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Abstract
Explanation methods analyze the features in backdoored

input data that contribute to model misclassification. How-
ever, current methods like path techniques struggle to detect
backdoor patterns in adversarial situations. They fail to grasp
the hidden associations of backdoor features with other input
features, leading to misclassification. Additionally, they suffer
from irrelevant data attribution, imprecise feature connections,
baseline dependence, and vulnerability to the "saturation ef-
fect".

To address these limitations, we propose Xplain. Our
method aims to uncover hidden backdoor trigger patterns and
the subtle relationships between backdoor features and other
input objects, which are the main causes of model misclassifi-
cation. Our algorithm improves existing path techniques by
integrating an additional baseline into the Integrated Gradi-
ents (IG) formulation. This ensures that features selected in
the baseline persist along the integration path, guaranteeing
baseline independence. Additionally, we introduce quantita-
tive noise to interpolate samples along the integration path,
which reduces feature dependency and captures non-linear
interactions. This approach effectively identifies the relevant
features that significantly influence model predictions.

Furthermore, Xplain proposes sensitivity analysis to en-
hance AI system resilience against backdoor attacks. This
uncovers clear connections between the backdoor and other
input data features, thus shedding light on relevant interac-
tions. We thoroughly test the effectiveness of Xplain on the
Imagenet and the multimodal domain of the Visual Question
Answering dataset, showing its superiority over current path
methods such as Integrated Gradient (IG), left-IG, Guided IG,
and Adversarial Gradient Integration (AGI) techniques.

1 Introduction

Black box neural networks are widely deployed in domains
such as disease detection [5], image synthesis [34], protein
folding [25], and backdoor analysis [20, 26]. However, the

Original label: Tree
Misclassification label: Forest 

Association links of the 
trigger to the tree pixels

Original label: Tree
Misclassification label: Tree 

Links break between the 
trigger pixels and tree pixels

Figure 1: This example highlights the importance of capturing
links between trigger features and their surrounding features
in the input sample. Both trigger features and their relation-
ships with other features contribute to misclassification. The
trigger in the top-right corner affects the central tree (as shown
by the arrows), causing misclassification from "Tree" to "For-
est". However, moving the trigger to the bottom right disrupts
this relationship, which does not cause misclassification.

model’s complexity and high-dimensional dynamics, driven
by numerous parameters and non-linear interactions between
input data features, make interpreting their decision-making
processes challenging. Consequently, analyzing the backdoor
features contributing to the model misclassification presents
additional security concerns.

To detail model predictions, attribution methods have
emerged as a crucial tool, offering explanations by quanti-
fying the contribution of each input feature to a decision [39].
Attribution methods broadly fall into perturbation-based meth-
ods [33, 45], backpropagation-based methods [36, 41], and
gradient-based methods [39, 42].

Our paper focuses on path gradient-based methods, known
for their axiomatic foundations and model-agnostic nature [1].
These methods evaluate feature importance by incrementally
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increasing their "presence" from the baseline (initial feature
values) to the input sample (final feature values) to measure
their impact on model output. A limitation in these techniques
is the introduction of noise from irrelevant features (features
not contributing to model prediction) during gradient compu-
tation, which can stem from highly correlated features in the
input [17,22,24,40], baseline selection [15], and the saturation
problem [24].

The baseline issue arises from interpolating between a base-
line with "missing" features and the feature’s actual value in
the input sample, neglecting the feature values used in the
baseline. For example, a constant black image baseline may
not emphasize significant black pixels in the final explana-
tion attribution map. The saturation problem occurs when
input feature gradients become negligible, so shifting features
(from baseline to input sample) does not change the model
prediction. Alternatively, the model output probability does
not change for the incremental interpolation samples along
the integration path.

Consequently, these limitations obstruct the interpretabil-
ity of attribution methods in security. Analyzing backdoor
triggers in the input, which prompt a trojan model to pro-
duce a specific misclassification, becomes challenging [21].
Figure 1 demonstrates the importance of feature interactions
in the model misclassification. Both trigger pixels and their
relationship (shown by the solid arrows) with the tree pixels
contribute to the misclassification of the model prediction
from "tree" to "forest". However, this relationship is detached
when the trigger is moved to the bottom-right corner (shown
by checked arrows). Consequently, the classification label re-
mains the same, i.e., tree. Furthermore, a defense mechanism
that cannot detect the trigger and its relationships will not ef-
fectively prevent adversaries from bypassing it. Triggers and
their connections are crucial for misclassification, so a robust
attribution method should identify them during inference.

Various solutions have been proposed to address the highly
correlated features [40], select better baselines [8, 43], and
limit the saturation effect impact [13, 15, 24, 28], however,
these approaches, while addressing specific problems, do not
necessarily enhance the overall quality of attributions, as we
demonstrate in Section 6. Therefore, we encountered an open
challenge of updating the path gradient methods, specifically
Integrated Gradients (IG) [42], such that the problems men-
tioned above do not limit them. The rationale behind selecting
IG is that it is the most prominent path method in the litera-
ture. Additionally, we select the other SoTA path methods in
the literature: Left-IG (LIG) [24], Guided IG (GIG) [15], and
Adversarial Gradient Integration (AGI) [28]. These methods
are an update on IG but still suffer from the same limitations
(demonstrated in Section 6).

Our Goals and Contributions. To tackle the challenges out-
lined above, we present the design and implementation of
Xplain, designed to enhance the understanding of the relation-

ship between the input sample features. Xplain incorporates
two enhancements to Integrated Gradients (IG), a widely used
gradient-based method in the field.

Firstly, our approach tackles the complexities in input data
by introducing quantitative noise, disrupting complex con-
nections between input features and predicted labels. The
addition of noise proves beneficial in scenarios where input
features are correlated. Secondly, we eliminate the reliance on
a particular baseline in the baseline selection. We append an
extra baseline to each interpolation sample along the gradient
pathway. This simple yet novel technique removes the need
for specific baseline choices (see Section 5.2).

The intuition behind adding quantitative noise is to inte-
grate rapid small alterations in the model prediction (because
of the addition of noise) along the gradient path. It automat-
ically tackles the saturation issue because the gradients of
the interpolated samples gradients keep on adjusting (i.e.,
never saturate). This also exposes more complex, subtle, and
non-trivial correlations among input data features. Next, the
intuition behind adding an extra baseline is to integrate the
effect of baseline features (missing features) in the gradient
computation along the integration path. It guarantees the ef-
fect of baseline features persists in the interpolated samples.

