at 5000Hz.
BedBased [23] contains simultaneous BCG, ECG, and PPG
recordings from 40 participants in a lab environment. BCGs
were collected from a custom bed comprised of four elec-

2https://support.pluxbiosignals.com/knowledge-base/
cardioban-getting-started/

3https://www.empatica.com/research/e4/
4https://www.biopac.com/product-category/research/

systems/mp36r-4-channel-systems/

tromechanical films and four load cells. We average the four
load cells to obtain a single BCG signal. Each recording is
about 7 minutes long and sampled at 1000Hz.
MAHNOB-HCITagging [57] contains data originally col-
lected for studying emotion and affect recognition and includes
numerous sessions of video and ECG recordings from 27 par-
ticipants. ECGs were monitored at 256Hz, and videos were
recorded at 60Hz with a resolution of 780x580 pixels. We used
all available ECG traces and only videos recorded in color.

4.2 Authentication Systems
We evaluated the ability of our generated biosignal traces to
spoof a range of published authentication systems. We looked
for systems proposed within the past five years with compara-
tively high citation counts as representative of state-of-the-art
techniques. We selected more ECG-based systems than other
modalities due to the abundance of research on ECG systems
and the richness of the signal. We also gave preference to pub-
lications that made their code publicly available. For training
the authentication systems, we followed, where possible, the
individual systems’ procedures for processing data and hy-
perparameter selection. We additionally resampled, detrended,
standardized, and rescaled data as needed.

4.2.1 Performance Metrics

We first report each system’s EER (Equal Error Rate) on true
(non-spoofed) data. EER is a preferred evaluation metric for
authentication systems, as accuracy can be misleading if the
number of samples from each user varies. If we see an authen-
tication system as a function that outputs the likelihood that
the given signal is from the intended user, then the EER is ob-
tained by finding the decision threshold for the said likelihood
that yields equal rates of false acceptances (FAR) and false
rejections (FRR). This threshold is found using a held-out set
of calibration signals.

There is a natural tradeoff between FAR and FRR, and the
EER is the position on this tradeoff curve where the two are
equal (or closest) as the decision threshold is changed. An
EER of 0 indicates perfect performance. The FAR and FRR
rates can be derived from the empirical counts of False Posi-
tives (FP), False Negatives (FN), True Positives (TP), and True
Negatives (TN) as follows: FAR= FP

FP+TN and FRR= FN
FN+TP .

We note that the EERs obtained in our evaluation do not
necessary align with those reported in the respective origi-
nal studies. This is because we take a different approach to
splitting data for training and testing. Most studies shuffle all
available data segments and randomly assign them to training
and test sets. We instead split our data over the time dimension
to mimic a realistic scenario: the systems are trained on the
earliest section of available data (by time), tested on the next
section to obtain EERs and associated EER thresholds, and
evaluation of spoofed data is performed on the last section in
time. Also, we remark that most systems present approaches
highly tuned to their collected data, and thus we should ex-
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Table 1: Performance of ECG-based authentication systems. Equal Error
Rates (%) are presented for true (non-spoofed) ECG traces.
System Name System Description BIDMC CAPNO DALIA WESAD

KeyToHeart [52]
Support Vector Machine on
25 principal components
from ECG segments

35.35% 35.36% 31.19% 29.13%

Deep-ECG [14]
CNN on 8 consecutive
QRS complexes

8.00% 8.00% 17.0% 11.80%

EDITH [28]

CNN feature extractor and
FFNN siamese network
on segmented
QRS complexes

2.85% 3.51% 10.59% 1.00%

ECGXtractor [44]

Autoencoder feature
extractor and CNN siamese
network from a consensus
of segmented QRS
complexes

7.68% 10.62% 15.95% 14.6%

Table 2: Performance of PPG-based authentication systems. Equal Error
Rates (%) presented for true PPG traces.
System Name System Description BIDMC CAPNO DALIA WESAD

Hwang2020 [27]

CNN and LSTM on
single-pulse segments
transformed via
FFT, dynamic time
warping, and
wavelet transforms

7.12% 15.35% 43.45% 42.03%

CorNet [7]
CNN with dual heads to
predict both heart rate
and identity

3.75% 1.49% 20.25% 29.18%

Table 3: Performance of SCG-based authentication systems on CEBSDB
dataset. Equal Error Rates (%) presented for true SCG traces.

