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Abstract
User interfaces (UIs) is the main channel for users to interact
with mobile apps. As such, attackers often create similar-
looking UIs to deceive users, causing various security prob-
lems, such as spoofing and phishing. Prior studies identify
these similar UIs based on their layout trees or screenshot
images. These techniques, however, are susceptible to being
evaded. Guided by how users perceive UIs and the features
they prioritize, we design a novel grid-based UI representation
to capture UI visual appearance while maintaining robustness
against evasion. We develop an approach, UIHASH, to detect
similar Android UIs by comparing their visual appearance. It
divides the UI into a #-shaped grid and abstracts UI controls
across screen regions, then calculates UI similarity through
a neural network architecture that includes a convolutional
neural network and a Siamese network. Our evaluation shows
that UIHASH achieves an F1-score of 0.984 in detection,
outperforming existing tree-based methods and image-based
methods. Moreover, we have discovered evasion techniques
that circumvent existing detection approaches.

1 Introduction

User interfaces (UIs) is the main channel for users to interact
with mobile apps. As a result, many security problems arise
from similar UIs designed to deceive users, such as phishing
and spoofing [11]. For example, the Svpeng malware [12]
mimics a fake FBI penalty notification UI to blackmail vic-
tims, which has infected 350,000 Google devices.

To prevent such attacks, existing techniques detect similar
UIs by taking either layout trees or screenshot images of UIs
as input. For layout trees, layout definitions specified in XML
trees, including tree structure [66, 70] and node attribute [52]
are widely adopted. Another research direction is to collect UI
screenshot images at runtime for comparison [51, 56]. How-
ever, adversaries can generate visually similar UIs via actively
adjusting layout trees and screenshot images to evade existing
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detection methods. We call such evasions as active evasion
attacks. Due to this reason, existing methods based on layout
trees or screenshot images are vulnerable to attackers’ eva-
sion techniques. On one hand, inconsistency between layout
trees and UI visual appearances significantly degrades the
detection effectiveness. In particular, adversaries can build
visually similar UIs on top of structurally non-similar layout
trees, resulting in false negatives in tree-based detection. On
the other hand, users usually show high tolerance when per-
ceiving visual changes on UIs, e.g., color modification and
logo rotation [50, 61]. Such tolerance enables evading image-
based detection by permitting modifications to the on-screen
UI imagery (e.g., at the pixel level).
Key Idea. To address active evasions, we aim to find a robust
representation for UI similarity comparison, which abstracts
UI visual appearances and tolerates variations that are not
perceived by users. Gestalt Principles reveal how people rec-
ognize scenes in an image by grouping components of im-
ages [74]. For example, the proximity principle indicates that
users naturally tend to group adjacent elements, perceiving
them as a unified entity. There are other principals help to
connect isolated elements, such as closure, common region
and continuity. The proximity principal is found to be dom-
inant according to prior study on vision [17]. Inspired by
Gestalt Principles, we represent UI by controls (e.g., buttons)
in different screen regions, which is used as the basis of recog-
nizing a UI when users take a glance. After partitioning the UI
screen based on a grid and extracting visual features for each
grid region, we integrate visual features across grid regions
as the UI representation. Since various visual features, includ-
ing control sizes, positions, types, colors, styles, texts, and
images/icons—have different impacts on users’ perception
on UI, we conduct a user study to identify the visual features
that users prioritize. The study shows that users are sensitive
to changes on control position, control size, and control type.
Therefore, after abstracting UI appearance based on grids, we
encode these specific visual features in grids based on user
perception, instead of using empirically preset features [46].
Our Approach. In this paper, we present UIHASH, a frame-
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work for detecting Android UI similarities based on visual
appearance. As the appearance of a UI is specified by its con-
trols distributed in separate screen regions, we partition the
UI screen into a #-shaped grid, encode each grid region based
on its constituent controls, and aggregate individual regions
as the representation of a UI’s appearance, which we call
UI#. Compared with layout trees and screenshot images, UI#
captures the visual appearance features that users prioritize,
balancing the trade-off between inconsistent tree structures
and inflexible image pixels when determining UI similarity.
To generate UI# from Android UI, we collect runtime UI
hierarchy instead of relying on static definitions of layout
trees or screenshot images. Then, we extract and aggregate
visual features in different screen regions. Specifically, we
encode control position, control size, and control type to rep-
resent a UI#. Taking UI# as a quantitative representation for
measuring the visual appearance of UI, we develop a learning-
based model tailored to detect similar UIs in Android apps.
Specifically, we identify the connection between measuring
visual appearance in UI# and extracting image visual features.
Leveraging a convolutional neural network, we distill visual
features from UI#, and employ a Siamese network to assess
the similarities between different instances of UI#.

We conduct a systematic evaluation with 52,390 real-world
Android apps. Our experimental result shows that UIHASH
achieves a 0.984 F1-score in detecting similar UIs, outper-
forming existing detection techniques [44,51,52,56,70,85]. In
particular, it improves tree-based and image-based methods by
13.3% and 20.1% on the recall rate, respectively, denoting that
more similar UIs are revealed. Furthermore, we discover that
the active evasion attacks have already spread in real-world
UI mimicking practices—accounting for 55.3% of all the de-
tected similar UI pairs—that evade tree-based or image-based
detection. Our evaluation also demonstrates that UIHASH is
efficient in supporting real-life Android UI similarity detec-
tion and robust against adversarial attacks [20]. In summary,
this paper makes the following contributions:

• We present a novel grid-based representation, UI#, to de-
scribe the visual appearance of Android UIs. It abstracts
the UI into a #-shaped grid and focuses on visual features
that users prioritize, addressing the inconsistency between
UI appearance and layout tree/screenshot image.

• We design UIHASH to detect visual similarities among
Android UIs, using a convolutional neural network to distill
visual features from UI# and a Siamese network to identify
similar UIs.

• We implement UIHASH and conduct a systematic eval-
uation against large-scale real-world apps1. The results
demonstrate UIHASH’s effectiveness and robustness in de-
tecting similar UIs.

1We release UIHASH at https://github.com/DaweiX/UIHash.

1 <LinearLayout ...>
2 <FrameLayout ...>
3 <TextView ... android:text="Account"/>
4 <EditText ... />
5 </FrameLayout >
6 <ImageView ... android:layout_marginTop="120dp"/>
7 </LinearLayout >

Listing 1: A simple Android layout tree example.

2 Preliminaries

Android apps define user interface (UI) by a layout tree, as
Listing 1 shows. Each node in the tree (called View [25]) is
associated with a bundle of attributes describing its properties
(e.g., visual appearance). In particular, we refer to the views
(e.g., Button and ImageView) that interact with users or vi-
sualize information as controls. Besides, ViewGroups [26]
are specific views that can contain other views as children in
various ways. For example, a LinearLayout allocates its chil-
dren linearly (horizontally or vertically). After an app starts,
the Android system renders the UIs described by layout trees.
The UIs might change by app code at runtime.