Additionally, these updates make Xplain remain unaffected
by different decoy triggers and their positioning. More details
are provided in Section 6. In contrast, other path techniques
(IG, LIG, GIG, and AGI) cannot discover the hidden associa-
tion links between the trigger features and other features in the
input sample [20]. Hence, if the trigger is moved to a different
location (Figure 1), these methods still inaccurately deem the
moved trigger significant for the model, even without misclas-
sification. Our approach, however, can accurately identify the
true impact of these artifacts (as analyzed in Section 6.4). This
enhancement in explainability offers a valuable tool for iden-
tifying and mitigating Trojaned image data samples. Finally,
we propose a sensitivity analysis framework to strengthen
AI system resilience against backdoor attacks. This analysis
evaluates the effect of possible backdoor triggers on model
predictions, examining interactions between relevant features
for security scrutiny. The aim is to offer insight into how
backdoor patches and their different associations collectively
influence model predictions. Further analysis is detailed in
Section 5.5.

Therefore, integrating noise insertion, baseline indepen-
dence, and sensitivity analysis forms a robust XAI analysis
framework. This is essential for critical applications where
backdoor attacks and trigger recognition are major concerns.

In summary, our main contributions are as follows:

• We present Xplain, a novel attribution methodology to
fully grasp the hidden associations or links of backdoor
features with other features in the queried input data
sample, which are the root causes for the model misclas-
sification.

2938    33rd USENIX Security Symposium USENIX Association



• Xplain methodically resolves the issues of noisy rele-
vance scores, notably when data samples have correlated
features. Additionally, Xplain deploys a simple update
on the IG technique to mitigate the saturation effect
and baseline selection. It outperforms the existing path-
gradient techniques by determining the pertinent features
that impact model predictions, as shown in Section 5.

• We propose a sensitivity analysis framework to fortify
the robustness of AI systems against backdoor attacks,
which helps to quantify the pertinent features and their re-
lationships that can be leveraged in detecting backdoors,
as detailed in Section 5.

• We extensively compare Xplain with popular gradient-
based methods like Integrated Gradients [42], Left-IG
(LIG) [24], Guided IG (GIG) [15], and Adversarial Gra-
dient Integration (AGI) [28] on both Imagenet and text
datasets. We aim to evaluate the interpretability of these
methods in detecting various backdoor triggers in the
input. Since triggers are crucial for misclassification, a
robust XAI method should automatically identify their
presence and association with other features during in-
ference, as shown in Section 6.

2 Background

2.1 Neural Network

The training of a Neural Network (NN) F takes samples from
a domain D as input and returns predictions from the set L .
Learning a function Fθ : D → L is dependent on the param-
eters θ of the NN. The goal of the adversary A is to inject
a backdoor into the aggregated model, making F predict an
adversary-chosen label lA ∈ L for all samples containing one
or more specific pattern (called triggers), establishing the
trigger set DA ⊂ D .

2.2 Integrated Gradients

Given an input data point −→x ∈ D and a classification model
Fθ, an explanation method, denoted by H , takes the form of
an influence (or attribution) vector. This vector elucidates the
model’s decisions based on the contributions of each feature.
The ith element of this vector, Hi(

−→x ), signifies the extent to
which the ith feature impacts the predicted label y for the data
point −→x . Integrated Gradients [42] are derived by accumu-
lating gradients calculated at all points along a linear path
from a baseline −→x ′

(often chosen as −→x ′
=

−→
0 ) to the actual

input −→x [42]. Essentially, integrated gradients are the path
integral of the gradients along a straight-line path from the
baseline −→x ′

to the input −→x . The integrated gradient for an
input −→x and baseline −→x ′

, which we denote as HIGRAD, for

the i-th feature, is defined as follows:

HIGRAD(
−→x )i = (xi − x

′
i) ·

∫ 1

α=0

∂Fθ(
−→x ′

+α(−→x −−→x ′
))

∂xi
dα

Here, α is the interpolation factor that determines the preci-
sion to which interpolation samples (−→x ′

+α(−→x −−→x ′
)) be-

tween the baseline −→x ′
and the input −→x will be computed.

Hence, if the model output (logits) does not change for these
interpolation samples, i.e. while moving α along the path,
the corresponding gradients are not very important for the
model’s decision-making. Left-IG (LIG) [24] was designed
to mitigate this issue (detailed below).

IG also suffers from spurious or noisy attribution maps as
it does not consider the spatial relationships between features
in an input. The reason is that IG does not account for the
spatial arrangement or the context provided by neighboring
features, which can be crucial for understanding the overall
contribution of the features to the model prediction. Guided
IG (GIG) [15] was proposed to mitigate this issue (detailed
below).

Lastly, IG also suffers from the choice of baseline. If the
baseline does not adequately capture the critical features in
the input sample, the resulting explanations might not be
reliable or easy to understand. Hence, different baselines can
yield different attributions for the same input, interpreting
results as ambiguous and less robust. Adversarial Gradient
Integration (AGI) [28] was proposed to mitigate this issue
(detailed below).

2.3 Left Integrated Gradients
To separate the contribution of saturated areas (i.e., areas of
the integral path where the model output changes minimally)
from unsaturated areas (i.e., areas of the integral path where
the model output changes substantially), Left-IG [24] splits
the approach described in Section 2.2 into two regions. Con-
sidering only the leftmost region, representing the substantial
increases in the function characterized by Fθ, while the other
saturated regions correspond to minimal changes in Fθ. For a
given threshold ϕ, Left-IG wants to determine the minimum
value of α such that the target output F(−→x +α · (x− x

′
)) ex-

ceeds HIGRAD by ϕ along the linear path.

2.4 Guided Integrated Gradients
To obtain attributions features with the lowest absolute value
of partial derivatives, Guided IG [15] integrates gradient along
an adaptive path determined by the input −→x , baseline −→x ′

and
model Fθ. This adaptive path is defined from the baseline
towards the input, moving in the direction of features with the
lowest absolute value of partial derivatives. At each step of the
integration, Guided IG selects pixels with partial derivatives
lower than a specific threshold ϕ (|∂xi|< ϕ) and moves only
that subset closer to the intensity in the input image, leaving
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all others unchanged, until there are no longer candidates for
selection.

2.5 Adversarial Gradient Integration

Adversarial Gradient Integration [28] replaces the baseline −→x ′

by calculating the gradient of adversarial examples. Given the
input data point −→x , the approach aims to explain the model’s
prediction by discriminating against the false classes instead
of focusing only on the correct classification of the true class.
With an inverse relationship between the gradient of the ad-
versarial examples on the false class and the attribution of
the true class. This methodology is based on the notion that
while we commonly describe a model as classifying inputs, an
alternative viewpoint is that the model excludes inputs from
the other categories.