System Name System Description EER

WaveletTransform [26]
Template matching from
wavelet-transformed segments

23.48%

MotionResilient [25]
Support Vector Machine
classification on segments

13.29%

Table 4: Performance of BCG-based authentication systems on BEDBASED
dataset. Equal Error Rates (%) presented for true BCG traces.

System Name System Description EER

HebertCNN [23] CNN on 3-sec rolling windows 23.48%

ZhangRNN [62]
RNN on segments centered
around corresponding ECG R-peaks

13.29%

ZhangRNN+ECG [62]
RNN on concatenated BCG and ECG segments
centered around corresponding ECG R-peaks

13.29%

pect performance to deviate when these systems are applied
to different datasets (as we do).

4.2.2 ECG Authentication

The performance of the following four ECG-based authen-
tication systems is reported in Table 1.
KeyToYourHeart [52] is a proof-of-concept system for user
identification and verification using a commercially-available

"pocket" ECG sensor: the KardiaMobile device by AliveCor. 5

The system extracts the top 25 principal components of ECG
segments to obtain template features. Classification is per-
formed on these templates using a support vector machine with
a radial basis function in a binary one-vs-all scheme. We based
our implementation on a codebase provided by the authors.
Deep-ECG [14] by Labati et al. is one of the first end-to-end
approaches that leverage deep convolutional networks for
ECG-based identification and verification. They use a deep
CNN trained on QRS complexes (the portion of the ECG
cycle closely surrounding the highest peak) and evaluate
closed-set identification, identity verification, and periodic
re-authentication across time.
EDITH [28] by Ibtehaz et al. present a sophisticated deep
learning system with two components: a convolutional neural
network (with multi-resolution blocks and spatial pooling
layers) to learn a feature embedding from segmented QRS
complexes, and a Siamese network to train the identifica-
tion/verification model. The authors released their implemen-
tation on GitHub.6

ECGXtractor [44] by Melzi et al. surveys existing literature
to identify the best combination of signal processing meth-
ods for single- and multi-session user authentication. They
implement a two-step approach for feature extraction and
identity recognition. They train an autoencoder with multi-
ple convolutional layers to learn a feature embedding from
segmented QRS complexes, and the bottleneck of the autoen-
coder is then used as inputs for a Siamese model that performs
user verification. The authors of ECGXtractor released their
implementation and some pre-trained models on GitHub.7 We
use their pre-trained autoencoder and train separate Siamese
networks on our individual datasets.

We report that ECG systems based on deep learning models
attain low EERs, no larger than 17%, while we see a consis-
tent performance degradation in the only “non-deep” system
(KeyToYourHeart).

4.2.3 PPG Authentication

The performance of the following PPG-based systems is re-
ported in Table 2. We acknowledge the high error rates of the
DALIA and WESAD datasets, which we explain by the dif-
ferent nature of the datasets. The Hwang2020 system [27] was
developed on clinical PPG waveforms that have clear dicrotic
notches and follow diastolic peaks. Their proposed data trans-
forms take advantage of the clear peaks and troughs of the
signals. The data in DALIA and WESAD were collected from
wrist-worn bands (rather than clinical pulse oximeters) and
their PPG traces generally do not have pronounced dicrotic
notches. Nonetheless, we decided to include Hwang2020 as
their work is among the most highly referenced recent efforts
on PPG authentication, and the authors made their code avail-

5https://store.kardia.com/products/kardiamobile
6https://github.com/nibtehaz/EDITH
7https://github.com/BiDAlab/ECGXtractor

USENIX Association 33rd USENIX Security Symposium    5527

https://store.kardia.com/products/kardiamobile
https://github.com/nibtehaz/EDITH
https://github.com/BiDAlab/ECGXtractor


able for further research.
Hwang2020 [27] by Hwang et al. stacks the results of mul-
tiple data transforms (in both time and frequency domains)
on segmented pulse waves to achieve a standard signal length
before feeding the data into a CNN+LSTM for user identifi-
cation and authentication. The authors released an example
of their approach on GitHub. 8

CorNET [7] by Biswas et al. presents a deep learning ap-
proach to perform PPG-based identification by leveraging two
loss functions: one for closed-set user identification (cross-
entropy) and another (mean squared error) for heart rate es-
timation. The network consists of 2 CNN layers and 2 LSTM
layers, with two final dense layers for predicting identity and
HR, independently.