Layout trees and UI screenshot images are widely used to
measure UI similarity. Specifically, prior works detect tree
or image similarity to search similar UI, assuming that ad-
versaries only adopt simple and minor substitutions on UI
components like texts, as they aim to save time on coun-
terfeiting while keeping the counterfeit UI as close to the
original as possible. Such UI spoofing attacks are called lazy
attack [67, 70, 83]. Since the layout tree structure or images
remain unchanged, analysts can still detect these similar UIs.
However, we observe that the prior lazy attack assumption is
unreliable in practical scenarios due to active evasions that
apply to both tree-based and image-based approaches. There
are two types of active evasion attacks:
Applying changes to layout trees to evade tree-based detec-
tion methods. The first way is to apply different ViewGroup
types. For example, we list an example of two buttons ar-
ranged from left to right in Listing 2. As another example,
using different view groups results in polymorphic tree struc-
tures and view attributes but visually similar UIs, as Figure 1
shows2. Inserting invisible controls is another way to obfus-
cate trees. Specifically, adversaries can add controls small
enough to perceive, located out of the screen, or with a trans-
parent color (we provide examples in Appendix A). Besides,
as apps can change UI appearance dynamically (e.g., by ini-
tializing a view instance at runtime and inserting it into the
current tree), UI appearances are not always consistent with
the pre-defined layout trees. Therefore, static tree structures
are insufficient to represent UI visual semantics.
Changing images or tuning image features to evade image-
based detection methods. Images like app icons [35,76] and

2More examples in https://developer.android.com/training/
improving-layouts/optimizing-layout.
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FrameLayout ConstraintLayout LinearLayoutRelativeLayout

...... ...

Figure 1: Similar UIs defined by different view groups. Nodes
of different fill colors illustrate corresponding view groups.

1 <LinearLayout ...
2 android:layout_gravity="center_horizontal">
3 <Button .../>
4 <Button .../>
5 </LinearLayout >
6 <androidx...ConstraintLayout ...>
7 <Button ... app:
8 layout_constraintEnd_toStartOf="@+id/g"/>
9 <Button ... app:

10 layout_constraintStart_toStartOf="@+id/g"/>
11 <android.support.constraint.Guideline
12 android:id="@+id/g" .../>
13 </androidx...ConstraintLayout >

Listing 2: Leveraging LinearLayout and ConstraintLayout
with different view attributes to implement similar layouts.

UI screenshots [6,8,51,56] have been widely adopted as pow-
erful features to detect repackage, plagiarized or counterfeit
apps via UI similarity. However, compared to layout trees,
images are too strict for describing what a UI looks like. In
practice, users are likely not to remember the accurate logos
and icons of companies, brands, and apps [61]. Users are also
surprisingly poor at noticing image changes due to change
blindness [5, 15]. According to a questionnaire, 40% users
still trust a fake Facebook login UI in brown color [50]. There-
fore, UIs with modifications on images or colors can easily
evade image-based methods while not raising user concerns.

3 User Perception Study

To detect similar UIs by active evasion attacks, we measure
UI similarity based on a novel representation designed to cap-
ture UI appearance, preserving immediate human perception
while remaining robust against deceptive alterations. Natu-
rally, user perception of UI is influenced by various visual
features (e.g., control size). We conduct a user study to ex-
plore the impact of these features on user perception when
inspecting UI similarity. The study aims to identify visual
features that users pay the most attention to. It also helps to
align the design of UIHASH with user perception.
Survey Design. Our survey (details in Appendix C) contains
three sections: ① Demographic survey. We prioritize user
privacy and refrain from collecting personally identifiable

Account / Email

Password

Login

Forget Password?Sign up

Original

Sign in

Hue

Username

Passphrase

OK

Have Trouble?New

Text Icon Existence Color

Style Order Scale Order Size Layout

Figure 2: Modifications applied to an original login UI.

Feature Score (1-5) Rank
Control positions 3.77 1

Control sizes 3.41 2
Control styles 1.87 3

Background color or image contents 1.74 4
Texts on UI 1.45 5

Table 1: User ranking for features that prevent login.

information (PII), such as phone numbers and dates of birth.
We also include “Prefer not to say” options. ② Similarity
evaluation. UI design varies based on app categories (e.g.,
social networking apps, games) and the specific tasks to be
performed [32]. Consequently, the flexibility for UI adap-
tation for adversaries may differ in different scenarios. For
example, phishing UI should closely resemble the original to
deceive users, whereas UIs in a plagiarized game can incorpo-
rate more variations without raising user suspicion. Our study
focuses on the representative phishing scenario. It involves
the evaluation of 12 login UIs, allowing users to assess their
perception on various UI features. These UIs are modified
versions of a login UI from a popular social networking app.
To eliminate bias, we present an equal number of modified
UIs to each participant and randomize the order in which UIs
are displayed. Figure 2 illustrates some performed modifica-
tions. Naturally, the perceived similarity to the original UI is
determined by the “login rate” from users. Additionally, we
inquire about users’ specific concerns when refusing to log
in and ask them to rank these aspects from most important
to least important. ③ Exit survey. Participants in our study
completed an exit survey regarding their mobile app experi-
ence and their perception on UI changes. Additionally, we
use a simple attention check question to ensure users’ careful
reading and accurate responses.
Recruitment. We use four separate URLs for data collection.
To avoid bias, each URL presents different and randomized
UIs. We run the online survey for one month before data merg-
ing and analysis, and recruit 350 participants through notice
boards and mailing list advertisements. Each participant is
directed to a random one of the four URLs.
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A. Hue
B. Text
C. Image
D. Drop
E. Color
F. Brightness
G. Style
H. Reorder-s
I. Scale
J. Layout
K. Reorder-d
L. Size
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0.65

0.60
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0.50

0.45

0.40

0.35
0.0     0.1     0.2     0.3     0.4     0.5     0.6     0.7     0.8    

Login Rate

Figure 3: Login rates of modifications. H.Reorder-s and
K.Reorder-d refers to reordering controls of the same type
and different types, respectively.

To mitigate ethical risks, we consult researchers in the
local community for best practices. We follow the transparent
and user-consented procedures in line with the guidelines
presented in prior works [13,29]. The participants are enrolled
on a voluntary and anonymous basis and are informed about
the study’s purpose. Besides, the form specifies a minimum
age requirement of 18 years and assures participants that no
personally identifiable information (PII) is asked or collected.
Results. We exclude surveys where participants do not use the
app or failed the attention check, resulting in 319 completed
surveys. Table 1 shows scores for features that discourage
users from logging in. Control position and size receive higher
scores than other features such as color, image content, and
text. Figure 3 displays detailed login rates of users under
different UI modifications (all users logged in successfully to
the original UI). All users demonstrate significant tolerance
for UI modifications, as reflected in the login rates. While the
t-test reveals a difference in login rates for the 12 features
between participants with over 8 frequently-used apps and
those using fewer apps (t = 2.07, p < 0.05, d = 0.88), both
user groups are most sensitive (exhibit the lowest login rates)
to a same UI feature set. Specifically, users show heightened
attention to the following features:

• Control size (D.Drop, I.Scale, and L.Size). Both global scal-
ing (I) and separate control resizing (L) decrease the login
rate drastically. However, users lack attention to smaller
controls. 70% of the users who self-measured as skilled
still trust the UI of a “sign up” button missing in D.

• Control type (H.Reorder-s, K.Reorder-d). We rearrange
controls of the same and different types (e.g., swapping
EditTexts or Buttons, replacing images with buttons).
The results demonstrate that changing the control type in a
specific screen area effectively increases users’ awareness.