3 Threat Model

We consider a distinct threat model concerning adversaries
seeking to stray from the normal behavior of the trained model
during inference through the use of accurately crafted back-
door samples.
Adversary Capability: In our threat model, we assume an
attacker A leverages access to the machine learning dataset.
A inserts backdoors into the training dataset before training
and does not necessarily need to be involved in the training
procedure. For instance, they do not need to know how many
epochs training will last, what the hyperparameters of the
network will be, or what preprocessing steps may be applied,
except for what they may deduce from the nature of the train-
ing set. Thus, A knows the existence and functionality of
these backdoors. A can exploit these backdoors to alter the
model’s predictions on specific inputs without the need for
direct access to the model architecture or parameters. Finally,
we assume that A may acquire knowledge of the workings of
the model through various means. However, the specifics of
how they gain this knowledge are not within the scope of our
investigation.
Attack Objectives: The primary objective of an adversary is
to manipulate model predictions on targeted inputs without
raising suspicion. Additionally, an adversary aims to under-
mine the integrity and reliability of the model by integrating
backdoors of different types in different locations of the input
sample, fulfilling the following criteria. First, the adversary
seeks to evade detection by conventional security mecha-
nisms, as the existing mechanisms may not be able to extract
the complex non-linear relationship between the trigger fea-
tures and other features of the input data sample. Second, to
further compromise the reliability of any employed defense,
the model adversaries divert the defenses into erroneously
flagging safe samples.

4 Problem Description

This section thoroughly explores the constraints of gradient-
based techniques, mainly focusing on the Integrated Gradients
(IG) method. Additionally, we present an extensive analysis
explaining how our approach successfully addresses and sur-
passes these limitations.

4.1 Limitations of IG

Lack of Spatial Information: The lack of spatial information
in IG refers to its inability to consider the spatial relationships
between features in an input. It cannot analyze a specific
feature’s spatial arrangement and local interactions among
features. This limitation presents challenges in cases where a
complex relationship exists between different input sample
features. As a result, IG struggles to discern which features
hold more meaningful information or are more relevant for
the model prediction. Below, we detail key factors for this
limitation.

First, IG treats each feature of the input sample indepen-
dently when calculating attributions. Thus, it does not account
for the spatial arrangement or the context provided by neigh-
boring features, which can be crucial for understanding the
overall contribution of the features to the model prediction.
This independent feature assumption fails to capture how fea-
tures interact, leading to an incomplete analysis of the model’s
decision-making process.

Second, IG’s reliance on a linear interpolation path from a
baseline to the input image further exaggerates this issue. It
does not consider how spatially related features might change
together along more complex paths, potentially missing criti-
cal spatial dynamics and interactions. For instance, a feature’s
contribution might be over- or under-estimated because the
linear path does not reflect the changes in feature interactions.

Third, IG provides a localized attribution score for each
feature, indicating its contribution to the model’s prediction.
However, it does not inherently capture how groups of fea-
tures interact to form meaningful patterns that influence the
model’s decision. This localized attribution can misrepresent
the significance of individual features when their importance
is derived from their spatial context.

For example, consider a model distinguishing between cats
and dogs based on features like ears (x1) and fur color (x2).
Suppose a specific combination of feature values triggers a
misclassification as a dog. Assuming feature independence,
IG may highlight only the ear or fur color, even if both are
manipulated. This results in distorted attributions, misrepre-
senting the true importance of combined individual features.
A single feature might appear highly important, but its sig-
nificance could be due to its relationship with surrounding
features, which IG does not explicitly capture.

In summary, IG’s lack of spatial information determines
whether it can miss or misrepresent the importance of spatially
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Figure 2: The diagram depicts the IG attribution technique, discrepancies in attribution scores, and saturation phenomena in
path integrals. The upper row displays interpolated inputs, while the second row showcases the corresponding gradients. The
IG attribution map (depicted in the bottom-right) represents the gradient average. The third row features the logit-α curve,
delineating saturation areas.

correlated features and structures in the input data sample.
Baseline Selection: The initial features (baseline) values are
crucial in the IG method. If the baseline does not adequately
capture the critical features in the input sample, the resulting
explanations might not be reliable or easy to understand.

IG draws inspiration from cooperative game theory, specif-
ically the Aumann-Shapley value, which quantifies the con-
tribution of a group in a game by measuring how the game’s
value increases with more group members. In machine learn-
ing, IG assesses a feature’s importance or missingness, such
as xi, by determining how much the network’s output grows
as this feature is incremented from the baseline value to the
input sample value.

An inappropriate baseline can lead to misleading attribu-
tions, especially when fixed feature values have unintended
meanings. It gets worse when we consider the difference from
the baseline term (−→x −−→x ′

). For example, suppose a constant
black image is the baseline. In that case, IG will not empha-
size black pixels, even if they are essential for the object. IG
does not care about the chosen baseline feature values.

In summary, IG’s attributions are sensitive to the choice of
baseline. Different baselines can yield different attributions
for the same input, interpreting results as ambiguous and less
robust. This sensitivity complicates selecting a universally
appropriate baseline, especially for diverse datasets or models
with varied input characteristics.

Saturation Effect: The saturation problem in IG is when the
gradients of interpolated sample features become negligible
along the path from the baseline to the input, even though the
network heavily depends on these features. Thus, it results in
attributions that underestimate certain features’ importance,
failing to accurately reflect their contribution to the model’s
output. Consequently, shifting features in the input sample
(from baseline to actual value) often fails to alter the model
predictions.

To introduce and understand the saturation effect problem
within path integrals, we examine the performance of the
IG attribution method in 2. As observed in Figure 2, the
output logits (model prediction) (logit-Alpha curve) of the
interpolated samples (−→x ′

+α(−→x −−→x ′
) for α ∈ [0,1]) starts

to saturate after a certain threshold. α is the interpolation
factor defined in Section 2.2. Thus, changes in these features
do not significantly impact the model’s output, leading to their
importance being underestimated.

It can be observed that (i) gradients from the saturation
regions are of low quality, and (ii) gradients from the deci-
sion region are of high quality. The conclusion is relatively
straightforward. The corresponding gradients in the saturation
regions are not crucial to the decision of the model. We study
the quality of the computed gradients concerning the decision
and saturated regions of the path integral.
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It prompts a fundamental question: Can we design an in-
tegral path that mitigates the problems of path explanation
methods presented above?

5 System Design

This section provides an in-depth examination of the struc-
tural configuration of our proposed XAI technique, Xplain.
First, it presents the high-level idea of Xplain, then elaborates
on the method’s core components and their corresponding
functionalities.