4.2.4 SCG Authentication

The performance of the following SCG-based authentication
systems is reported in Table 3.
WaveletTransform [26] explores a variety of wavelet-
transformed signals, feature extraction, and matching tech-
niques to perform authentication on SCGs. While many of
their models achieve similar performance, we selected the
Morse Wavelet and L2-norm distance for matching.
MotionResilient [25] The approach consists of averaging five
one-second segments of SCG data centered around the ECG’s
R-peaks for motion artifact removal and then using a Sup-
port Vector Machine classifier to predict a user’s identity. We
implement their approach as a one-vs-all scheme for each user.

4.2.5 BCG Authentication

The performance of the following BCG-based authentication
systems is reported in Table 4.
ZhangRNN [62] explored BCG traces of various lengths
and a few types of recurrent neural networks. Of their propos-
als, we adopted the system that concatenated 15 segmented
heartbeats to feed as input to a single-layer LSTM network.
However, their heartbeat segmentation relies on having an
ECG source for R-peak detection. Because of the assumption
that ECG is available, they also explored a multimodal ap-
proach: they concatenated ECG and BCG traces for increased
identification accuracy.
HebertCNN [23] explored BCG-based authentication from
a head-mounted wearable device (the Google Glass). They
trained a convolutional network on BCG data from indepen-
dent sensor streams split into 3-second segments for each user,
using a one-vs-all identification scheme.

4.3 BioForge Signal Generation Performance
In this subsection, we detail the training process of the Bio-
Forge generation model and describe its performance in
synthesizing realistic biosignals.

8https://github.com/eoduself/PPG-Verification-System

Figure 5: Example original and generated traces of True PPG (blue, top),
True ECG (blue, bottom), and BioForge generated ECG (orange, bottom).
The generated ECG appears to capture the inter-peak interval morphology
of the true ECG well, in addition to reproducing R-peak locations. We observe
that the generated data carries over inaccuracies from the source: the true PPG
contains an inaccurate extra waveform (the 8th PPG peak), and that extra peak
is reflected in the generated ECG.

Data Preparation. A portion of data from the BIDMC,
CAPNO, DALIA, and WESAD datasets were used to train
the BioForge model for translating between ECG and PPG
traces. For translating between ECG and SCG, only the CEB-
SDB dataset was used. For translating among ECG, PPG, and
BCG, only the BedBased dataset was used. We split traces in
time and used the first half of each trace to train and test the
BioForge model, and the second for training and evaluating
the authentication systems. After combining the datasets and
segmenting traces into overlapping segments, all segments
were shuffled to break relationships among users and datasets.
In this way, we prevent the model from memorizing mappings
between signals of different modalities for the same user, and
between signals of different modalities for a given dataset. We
implemented the same signal processing pipeline of Cardio-
GAN [53], which includes resampling all data to 128Hz (or
512Hz for SCG), filtering, standardizing, and shuffling seg-
ments to break pairs between simultaneously recorded data.

Training settings. The BioForge models were trained for
25 epochs for the ECG/PPG targets, and 50 epochs for the
SCG/BCG targets. We used a total of four Adam optimizers
(one for both generators and the GAN loss, one for both gener-
ators and the contrastive loss, and one for each discriminator).
For all Adam optimizers, we set β1=0.5 and β2=0.999 (i.e.,
the momentum parameters for the gradient and its square)
and a learning rate of 10−4, which kept constant for 10 epochs
and then decays to 10−6 linearly (as done in the CardioGAN
paper). We set the GAN loss weights to α=3,β=1,γ=100,
as recommended in [53].