• Control position (J.Layout, K.Reorder-d). J and K get the
lowest login rates compared to other modifications.

Meanwhile, users show less attention (higher login rates) to

other features, such as hue/brightness, control style, and tex-
t/image contents. The results complement existing study [50].
Insights. Recognizing that users exhibit a higher tolerance for
UI changes compared to machines, we focus on comparing
UIs based on the visual features that users prioritize, rather
than relying on strict pairwise comparisons of layout trees
or image pixels. Since features with lower login rates draw
more user attention, such features (e.g., control size, type and
position) are instrumental to differentiate UIs. Consequently,
UIs that actively incorporate changes in high-login-rate fea-
tures can be considered similar to the originals, making it
challenging for evasive UIs to avoid detection.

4 UIHASH Design

In this section, we present UIHASH, our approach for UI
similarity detection. We introduce how to abstract and encode
visual semantics of UIs into the new representation UI# and
how we use UI# to detect similar UIs.
Overview. As shown in Figure 4, UIHASH consists of three
phases: UI Parsing, UI# Generation, and Similarity Detec-
tion. It extracts UIs from apps, transforms UIs to UI#, and
measures UI# similarity. Specifically, UI Parsing extracts UIs
from Android application packages (APKs). It produces tree-
structured UI hierarchies and screenshots dumped at runtime.
The UI hierarchies describe the boundaries of individual UI
controls, specifying their positions and sizes. Besides, we
utilize UI screenshots to extract control images and identify
their types. UI# Generation takes UI hierarchies and control
images as inputs. It first uses a convolutional neural network
(CNN) to identify control types based on their visual appear-
ance. Then, it divides the UI into an n×m grid, categorizes
controls in each grid region by their types, and encodes con-
trol size in each region. At last, it aggregates all regions into
a visually-inspired semantic representation, UI#. Similarity
Detection measures UI pairwise similarities based on UI#.
Specifically, it first embeds UI# via a CNN to infer visual
semantics. A Siamese neural network is later applied to cal-
culate the similarity score of two UI#. Finally, UIHASH uses
the score as a metric to discover similar UIs across apps and
reports them to security analysts.

We integrate UIHASH into an Android app analysis plat-
form, shown in Figure 5. Utilizing this platform, we ex-
tract various app features beyond UI (e.g., manifest, static
resources, and codes) to support cross-checking.

4.1 UI Parsing
Given an app, UIHASH first extracts UI information dynam-
ically by Minicap [1] and UIAutomator [24]. Specifically,
UIHASH launches the app and captures the main UI (i.e., the
main activity). It then simulates tapping on each interactive
view. If the app navigates to another UI, it repeatedly taps
on the new UI and flags the UI as visited. This procedure
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Figure 4: Overall architecture of UIHASH.
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Figure 5: The platform for analyzing Android apps.

terminates if the visited UI set stops expanding. Note that
apps may have unreachable UIs and non-launcher/exported
UIs, which require user authorization or other apps to trigger.
To collect these UIs, UIHASH also launches apps separately
from each Android activity registered in the manifest. Before
capturing each UI, we wait for a short period (0.2 seconds)
to complete animations and online resource loading. We note
that the presence of the FLAG_SECURE flag results in UIs re-
turning empty data upon capture. However, given its limited
use in real-world scenarios [16], we choose not to bypass the
flag. We mark UIs without layout data as unobtainable. We
provide further discussion on this flag in Section 6.

For each captured UI, we save its screenshot and dump
its runtime hierarchy. Compared with static layout trees, the
hierarchy reveals accurate runtime visual details like control
boundaries [22]. We use it for bridging the semantic gap be-
tween static UI definition (i.e., layout tree) and dynamic UI
visual appearance (i.e., images). In the meantime, we use UI
screenshots to collect control images for subsequent type iden-
tification. It is worth mentioning that compared with image-
based UI similarity detectors, the screenshots in UIHASH are
not directly involved in the final UI similarity detection.

*.CompoundButton*.ImageButton*.Switch*.ToggleButton Toggle= android.widget*ImageButton 
CheckBox

Switch
Button

ToggleButton 
CompoundButton

Figure 6: Six toggles implemented by different view types.

4.2 UI# Generation
UI Control Reidentification. We observe that controls may
have a similar visual appearance even with different built-in
View types defined by Android. For example, Figure 6 illus-
trates six apps that leverage controls labeled with different
types to build visually similar “Toggles” on UIs. The UI simi-
larity detection built on the declared control type is vulnerable
if an adversary introduces visually similar controls with dif-
ferent built-in types, e.g., choosing an ImageView instead of
a TextView to show text. App developers can also name and
implement custom Views in Android [25]. Besides, inline
advertisements pasted on UIs can be shown in different forms
such as buttons, texts, images, etc. However, this difference
cannot be reflected by the control names of advertisements, so
we also need to conduct reidentification for advertisements.

We aim to reidentify the types for all UI controls to cap-
ture UI’s visual features more precisely. More specifically,
we assign new types to controls based on what they look like
to humans instead of their original types claimed in the UI
hierarchies. Specifically, UIHASH classifies UI controls to
input, button, checkbox, list, spinner, tab, text, toggle, and
bar. We manually label 27,000 control images extracted from
RePack [38] and Rico dataset [41] to provide supervision sig-
nals. We use OpenCV [72] to extract control images from UIs,
convert them to gray-scale, and unify their sizes. By backward
propagating supervised signals from labeled UI controls, we
optimize a CNN-based classifier to predict the probability of
a UI control belonging to one of the nine types. If the proba-
bility of a type is beyond a pre-defined threshold (0.95 in our
implementation), UIHASH identifies the control as the cor-
responding type. If no match exists, we annotate the control
type as “Others”. Afterward, we split all UI controls into ten
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Algorithm 1: Generate UI# for a UI
1 Input: hierarchy of a UI H, and type index of each control
2 Output: UI# H
3 controls← controls in H
4 for i← 1 to n×m do
5 cordi← coordinates of the i-th region
6 vi← zeros(shape = (1,10))

// split channels by reidentified control types
7 for j← 1 to 10 do
8 E j ←{e ∈ controls|e.typeindex = j}
9 foreach e ∈ E j do

10 corde← coordinates of control e
11 ioue

i ←GET_IOU(corde,cordi)
// drop the tiny exceed parts

12 if ioue
i > threshold then

13 v j
i ← v j

i + ioue
i

// revise hash values
14 v j

i ←LOG_REV(v j
i )

15 H ← [v1,v2, ...,vn×m] // semantic aggregation

types. We illustrate their example images in Appendix B.
Hashing UIs. we partition a UI into a grid with n×m re-
gions of equal size. For each region, UI# encodes the size
and type of its constituent controls into a k-dimension vec-
tor vi, where i = 1,2, ...,n×m. Specifically, v j

i , the value of
the j-th dimension ( j = 1,2, ...,10) in vi, is derived based on
the overlapping between the controls in the j-th type group
and the i-th region. To measure the overlapping between a
region and a control, we take Intersection over Union (IoU,
also known as Jaccard index [63]) as the metric. Given Ar and
Ac, namely the region area and the control area, we calculate
IoU by IoU = |Ar ∩Ac|/(|Ar ∪Ac|×Ar).