5.1 High-Level Idea
We introduce a simple yet novel technique for generating
attributions that circumvent challenges associated with fea-
ture interconnections or lack of spatial information, baseline
selection, and saturation effects. Specifically, our approach
integrates the following two key strategies.

First, we systematically add the "speckle" or noise along
the gradient trajectory of the input data, transitioning from
the baseline input toward the original input’s noisy variant.
The intuition behind adding quantitative noise is integrating
rapid small alterations in the model prediction (because of
the addition of noise) along the gradient path. It automati-
cally tackles the saturation issue because the gradients of the
interpolated samples gradients keep on adjusting (i.e., never
saturate). This also exposes more complex, subtle, and non-
trivial correlations among input data features. This technique
aims to improve the interpretability of the model’s predictions
by introducing controlled perturbations that aid in understand-
ing how features contribute to the model’s decision-making
process. This establishes a straightforward link between the
input data and the model’s prediction and, at the same time,
adjusts the output logit values as the ∆α moves along the path
to account for the important features of the model prediction.

Second, we incorporate an additional baseline to the "in-
creasing missing feature" values in the interpolation samples
along the gradient pathway. When generating interpolated im-
ages with varying alpha (α) values between 0 and 1, the initial
feature values present in the baseline are not adequately rep-
resented in the final attribution. To address this, our method
integrates an additional baseline to ensure the effect of base-
line features persists in the interpolated samples or the final
attribution map.

Our framework effectively unravels how features interact,
mitigating the three constraints commonly seen in path expla-
nation methods. Our method focuses on input points along
the interpolation path where feature connections are mini-
mized. Consequently, it automatically addresses the issues
of the baseline selection and the saturation effects by consis-
tently modifying the scaled image. As observed in Figure
3, the output logits (model prediction) (logit-Alpha curve)
of the interpolated samples (−→x ′

+α(−→x −−→x ′
) for α ∈ [0,1])

automatically starts to minimize the effect of saturation. Thus,
the impact of features that do not significantly impact the
model’s output is optimally diminished. Note: as mentioned
earlier, we are adding quantitative noise to the interpolation
samples. Thus, as the α increases, the explanation visualiza-
tion becomes a bit noisy. However, the focus is to highlight
all the relevant pixels contributing to model predictions, as
seen in Figure 3.

Finally, we conduct a sensitivity analysis framework to
strengthen AI system resilience against backdoor attacks. It
computes the strength of how much one feature impacts the
other features or provides insights into the degree to which
the behavior of one feature can be predicted from the behavior
of another. Thus, it illustrates how the sensitivities (impact of
−→x ′

on HIGRAD) of the features share variance with each other.
The efficacy of our approach is substantiated through com-

prehensive experiments, notably in pinpointing the relevant
features underpinning model predictions. Further insights into
these evaluations can be found in Section 6.

5.2 Interpolation Samples Computation
This section illustrates how the IG formulation (Section 2) is
updated to integrate the additional baseline and the speckle
noise to mitigate the three limitations of the existing path
methods.
Noise Integration: To accomplish this, we introduce
"speckle" noise at each interpolation step of IG, i.e., for each
α. The goal is to ensure the gradients of the interpolated sam-
ples gradients keep on adjusting (i.e., never saturate). This
noise is drawn from the standard normal distribution of −→x
and is evenly distributed across the entire feature space of −→x .
This noisy input is then added to the specific input sample.
These steps aim to reduce the direct dependency between in-
put features, as shown in Equation 1 and illustrated in Figure
4 for different α. We use "speckle" noise instead of Gaussian
noise (or other noises) because it is evenly spread across the
feature space of the input query, whereas Gaussian noise is
centered around the mean value. It is given by:

g(−→xn ) =
−→x +N (µ = 0, ,σ = 1)×−→x

for mean µ = 0 and standard deviation σ. Then, this noisy
update on −→x is used to compute interpolation samples and is
given by: −→x ′

+α× (−→x −−→x ′
+g(−→xn )).

Baseline Integration: To ensure that the initial feature val-
ues in −→x ′

are adequately represented in the final attribution,
Xplain integrates an additional baseline in the interpolated
samples and is given by:

p =−→x ′
+α× (−→x ′

+α× (−→x −−→x ′
+g(−→xn ))) (1)

where −→x ′
+α× (−→x −−→x ′

+ g(−→xn )) are the interpolated
images for different values of α ∈ [0,1] (same as in IG). In
Equation 1, the same baseline −→x ′

is augmented twice with
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Figure 3: A visualization of how Xplain integrates the noise into the selection of the interpolated images, thereby limiting the
impact of noise and saturation effect on the attribution scores. The upper row displays interpolated inputs, while the second row
showcases the corresponding gradients. The Xplain attribution map (depicted in the bottom-right) represents the gradient average.
The third row features the logit-α curve, delineating how Xplain diminishes the impact of saturation effect on the relevance of
the features.

(a) α = 0 (b) α = 0.5 (c) α = 1

Figure 4: The plots illustrate how the gradients along the attri-
bution path are related. In each subplot, the cosine similarity
between gradients at three α points equal to 0.1, 0.5, and 0.9
is shown compared to gradients of all the other steps of the in-
tegration path. This analysis is performed for both Integrated
Gradients (IG) and our method Xplain.

the noisy input sample g(−→xn ) in the IG formulation. The mo-
tivation is two-fold: first, to make sure the baseline feature
values persist along the integration path, and second, to make
sure an integral path is established from −→x ′

(α = 0) to the
noisy input sample of −→x ′

+−→x +g(−→xn ).

5.3 Gradient Computation

This module parallels the approach presented in [42] but with
a slight variation: the input to IG is p (Equation 1). The
updated Xplain formulation is as follows:

HXplain(
−→x )i = (xi − x

′
i).

∫ 1

α=0

∂Fθ(p)
∂xi

dα (2)

where, HXplain(
−→x )i represents the i-th feature’s attribution

or contribution to the model prediction. By integrating these
processes, Xplain presents an innovative approach to explain-
able AI, enhancing the interpretability of complex machine
learning models.

The Xplain attribution method aligns with IG as depicted
in Section 2.2, except with the distinction that the model input
for α∈ [0,1] is computed using Equation 2. By computing the
noisy interpolated inputs, Xplain effectively controls the com-
putation of crucial query samples that substantially impact
the attribution map of Xplain or cause significant changes in
the model’s logits (model’s outputs probabilities). As a result,
the explanation vector HXplain accurately identifies all rele-
vant features. This is accomplished by mitigating the baseline
dependence and the saturation effect, which in turn implicitly
accommodates the spatial analysis of the features.