Performance. The CardioGAN authors report the accuracy
of generated traces in terms of the difference in estimated heart
rate (in beats per minute, or BPM) between the generated ECG
and ground truth. While we are interested in more than just ac-
curate heart rate estimation, this metric provides an intuitive in-
terpretation of the performance of the models. We observe that
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Figure 6: Accumulating probability of accepting an ECG trace, up to 10
attempts. The solid lines show the true probability of acceptance on original
ECG traces from the intended user (True Positive Rate, TPR, on true data
over time). Corresponding dashed lines indicate the acceptance of spoofed
data for the intended user (FPR over time from synthesized data). We observe
that for most systems and datasets, the spoofed data was accepted over 50%
of the time after 10 attempts.

the mean absolute error (MAE) in heart rate for samples gen-
erated by our model is comparable with CardioGAN results.
MAE between true and generated ECG ranges from 0.80 BPM
to 8.39 BPM across datasets for 60-second traces from a test set.

4.4 Spoofing Success over Attack Attempts
We evaluate the False Acceptance Rate (FAR) of spoofed data
in comparison to the True Positive Rates of each system. We
report our findings as an accumulating rate of success over 10
attempts at authentication. Typically, a system will allow for
multiple authentication attempts before limiting or blocking
the user. We chose 10 as the maximum number of tries be-
cause many systems, including Apple iOS devices, lock users
out permanently after 10 attempts [56]. Results are reported
with 95% confidence intervals.

We first focus our attention on ECG-based systems. Fig-
ure 6 presents the acceptance rate of true ECG data (solid
lines) and spoofed data synthesized from PPG for the four
datasets used to train the generation model. We additionally
demonstrate the performance of spoofed PPG (from ECG)
over the selected PPG-based authentication systems, in Fig-
ure 7. Lastly, the performances of spoofed BCG and SCG data
are displayed in Figure 8 and Figure 9.

Across all datasets and modalities, we observe that over mul-
tiple attempts, the likelihood of a spoofed trace being falsely
accepted often surpasses 50%, approaching the authentication
performance of true data in multiple settings. Moreover, while
some systems (e.g., Deep-ECG) seem to be robust to spoofed
data from some datasets, the chance of falsely accepting
spoofed data over 10 attempts still often exceeds the reported
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Figure 7: Accumulating probability of accepting a PPG trace, up to 10 at-
tempts. The solid lines show the true probability of acceptance on true PPG
(true positive rate), and the dashed lines show the probability of acceptance on
spoofed PPG (false positive rate from spoofed data). Similar to ECG results
shown in Figure 6, we observe that the spoofed FAR is often higher than
expected from reported EERs.
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Figure 8: Performance of original and spoofed data from the CEBSDB
dataset on SCG based authentication systems. Solid lines represent the True
Positive rates from true data, and dashed lines represent the acceptance rates
of spoofed data.
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Figure 9: Performance of original and spoofed data on BCG based authen-
tication systems. Solid lines represent the True Positive rates from true data,
and dashed lines represent the acceptance rates of spoofed data. The dataset
from which BCG is sourced (BEDBASED) contains simulatneous ECG and
PPG recordings as well, so we are able to spoof BCG from either source.

test EER. Moreover, a low EER doesn’t necessarily provide
any information about robustness against spoofed data: both
Deep-ECG and ECGXtractor reported similarly low EERs on
our datasets, yet spoofed attempt successes differed greatly.

4.5 Multi-modal Setting (ECG+BCG)
A common defense against potential spoofing attacks is to in-
corporate multiple modalities of physiological data to temper
the effects of one tampered data source. However, with our
BioForge approach, if an attacker has access to one of these
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Figure 10: Case study of a multimodal authentication system. The ZhangRNN
system considers concatenated ECG and BCG traces. We show that BioForge
can spoof both ECG and BCG data sufficiently well from PPG.