Algorithm 1 shows the detailed steps of UI# generation,
which includes three main steps. First, the algorithm splits the
UI to n×m regions. Coordinates of the i-th region (located in
the a-th row and b-column) are calculated as follows:

cordi = (⌊Sh/n⌋× (a−1),⌊Sw/m⌋× (b−1)),

where a = 1,2, ...,n, b = 1,2, ...,m, and i = (a−1)×n+(b−
1). Sh and Sw represent the height and width of the screen.
The n×m grid also indicates the spatial relationships among
regions, e.g., we can deduce that “the i-th region is at the top
left of the (i+m+1)-th region”.

The second step is to extract visual semantics for each grid
region. The algorithm first calculates IoU between a region
and a control group in Line 11. IoU, ranging from 0 to 1,
describes how a UI control overlaps with a locality. Note
that we do not necessarily encode each control’s IoU. The
value is meaningful only if it exceeds a threshold (Line 12);
otherwise, we pad it with zeros. In particular, when a UI con-
trol lies its principal part in a grid region, UI# ignores the
exceeded areas in other regions. The design makes it difficult
for adversaries to confuse the algorithm by fine-tuning control
sizes to relocate them in different regions without changing

the UI layout, even with the knowledge of the algorithm’s
underlying logic. Besides, we adjust the original IoU metric
since a control’s visual impact on the overall UI layout is
not linear to its size. For example, after a 50% scaling on the
original UI, the login rate drops 25% instead of being cut
in half. Accordingly, UI# focuses more on the existence of
controls and compresses the impacts of their sizes. Inspired
by log transformation, which is widely used in digital image
processing for detail reveal and image enhancement via com-
pressing the dynamic range of an image [60], we define a
normalized log-based transformation to revise UI#’s compo-
nents: LOG_REV (x) = [ f (x)− f (0)]/[ f (1)− f (0)], where
f (a) = logγ(a+0.01).

Finally, we aggregate the vectors—representing individual
grid regions—to generate UI# (Line 15). Aggregating UI
semantics, UI# captures a high-level layout characteristic of
the overall UI.

4.3 Similarity Detection
The next step in UIHASH is to compare visual semantics
in UI# for UI similarity detection. Our insight comes from
the grid representation UI# similarity is based on, which is
comparable to that of images. To learn image visual (spatial)
semantics, CNN is widely adopted [42, 64]. It can tolerate
image distortions while generalizing visual features [62]. It
is also invariant to image object translation, matching our
intuitive understanding that partial UI view translations make
a limited contribution to the overall UI visual appearance.

UIHASH utilizes CNN to embed UI# into a vector space
(16 dimensions in our case). Intuitively, the relative distance
between a pair of UI# indicates their visual similarities. In
other words, the closer embeddings for two UI# to each other,
the more similar appearances their related UIs share, and vice
versa. For example, the four login UIs in Figure 1 are located
nearby in the embedding space.

To infer visual semantics, our CNN model takes UI# as
input, goes through two convolutional layers and three fully
connected (FC) layers, and generates vector-representation
visual semantics. Based on vectorized UI#, we further use a
Siamese neural network to measure the similarities of their vi-
sual semantics. Specifically, UIHASH calculates UI similarity
scores using the cosine similarity considering its simplicity
and effectiveness. We define the Siamese network output as
the cosine similarity of a pair of UI# and optimize network
parameters by minimizing the following loss function:

loss = min
θ

∑
N
i=1(sim(vi

1,v
i
2)− yi)2,

where θ presents the shared model parameters of the two
CNN models in the Siamese network. N indicates the count
of input UI# pairs, and y is the ground truth label.

Note that the app set is commonly enormous in An-
droid UI analysis. Directly applying traditional gradient
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descent (e.g., stochastic gradient descent) will be limited
due to computational inefficiency. To address this issue, we
leverage the mini-batch gradient descent algorithm [33] to
split the training dataset into small batches before calcu-
lating model training losses and optimizing model param-
eters. Specifically, we use an Adam optimizer [10] with
mini-batch optimization for CNN model training. We ap-
ply a grid search to get the best hyperparameters for the
Siamese network. The learning rate and batch size are tuned
among {0.01,0.005,0.0015,0.001,0.0005} (with and with-
out decay) and {16,32,64,128,256,512}, respectively. We
search the decision threshold for similar UI detection in
{0.5,0.6,0.7,0.75,0.80,0.85,0.9}. In light of the best F1
score in our experimental environment, we show the results
taking the initial learning rate as 0.001 (×0.1 every ten
epochs), the batch size as 32, and the threshold as 0.6. We
train the model for 36 epochs. Note that the configurable deci-
sion threshold illustrates the flexibility of the learning model
because analysts can customize it according to different prac-
tical scenarios. For example, decrease it to satisfy high true
positives or increase it to maintain low false positives. Based
on the threshold, UIHASH differentiates similarity scores and
detects UI similarity. If the similarity score of two UIs across
apps exceeds the decision threshold, UIHASH categorizes
them as similar UIs and reports to security analysts.

5 Evaluation

In this section, we evaluate on: i. How effective is UIHASH
as a UI similarity detection system? (§ 5.1) ii. How common
are active evasion attacks in the wild? (§ 5.2) iii. How robust
is UIHASH against adversarial attacks? (§ 5.3) iv. How effi-
cient is UIHASH? (§ 5.4) v. What benefits can analysts gain
from our UI representation UI#, in addition to pairwise UI
similarity detection? (§ 5.5)

5.1 Effectiveness of UIHASH

5.1.1 Comparison Analysis

In this section, we evaluate the detection effectiveness of
UIHASH by comparing it with state-of-the-art similar UI de-
tectors. Besides, we investigate the impact of different design
choices on UIHASH’s performance. Furthermore, we assess
the effectiveness of UIHASH on new data by applying the
pre-trained model to new apps.
Settings. To conduct a ground-truth-based evaluation, we ex-
pand the RePack dataset [30] with similar apps provided by a
security enterprise and obtain a total of 18,359 apps (2,816
original + 15,543 repackaged). This app set is referred to as
RePack-e. We label 6,371 similar UIs with the same activity
name derived from known similar applications. We also gener-
ate 6,371 non-similar UI pairs by randomly sampling two UIs
that do not come from a similar app pair and have different

Approach Precision Recall F1-score
Text-based detection [44, 85] 31.7% 83.0% 0.459

pHash [51, 56] 85.1% 79.7% 0.823
DROIDEAGLE [70] 1 96.8% 86.5% 0.914
GEMINISCOPE [52] 95.6% 94.3% 0.949

UIHASH 97.0% 99.8% 0.984
1 Two UIs are flagged as similar if their layout hashes are the same.

