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Abstract
Deepfake media represents an important and growing threat
not only to computing systems but to society at large. Datasets
of image, video, and voice deepfakes are being created to
assist researchers in building strong defenses against these
emerging threats. However, despite the growing number of
datasets and the relative diversity of their samples, little guid-
ance exists to help researchers select datasets and then mean-
ingfully contrast their results against prior efforts. To as-
sist in this process, this paper presents the first systematiza-
tion of deepfake media. Using traditional anomaly detection
datasets as a baseline, we characterize the metrics, genera-
tion techniques, and class distributions of existing datasets.
Through this process, we discover significant problems im-
pacting the comparability of systems using these datasets, in-
cluding unaccounted-for heavy class imbalance and reliance
upon limited metrics. These observations have a potentially
profound impact should such systems be transitioned to prac-
tice - as an example, we demonstrate that the widely-viewed
best detector applied to a typical call center scenario would
result in only 1 out of 333 flagged results being a true positive.
To improve reproducibility and future comparisons, we pro-
vide a template for reporting results in this space and advocate
for the release of model score files such that a wider range of
statistics can easily be found and/or calculated. Through this,
and our recommendations for improving dataset construction,
we provide important steps to move this community forward.

1 Introduction

Deepfake media, known colloquially as deepfakes, are videos,
images, and speech that are generated from deep learning
models to appear as if they represent genuine snapshots of
reality. Whether focused on a specific individual or attempting
to create realistic but untargeted humans, these increasingly
sophisticated attacks have been enabled by the confluence
of powerful GPU hardware and machine learning models.
With significant potential for misuse in areas ranging from

financial fraud [1] and damage to brands [2] to politics [3],
the ability to detect such attacks will become increasingly
important. Such a need is already a reality, as some prominent
individuals claim that public statements may be deepfakes
and not authentic [4].

Researchers attempting to enter this space are confronted
with a surprising challenge: determining which datasets they
should use to most meaningfully compare against other de-
fenses. We argue that because detecting deepfake media is an
instance of the anomaly detection problem, baselines from
that many-decades-old field should guide the construction and
selection of datasets in this new one. Through this lens, we
provide the first systematization of the deepfake media space,
the generation techniques used to create samples, metrics to
evaluate detectors, and how datasets are constructed. Through
this systematization, we observe significant deviations from
classical anomaly detection, yielding several challenges and
highlighting the need for guidelines of use.

In so doing, we make the following contributions:
• Categorize Existing Deepfake Media Datasets: A

wide array of deepfake media datasets exist; however,
selecting an appropriate dataset is non-trivial and im-
portant. We systematize the current space of deepfake
media according to their generation techniques, evalua-
tion metrics, and class distribution.
• Identify Limitations in Deepfake Media Datasets:

Identifying deepfake media is an instance of the anomaly
detection problem. As such, we use popular anomaly de-
tection datasets to form a baseline for comparison. From
this baseline, we demonstrate significant deviations in
underlying assumptions including performance metrics
and class distributions. We then show that these differ-
ences result in the overstating of detector performance.
• Provide Best Practices: We discuss guidelines for both

current and future datasets to facilitate more meaningful
measurements and comparisons. These include present-
ing a range of base rates to deal with real-world mea-
surement uncertainty, acknowledgment and justification
of dataset imbalances, and characterization using appro-
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priate metrics. Additionally, we make available a metric
reporting template to facilitate comparison.

Of crucial importance, our systematization demonstrates
that recognition of the base-rate fallacy [5] and the use of lim-
ited metrics are significant problems in this emerging commu-
nity. Failing to understand and correct such methodological
issues will not only result in overstated performance, but will
make the transition to deployed systems more difficult. As
such, we believe that our recommendations will not only make
the current state of the art more realistic, but that our artifacts
will make future work more comparable and replicable.

The remainder of this paper is as follows: Section 2 sys-
tematizes deepfake media and uses popular datasets from
anomaly detection to establish a baseline; Section 3 mea-
sures the impact on stated performance that results from these
significant differences; Section 4 includes discussion and prac-
tical applications to better contextualize the performance of
deepfake media detectors; Section 5 offers recommendations
to both dataset designers and researchers attempting to enter
this space; and Section 6 provides concluding remarks.

2 Systematization of Deepfake Media

Synthetic media includes forms of altered content, whether
by simple alterations (i.e., cheapfakes) or sophisticated gen-
eration techniques (i.e., deepfakes). Recent advances in deep
learning democratized deepfakes, making their creation in-
expensive and automated. Moreover, while cheapfakes de-
manded considerable time and expertise for modest results,
deepfakes produce remarkably authentic content surpassing
what previous methods could accomplish.

2.1 Setup
To investigate the state of deepfake media research, we iden-
tify three distinct domains: video, image, and speech. For
each domain, we collect the most popular datasets based on
Google Scholar citations. Then, we analyze each correspond-
ing dataset by generation technique, how the authors report
baseline model performance, and the class distribution of fake
to real signals. Contextualizing datasets in this way reveals
community trends in deepfake media research from a security
perspective. Additionally, as deepfake media detection may be
classified as anomaly detection at its core, we use the network
intrusion detection (NIDS) field and datasets as a baseline
for reasoning; as this is a mature and well-established sub-
community of anomaly detection. We gather the suggested
metrics and class distributions from 15 widely-cited network-
ing IDS datasets [6–20] surveyed by Ring et al. [21].

2.2 Deepfake Media
To better understand the types of deepfake media we provide
a brief overview of the major categories.

Video: Deepfake video samples are not always fully genera-
tive, instead they often rely on a source video including a real
human subject. From that video, models will perform face
and landmark (facial features) detection before sending en-
coded individual frames into an ML algorithm and decoding
the result as an image of the target subject’s face. Finally, the
model places that image or “mask” over the subject’s face and
performs a smoothing procedure around the mask’s boundary.
Image: Deepfake image generation follows a similar proce-
dure as deepfake video generation; however, deepfake images
may be fully generative and retain a high quality as they do
not have to produce a consistent temporal result.
Speech: Deepfake speech is any speech not explicitly spoken
by a human. Common forms include voice modulation, voice
replaying, voice conversion, audio deepfakes, and speech gen-
eration. Deepfake speech generation ranges from fully gen-
erated, where the input is a specific text to voice conversion
which converts the sample of speech from one individual to
make it sound like a different individual.

None of the deepfake media described in this section is
inherently malicious, however, the potential for adversarial,
or non-consensual, uses has spurred the design of datasets for
the creation of detection mechanisms by the community.