Figure 11: BioForge performance on WESAD dataset for ECG-based system,
using various sources of data for training the CycleGAN. The solid lines refer
to the original performance of true ECG data on each system. The remain-
ing dashed lines represent various trained models, relying on data from all
datasets (■), from just a similar dataset (♦), and from different datasets (+).

multiple modalities, they can generate signals for the other
ones, which renders this particular defense helpless. We eval-
uate the ability of spoofed data to fool systems that are mul-
timodal by design: we choose to investigate the ZhangCNN
BCG system, as the authors propose a version that explicitly
operates on a combination of ECG and BCG traces, generat-
ing spoofed data from a different source modality (PPG). As
shown in Figure 10, the performance of this attack achieves
a significant success rate (80%) after 10 attempts. Note that
we do not consider here multi-modal systems that simply
aggregate predictions from separately trained uni-modal sys-
tems, as the performance of these can be trivially obtained by
combining the results from the individual models.

4.6 Cross-dataset Transfer
In all previous experiments, our BioForge generative model
was trained on an aggregation of data across multiple datasets.
Here, we explore the potential of our model trained solely on
one dataset to produce realistic traces for a different dataset.
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Figure 12: ECG Spoofing results for HCITagging dataset using video as start-
ing point. rPPG traces were extracted from video clips, and the BioForge model
was trained on pairs of rPPG and ECG to generate synthetic, spoofed ECG.

Figure 11 shows False Acceptance Rates for various systems
trained on WESAD data. The Combined Training Set lines
(square markers) correspond to the results shown earlier,
where all datasets are used to train the CycleGAN. Next, we
examine the attack performance when the generative model
is trained only on DALIA data. DALIA and WESAD datasets
were collected using the same devices (chest- and wrist-worn
wearables). Lastly, we show how a model trained on purpose-
fully different data – BIDMC and CAPNO, which are clinical
datasets – can generate data that can still fool the authentication
systems. Spoofed data generated using just DALIA performed
similarly to that generated from BIDMC and CAPNO, which
indicates that there is sufficient similarity among biosignals
obtained from different devices to facilitate transfer attacks.

4.7 Video-derived source biosignal
In Section 3.1, we noted that emerging work on remote physio-
logical data sensing would facilitate access to leaked biosignal
data. In this section, we demonstrate the feasibility of an end-
to-end attack that starts solely with video data rather than a
leaked biosignal. We showcase this performance using the
MAHNOB-HCITagging dataset, which contains video and
ECG recordings from participants. From these videos, we
leverage recent advances in remote physiological sensing
to extract an rPPG pulse trace. For this purpose, we use the
CHROM method [13] from the rPPG-Toolbox [41]. 9 An ad-
vantage of CHROM is that, unlike other PPG extraction meth-
ods, it does not require examples of true PPGs or any other
physiological information to train the extraction model. After
extracting rPPG from videos, we train our BioForge generative
model on shuffled pairs of rPPG and ECG. We compare the per-
formance of the array of ECG-based authentication systems
using the true ECG and the spoofed data, shown in Figure 12.

We do not directly calculate the extent to which the video-

9https://github.com/ubicomplab/rPPG-Toolbox
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derived PPG degrades the performance of BioForge, because
the HCITagging dataset does not contain true PPG data. To
the best of our knowledge, no large public research dataset
exists that contains video, PPG, and ECG recordings from the
same participants.10 Even though the attack employs a video-
derived approximation of the true PPG, we observe that most
systems accept such spoofed data over 50% of the time after
10 attempts, which is comparable with the results on the other
datasets starting with the true PPG.

5 Discussion and Countermeasures
Our evaluations illustrate that biosignal authentication sys-
tems cannot solely rely on a presumption of biosignal secrecy:
synthesized data can compromise an array of authentication
systems that operate on various cardiovascular biosignals.
Nonetheless, this work prompts further lines of research re-
garding safeguards and potential countermeasures:

5.1 Countermeasures
Multi-modal authentication systems These systems can
combine information from multiple sources to build a more
comprehensive profile of someone’s identity. Our experiments
illustrate that practitioners should be careful to avoid using
solely cardiac biosignal data for all modalities – one compro-
mised modality can be used to synthesize others and serve as a
single point of failure. Multi-modal systems that combine data
from clearly independent sources might offer a path forward.
Obfuscating physiological information in video While pre-
venting large-scale data leaks is a pressing area of concern
for healthcare security in general, our video-based attacks
in Section 4.7 demonstrate that keeping physiological data
private remains a challenge. We used a method for rPPG ex-
traction which requires nothing but videos of the victim. As
methods for remote physiological sensing advance (see Sec-
tion 6.1 for more details), we can expect the quality of rPPG
and subsequent other cardiovascular data only to improve.
However, recent research shows that it is possible to remove
physiological information from videos to preserve privacy
without altering the videos in noticeable ways [10, 12, 58].
Adversarial training to improve authentication systems Our
work prompts a line of defensive strategies that actively uses
spoofed data to improve the robustness of the authentication
systems at training time. One could include synthetic data as
negative examples to encourage models to differentiate be-
tween true and fake data. Alternatively, these systems could in-
clude a liveness test or an initial signal filter to identify anoma-
lous or synthesized traces before allowing an authentication at-
tempt. Nonetheless, we argue that BioForge produces synthetic
data that is remarkably similar to true data (along time and fre-
quency domains), and detection of synthetic data is likely a dif-
ficult challenge. Moreover, even if a system can detect spoofed

10The OBF database [39] did include all three; however, it is no longer
available due to GDPR concerns.

data generated using BioForge, future generations of models
for synthesizing biosignals might be able to evade detection.

5.2 Ethical Considerations
To the best of our knowledge, no commercial devices that
use biosignal authentication are available off-the-shelf to con-
sumers. The lone device that uses ECG for authentication
(i.e., Nymi Band [29]) does so in conjunction with fingerprint
authentication for the purpose of continuous authentication.
While our work reveals a fundamental limitation in the design
of biosignal authentication systems in general, we do not de-
velop an exploit to compromise the Nymi Band. However, we
have initiated contact with Nymi to make them aware of this
potential vulnerability. We hope our paper serves as a forewarn-
ing to future system designers to seriously consider the threat
model associated with spoofed data when using such systems.
All our experiments were conducted on publicly available
datasets and open-source biosignal authentication systems.

6 Related Work
Our approach involves synthesizing biosignals for spoofing
authentication systems, and builds on related work in both
biosignal synthesis and spoofing attacks.

6.1 Synthesis of Cardiovascular Biosignals
There exists a wealth of literature on synthesizing physiolog-
ical data, with the goal of strengthening medical diagnosing.
Much of this work has focused on synthesizing ECGs, as
clinical interpretation of high-quality ECG recordings is con-
sidered the gold standard for diagnosing heart failure. An early
popular approach generated ECG signals as the sum of Gaus-
sian curves parameterized with time-domain features manually
extracted from the patient’s ECG [43]. Current state-of-the-art
approaches avoid relying on manual feature selection and map-
ping, as they instead leverage deep generative models. Various
frameworks have been proposed to synthesize ECG, such as
the Variational Autoencoder [4] and diffusion models [2]. No-
tably, Generative Adversarial Nets (GANs) [20] have emerged
as a popular framework for the synthesis of ECGs to augment
or improve the quality of existing data [1, 5, 61, 61]. For exam-
ple, multiple works have used GANs to reconstruct a clinical
12-lead ECG recording from a single lead signal for improved
arrhythmia diagnosis [3, 31, 63]. Other related approaches
consider generating ECG data given another cardiovascular
biosignal. The CardioGAN approach by Sarkar et al. [53]
leverages a GAN framework to generate ECGs from PPG
waveforms, and they evaluate the performance of the model
in terms of estimated heart rate across a variety of datasets. We
base our model on the CardioGAN approach and describe Car-
dioGANs further in Section 3.2. Rather than assessing model
performance in terms of heart rate estimation, we evaluate
performance in terms of authentication security.