Figure 3 demonstrates Xplain’s functionality. The top row
shows interpolated inputs computed using Equation 1. The
second row illustrates the impact of Xplain on gradients from
noisy interpolated inputs for α ∈ [0.02,0.2,0.4,0.6,0.8,1.0].
The bottom-left plot shows the logit-α curve for the input
image, while the bottom-right plot displays gradients calcu-
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lated by Xplain for these inputs. The noisy interpolated image
computation prevents input feature saturation, maintaining
dynamic alternation.

The logit-α curve shows that Xplain mitigates the satura-
tion by reducing the curve’s slope. This ensures that gradients
for input samples are minimally influenced by noise. Conse-
quently, attributions derived using Xplain exhibit significantly
lower noise levels than the existing path methods, as demon-
strated in Section 6.

5.4 Conformity with Axiomatic Principles

Our methodology, Xplain, is grounded in the axiomatic prop-
erties fundamental to the path integral attribution method.
We highlight its alignment with select principles delineated
in [42] and elucidate the axiomatic foundations upheld by
Xplain.

• Completeness Axiom: Formally, the Completeness ax-
iom is described by:

i=n

∑
i=0

HXplain(
−→x )i = Fθ(

−→x )−Fθ(
−→x ′

) (3)

This dictates that the aggregate of attributions should
equal the difference between the function’s responses
for the input and the baseline.

In the case of Xplain, we incorporate baseline and con-
trolled noise into the input query while creating interpo-
lated images along the path integral. As a result, Xplain
also upholds the Completeness principle, albeit with a
specific adjustment:

i=n

∑
i=0

HXplain(
−→x )i = Fθ(p)−Fθ(

−→x ′
) (4)

• Sensitivity Axiom (a): This principle suggests that if a
feature’s variation between the input and baseline leads
to different predictions, it should have a nonzero attribu-
tion. Because Xplain is in line with the Completeness
principle, it also naturally follows the Sensitivity (a) prin-
ciple.

• Implementation Invariance Axiom: This concept em-
phasizes the importance of consistent attributions when
comparing two networks that work similarly. Since
Xplain operates without concerning itself with the spe-
cific inner workings of the network, it naturally meets
this requirement. Additionally, the attributions produced
by Xplain adhere to Implementation Invariance, as they
rely solely on the gradients of the function that the net-
work represents.

5.5 Sensitivity Analysis
Below, we detail a framework that provides a holistic under-
standing of feature interactions by computing the degree to
which the behavior of one feature can be predicted from the
behavior of another. First, we compute the feature sensitivity,
which measures how much a feature affects the attribution
computed by Xplain. Then, we incorporate how much the
variance is shared between each pair of feature sensitivities
by computing the coefficient of determination (denoted as
R2) [27].

• Compute Feature Sensitivities: The sensitivity values
Sxi and Sx j are computed by dividing the attribution val-
ues A(xi) and A(x j) by their respective feature values xi
and x j. Normalizing by the feature value ensures that
the sensitivity reflects the contribution per unit of the
feature, providing a more meaningful measure of impact.
Thus, we compute the sensitivity values Sxi and Sx j for
each feature xi and x j using the following formula:

Si =
A(xi)

xi

S j =
A(x j)

x j

• Variance Sharing Computation: Next, we compute
how much variance is shared between two features xi
and x j using the coefficient of determination. The co-
efficient of determination (R2) is calculated to quantify
the proportion of variance in the sensitivity of feature
xi that the sensitivity of feature x j can explain. In other
words, it measures how much the sensitivities of the
two features co-vary. Coefficient of determination R2

between the sensitivity values of feature xi and feature
x j is computed as:

R2(xi,x j) =
cov(Sxi ,Sx j)

var(Sxi) · var(Sx j)

where, cov(Sxi ,Sx j) is the covariance between Sxi and
Sx j . var(Sxi) and var(Sx j) are the variances of Sxi and
Sx j , respectively. R2(xi,x j) represents the proportion of
variance in the sensitivity of feature xi explained by the
sensitivity of feature x j. R2 provides insights into the
degree to which the behavior of one feature can be pre-
dicted from the behavior of another. Thus, it indicates a
strong linear relationship, suggesting that the sensitivities
of the features share a significant amount of variance.

• Combine with Cosine Similarity and Euclidean Dis-
tance: This step involves incorporating R2 into the analy-
sis by combining it with cosine similarity and Euclidean
distance metrics. The cosine similarity measures the di-
rectional alignment of sensitivities, while the Euclidean
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distance captures the magnitude of the difference be-
tween sensitivities.

– For cosine similarity, we do the following:

C_sc(xi,x j) = c_si(Sxi ,Sx j)×R2(xi,x j)

where c_si(Sxi ,Sx j) measures the alignment or sim-
ilarity in the direction of Sxi and Sx j .

– For Euclidean distance, we do the following:

E_sc(xi,x j) = e_si(Sxi ,Sx j)× (1−R2)(xi,x j)

where e_si(Sxi ,Sx j) measures the magnitude of the
difference between Sxi and Sx j , and (1−R2)(xi,x j)
emphasizes feature pairs with low shared variance.

Finally, we combine the scores from cosine simi-
larity and Euclidean distance to obtain a final inte-
grated score, given by:

F_sc(xi,x j) = C_sc(xi,x j)+E_sc(Sxi ,Sx j)

The final score represents a comprehensive mea-
sure that considers the similarity in sensitivity di-
rection and the shared variance in sensitivity values
between features xi and x j. This score combines
multiple aspects of feature interaction, providing a
balanced measure that considers both the direction
and magnitude of sensitivities and shared variance.

6 Evaluation

6.1 Setup
In this section, we thoroughly evaluate our proposed method
Xplain. To conduct these evaluations, we utilize the PyTorch
framework [30] on a server with the following specifications:
4 NVIDIA RTX 8000 GPUs, each with 48GB of memory,
an AMD EPYC 7742 processor, and a total of 1024 GB of
main memory. Our chosen dataset is the 2012 validation set of
ImageNet [35] and multimodal domain of the Visual Question
Answering dataset. In this dataset, the model is presented with
both image and text samples, with the text input containing
inquiries regarding the content of the image input. The model
implementation is based on the work of Kazemi et al. [16]
using an LSTM model trained on the VQA 2.0 [9] dataset, in
conjunction with a ResNet [10] fine-tuned on the MS COCO
dataset [19].