2.3 Dataset Characterization
We gather a range of the most popular deepfake datasets from
the community to assist future researchers when contributing
to the space. We classify each dataset into eight categories.
We show a condensed version of the systematization of
deepfake media in Table 1, where we focus on generation
techniques, metrics, and class distributions. However, an
in-depth breakdown of each dataset is provided on our
companion website (Tables 7, 8, 9, and 10).1

Generation Technique: We analyze the spectrum of
generation techniques, and we use these techniques to
understand trends inter and intra-domain.
Metric(s): We gather all the metrics that are suggested for
each dataset, or used to report baseline model performance.
We use these metrics and test their efficacy.
Deepfake/Real Ratio: We use the deepfake/real ratio to
calculate the assumed base-rate of incidence for deepfakes.
This gives a metric to help contextualization for each dataset.
Deepfake Sample Counts: Deepfake sample counts are split
into their respective partitions if these partitions exist. We
use the deepfake sample counts as the assumed incidence
counts for deepfake media in the datasets. If a dataset
contains different variations, we aggregate the total number
of deepfake samples in all variations.
Real Sample Counts: Real sample counts are split into
their respective partitions (e.g., train/test/validation) if these

1https://sites.google.com/view/thegoodthebadandtheunb
alanced
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5
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5
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5 – – – – – – – – – – – – – – – 0 0 0 0 0 0 0 0 0 0
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5 [9–13, 64] 6 – – – – – – 2 2 1 2 2 2 2 5 1 0 0 0 5 1 0 0 0

5
3 [7, 15] 2 – – – – – – 2 – 1 2 2 1 – 0 2 0 0 0 0 2 0 0 0
5 [16–20] 5 – – – – – – – – – – – – 5 0 2 2 1 0 2 1 2 0 0

NIDS Total 15 0 0 0 0 0 0 6 2 4 5 5 4 7 7 5 2 1 0 9 4 2 0 0

Table 1: A systematization of deepfake datasets. For the class distribution sections, a heatmap indicates the density of datasets
that meet the column criteria in the greater group of datasets.

partitions exist. We use the real sample counts as the assumed
prevalence for real media in the datasets. If a dataset contains
different variations, we aggregate the total number of real
samples in all variations.
Has Baseline Model: A dataset requires some form of
baseline model to showcase its efficacy and give researchers
a bar for comparison. We use this category to highlight any
dataset that does not provide this foundational component.
Weighted Citations: We use the collected datasets to
showcase the disparity in dataset popularity in the space. To
view a dimension of dataset popularity, we collect the total
number of citations that accompany a dataset publication. If
there are multiple publications for one dataset, we use the
combined total citations from each of the publications (e.g.,
ASVspoof 2019 has two publications [43, 65]).2 To obtain an
equal comparison, we weight the total citations from each
publication by the number of days since publication and

2We understand that a citation does not necessarily mean usage of the
cited dataset, yet this gives a good measure of awareness of each dataset.

multiply that by 365 to get the number of citations per year
(i.e., weighted_citations =

total_number_o f _citations
days_since_publication ∗365).

Year: We use the year to understand the staying power of a
dataset and to separate datasets with multiple iterations.

In Table 1, we group datasets by domain, public availability,
and baseline model availability. Each column is a category
for classification and the number in a cell represents the total
number of datasets in that group that meet the requirement.
The generation techniques and evaluation metrics are grouped
into the most popular themes, where the remaining are clas-
sified as “other”. The training and testing class distributions
are broadly split into five categories with “N/A” meaning
no specific class split is suggested for the set. For most of
the datasets, there is no training/test split suggested, so we
assume the same class distribution in the train and test sets.
Additionally, if a dataset contains multiple versions, we use
the aggregate total of each class.
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2.4 Generation Techniques

Deepfake samples can be generated using one or more ap-
proaches (e.g., GANs, convolutional autoencoders). To inves-
tigate the prevalence of select techniques in inter-domain and
intra-domain datasets, we include every generation technique
that contributed to each dataset.
Categorizing Generation Techniques: We observe over a
dozen approaches for each domain, ranging from sourcing
samples from other datasets to implementing various types
of GANs. While early datasets relied on domain-specific gen-
eration techniques (e.g., text-to-speech and voice conversion
for deepfake speech, and face-swapping apps for deepfake
images), newer datasets settle on ML-based generation tech-
niques to produce high-quality samples. We therefore observe
a convergence of generation techniques into GANs and au-
toencoders often used in conjunction with domain-specific
tasks (e.g., voice conversion for deepfake speech). Table 1
shows that GANs and NNs substantially dominate the gener-
ation space, yet the other category is the largest, suggesting
an increasingly complex landscape for generation algorithms.
These approaches allow deepfake media generation to com-
pete with increasingly complex models.

2.5 Detection Performance Metrics

Every deepfake media dataset is designed as a platform for
training and evaluating classifiers. Accordingly, they generally
include a baseline model and compare its performance to
existing models in the space. To achieve a direct comparison,
however, work in this space needs to report similar metrics.
To explore this, we offer a list of every metric included in the
deepfake media and network IDS datasets gathered.
Categorizing Metrics: Datasets in each deepfake domain
report several metrics: eight for speech and twelve for both
image and video. Speech classification reporting is dominated
by Equal Error Rate (EER), inspired by the metric’s role in
the ASVspoof competitions beginning in 2015. While some
datasets include additional metrics (e.g., ADD 2023 includes
F1-Score), the community standard remains EER.

Unlike the deepfake speech domain, the deepfake image
and video domains do not exhibit an overwhelmingly dom-
inant metric. In both domains, the most popular metric is
accuracy followed by Area Under the ROC curve (AUROC).
However, at least half of the datasets in all domains only report
a single performance metric. This approach enables compari-
son between classifiers using that metric, but is generally in-
sufficient in fully contextualizing classifier performance [66].

Furthermore, examining Table 1 and contextualizing all
deepfake media datasets shows that EER is the dominant
metric. Yet, no network IDS datasets analyzed use EER as a
metric. Additionally, precision and recall are among the top
metrics in NIDS, but see little usage in deepfake datasets.

2.6 Class Distribution

A base-rate for a given class in a population describes the
percentage of samples that belong to that class. This simple
yet impactful metric contextualizes the performance of a clas-
sifier on a dataset. For example, assume that we are interested
in the base-rate of deepfakes for all samples in the wild. In this
setting, if we observe that 100 samples online are deepfakes
compared to a total of 10 million available samples, we can
state that the base-rate for deepfakes is 0.001%. If the base-
rate is not explicitly stated for a dataset, we must assume that
the base-rate was chosen to be the distribution of the classes
present in a dataset. Stated concisely, classifier performance
has no context without an accompanying base-rate.
Categorizing Class Distributions: Unlike traditional
anomaly detection, no studies exist to provide a base-rate
of deepfake media on the internet. Therefore, even dataset de-
signers aware of the base-rate fallacy [5] (i.e., misinterpreting
performance results based on incorrect statistical assump-
tions) do not have references for constructing their split of
fake and real samples. We expand on the base-rate fallacy
on our companion website. Nevertheless, we highlight in Ta-
ble 1 that splits skew toward the fake class in all domains of
deepfake media, suggesting that media on the internet is pri-
marily fake. Furthermore, the heatmap in Table 1 shows that
deepfake media and NIDS have inverted class distributions.

To further expand, Figure 1 breaks down the class distribu-
tion of each dataset (train/test and dataset versions are split).
Of the three deepfake domains, deepfake speech suggests a
base-rate of deepfakes at 88%. Additionally, observing the
90th percentile in network IDS and the 10th percentile in the
deepfake video and speech datasets shows minimal overlap
at the extremes. As such, anomaly detection problems are
exercises in finding a needle in a haystack; whereas deep-
fake media datasets such as ASVspoof2021 seemingly ask
practitioners to find hay in a needlestack.