Table 2: Effectiveness evaluation results.

names. Based on this dataset, to evaluate the effectiveness of
UIHASH in detecting similar UIs, we first randomly select
80%, 10%, and 10% of UI pairs to constitute the training,
validation, and testing sets. We follow the guidance proposed
in [9] to responsibly report results for our learning models,
and avoid data snooping and biased parameter risks on two
fronts: ① we ensure that there is no knowledge overlapping
(e.g., repeated original apps/UIs) among the three subsets,
considering that RePack-e includes cases with one original
app and its many repackaged versions; ② we optimize UI-
HASH solely based on the validation set [39,40,82]. We com-
pare UIHASH with state-of-the-art UI-based similarity detec-
tion baselines (without overlap), including text-based [44,85],
image-based [51, 56] and layout-tree-based [52, 70] methods.
We take precision p (true positives vs. detected positives), re-
call r (true positives vs. ground-truth positives), and F1-score
(harmonic mean of precision and recall) as evaluation metrics.
Besides, we search for the decision thresholds for prior works
with the highest F1-scores under the dataset used (e.g., d = 10
for pHash and δ = 0.82 for GEMINISCOPE).

We illustrate how our design choices contribute to similar
UI detection. (1) To justify the grid-based design, we perform
an ablation experiment where the original feature values (e.g.,
size, position, and type) of controls are concatenated and di-
rectly fed into the Siamese model without being encoded into
grids. (2) To investigate the impact of re-identifying controls,
we remove this step and instead label UI controls based on
their literal names (e.g., directly regarding a control named
Button as a button). (3) To explore the effect of encoded
control size, we fine-tune the base number γ, which controls
control size encoding, among {2,5,10}. (4) To determine the
optimal grid size, we apply various grid sizes (1× 1, 2× 2,
3×3, 4×3, 5×5, and 10×10) for UIHASH.

To assess the pre-trained UIHASH’s effectiveness on new
data, we test it on a different set from a leading security vendor,
with 24/24 manually labeled similar/different UI pairs.
Results. Table 2 shows that UIHASH outperforms the prior
UI similarity detection approaches on all metrics, especially
on the recall rate and F1-score, indicating its stronger abil-
ity to find similar UIs. The receiver operating characteristic
(ROC) curves in Figure 7 demonstrate a notable enhance-
ment UIHASH gains on the area under the ROC curve (AUC).
UIHASH performs better than methods based on single UI
texts, which has the worst precision and F1-score, and ob-
tains a 0.201 higher recall rate than the image-based method
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Figure 7: ROC curves of UI similarity detection methods.

pHash [51, 56], reducing false negatives considerably. Fig-
ure 8 shows two UI pairs that bypass pHash but are detected
by UIHASH as similar. Based on tree similarity, DROIDEA-
GLE does not consider that different layout trees might render
similar UIs. In contrast, UIHASH achieves a 13.3% higher
recall rate and a higher F1-score. Compared to GEMINIS-
COPE [52], which detects similar UIs based on pairwise View
matching, UIHASH surpasses in all metrics. Considering that
the amounts of non-similar and similar UIs are not equal in
practice, we adapt the ratio for non-similar UIs to similar UIs
in the testing set to explore its impact on similarity detec-
tion. Figure 9 illustrates that UIHASH’s F1-scores against
unbalanced datasets are lower than a balanced one, as prior
research reveal [9, 59]. Nevertheless, its F1-score drops less
than GEMINISCOPE’s as the testing set becomes unbalanced.
Specifically, even under a 9:1 ratio, UIHASH still performs
better than all prior works. These results show that by relaxing
the comparisons sticking to tree or control details, UIHASH
gains better detection performance.

Figure 10a shows the ROC curves of UIHASH with dif-
ferent parameter settings. Results show that the grid-based
UI# surpasses non-grid-based original features (p: 0.970
vs. 0.928, r: 0.998 vs. 0.881) in detecting similar UIs. Be-
sides, UIHASH’s effectiveness decreases without control re-
identification. For size encoding, the base number (γ) only
affects UIHASH slightly. However, if we remove the IoU re-
vision in Algorithm 1 (Line 14), the effectiveness decreases.
The experimental results demonstrate the essential roles grid-
based encoding, control re-identification, and IoU revision
play in UIHASH’s UI similarity detection. For grid size se-
lection, we illustrate the detection results of different gird
sizes in Figure 10b. We observe that the size of 1×1 has the
worst performance, especially on the recall rate. The reason
is that one grid region cannot characterize the positions of UI
controls and the layout of UI. The grid size of 3×3 achieves
much better effectiveness. A possible reason is that it can
represent the semantic of “center” vertically, horizontally, or
both, which depicts a UI more accurately. In general, when we
increase the size of a grid, the performance rises accordingly
at first (e.g., 4× 3 and 5× 5) but turns down when the grid
size becomes too large (e.g., 10× 10). A reasonable expla-
nation is that UI# loses its ability to abstract UI appearance
and becomes sensitive to controls’ exact position and size.

Figure 8: UI pairs that bypass screenshot-based approaches.
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Figure 9: Effectiveness of similar UI detection under different
ratios for non-similar to similar UIs in the testing set.

The above results show that a too-small grid size cannot fully
represent a UI’s visual appearance, while a too-large grid
size decreases the tolerance to partial and minor UI changes.
The 5× 5 grid is used as a balanced trade-off between UI
representation and tolerance.

On the new testing set, UIHASH successfully flags all the
similar UIs, demonstrating its transferability across different
datasets. Figure 11 shows two similar UI pairs in the dataset.
Despite changes in UIs, UIHASH can still capture the visual
similarity within individual pairs.

5.1.2 Effectiveness on Finding New Similar UIs

To explore how UIHASH performs on malicious apps and
recent apps as a similar UI detection method, we apply the
UIHASH model pre-trained by RePack-e on malicious apps
and recent apps without retraining or fine-tuning.
Malicious Apps. We applied UIHASH on RMVDROID, an
Android malware dataset [77] with 9,133 malicious apps con-
firmed by VirusTotal [3]. Unfortunately, UI similarity labels
are unavailable for this dataset. As such, instead of evaluating
UIHASH’s effectiveness using ground-truth-based metrics
like F1-score, we report interesting findings on identifying
similar UIs using UIHASH. We successfully extracted 34,524
UIs from 8,879 out of 9,133 apps3. These UIs contain 280,750
visible controls, of which 95,025 controls are re-identified
(confidence score ≥ 0.95). We further filtered out semantic-
limited UIs with only four or fewer visible controls. In total,
UIHASH generated 18,558 UI#. Then, we made pairwise in-
app UI comparisons via UIHASH and dropped redundant UIs.

3The rest 254 (2.8%) apps stop running as soon as we launch them.
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Figure 10: UIHASH’s performance with different setups.

Figure 11: Similar UI samples in the new app set.