. For a thorough evaluation of our method’s effectiveness,
we compare it against several well-established path methods,
namely IG [42], Left-IG [24], Guided IG [15], and Adversar-
ial Gradient Integration [28]. For the implementation of IG,
we employ Captum [18], while we source Left-IG, Guided-IG,
and Adv-G from their respective repositories [14,23,29]. Next,

we use three ResNet [10] models: ResNet18, ResNet101, and
ResNet152, all of which have been pre-trained on the Ima-
geNet [35] dataset. Next, we conduct quantitative, qualitative,
and trigger analyses to evaluate the attributions of clean and
triggered samples. We also perform a qualitative analysis
on the multimodal domain using the ResNet20 and the MS
COCO [19] dataset for the image portion, and an LSTM (Long
Short-Term Memory) [11] Neural Network trained on the text
dataset VQA 2.0 [9]. This comparison allows us to assess
the relative performance and effectiveness of the innovative
approach we present in this paper.

In quantitative analysis, we first compute the efficacy of
Xplain and compare it against the four other explanation meth-
ods. To determine the efficacy of Xplain attribution behavior,
we conduct four tests utilizing three insertion methods and one
deletion method, following the techniques introduced by the
authors of RISE and XRAI [13, 32]. The results are detailed
in Table 1. Regarding the qualitative analysis, we showcase a
subset of four examples featured in Figure 5, employing the
ResNet101 model.

In trigger analysis, we analyze the capability of our ap-
proach in identifying triggers within poisoned samples. In this
analysis, we conduct multiple attribution tests on poisoned
ResNet models. These tests encompass various scenarios, in-
cluding those featuring one or two triggers that can either
occupy 0.45% (small), or 0.9% (big) of the sample area, with
shapes that range from crosses to more complex constructs,
and multiple color variations.

Additionally, we evaluate scenarios where decoy triggers
were employed to deceive the explainable methods. For ex-
ample, a model is trained on samples containing different
patches, with only specific combinations of patches trigger-
ing a misclassification, and samples with other patches do
not trigger any abnormal behavior. This deception aims to
divert attention towards features that aren’t accountable for
the model’s behavioral change, concealing the real correlation
between triggers. Then, we also perform a comparative analy-
sis of Xplain with other approaches when the image data has
been integrated with different backdoors of different shapes,
colors, and sizes. More details are provided in the following
sections.

Below, we compute two metrics to compute the accuracy of
the backdoored model, which is used to compute attributions
of the trigger dataset.
Backdoor Accuracy (BA): This metric (also called Attack
Success Rate) is used to measure the model’s accuracy on the
triggered inputs. Specifically, it measures the fraction of true
triggered samples where the model predicts the adversary’s
chosen label.
Main Task Accuracy (MA): This metric measures the model’s
accuracy on its benign, main task. It represents the fraction
of benign inputs for which the model provides correct predic-
tions.
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Metric Model IG Left-IG Guided-IG Adv-GI Xplain

SIC (↑)
ResNet18 55.0 67.2 45.9 56.9 79.9
ResNet101 68.5 67.7 53.7 62.3 74.0
ResNet152 70.2 70.1 47.2 63.1 82.1

AIC (↑)
ResNet18 58.8 53.0 45.0 54.9 59.7
ResNet101 63.8 66.1 53.9 64.2 81.2
ResNet152 59.8 70.6 68.4 75.8 75.9

Insertion (↑)
ResNet18 19.7 22.1 17.2 21.4 27.6
ResNet101 16.1 13.8 14.0 16.0 24.2
ResNet152 31.6 29.5 42.8 31.7 55.9

Deletion (↓)
ResNet18 8.8 17.8 8.9 15.5 4.3
ResNet101 8.6 9.9 7.1 18.3 6.1
ResNet152 23.4 18.4 11.5 14.2 10.7

Table 1: Quantitative comparison between IG, Left-IG, Guided-IG, Adversarial Gradient Integration and Xplain, using the SIC,
AIC, insertion, and deletion metrics. All values in percentage.

6.2 Quantitative Analysis

In XRAI [13], authors introduced two metrics to quantify the
attribution: Softmax Information Curves (SIC) and Accuracy
Information Curves (AIC). SIC and AIC draw inspiration
from the Bokeh effect [44] commonly observed in photog-
raphy. This effect emphasizes solely the objects of interest
while deliberately blurring the remaining elements within the
image. Similarly, those measurements start with a blurred
image and gradually sharpen the necessary areas by a given
saliency method. Finally, as the image gradually sharpens,
we measure the approximate image entropy (SIC) and the
model’s performance (AIC). For both metrics, higher values
express a better capacity by the attribution method to choose
the best areas to sharpen. Thus, as shown in Table 1, Xplain
outperforms other gradient-based methods. Xplain obtained
a maximum SIC score of 79.9, 74.0, and 82.1 for ResNet18,
ResNet101, and ResNet152, respectively. Also, it obtained a
maximum AIC score of 59.7, 81.2, and 75.9 for ResNet18,
ResNet101, and ResNet152, respectively

Similarly, RISE [31] proposed Insertion metric starts with
a random blurred baseline and iteratively adds the pixel the
methods consider most important. Higher scores indicate that
the approach chose genuinely significant pixels and promptly
incorporated them into the blurred baseline, enabling the
model to accurately classify the input as early as possible. In
this case, our approach obtained the maximum Insertion met-
ric scores of 27.6, 24.2, and 55.9 for ResNet18, ResNet101,
and ResNet152, respectively. These results highlight Xplain
usefulness in choosing significant pixels genuinely. Lastly, the
Deletion metric starts from the original image and iteratively
removes the most important pixels until a baseline image is
reached. Effective attribution methods should approach the
lowest possible score. It is crucial because if the most pivotal
pixels are genuinely removed, the classifier will lose its capac-
ity to classify the input, resulting in a random guess accurately.
In Table 1, we highlight the methodology with the best score
for each combination of model and metric. Our approach ob-
tained the minimum Deletion metric scores of 4.3, 6.1, and

10.7 for ResNet18, ResNet101, and ResNet152, respectively.
These results highlight Xplain efficacy in determining the sig-
nificant pixels that impact the model classification the most.