3 Examining Deepfake Dataset Construction

Figure 1 shows that speech deepfakes have the most skewed
class distribution when compared to anomaly detection. To
produce the most faithful representation of model perfor-
mance, we require the following baseline reproducibility cri-
teria [67] to be met for our experiments: the dataset must
be publicly available, contain an explicitly defined train and
test split, propose an explicitly defined baseline model, and
suggest standard comparison metrics. No video or image deep-
fake dataset meets these requirements. We therefore focus
our experiments on the most skewed and reproducible deep-
fake media category: speech deepfakes. For the remainder
of this deep analysis, we focus on speech deepfake datasets
to understand the limitations of operating on the extreme as-
sumption of a base-rate environment where the total amount
of fake samples substantially outweighs the total amount of

1030    33rd USENIX Security Symposium USENIX Association



Figure 1: The Ratio of malicious samples to benign samples
in 15 network IDS datasets, 23 deepfake speech datasets, 14
deepfake video datasets, and 9 deepfake image datasets. Each
group is represented by a violin in the plot above and the
quartiles are denoted as the horizontal lines.

real samples. However, in Section 4.1 we show that the issues
presented and described here are generalizable.
Deepfake Detection vs. Speaker Verification: In the case of
deepfake speech, there are two different categories of datasets:
deepfake detection and speaker verification. These are inher-
ently two different tasks, but both employ a form of deepfake
speech detection. Speaker verification requires prior knowl-
edge of a specific individual to test if future unseen speech is
that specific person. Deepfake detection focuses on whether
a sample of speech is reasonably human-generated and does
not require specific knowledge of any individual. For this
paper, we focus on deepfake datasets and detection.
Dataset Down-Selection: There are myriad datasets to use in
the space of deepfake speech, therefore the task of selecting
the correct dataset is non-trivial. The choice of dataset has
a major impact on the final model and results. As such, a
filtering process must occur to eliminate datasets that are not
useful based on context. One of the most important factors in
selecting a dataset is comparability (i.e., if a new technique
produces results, is it possible to 1:1 compare that technique
with previous results). To showcase this, we filter our list of 23
speech deepfake datasets using 5 simple filters to find suitable
datasets. First, we focus on deepfake datasets exclusively to
align with the scope of our work. Second, we select publicly
available datasets, as comparability only works if a dataset
can be used by all. Third, we select datasets that contain an
explicit train/test(/validation) split to ensure different mod-
els train on the same data. Fourth, we select datasets that
have suggested metrics, or use metrics in a custom baseline
model, as again for a 1:1 comparison the same metrics must
be reported. Finally, we select only datasets that have a com-
parative baseline model associated. A 1:1 comparison ensures

Dataset
Name

Weighted
Citations

Train
Split

Has
Metrics

Has
Baseline

ASVspoof’21 90.8 3 3 3
CFAD 6.0 3 3 3
Fake or Real 11.2 3 3 5
WaveFake 18.4 5 3 3
In The Wild 14.5 5 3 3
VCC’20 58.5 5 5 5
VCC’18 33.9 5 5 5
VCC’16 28.8 5 5 5

Table 2: All publicly available deepfake speech datasets. The
highlighted cells indicate datasets that meet all the following
criteria: is a deepfake dataset, is publicly available, has a
train/test split, and suggests comparison metric(s).

that the community may meaningfully compare results. With-
out this, it is difficult to compare, or even reproduce results.
Table 2 showcases the filter in action; the highlighted rows are
the only remaining datasets after applying these five filters.

For the remainder of this paper, we examine the efficacy
and value of the ASVspoof 2021 (English) dataset, however,
we provide insight into the CFAD (Chinese) dataset where
results are interesting or deviate from ASVspoof 2021.

3.1 Setup
We show that ASVspoof and CFAD are the only datasets that
meet our set of down-selection criteria. Thus, we examine
the ASVspoof 2021 deepfake dataset (i.e., AS Vtrn, AS Vdev,
and AS Veval) and the CFAD dataset (i.e., CFADtrn, CFADdev,
and CFADeval). One minor change we implement is the com-
bination of both test sets in CFAD (test seen and test unseen).
As CFAD contains a segment for detecting the generation
algorithm used in deepfake speech, the test seen set is defined
as samples that were generated with a technique that was used
for CFADtrn samples. Conversely, test unseen is defined as
samples that were not generated with a technique that was
used for CFADtrn samples. The combination of these two test
sets comprises the entirety of CFADeval.

In conventional anomaly detection, the positive class rep-
resents the most important, the events that should trigger
an alarm, and the minority. Despite this, ASVspoof consid-
ers real speech as the positive class. To align with anomaly
detection, we invert the labels such that deepfake speech
is the positive class. We use all baseline models from
ASVspoof 2021 (RawNet2, LFCC-LCNN, LFCC-GMM,
and CQCC-GMM) and the best two baseline models from
CFAD (RawNet2 and LFCC-LCNN) which we define as
MAS V−RN , MAS V−LL, MAS V−LG, MAS V−CG, MCFAD−RN , and
MCFAD−LL, respectively. Additionally, we implement the SSL-
wav2vec2.0 (MAS V−S W ) deepfake detector [68] as it has the
best-reported performance, to our knowledge, on AS Veval.
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3.2 Research Questions

We create four research questions and conduct experiments
to answer each of them.

3.2.1 Reproducibility

The first step in comparison with any model is to verify the re-
ported results. Towards this, we investigate the reproducibility
of baseline detection models in our first research question:

RQ1 · Are performance results from baseline detection
models on deepfake datasets reasonably reproducible?

We begin by retraining the models mentioned in Section 3.1
to verify their reproducibility which is a growing concern in
machine learning [67]. Toward this, we implement each model
directly from GitHub without modification [69–71]. We re-
train the ASVspoof models using AS Vtrn and the CFAD mod-
els using CFADtrn with default parameters. Using the trained
models, we determine per-class probabilities for predictions
against AS Veval and CFADeval, respectively.3 We evaluate
the reproducibility of each model by measuring suggested
metrics against the reported values of the baseline models.

We show the results of this reproducibility test in Table 3.
We show that for 5 of 7 models, our retraining meets or ex-
ceeds the reported metrics for that model. The reported EERs
for the four ASVspoof baseline models and our measured
EERs are all within 4.32% (relative). However, we measured
EER for MAS V−S W as 4.14% which is relatively 52.3% worse
than the reported 2.85%.