Considerable attention has also been placed on synthesizing
PPG data, mainly from remotely-collected data. Traditional
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PPG measurement requires physical contact with the user, but
recent research has shown that is is possible to estimate a per-
son’s PPG waveform from videos [11,18,40,60]. While this is
an area of active research, typical approaches involve the detec-
tion of regions of interest from videos that correspond to infor-
mative areas of the skin, followed by the detection of changes in
color intensity within these regions that are correlated with the
cardiac cycle. Boccignone et al. [8] and Liu et al. [40] provide
open-source Python toolkits for studying methods of pulse-
rate estimation and PPG reconstruction using remote methods.

While less attention has been focused on SCG and BCG
biosignals, recent work has considered the synthesis of whole-
body BCG signals for data augmentation and from chest SCG
measurements [24, 46].

6.2 Spoofing Authentication Systems
Three related lines of research have addressed the threat of
spoofing attacks against biosignal authentication. In 2017, [15]
demonstrated the first practical spoofing attack against an
ECG authentication system. The authors targeted the Nymi
band, a commercially available ECG wristband that advertised
the ability to facilitate user authentication. They developed
models that could translate ECG recordings collected from a
portable ECG monitor ("sufficiently close" to the Nymi band)
to the form collected by the band. They demonstrated how an
adversary could compromise the wristband and present the
spoofed data, masquerading as a victim user.

Karimian et al. [32] added to this threat by demonstrating
various techniques to synthesize a target user’s ECG trace,
including using another subject’s (i.e., an adversary’s) ECG
from the same device, or by converting a small segment of
the victim user’s ECG into longer traces. They moreover
simulated several types of spoofing attacks against ECG au-
thentication systems that generate victim traces which could
pass verification. While promising, these attacks rely on ac-
cess to supervised training data that include samples of the
target user’s ECG. This assumption limits its practical threat to
authentication systems: if an adversary has access to a sample
of the subject’s ECG data to train the model, they might be
able to replay that sample directly.

Other closely related work focuses on spoofing PPG-based
authentication systems using other forms of PPG or remote
PPG (rPPG). Karimian et al. developed a method to convert
a PPG signal obtained from an arbitrary sensor location to
one that looks like it was measured by a target device used
for authentication; the resulting signal was then able to spoof
the system [32]. Again, this requires pairs of PPG recordings
from a target subject for training the translation model. More
recently, attention has moved to leveraging remote PPG mea-
surements; rPPG techniques transform a video of a subject
(focused on the face or a small section of a finger) into reli-
able PPG waveforms. While these techniques are still an area
of active research, Li et al. showed that rPPG data obtained
from recordings of participants’ faces can be used to spoof an

authentication system [36, 38] trained on their regular PPGs.
Li’s studies were the first to show that PPG-based systems
are vulnerable to remote attacks, but so far the attack has only
been demonstrated for one dataset and against one example
system that relies heavily on fiducial point detection (for heart-
beat segmentation). Their work contributes to discrediting
the security of PPG-based authentication; however, the extent
of this threat to various physiological signals and forms of
authentication systems has yet to be shown.

7 Conclusion
Biosignal-based authentication systems are extensively stud-
ied as a potential form of biometric authentication. In this
paper, we challenge the prevailing assumption that cardiovas-
cular biosignals are confidential and illustrate that spoofed
biosignals can fool existing state-of-the-art authentication
systems. Our BioForge method shows that spoofed biosignals
can be generated both from video of the target and from other
biosignal modalities that are plausible for an adversary to ob-
tain from data leaks. Moreover, we show that generating fake
biosignals does not require access to simultaneously recorded
supervision data. We also illustrate how multimodal authenti-
cation, a commonly proposed defense, is similarly vulnerable
to spoofing attacks if these multiple modalities include only
cardiovascular signals. We anticipate a growing risk landscape
on this front as database leaks become more likely, wearable
monitoring devices become more widespread, and the per-
formance of generative models continues to advance in the
coming years. Our results highlight the inherent weakness of
biosignal-based authentication systems to spoofing attacks
and the need for strengthened security analysis in the design
of future biometric authentication systems.

Availability
We have made our system and evaluation code available
at https://github.com/Ethos-lab/biosignal-auth-
harmful to foster future research.
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