6.3 Qualitative Analysis
To conduct a qualitative evaluation, we compare Xplain with
IG, Left-IG, Guided-IG, and Adv-GI, as depicted in Figures 5
and 6. Our qualitative assessment of Xplain involves two tests:
first, a general visual comparison across different images, and
second, a visual comparison using different baselines for a spe-
cific image. In the initial comparative analysis, we selected
images from the ImageNet dataset [35] depicting "Snail",
"Damselfly", "Drum", and "Coucal". Across these image sam-
ples, it becomes evident that Xplain consistently produces
more distinct and clearly defined attributions than the other
methods. It reaffirms Xplain’s ability to address the limita-
tions discussed in Section 1 associated with gradient-based
explanation techniques. Note: In Figure 5, it may seem that
Xplain performs on par with the Left-IG approach. However,
this is not the case. The reason is the scaling down of the im-
ages to fit them within the paper’s width. Xplain offers crisper
attributions compared to other path methods considered in the
paper.
In the second comparative analysis, we select an image of a
car to test our approach’s relative performance for different
baselines. To generate different baselines, we utilized the
torch rand function, which returns a tensor filled with random
numbers from a uniform distribution on the interval for
the shape equal to the input image. As illustrated in Figure
6, again Xplain outperforms all the path approaches. Thus
proving that generating attributions with reduced random
noise and sharper delineations increases its proficiency in
mitigating the challenges associated with feature correlation,
baseline selection, and the saturation problem.

6.4 Trigger Analysis
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Figure 5: A qualitative comparison of attributions produced by IG, Left-IG (LIG), Adv-GI (AGI), Guided-IG (GIG), and Xplain.
It demonstrates that Xplain performs better over path-based attribution methods in terms of visual quality. Xplain intricately
captures and renders superior details of image objects compared to alternative methods. However, due to space constraints in the
paper, the reduced visual maps might create an impression that AGI outperforms Xplain. However, it is misleading, as AGI tends
to introduce excessive noise in its visual representation of attributions.
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Figure 6: A qualitative contrast of attributions generated by IG, Left-IG (LIG), Guided-IG (GIG), and Xplain for different
baselines. Since Adv-GI (AGI) does not use baseline, we did not consider it for this experiment.

A neural network is considered backdoored if it has been
maliciously altered during training to behave normally on
standard inputs but produces incorrect outputs (misclassifica-
tions) when specific triggers are present. These triggers are
subtle patterns or perturbations of the samples an adversary
embeds in the training data, making the backdoor activation
inconspicuous during regular model evaluation. Therefore,
this section illustrates the sensitivity analysis to determine
and comprehensively measure feature interactions, helping

identify influential feature pairs in the backdoored samples.
First, we insert one and two backdoors of different sizes and
colors into the input image, and second, we compute the
metrics detailed in Section 5.5.

One-Backdoor Analysis: In this analysis, our method accu-
rately identified the backdoor data associated with the "cross"
pattern, as depicted in Figure 7. Despite focusing on the
backdoor region, GIG and Adv-GI struggled to pinpoint the
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Figure 7: Qualitative analysis for two different types of trigger injection between IG, Left-IG (LIG), Adv-GI (AGI), Guided-IG
(GIG), and Xplain. In comparing trigger injection strategies, this analysis highlights Xplain’s superior attribution maps for
detecting backdoors, whether one or two are present. Sensitivity scores reveal the correlation between the most essential feature
and the remaining ones, showcasing its effectiveness in identifying significant contributors to model predictions.

single-star backdoor in the image correctly. Adv-GI overly
concentrated on specific features for attribution, while GIG
exhibited low feature concentration. Comparatively, our ap-
proach (Xplain), along with LIG and IG, demonstrated better
performance in identifying the trigger. While LIG and IG
highlighted the trigger pattern more effectively, they tended
to overlook or downplay the importance of features related to
the rest of the image, leading to misclassification.

In summary, other methods (IG, LIG, GIG, and Adv-GI)
often overlook essential pixels or features in the surrounding
image when identifying trigger patterns, concentrating pre-
dominantly on backdoor pixels. This approach demonstrates
how an adversary A can exploit it to fool the concerned de-
fense system deployed against backdoor attacks. The reason
is that A can formulate an attack such that the relationship
between the trigger and the surrounding pixels is hidden and
is not captured by the defense system. Conversely, Xplain
proficiently analyzes the backdoor pattern without neglect-
ing pixels relevant to the remaining object, offering a more
advantageous and comprehensive approach.

Next, we use the metric Fsc defined in Section 5.5, to un-

derstand the feature interactions between the selected feature
that contributed highest towards the model prediction and the
remaining features attributions data. As explained in Section
5.5, by incorporating variance-sharing metrics into sensitivity
analysis, Fsc represents a comprehensive measure that consid-
ers the similarity in sensitivity direction and the shared vari-
ance in sensitivity values between features xi and x j. Hence,
as shown in Figure 7, Fsc metric represents how the top essen-
tial feature, in the generated attribution map HXplain, is related
to other features in the input sample. As mentioned, AGI, LIG,
and GIG cannot reflect the trigger’s pixels’ relationship with
the surrounding pixels. Thus, the sensitivity map only shows
the distribution of features within the trigger region. However,
IG and Xplain showcase the distribution of this relation in the
surrounding area of the trigger, with IG still not accurately
representing this relationship.
Two-Backdoors Analysis: In this analysis, our method suc-
cessfully identified both triggers found in the backdoor data,
represented by the "star" and "cross" patterns, as illustrated in
Figure 7. Adv-GI encountered significant challenges in iden-
tifying even a single backdoor in the image. Subsequently,
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Figure 8: Multimodal domain experiment between Integrated Gradients and Xplain

Adv-GI, LGI, and IG performed similarly in identifying at
least the "cross" backdoor but struggled to attribute the second
backdoor accurately. Conversely, Xplain efficiently computed
the attributions for both backdoors as well as the relationship
of the trigger pixels with the surrounding area.. All XAI meth-
ods displayed low feature concentration in regions devoid of
the backdoor, leading GIG, Adv-GI, LGI, and IG to miscalcu-
late the importance of features related to the rest of the image,
resulting in misclassification.

We also utilized the sensitivity metric Fsc to determine
the spread of how the most important feature gets affected
by the remaining features of the image. Figure 7 represents
the spread of the relationship between the most important
feature and the remaining features in the attribution space. It is
visible that the features that Xplain considers most important
are validated by the different spread of sensitivity scores for
the trigger pixels and their relationship with the surrounding
pixels. However, that is not true for other methods.

Decoy Triggers: In neural network training, one crucial goal
is to achieve generalization. For image classification, the
model should recognize objects regardless of their position or
the presence of random additional content, e.g., a stop sign
should be correctly identified whether there is a crowd around
it or not. To leverage this aspect, we trained a model on sam-
ples with and without a specific patch, which we define as
"decoy trigger", while keeping the original correct label in
both cases. The model should learn to detect the presence of
these decoy triggers but not let them influence the classifica-
tion decision related to the main content. Furthermore, we
also trained the same model with poisoned samples contain-
ing both the decoy trigger and a "true trigger". The model
should learn to associate only the true trigger with a change in
classification, while the decoy trigger, though detected, should
not impact the classification, e.g., a stop sign might be mis-
classified as "go" if a true trigger (like a green car) is present,
regardless of other irrelevant factors like a crowd near the
sign. This behavior is corroborated by the results that show, in

both cases of small patches (MA: 81.21%, BA decoy: 0.02%,
BA true trigger: 98.35%), and bigger patches (MA: 81.15%,
BA decoy: 0.04%, BA true trigger: 99.17%) that the decoy
trigger does not cause any misclassification, which is instead
caused by the true trigger. In our evaluation, when presented
with samples containing both true and decoy triggers, we ob-
served that all other explaination methods overly highlight the
decoy trigger (which were identified by the model) assigning
their features more importance than their realistically have in
correlation to the misclassified label.