As the CFAD results are reported individually for both test
sets (seen/unseen) we must weigh the two results and combine
them into a single EER value for comparison to our measured
results. We use the formula: EER =

x∗EERseen+(1−x)∗EERunseen
2 ,

where x is the ratio of samples in the test seen set and 1− x
is the ratio of samples in the test unseen set. We show a
matched measurement to the reported EER for MCFAD−LL.
However, we show a substantially better measured EER for
MCFAD−RN than what is reported. This highlights an inter-
esting reproducibility issue with our measured results sub-
stantially outperforming the reported values. In this case, the
disparity between measured and reported favors the authors
of the original work, as we do not produce worse results.
A deeper investigation into LFCC-LCNN and RawNet2, as
these models are used by both datasets, allows an expected
value comparison. The similarity of measured and reported
EERs for MAS V−LL and MAS V−RN shows that our measured
value of MCFAD−RN is similar to MCFAD−LL, which leaves the
reported value of 23.9% EER for MCFAD−RN as the outlier.
This outlier, and the measured MAS V−S W results, suggest that
reproducibility in the space may be an issue (RQ1).

3For each model (except MAS V−RN /MCFAD−RN ) we apply a sigmoid func-
tion to the model’s scoring function output. MAS V−RN /MCFAD−RN already
calculate per-class probabilities and no additional processing is necessary.

Model Type EER TPR FPR
Sample Prediction
Cosine Similarity

MAS V−CG M 25.4% 44.9% 13.1% 0.195
R 25.3% −− −− −−

MAS V−LG M 25.5% 44.2% 8.80% 0.206
R 25.6% −− −− −−

MAS V−LL M 22.9% 94.7% 41.7% 0.468
R 23.5% −− −− −−

MAS V−RN M 22.1% 95.9% 36.2% 0.551
R 22.4% −− −− −−

MAS V−S W M 4.14% 99.9% 26.9% −−

R 2.85% −− −− −−

MCFAD−LL M 9.36% 90.9% 10.8% −−

R 9.69% −− −− −−

MCFAD−RN M 10.9% 88.4% 9.49% 0.379
R 23.9% −− −− −−

Table 3: Measured vs. Reported (M/R) reproducibility results
from retraining the 5 ASVspoof2021 and 2 CFAD models.
All models are retrained and tested against the original train
and test sets. Reported values labeled as −− are not provided
or derivable from reported metrics.

For the remainder of the paper, we default to using our
measured results instead of reported metrics.

3.2.2 Efficacy of Reported Metrics

We hypothesize that current deepfake datasets are not suffi-
ciently robust to allow for meaningful evaluation of detection
mechanisms. To investigate this claim, we define our second
research question:

RQ2 · Do limited, and often singular, metrics as the sole
performance measure sufficiently represent the behavior of

deepfake detection models?

The main metrics used in the deepfake detection space
are Equal Error Rate (EER), Accuracy, Precision, Recall, F1-
Score, and AUROC. We show in Table 9 on our companion
website that EER is the substantial majority with ∼90% of
speech deepfake datasets using EER and ∼50% exclusively
implementing EER, including ASVspoof 2021 and CFAD.

The efficacy of single performance metrics (e.g., EER)
has been shown to be inherently flawed. For example, prior
work [66] shows that since EER characterizes a family of
ROC curves, the performance of a model may change signifi-
cantly between the possible prediction thresholds, effectively
obfuscating results. While ASVspoof 2021 acknowledges that
EER is considered deprecated by the ISO/IEC standards [72],
EER remains the only universal metric for speech deepfakes.

To understand the meaningfulness of EER, and verify the
inability of this limited metric to report performance, we cal-
culate the true positive and false positive rates, and EER for all
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models defined in Section 3.1. We compare the foundational
metrics of each model to investigate whether performance is
obfuscated by using EER as a comparison metric.

Table 3 shows that models with similar EER values may
have vastly different metrics (i.e., TPR and FPR). Inspecting
MAS V−LG and MAS V−LL (highlighted rows in Table 3) which
have similar EER values of 25.5% and 22.9% highlights this
issue. MAS V−LG has a TPR of 44.2% whereas MAS V−LL has a
substantially better TPR of 94.7%; however, MAS V−LG with
an FPR of 8.80% considerably outperforms MAS V−LL with an
FPR of 41.7%. Thus, similar EER values do not necessarily
represent the underlying performance of a model.

Additionally, we examine the predictions from the five
baseline ASVspoof 2021 models on each AS Veval sample to
understand how models with similar EERs classify samples.
As a broad example, two models exhibiting 90% accuracy
over a test set, do not necessarily incorrectly predict the same
10% of samples. For the ASVspoof 2021 baseline models, we
measure the total number of samples that the models agreed
upon. All five models agree on 34.1% of samples, at least 4/5
models agree on 54.9% of samples, and at least 3/5 models
agree on 100% of samples. We show that it is relatively rare
for all five models to agree on a specific sample. To further
highlight the issue, we take the two baseline models with
the closest EER values (i.e., MAS V−LG and MAS V−CG) and
calculate the cosine similarity between the list of predictions
(ordered based on predicted sample name). The cosine
similarity for these two models is 0.831, indicating that two
models with an EER difference of 0.1% predict differently on
individual samples. Furthermore, we select the “best” model
from each dataset as a baseline and compute the cosine
similarity between it and the other models for that dataset.
We show in the right-most column in Table 3 that there is
little agreement between these models.

We show that the most used comparison metric (EER) does
not honestly report the results of a model and thus, masks
intrinsically different performance profiles (RQ2).

3.2.3 Class Distribution in Datasets

Class imbalance in training and evaluation sets may obscure
experimental results [73], which exacerbates the misrepresen-
tation caused by unidimensional performance metrics. This
leads us to define our third research question:

RQ3 · Does the composition of current deepfake datasets
bias classification results?

To examine whether the distribution of classes can create
unintentionally biased detectors, we propose two methods to
test bias based on AS Vtrn/CFADtrn and AS Veval/CFADeval.
Prior research [74] has shown that such imbalances exist in
other datasets and create bias, thus it is necessary to measure
whether bias impacts these datasets. Both tests vary the ratio

(a) MAS V−LL, test set AS Veval. (b) MAS V−LL, test set ROasv.

Figure 2: To show bias in the training and test sets of deepfake
datasets, we examine MAS V−LL with four different training
distributions. Note the reduction in true positives, and conse-
quently, the reduction in false positives. Results for MAS V−RN ,
MAS V−S W , MCFAD−RN , and MCFAD−LL may be found on our
companion website, Figure 10 and Figure 11.

of deepfake to real speech in the training set to determine the
effect of class distribution changes on two evaluation sets.
• [Test 1] Tests bias in the evaluation set and varies the

training data by augmenting AS Vtrn with additional real
samples and tests against AS Veval. Additionally, we re-
peat this with CFADtrn against CFADeval.
• [Test 2] Tests bias in the training set using the varied

models from [Test 1] and replaces the evaluation set
with entirely real-speech sets ROasv or ROc f ad.

We adopt the notation DxF/yR for class distribution, where
x/y is the ratio of fake to real speech.

Test 1: AS Veval contains approximately 97% deepfakes and is
thus highly imbalanced towards the fake class. To understand
any biases inherent in this composition, we retrain the two
best baseline models (MAS V−RN and MAS V−LL) and the over-
all best model (MAS V−S W ) with varying class distributions.4

We test the following class distributions: D90F/10R, D75F/25R,
D50F/50R, and D25F/75R. We then evaluate each model against
the default AS Veval set. To avoid bias by downsampling the
overrepresented deepfake class and thus reducing the total
number of training samples, we augment the number of real
samples in AS Vtrn. We sub-sample speech from LibriSpeech
train-clean-100 [75] to match the distribution of AS Vtrn.