Finally, we got 11,561 UI# that constitute 66,812,868 pairs.
In all the UI# pairs, UIHASH identified 2,566,643 ones

(3.8%) as similar. We group similar UIs and present the two
largest groups in Figure 12. The left group contains 700 UIs
from 700 apps developed by 387 different developers. A rep-
resentative UI is named com.kuguo.kuzai.Boutique.Activity
from the app com.xiaobo.baobaogushihui. These UIs all show
“Elaborate App Recommendation” texts, implicitly inducing
users to download apps from untrusted sources. These apps
belong to the kuguo malware family and exhibit the fam-
ily’s characteristics including installation of apps from un-
known or unverified download sites [54]. The second most
frequent UI pattern (right) appears in 570 airpush mal-
wares designed by 183 developers. An example of this pat-
tern is the UI com.google.android.gms.ads.AdActivity from
the app com.appsministry.litres.book121140. These UIs re-
quire user agreement to perform actions such as changing the
browser’s homepage, which is a representative behavior of the
airpush family [18]. These results underscore the essential
role that detecting similar UIs plays in identifying malicious
app families—these apps not only implement the functions of
their corresponding malware families through UIs but reflect
the core traits specific to malicious families by UIs. Hence,
despite inherent noise in UI-based similarity detection (e.g.,
not all apps with similar UIs are malicious), UI is important
for discerning the inherently malicious nature of these apps.
Analyzing UI provides a unique perspective for understanding
malicious behaviors across various malware families.
Recent Apps. We collected 8,963 recent apps (uploaded from
March 2022 to July 2022) from six app markets in Table 3
and extracted 84,972 UIs. These apps do not appear in all the

Elaborate App 
Recommendation

Elaborate App 
Recommendation

Figure 12: The two most frequently-used UIs in RmvDroid.

Market App Size UI Market App Size UI

Kuan 1,231 80 GB 19,303 Mumayi 339 16 GB 2,331
2345 172 10 GB 826 Leyuan 6,649 245 GB 59,070
Vxat 224 12 GB 1,886 Appfun 348 10 GB 1,556

Table 3: Details of the recent app set.

above datasets. On average, we collected 10.8 UIs from one
app. After dropping similar UIs within each app according to
UI# comparison, we compared UIs between every two mar-
kets to explore cross-market and same-market UI similarities.

We summarize the pairwise UI similarity in Table 4. For
a pair of UIs, if one is from market A and the other is from
market B, we mark the UI pair as a member in “market A
- market B”. Of all UI pairs, similar pairs account for 8.6%
(Vxat - Vxat) to 13.4% (2345 - 2345). Given cross-market
similar UIs, we manually confirm that 50 apps (different files
from three out of five markets) share at least five similar
UIs with their peers. Among the 25 app pairs, 22 pairs hold
certificates from different issuers. For 23 out of 25 pairs, the
apps differ in runtime behaviors, e.g., one of the apps displays
ads or generates SMS payments while the other does not.

Besides, UIHASH finds the prevalence of similar apps in
the same market. The dominant proportion of similar app
clusters is found in Mumayi, where 51 apps (15.0%) gather
because their main UIs are similar4. We note that app similar-
ity might be ambiguous according to app features besides UI.
For example, the two app pairs on the left in Figure 13 are
not similar in none of their package names, developers, certs,
and icons. Codes for the center app pair are not similar either.

Finally, UIHASH reports a similar UI pair associated with
WeChat, a popular app for instant messaging5 (Figure 13
right). The malicious version (left)6 attempts to mimic the
original splash screen and obfuscates it by modifying text con-
tents (“English” to “Language”), substituting the background
image, and fine-tuning button sizes and colors. VirusTotal [3]
reports that the counterfeit app is a high-risk malware.

4There are another 55 apps with similar UIs. However, we manually
confirm that it is the market instead of individual developers who customize
and insert the UIs. Since the app-business-related UIs are not alike, we do
not consider these apps similar.

5from wandou jia.com, package: com.tencent.mm, CRC32: 13AD2E7F
6from app f un.cn, package: com.tencent.mmweix, CRC32: AE8C46BD
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Mumayi Leyuan 2345 Vxat Kuan
K

ua
n T 4,160K 66,036K 1,112K 2,639K 10,981K

S 494K 7,000K 140K 351K 1,378K
S/T 11.9% 10.6% 12.6% 13.3% 12.6%

V
xa

t T 253K 26,368K 36K 42K 392K1

S 31K 2,874K 4.4K 3.6K 49K1

S/T 12.3% 10.9% 12.2% 8.6% 12.4%1

23
45

T 206K 32,960K 26K 84,284K2 98,546K3

S 25K 3,691K 3.5K 7,754K2 10,446K3

S/T 12.0% 11.2% 13.4% 9.2%2 10.6%3

* Superscripts 1, 2, 3 indicate data for Mumayi-Mumayi, Leyuan-Mumayi,
and Leyuan-Leyuan, respectively.

Table 4: Total UI pairs (T) compared by UIHASH and detected
similar UI pairs (S) between markets.

Figure 13: Three similar UI pairs we detect in recent apps.

5.1.3 Generalization of UI# for Practical Use Cases

In addition to its capability to detect similar UIs, we assess the
extent to which UIHASH produces false alarms for security
analysts, confirming whether our similarity measure exhibits
excessive generalization for practical use cases.
Settings. As benign apps do not mimic other apps to deceive
users and have unique UIs, UI pairs detected as similar are
potentially false alarms. Therefore, we collected 75 login UIs
from the top 100 Google Play apps and evaluated similarity
among 2,484 UI pairs. We then analyze UIHASH’s false
alarms by examining similar UIs detected among benign apps.
Results. UIHASH flagged 58 UI pairs (2.7% of all) as similar.
We confirmed that the majority of them are single-sign-on
(SSO) UIs provided by famous enterprises such as Facebook
and Twitter. However, the right two pairs in Figure 14 are not
SSO UIs and belong to different online service providers. We
show the positive UIs to the participants of our user study and
ask for their similar ratings for the UIs. As Table 5 shows,
SSO UIs are considered similar by users with high confidence
(4.5 out of 5), though there are differences in icons and texts.
Pair (b) also receives a high score (4 out of 5), which has more
differences like EditText styles and the existence of micro
controls. However, users have mixed options on whether pair
(c) is similar. The score is close to the borderline (i.e., 3) but
slightly lower, so we mark (c) as a false positive. Finally, of
all the 2,484 UI pairs from the 100 apps, UIHASH raises eight
false positives (Facebook login UIs to Line login UIs, 0.3%
to all UI pairs). We believe that a 0.3% false positive rate
is promising to scale up UIHASH for similar UI detection.
In summary, UIHASH generates few false alarms and has a

(a) Twitter SSO (b) Outlook-GMail (c) Facebook-Line

Figure 14: Similar UIs UIHASH detected in the top 100 apps.

UI Pair Similar Rating (%)* Average
Rating1 2 3 4 5

Facebook SSO 2.2 1.7 9.0 28.7 58.4 4.45
Twitter SSO 2.5 0 2.5 33.8 61.3 4.51

Outlook-GMail 7.5 8.8 5.0 38.8 40.0 3.95
Facebook-Line 16.3 25.6 21.3 26.7 10.1 2.89
* : 1: Not -, 2: Hardly -, 3: Hard to say, 4: Pretty -, 5: Very - (-: similar)

Table 5: User rating for the similarity of positive pairs.

reasonable and not excessive similarity tolerance.