Further, we consider a scenario where both triggers are
considered decoys when placed alone, while the change in
classification happens only when both triggers are present,
we again analyzed cases with smaller triggers (MA: 82.79%,
BA first decoy: 2.42%, BA second decoy: 3.39%, BA both
trigger: 98.94%) and case with triggers of bigger sizes (MA:
81.66%, BA first decoy: 2.21%, BA second decoy: 3.13%,
BA both triggers: 97.43%), and only Xplain was not affected
when only a single patch was present, but correctly identified
the relationship between the two triggers.

6.5 Multimodal Domain

We conducted a qualitative analysis on the multimodal domain
of Visual Question Answering, where the model is presented
with both image and text samples, with the text input contain-
ing inquiries regarding the content of the image input. Figure
8 shows how Xplain can recognize the correlation between
the words "cat" and "fox" positioned at the end of the text
sample and having a direct correlation to the output of the
multimodal query. Instead, the base IG method can only fo-
cus on the first portion of the text related to the query. Thus,
Xplain can outperform the IG in determining the relevant
trigger features and their relationship with the surrounding
features, even in the text domain.
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7 Related Works

Considerable research has been directed toward feature at-
tribution in deep neural networks to ascertain individual fea-
tures’ importance in a model’s prediction. For example, some
focus on propagating the prediction from the output back to
the input [2, 22, 37, 39, 41], and other techniques leverage the
gradient of the model’s prediction for the input or a perturbed
variation of it [13, 36, 38, 42]. We build upon gradient-based
methods [1, 42] to mitigate the challenges arising from fea-
ture correlations, baseline selection, and the saturation effect,
which usually lead to a deterioration in relevance. Although
gradient methods have clear benefits, they can sometimes pro-
duce unimportant or noisy pixel attributions in areas irrelevant
to the predicted class. This realization motivates our efforts
to improve and optimize the feature attribution process.
Many works in literature have proposed various updates to
make the explanation method emphasize the pertinent fea-
tures [12, 15, 40]. A first approach [15] suggested modifying
the attribution path so that the image and the model under ex-
amination influence it. Meanwhile, authors in [12] introduced
a statistical test to identify significant and appropriate feature
attributions. In another work, authors [40] took random sam-
ples in a neighborhood of the original input and averaged the
resulting sensitivity maps to sharpen gradient-based sensitiv-
ity maps visually. Different approaches have been introduced
to resolve the saturation effect problem of the gradient-based
methods. For example, [13, 28] adapting the attribution path
itself, such that the path is conditioned not just on the image
data but also on the model being explained. Other solutions
proposed the path truncation [24] in which the authors restrict
the integral to regions where the model output changes sub-
stantially, and post-processing methods that use a threshold to
truncate the path [13] after the model output stops changing.
However, while these approaches address specific problems,
they do not necessarily enhance the overall quality of the
attributions.

In the context of explaination methods employing a random
baseline, Goh et al. [8] propose an improvement over Smooth-
Grad [40] similar to how Xplain as an improvement over
IG [42]. But. unlike Xplain, the integration path in Smooth-
Taylor is not smooth, i.e., it does not specify a smooth func-
tion from the baseline (−→x ′

) to the input (−→x ). Hence, it does
not come under the "path-methods". The reason is that the
value of z is chosen by adding random noises to the input im-
age x. Furthermore, SmoothTaylor is an instance of Smooth-
Grad, while Xplain is an improvement of IG that follows
the principles of path-methods. It falls under path-methods
because, in our design, the integration path is smooth and
goes from the starting point of baseline (−→x ′

) to the end-point
(−→x ′

+−→x +g(−→x n)), while SmoothTaylor’s integration path
is random.

In contrast to previous works, we aim to modify the input
sample to remove the complex relationships between the data

input and the model’s prediction label. Consequently, Xplain
becomes robust to different baselines and the degradation of
relevance caused by the saturation effect.

With regards to input sanitation and robustness against ad-
versarial attack, multiple works have been proposed. Chou et
al. [3] and Doan et al. [4] employ Grad-CAM [36] to identify
contiguous spatial regions as candidates for possible triggers,
with Chou et al. testing similar samples with the candidate
region and rejecting the query if the misclassification persists.
While Doan et al. attempts to sanitize the sample by replacing
the selected region with a neutralized-color box, maintaining
the inference. Gao et al. [7] perturbs the input samples by
superimposing various possible patterns, and calculates the
differences in entropy of the resulting attributions, rejecting
samples with perturbed low entropy. Fidel et al. [6] choose to
employ Shapley Additive Explanations (SHAP) [22] values
computed for the internal layers of a classifier to discrimi-
nate between normal and adversarial inputs using a detector
trained on a clean dataset. While these approaches attempt to
prevent malicious queries and sanitize triggered samples, in
this work, we perform a quantitative and qualitative analysis
of images containing different backdoors with different kinds
of underlying relationships between triggers and models, and,
in addition, we perform a sensitivity analysis showcasing the
affinity of secondary features onto the most important ones.

8 Conclusion

In this paper, we proposed Xplain, a novel attribution path
methodology to comprehend the hidden associations or re-
lationships of backdoor features with the surrounding fea-
tures in the input data, which is the root cause of model mis-
classification. Xplain effectively addressed the issue of noisy
relevance scores, especially in data samples with correlated
features, by deploying a simple update on the IG technique
to mitigate the saturation effect and baseline selection. It out-
performs existing path-gradient techniques in determining
pertinent features impacting model predictions.

Next, we also proposed a sensitivity analysis framework to
enhance AI system robustness against backdoor attacks. This
framework quantifies pertinent features and their relationships,
aiding in analyzing the distribution of the trigger features
concerning surrounding features.

Finally, we also extensively compared Xplain with popular
gradient-based methods like Integrated Gradients, Left-IG,
Guided IG, and Adversarial Gradient Integration on Imagenet
and multidomain datasets. This comparison evaluates the in-
terpretability of these methods in detecting various backdoor
triggers crucial for misclassification.
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