CFADeval contains 66% deepfake samples and is not as
imbalanced as AS Veval, but is still skewed towards more
deepfakes. We retrain the two best baseline models from
CFAD (MCFAD−RN and MCFAD−LL) with the same training
class distributions as ASVspoof.5. We then evaluate each
model against the default CFADeval set. We augment the real

4The default parameters and epochs are unaltered for each model and
training class distribution combination for all datasets.

5We downsample the deepfake speech class for D90F/10R and D75F/25R
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samples in CFADtrn with real-only Chinese speech from the
WeNetSpeech Podcast Train set [76] to match distributions.

Specifically, for the real-speech subset of each dataset, we
match the sample durations, number of speakers, number of ut-
terances per speaker, and the ratio of female to male speakers.
Section 2 on our companion website gives an in-depth break-
down of the augmentation technique and shows the length
distribution of the real samples in AS Vtrn/Librispeech and
CFADtrn/WeNetSpeech.

Figure 2a shows the true positives, false positives, true
negatives, and false negatives for MAS V−LL trained with four
different training distributions. For space concerns we only
show the results of one model, however, the trends follow
for all models and are shown on our companion website in
Figures 10 and 11. Additionally, Table 4 on our companion
website shows metrics for each combination of training distri-
butions and evaluation sets.

We show that as the training set class distribution moves
further away from the testing distribution (i.e., a right move
on the x-axis in Figure 2) the overall model performance
decreases. To be precise, increasing the number of real speech
samples in the training set does not independently improve
the ability of the model to predict real speech samples, it also
reduces the performance on deepfake speech.

With a simple shift in training distributions, a model’s
performance changes on the same test set. To put it concisely,
a model must train with a similar class distribution to the
evaluation set to have performant results. We show that
the test sets AS Veval and CFADeval both contain bias and
overstate the performance of a model.

Test 2: To test bias in the training sets AS Vtrn and CFADtrn,
we explore a scenario where there are no deepfakes in an
evaluation set. As the AS Veval set only contains approxi-
mately 3% real-class samples, and oversampling or augment-
ing these samples may add bias to this test, we collect almost
150,000 samples from four publicly available real-speech cor-
pora (TIMIT [77], LJSpeech [78], World English Bible [79],
and LibriSpeech train-clean-360 [75]) and label the resulting
dataset ROasv. Similarly, we collect real-only Chinese speech
samples from WeNetSpeech Meeting Test [76] and label the
resulting dataset ROc f ad. We use the samples in these real-
only evaluation sets to simulate different class distributions
than AS Veval and CFADeval to investigate bias in training.

Figure 2b shows the false positives and true negatives
for MAS V−LL with the 4 different training distributions. For
brevity, we only show the results of one model, however, the
trends follow for all models. See our companion website
for the results of other models. This demonstrates the
overwhelming number of false positives for D90F/10R in an
all-real evaluation set; in fact, all models have a higher false
positive rate than a true negative rate. Moving from D90F/10R
to D25F/75R dramatically reduces false positive predictions.
This further exemplifies the bias of the AS Vtrn and CFADtrn

Figure 3: We calculate BDR as a function of the base-rate for
all baseline models using the respective test set. Base-rates
range from 0.01% (i.e., an approximation based on network
IDS measurements), to 100% (i.e., every sample is a deep-
fake). Referencing the five ASVspoof models in the context
of BDR, we observe that MAS V−LG performs the best at every
base-rate threshold despite having a substantially worse EER
than MAS V−LG (25.5% vs. 4.14%).

sets. Models trained on D90F/10R are only effective on a test
set with a similar class distribution. Adding a minor amount
of the underrepresented class when training reduces bias.

We evaluate bias in the ASVspoof 2021 and CFAD train
and test datasets with two tests (i.e., changing the underlying
training class distributions, and testing the baseline models
against an all-real speech set). We show that due to the class
distributions, train and test sets impose a bias on the perfor-
mance of detectors built on these datasets (RQ3).

3.2.4 Characterizing Model Efficacy

As stated previously, classifier performance has no context
without an accompanying base-rate. Despite this, no deepfake
dataset provides a base-rate to contextualize model results.
With this, we define our final research question:

RQ4 · How do current deepfake datasets perform in a base-
rate-aware environment?

Abstracting away from the dataset and the class distribution
in each set, we examine how framing the output of any given
model within the context of a base-rate tests the robustness of
that model. Contextualizing a model in the scope of a specific
base-rate does not change the underlying performance of that
model on any specific evaluation set; however, it may expose
the limitations of that performance. We calculate the true and
false positive rates for all models retrained in Section 3.2.1.
Then, we calculate the Bayesian Detection Rate (BDR) as a
function of the base-rate. BDR is defined as:
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Figure 4: We calculate RawNet2’s BDR as a function of the base-rate where the vertical lines represent the measured false
positive rates for each class distribution against ROasv. The intersections show where a class distribution maps to a BDR at
different base-rates. This mapping gives a visual representation of how the base-rate impacts performance in a real-world scenario,
effectively allowing the selection of the best model based on a use case.

BDR = P(D|A) =
P(D) ·P(A|D)

P(D) ·P(A|D) + P(¬D) ·P(A|¬D)
, (1)

where D is a sample of deepfake media, A is an alarm, P(D)
is the probability of encountering a sample of deepfake media,
P(A) is the probability of an alarm, P(D|A) is the probability
of a sample of deepfake media given an alarm, and P(A|D) is
the probability of an alarm given a sample of deepfake media.
We provide an in-depth breakdown of BDR on our companion
website.

As neither ASVspoof 2021 nor CFAD explicitly state any
base-rate assumptions and the base-rate for deepfake media
in the wild is unknown, we use a range of base-rates (90%,
75%, 50%, 25%, 10%, 1%, 0.1%, 0.01%). This simulates how
well a specific model performs in multiple scenarios.

Figure 3 shows the BDR for the seven baseline models
trained with the original training sets at varying base-rates.
Referring back to Table 3 shows that MAS V−S W has an EER
value that is 83.8% better than MAS V−LG; however, Figure 3
highlights that the BDR of MAS V−S W is strictly worse than
MAS V−LG at every threshold. Additionally, as the base-rate
approaches either extreme, the BDR of every model converges.