5.2 Active Evasion Attacks in the Wild

Among all the similar UIs we detected and confirmed in
RePack-e, malicious apps, and recent apps, we further in-
vestigate the popularity of strategies adversaries may perform
for active evasion attacks. Then, we quantify how different
similar UI detectors perform in detecting similar apps.
Settings. We take six active evasion scenarios as examples.
We identify a flexible usage of view groups evasion case when
two visually similar UIs use different sets of view groups,
where adversaries with Android UI domain knowledge lever-
age various view groups to achieve similar UIs and evade tree-
based detection. Besides, we identify micro controls when
their on-screen pixels are not greater than ten and identify off-
screen controls according to their positions. We also identify
image-based evasion attacks that target background images or
hue changes. After rebuilding each UI pair by removing their
background images (if available), we identify an evasion case
of image changing if the new pair is detected by the pHash
algorithm but the original one bypasses the detection. Hue
modification is identified if a UI pair is classified as similar by
pHash when traversing the color gamut. In the case of empty
text, attackers insert TextViews without any visible content
(e.g., whitespace characters) to obfuscate layout trees.
Results. Table 6 shows that 17.9% mimicry UIs utilize empty
texts to obfuscate layout trees. The second popular option
(17.7%) is the flexible usage of view groups. 15.4% evasion
cases use image-based techniques (14.3% for image changing
and 1.1% for hue modification). Evasions using invisible
or microscopic controls account for 4.3%. Considering that
the above active evasion techniques occupy more than half
(55.3%) UI pairs, we point out that the active evasion attacks
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Active Evasion Attack Ratio Image Tree UIHASH

Empty text 17.9% ✓ ✗ ✓

Flexible use of view groups 17.7% ✓ ✗ ✓

Image changing 14.3% ✗ ✓ ✓

Off-screen control 2.9% ✓ ✗ ✓

Micro control 1.4% ✓ ✗ ✓

Hue modification 1.1% ✗ ✓ ✓

Table 6: Identified techniques for active evasion attacks and
whether they are flagged as similar by different methods.
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Figure 15: Similar app pairs (app pairs with similar UIs)
flagged by different UI-based methods.

are already widely used in real-world apps. Figure 15 shows
similar app pairs detected in RePack-e by different approaches.
A combination of different prior work flags more similar
apps than a single method, but is still inferior to UIHASH. In
addition to all the true positive UIs the combination detects,
UIHASH detects 1,645 more apps with similar UIs—which
employ multiple evasion attacks to counter both tree-based
and image-based methods. These results highlight the pivotal
role that considering user perception plays in the detection of
similar UIs. It stands as a key factor contributing to UIHASH’s
effectiveness compared to previous methods.

We also investigate the tree edit distance (TED) [84] of
the similar UI pairs, which forms the basis for tree-based
detection. The smaller TED is, the more similar two layout
trees are. Figure 16 illustrates the results. The horizontal axis,
α, is the ratio of the TED to the minimum tree size (i.e., node
number) in a pair of UIs. The vertical axis, β, presents the
percentage of the UI pairs whose α is not greater than the
corresponding α. We find 27% UI pairs meet α > 0.25 (point
A), indicating that in 27% cases, the minimal cost of node edit
operations to convert the smaller layout tree to the other is at
least a quarter of the smaller tree size. Moreover, 5% of UI
pairs require a TED not less than the smaller tree size (point
B). In extreme cases, the operations are four times the smaller
tree size (point C). These results demonstrate the prevalence
of mimicry UIs in adopting evasion techniques on trees.

5.3 Robustness to Adversarial Attacks
With the growth of neural networks, adversarial examples
(i.e., crafted inputs designed to deceive a neural network and
result in mistakes) have become increasingly common for
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Figure 16: Tree edit distances of similar UI pairs.

learning-based detection evasion. Therefore, it is important to
know how robust UIHASH is against adversarial examples.
Settings. We conducted two popular white box adversarial at-
tacks via CLEVERHANS [57] on UIHASH with the RePack-e
dataset, namely fast gradient method (FGM) [20] and pro-
jected gradient descent (PGD) [48], where the attacker is
assumed to have complete access to the similarity detection
model. Both attacks subtract or add a value δ to each UI#
element, where |δ| ≤ ε. Since attackers may adjust the coun-
terfeit UI to evade UIHASH (i.e., be detected as non-similar to
the original one) while cannot modify the UIs in the imitated
apps, we do not add perturbations on both the input UI#. In-
stead, we replace one of the UI# in the input UI# pair with an
adversarial example and then calculate the similarity score for
the new UI# pair. As ε is critical to attack for it determines the
magnitude of perturbations, we explore different ε selections,
namely 0 (i.e., no adversarial attack), 0.05, 0.1, and 0.2.
Results. We show the results in Figure 17. The precision and
AUC gradually decrease with the increase of ε. In particular,
PGD has a more significant effect than FGM. Guided by the
attacker’s goal of using adversarial attacks to keep a visu-
ally similar UI from being detected, we take a further step to
manually check UIP⇝N , i.e., true-positive UI pairs becoming
false-negative after adversarial attacks. Interestingly, we ob-
serve that all these false-negative pairs are, in effect, no longer
visually similar. A reasonable explanation is that UI# is an
abstraction of UI rather than a pixel-grained representation.
Consequently, perturbations to UI# work on the overall UI’s
visual appearance rather than locality. As such, UIHASH is
generally robust to adversarial attacks.

5.4 Performance

We conducted all the experiments with a two-core@2.90 GHz
CPU, 16 GB memory, and a GPU with 2 GB memory. The
overhead mainly comes from UI dynamic collecting, which
consists of time for installing/uninstalling apps and a 0.2s
delay for each UI loading its contents. The collecting time
can be reduced by parallelizing UIHASH on multiple Android
devices [36]. On the RmvDroid dataset, UIHASH uses 1.3 h
to extract 280,750 view images and takes 3.0 min to generate
UI# for 18,558 UIs. It costs 6.2 min to filter similar UI# in
each app, and the time cost for a brute pairwise search among
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εεε
Precision (P) AUC (A) UUUIIIP⇝N to all Pairs (N)

FGM PGD FGM PGD FGM PGD

0.05 0.965 0.969 0.990 0.982 0.045 0.067
0.10 0.950 0.934 0.962 0.943 0.190 0.271
0.15 0.914 0.852 0.881 0.778 0.218 0.393
0.20 0.899 0.798 0.829 0.742 0.482 0.558
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Figure 17: Evaluating UIHASH with RePack-e, against two
adversarial attacks (FGM and PGD) with different ε.

Approach Collect Detect Overall F1 AUC
DROIDEAGLE static

8.3 h (1.5)
1.3 h (0.4) 9.6 h (1.9) 0.91 —

GEMINISCOPE 1.4 h (0.4) 9.7 (1.9) 0.95 0.92
pHash-based dynamic

26.9 h (4.8)
0.2 h (0.05) 27.1h (5.3) 0.82 0.77

UIHASH 1.5 h (0.5) 28.5 h (5.6) 0.98 0.99

Table 7: Runtime (collect and detect), F1-score, and AUC
on RePack of different detection approaches. The average
seconds are indicated in parentheses (per UI, pair, and app for
column Collect, Detect, and Overall, respectively).

66,812,868 UI pairs is 3.2 h (0.17 ms per pair on average).
We list the time overhead7 of different methods for process-

ing the RePack dataset in Table 7. We divide the above ap-
proaches into two groups, depending on whether they collect
UIs statically or dynamically. Although dynamic UI collec-
tion incurs more than three times overhead compared with the
static collection, we highlight that only by capturing UIs at
runtime can a detector bridge the semantic gap between lay-
out trees and UI appearances (further discussion in Section 6).
Considering the overhead for extracting UI features and mea-
suring UI similarity, pHash-based methods outperform their
peers significantly. However, they perform the worst F1-score.
We note that when generating UI#, re-identifying control im-
ages costs 94.8% time, but improves UIHASH’s AUC from
0.96 to 0.99. Training the Siamese model takes much less
time (3.1 min). With a pre-trained model, UIHASH finishes
detecting tens of thousands of UI pairs in seconds. To con-
clude, UIHASH achieves a trade-off between overhead and
effectiveness compared to the baselines.