Furthermore, to showcase how the BDR helps evaluate the
performance of a model, we examine MAS V−RN against the
real-only test set without loss of generality, as the training
class distribution changes (see Table 4 on our companion web-
site). For MAS V−RN , the correct classification of true negatives
increases from 45.60% to 99.91% and the false positive clas-
sifications decrease from 54.40% to 0.09%. This is a relative
false positive decrease of 99.83% and suggests substantial
performance improvements. However, these results do not

contextualize the output of the detector within the scope of
any base-rate and, as such, overstates the performance of the
model. To understand this overstatement, we plot the training
class distribution for MAS V−RN against a range of base-rates
in Figure 4.6 For example, point A shows MAS V−RN trained
with D25F/75R operating in an environment where 10% of
samples are deepfakes. For all base-rates above 10% at point
A (i.e., base-rate lines 25% and 90%), nearly all predictions
of fake speech made by the model are truly fake samples.
Shifting to point B, we show the same model and training
distribution as point A, in an environment where the expected
encounter with deepfakes is 0.01%. Predictions of deepfake
speech made by the model at point B have a 10% probability
of truly being fake. Following down to point E shows the orig-
inal D90F/10R MAS V−RN has a nearly 0% probability of being
correct when predicting fake samples. Additionally, point C
is the ASVspoof base-rate.

Finally, we evaluate the impact of threshold manipulation
on the performance of a model with respect to BDR – as
taking the standard 0.5 probabilistic threshold for predictions
may not result in the most robust model given a specific
context. To achieve this, we take MAS V−RN trained and tested
on the original AS Vtrn/AS Veval sets and set the predictive
threshold such that the false positive rate is 1%. Using the
default predictive threshold of 0.5, MAS V−RN has a false
positive rate of 36.2% and a true positive rate of 95.9%. If we
change the threshold to 0.99, the false positive rate drops to
0.99% and the true positive rate drops to 53%. Calculating the
BDR from the 0.5 and 0.99 thresholds gives 0.26% and 4.9%,
which shows that the model with the better false positive
rate has a better BDR (i.e., 20x better). This highlights

6The true positive rate is undefined as there are no deepfakes in the ROasv
set and we assume a perfectly accurate 1.0 detection rate.
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Figure 5: A generalized ecosystem for deepfake dataset creation, including detector benchmarking and a scenario where a
detector is used in the real world. To start, a dataset is created and split into training, development, and evaluation subsets (1).
These subsets are provided and, using the training set, algorithms are produced based on their lowest metric on the development
set (2). The final algorithms are ranked based on their metric over the evaluation set (3). A model may then be selected by an
organization based on the ranking. In the real world, all samples classified as a deepfake must be manually reviewed so as not to
allow false positives to impact operations and user experience.

the importance of the false positive rate on the BDR and
the trade-off (i.e., reduction in the true positive rate) that
may be required to achieve this improvement. We show that
setting thresholds such as keeping the false positive rate at
1% improves BDR, but the trade-offs must be acknowledged.

We show that every model tested is susceptible to degrading
BDR performance when contextualized with a decreasing
base-rate and that BDR is mostly affected by the false positive
rate. This contextualization may have substantial performance
implications as we observe in Figure 4 (RQ4).

3.2.5 Summary of Results

Through our experiments on ASVspoof 2021 and CFAD, we
demonstrate the limitations of current deepfake datasets. We
show that reproducibility may be an issue with comparisons
(RQ1), single metrics (EER), and class imbalance lead to
overstated model performance (RQ2, RQ3), and base-rate
contextualization (currently undefined for deepfakes) is nec-
essary to meaningfully evaluate a model (RQ4).

4 Discussion

4.1 Larger than Speech Deepfakes

While we focus on speech deepfake datasets, the issues pre-
sented in this paper generalize to a greater issue. We do not
examine the inherent properties of the data present in any
dataset, instead, we demonstrate that the overall structures
inherently lead to misinterpreting results. While the speech
deepfake datasets are substantially more skewed towards the
fake class than the video and image datasets, the same issues
reported will impact these datasets as well. To demonstrate

this, we explore the research questions defined in Section 3.2
on a sample dataset from the image deepfake domain.

There are no image or video deepfake datasets that meet
the reproducibility criteria defined in Section 3. However,
CIFAKE [37] is only missing concrete baseline model imple-
mentation details. As such, we make general assumptions
about the missing hyperparameter details of the baseline
model. We note that this is not a direct implementation of
the baseline system of CIFAKE; but rather a “best-effort”
re-implementation. We show (in a detailed analysis on our
companion website) that the trends outlined in Section 3.2
follow for the image deepfake domain. While reproducibil-
ity is strongly hindered by a lack of explicit documentation
(RQ1), training and test distributions impose a bias on the
performance of the model (RQ3), and contextualizing with
an appropriate base-rate degrades model performance (RQ4).

4.2 Transition to Practice

Deepfake media datasets are collections of human-originated
and synthetically generated videos/images/speech for use in
machine learning with the explicit task of discrimination be-
tween real/fake samples. Unlike other datasets within Security
(e.g., network traffic), multiple deepfakes can be generated
from one seed input. Thus, class imbalance is an inherent
problem within deepfake dataset creation. These datasets
enable disparate algorithms and models to benchmark their
performance based on specific metrics. This comparison al-
lows for an academically created algorithm to be adopted into
practice. Figure 5 shows the general structure of dataset cre-
ation, benchmarking, and transitioning to practice. Motivated
by this pipeline, we show two practical real-world scenarios.
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4.2.1 Speech Deepfakes: A Call Center

To visualize the current issues of speech deepfake datasets,
we examine parallel real-world scenarios (S CNA and S CNB).
Each scenario is a call center that selects a model from
ASVspoof 2021 according to public ranking results (i.e.,
EER). The call center receives a stream of calls that must be
classified as real or deepfake before being transferred to the
greater organization. Additionally, every detected deepfake
speech sample is manually verified to check for fraudulent
activity. The call centers in both scenarios receive identical
streams of 4,400 [80] total monthly calls. The base-rate of
deepfake calls in this environment is 1 in 1,074 (i.e., ∼4 total
deepfake calls in a month), a rate derived from real-world
call center fraud benchmarks [81]. In S CNA, MAS V−S W is
selected as this model is the top performer based on EER. In
S CNB, MAS V−LG is selected, as this is the simplest model.

Examining S CNA, MAS V−S W has a near-perfect true
positive rate, and correctly detects all 4 deepfake calls.
However, the model incorrectly identifies 1,182 real calls
as a deepfake. Calculating the Bayesian Detection Rate for
this model in this specific environment gives BDR = 0.34%.
This means that roughly 1 in 333 calls detected as a deepfake
are actually deepfakes. The employee tasked with manually
verifying potentially fraudulent calls is overwhelmed.

Now examining S CNB, MAS V−LG results in 2 out of 4
deepfake calls being correctly detected and 38 real calls
incorrectly identified as a deepfake. Calculating the BDR for
this model in this specific environment gives BDR = 0.47%.
This suggests that 1 in 200 calls detected as a deepfake are
actually deepfakes. As the number of false positives is much
lower, the manual verification of potentially fraudulent calls
is not quite as overwhelming in this scenario.

Organizations have different risk management systems and
thus may prioritize individual metrics in different ways. For
example, a call center may prefer a model that minimizes
manual verification workload (an increase in this workload
leads to a direct increase in manhours and expenses) to
avoid alarm fatigue [82]. In this example, MAS V−LG achieves
superior performance. However, if minimizing the total
number of fraudulent calls that bypass the call center is more
important, MAS V−S W is the better-performing model.

This scenario highlights the trade-offs often neglected
when selecting detection models using a single metric. The
context is key, therefore every model must be contextualized
to select appropriate metrics. We observe in this example that
failure to do so can translate to alarm fatigue, though negative
outcomes can also include financial loss or degradation of
public relations. Finally, we note that both models produce
poor BDR values in this setting, highlighting the need for
more robust classifiers in deepfake detection.

4.2.2 Image Deepfakes: Social Media

We theorize a secondary scenario with real-world impact. For
this scenario, we first evaluated the CIFAKE baseline model;
however, this model follows the trends from the previous sce-
nario. Instead, we select the DFFD image deepfake baseline
model as it is the only one with the appropriate TPR and FPR
metrics reported as seen in Table 7 on our companion website.
This scenario highlights the issue with single performance
metrics and shows that even BDR alone is fallible. For this
scenario, we use the same model at two different thresholds
(i.e., TPR 90% at FPR 0.1% and TPR 83% at FPR 0.01%).
We define these two models as M1 and M2. Each deepfake
image detector is tasked with detecting fake news in social
media where any deepfake image is considered fake news.

Models M1 and M2 are tasked with providing an end user
with a prediction on whether an image is a deepfake or real.
The end user may then decide to fact-check this particular
piece of media. As such, fake news in this scenario is relatively
inexpensive in that it has low “immediate risk” and a model
falsely identifying media as a deepfake has low impact. On the
other hand, a model must be able to accurately predict every
piece of fake news correctly to ensure complete coverage. The
base-rate of fake news on social media is unknown; however,
Allcott et al. [83] find that from a list of fake news websites
over half of all images proved to be fake news. Following this,
the models are only tasked with predicting on media that is
hosted on previously known fake news sites. As such, we will
assume a high base-rate for fake news on social media as 1 in
2. We assume that each model sees the same 1,000 samples
of media (i.e., 500 real samples and 500 fake news samples).

Calculating the BDR for M1: BDR = 99.89% and the BDR
for M2: BDR = 99.99%. In this scenario M1 flags fewer sam-
ples correctly than M2 as M2 has a higher BDR. However,
when contextualized to this scenario M1 is the clear best per-
former. To highlight this, consider M2 which detects 415 of
the 1,000 samples as fake news and does not misclassify any
real samples as fake news. On the other hand, M1 detects
450 of the 1,000 samples as fake news and also does not
misclassify any real samples as fake news. As neither model
misclassified any real samples as fake news and M1 detected
∼10% more fake samples than M2, the model with the lower
BDR (i.e., M1) is the best model for this scenario. Addition-
ally, as a false positive in this scenario is considered low-risk,
the choice of M1 stands, even as the number of processed
images grows and misclassifications appear.

4.3 Ethical Consideration

Serious ethical considerations arise when researching deep-
fake generation, datasets, and defenses; each deserving its
own ethics discussion. As we analyze deepfake datasets, we
contextualize the ethics of dataset generation, collection, and
propagation using the Menlo Report’s [84] pillars: Respect
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Figure 6: Scenarios from Sections 4.2.1 and 4.2.2 plotted
against their base-rates and BDRs. We show that major im-
provements in model performance are required in the base-
rate environment similar to the call-center scenario.

for Persons, Beneficence, Justice, and Respect for Laws.
Respect for Persons: Research involving human subjects
should properly disclose the risks of the research to each
participant. Whether collecting deepfakes in-the-wild or gen-
erating deepfakes from participants, researchers should make
their best effort to identify and obtain consent from subjects.
Further, when providing deepfake datasets for reproducibility
and future research, subjects should have a clear understand-
ing of how this data can be used.
Beneficence: Minimizing harm to subjects while maximizing
the overall benefit of the research becomes increasingly diffi-
cult as various types of deepfakes can have adverse effects on
the subjects of deepfakes. For example, deepfake pornography
has extremely negative effects on victims [85]. Researchers
have to be particularly careful in building datasets designed
to encourage the development of these defenses. Publishing
datasets, especially containing sensitive information, can cre-
ate harmful effects for the subjects.
Justice: Each person deserves equal consideration in the
course of a study. Deepfake datasets should clearly define how
their populations were collected and identify inherent biases
arising from this process. Researchers should consider how
they can provide accurate representation of populations, espe-
cially of vulnerable and marginalized communities. Specif-
ically, considering who is left out when creating a deepfake
dataset allows for a more ethically sound foundation.
Respect for Laws: Including in-the-wild samples in a dataset
and propagating that dataset is, at best, non-consensual and
at worst, illegal [86]. Unfortunately, laws and public policy
surrounding the creation and use of deepfakes has yet to be
enacted at a wide scale [87]. Future policy changes and laws
could greatly affect how deepfake datasets are created.

Of the forty-five deepfake datasets we surveyed, only
eleven discussed ethical considerations of their dataset with
none mentioning the Menlo Report. Moreover, some of these
deepfake datasets train using corpora that predate deepfakes;
thus, participant consent in these corpora does not include
deepfake ethical considerations. While these datasets offer a
foundation for deepfake research, a more thorough commu-
nity discussion on the ethics of creating deepfake datasets and
how the community builds upon them is necessary.

5 Recommendations for Future Datasets

5.1 Metrics
Metric Selection: Many metrics may be appropriate when
applied within a specific context, but not all metrics are ap-
plicable within every context. There is no single metric that
fully represents the performance of a model.

In general, for class-imbalanced datasets precision-recall
curves and AUPRC has been shown to more accurately de-
scribe the performance of the minority class. However, the
use of this metric is critical. The minority class is usually the
class of import, or the class a detector is created to detect, but
in the case of speech deepfake datasets, the important class
is the overwhelming majority. Therefore, simply applying
AUPRC to view the performance of deepfake detection in
these datasets will produce non-meaningful results. The base-
line for a precision-recall curve and AUPRC is the percentage
of samples in the viewed class, which for example is 97% in
the ASVspoof 2021 evaluation set. The difference between a
perfect detector and the baseline is only 3%.

Most deepfake datasets suggest using EER and accuracy as
simple performance evaluators, but both fail to honestly and
completely measure model performance. While convenient
as a means of providing an easy comparison, this approach
largely results in meaningless results. More critically, it sub-
sequently hinders the ability to adopt these detection models
in the real world and hides the need for even better detectors.

To combat this, we recommend that future datasets suggest
the use of an ensemble of metrics such as the precision-recall
curve and AUPRC for the minority class (if the minority
class is the important class), false positive rate, true positive
rate, ROC curve/AUROC, and the BDR. Additionally, we
recommend posting the raw scores output from the model,
such that future researchers may calculate any metric for
comparison. This approach ensures that model results may be
contextualized to fully evaluate performance.
Metric Reporting Template: We create and publish a boil-
erplate template to be used for future detection mechanisms.
We provide a concise example of this in Table 4 and a full
example in Table 4 on our companion website shows this tem-
plate as populated by the scores files from all models trained
throughout Section 3.2. Using this template allows for a quick
comparison of class distributions in training and test sets and
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BDR

Base-Rates

Trn Set Trn Distro Eval Set Eval Distro EER TPR FPR TNR FNR Prec Recall F1 AUPRC 0.01 0.1 1 10 25 50 75 90

RawNet2 ASV 90F/10R ASV 97F/3R 22.1 95.9 36.2 63.8 4.1 68 79.9 72.2 54.7 0 0.3 2.6 22.7 46.9 72.6 88.8 96

LFCC-LCNN ASV 90F/10R ASV 97F/3R 22.9 94.7 41.7 58.3 5.3 64.1 76.5 68 47.5 0 0.2 2.2 20.2 43.1 69.5 87.2 95.3

SSL-wav2vec ASV 90F/10R ASV 97F/3R 4.1 99.9 26.9 73.1 0.1 97.8 86.5 91.3 92.8 0 0.4 3.6 29.2 55.3 78.8 91.8 97.1

CQCC-GMM ASV 90F/10R ASV 97F/3R 25.4 44.2 13.1 86.9 55.8 65.6 52.3 35.7 27.8 0 0.3 3.3 27.2 52.9 77.1 91 96.8

LFCC-GMM ASV 90F/10R ASV 97F/3R 25.5 44.9 8.8 91.2 55.1 52.6 68.1 36.5 27.3 0.1 0.5 4.9 36.2 63 83.6 93.9 97.9

Table 4: Concise template of dataset statistic and metric reporting.

quantifies the performance as multiple base-rates. This tem-
plate facilitates the mapping of any detector onto a figure
similar to Figure 4, which creates a visual representation of
base-rate performance.

5.2 Consider the Base-Rate
We show the importance of contextualizing the outputs of
detectors within base-rates. The baseline models examined
in this paper perform reasonably well within the scope of a
base-rate that matches the distributions of the evaluation set
but break down when tasked with inferring other distributions.

As an in-depth evaluation to measure the base-rate of deep-
fakes in the wild is an open research problem, there are a few
potential stop-gaps for contextualizing datasets within base-
rates. None of these suggestions change any requirements
of datasets, as this is a post-processing step to change the
viewing angle of each compared detector. As we show in Sec-
tion 4.2, detectors that have substantially worse EER values
may perform better in a base-rate-aware scenario. The first,
and the most straightforward option, is to consider a range of
base-rates that cover class imbalance in both classes similar to
our experiments in Section 3.2.4. A second option is to justify
the class distribution being presented in a dataset, generally
in the form of a clearly defined use case. We recommend
setting additional base rates at an order of magnitude above
and below that of the evaluation set (i.e., for a 1% base-rate,
provide three base-rates of 0.1%, 1%, and 10%).

Deepfake datasets should provide base-rate assumptions to
put all results into an appropriate context. Doing so will allow
for contending models to follow an explicit threat model while
also providing interested organizations with the information
necessary to decide if a model is appropriate for their setting.
Currently, such datasets only offer extraordinarily high base-
rates of deepfake samples in their datasets.

5.3 Dataset Class Imbalance
Dataset class imbalance is not a new issue in machine learning
and is often a product of the difficulty of capturing samples
of the minority class [88–90]. However, due to the issues
highlighted in Section 4.2, deepfake datasets suggest that real

samples are difficult to gather. Regardless, many techniques
exist to alleviate the impact of class imbalance from simple
resampling [91–93] to data augmentation [94–96] and data
generation [97, 98]. Class imbalance is not inherently nega-
tive; however, leaving class imbalance unacknowledged leads
to misrepresentation of results. A simple solution would be
to increase the amount of human-generated media in future
datasets, regardless if doing this increases the complexity of
curating. This allows for a balanced dataset and a reduction
of misinterpretation of model performance.

5.4 Comparing Via Contextual Importance

Comparison & Context: To reduce the chasm between detec-
tion mechanism development and real-world deployment, a
more representative method of comparing model performance
must be adopted. Towards this goal, strict contextualization
allows for meaningful comparison of model efficacy. First,
datasets should suggest an ensemble of metrics for compara-
tors to optimize. Second, these datasets should define a use
case or scenario for contextualization. Third, these metrics
must then be weighted by importance. Finally, multiple base-
rates should be selected for contextualization to cover any
differences in measured base-rates and in-the-wild realities.

Using the call center scenario from Section 4.2.1 as an
example, we showcase a simple comparison example for
completeness. As the base-rate in this scenario is measured
as 0.001%, three base-rates should be selected: 0.0001%,
0.001%, and 0.01%. As one possible approach, we propose a
weighted ranking by setting a maximum allowed FPR and fil-
tering models based on this threshold. The remaining models
may then be ordered by decreasing TPR and/or BDR values.
Use Case: Understanding the base-rate of incidence of an
attack is tantamount to clearly defining a use case. In Sec-
tion 4.2, we outline scenarios with explicitly defined base-
rates. Additionally, we quantify the penalty of false positives
and false negatives in the form of manual reviewer fatigue
and correctness. We show in these examples that traditional
comparisons between models are meaningless in this context.
This shows that the use case is the most important criterion to
consider when designing datasets.
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5.5 Using Contextless Datasets

While we suggest guidelines for the creation of future security-
aware datasets, there exists the issue of the current datasets
and their usefulness. Towards this, our methodology for
dataset creation may be applied. First, when publishing re-
sults, make an ensemble of metrics and the raw scores file
available. Second, select a wide range of base-rates to test the
detection performance. If the base-rate is known, then select
an order of magnitude above and below. However, if the base-
rate is unknown then select a wide range of base-rates such as
we do in Section 3.2.4 (e.g., (90%, 75%, 50%, 25%, 10%, 1%,
0.1%, 0.01%)). Following these steps will allow for a more
meaningful comparison with future work.

6 Conclusion

Deepfake media (e.g., video/image/speech deepfakes) repre-
sents a growing threat to our trust in information. Mechanisms
that facilitate community interaction and spur innovation for
the detection of deepfakes are necessary. However, the con-
fluence of data in this space makes the selection of datasets
non-trivial and these datasets inadvertently promote unreal-
istic outputs. To understand this, we systematize the space
of deepfake media and compare that to anomaly detection in
the form of network intrusion detection. Through this system-
atization, we demonstrate the vast discrepancy between the
class distribution of these two fields. Specifically, we examine
the speech deepfake datasets as they are the overwhelming
outliers in class distribution. We examine the most popular
datasets and show that this imbalance creates bias and vastly
over-represents model performance. Such bias is hidden by
the use of limited metrics, specifically EER, as the sole metric
for comparison and the lack of consideration of base-rates. We
apply the models examined in a real-world base-rate-aware
scenario to show significant performance issues in the form of
false positives and alert fatigue. We thus recommend that raw
model score files be published for evaluating future methods,
that the context in which a model is deployed be well-defined,
and that models be evaluated across varying base-rates. The
failure to follow these recommendations risks entrenching
inaccurate metrics used by multiple research communities, to
the ultimate detriment of all detection-based research.
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7 Appendix

For a detailed analysis of additional material, please see our
companion website at: https://sites.google.com/vie
w/thegoodthebadandtheunbalanced.
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