5.5 Additional Applicability of UI#
5.5.1 Clustering Analysis

UI# can serve for clustering analysis besides pairwise UI
similarity detection. Empirically, we can cluster similar UIs

7Note that all the baseline tools are not publicly available, so their over-
heads are related to our implementations. All the implementations are Python-
based. Specifically, for DroidEagle, we set its parameter τ = 2.

into groups, supporting two functionalities as follows:

• Mundane layout filtering. Some app UIs may share similar
or even identical UI layouts, e.g., splash screens (a single
Image) and dialogs (e.g., Text and Button). These UIs
with redundant layouts bring a tedious burden to analysts
when exploring UI similarity.

• Targeted similar UI search. Given specific benign apps,
clustering analysis helps pinpoint UIs with a similar vi-
sual appearance at a large scale. When UIs are outliers or
belong to mundane clusters with no sensitive information
(e.g., “about” and “settings”), the underlying apps are less
likely to be repackaged or cloned by adversaries for profit
or phishing. Otherwise, we should inspect the apps whose
UIs are neighbors of benign ones.

Settings. We conducted a UI#-based similar UI clustering
analysis among 20,000 UIs randomly sampled from all UIs.
Specifically, we use the agglomerative hierarchical clustering
analysis (HCA). It performs well for other security applica-
tions, such as system behavior clustering from audit logs [81].
Initially, each UI# belongs to its cluster. HCA then iteratively
calculates similarity scores between every two clusters and
combines the nearest clusters until the maximum similarity
is below a merge threshold. We calculate the semantic rela-
tionships between two UI# based on their Euclidean distance
and evaluate the distance between two clusters by the Ward
variance minimization [65]. To understand the internals of
UI#, we further projected a multiple-dimensional UI# to a
plane and visualize the cluster results. We adopt Uniform
Manifold Approximation and Projection (UMAP) [53] for
dimension reduction while preserving structural information
among UI#.
Results. We show the visualization for UI#-based cluster-
ing analysis in Figure 18. In general, UI# with similar vi-
sual appearance group together while UI# with different ap-
pearances are separated with clear boundaries. For each clus-
ter, we perform manual verification by reviewing UI screen-
shots and identifying the UI functionality (e.g., login, setting,
and gamestart) as its descriptor. The dense clusters in the
visualization usually indicate app cloning or repackaging.
For example, we identify 64 repackaged “*Radio” apps in
repackage#1, they have identical Java codes but try to by-
pass UI-based detection by changing UI background colors.
We also identify several clusters related to sensitive UIs, in-
cluding different UI patterns frequently used for login UIs
(e.g., login#1). Besides, we pinpoint some other clusters
with various high-level semantics, like setting, about, search,
and gamestart. We illustrate more examples in Figure 20 (we
provide more details in Appendix B). Finally, by identifying
mundane UI clusters, including simple dialogs (a text and one
or more buttons at the bottom) and splash screens (a single
full-screen image), we filter out 3,724 (18.6%) UIs. After fur-
ther deploying the filter on RePack-e, we reduce the time cost
for UI similarity detection by 21.8%. The results show that
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Figure 18: UMAP visualization of the UI#. (a) shows the
embedding space of 20,000 UIs. Each dot denotes a UI#.

Method LIBRADAR SIMIDROID Manifest Resource

f iltered∗
UIHASH FP

42/48
(87.5%)

48/48
(100%)

48/48
(100%)

48/48
(100%)

UIHASH T P
missed∗

87/92
(94.6%)

461/526
(87.6%)

314/450
(69.8%)

6,039/6,643
(90.9%)

Table 8: UIHASH works with other app similarity measures.
The first row shows our false positive app pairs and pairs
filtered by other methods, and the second row lists the missed
app pairs of other methods and the pairs we detected.

the clustering analysis can mitigate the burden of searching
for similar UIs on a large scale by removing mundane UIs.

5.5.2 Complementary Strength with Related Solutions

Settings. We take all the 15,297 similar app pairs in RePack
as ground truth to evaluate the complementary strength
of the solutions. In the Android app analysis platform
(Figure 5), we deploy UIHASH and four other methods,
namely LIBRADAR [47], SIMIDROID [37], Manifest-based,
and Resource-based, to detect app similarity (We provide
more details in Appendix B). We incorporate UIHASH with
the above methods in two ways. First, as a UI-based method,
UIHASH can detect similar apps that other methods fail to
discover. Second, other methods can improve UIHASH by fil-
tering its false positives. Note that for UIHASH, if any UI pair
in two apps are similar, we flag the app pair as similar. For
other detection approaches, two apps are potentially similar
when their similarity score is not less than 0.5.
Results. Table 8 lists the results of corporating UIHASH with
other app similarity detection methods. As the first row shows,

APK Pair L S M R RP

pet.app46 imdroid.dina.hamel 1 0.99 0.88 0.44 ✗

com...floppyspace com...stone 0.63 0.54 1 0.27 ✗

yong...player com...stone 0.50 0.72 0.2 0.52 ✗

osa.app21 gextreme.app33 1 0.99 0.88 0.50 ✗

1 L, S, M and R denotes LIBRADAR, SIMIDROID, Manifest-based, and
Resource-based comparisons, respectively.

2 RP indicates whether the pair is disclosed in RePack.

Table 9: New similar app pairs in RePack found by UIHASH
and their similarity scores given by other approaches.

860
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0
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1794
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973
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3343
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14,483
+860

(+5.9%)

14,370
+973

(+6.8%)

Figure 19: Similar app pairs detected by GEMINISCOPE (G),
DROIDEAGLE (D), LIBRADAR (L), and UIHASH (U).

all the methods effectively filter out UIHASH’s false positives.
Specifically, by incorporating SIMIDROID, Manifest-based
comparison, or Resource-based comparison, UIHASH’s pre-
cision reaches 1.0 as all the 48 false positives generated by
UIHASH are similar considering beyond-UI features. On the
other hand, by taking UIHASH as a complimentary detector,
all the other four methods reduce their false negatives signifi-
cantly (the second row): the drops are from 69.8% to 94.6%.
It is also worth noticing that by combining UIHASH and other
methods, we improve the ground truth in the RePack dataset.
Table 9 shows four app pairs detected as “false” positives
by UIHASH. By checking their similarity via other tools, we
confirm that they are similar app pairs missed by RePack.

Finally, we combine LIBRADAR—which detected the most
similar apps among non-UI-based methods in our experi-
ment, and UI-based baselines including GEMINISCOPE and
DROIDEAGLE. Then, we examine whether UIHASH can
strengthen the combination. Figure 19 shows that UIHASH
and the combination helps each other detect 5.9% and 6.8%
more similar apps in RePack-e. It suggests that when studying
app similarity, utilizing a reasonable combination of multiple
app features will outperform a single-feature-based detection.

6 Discussion

Necessity for Dynamic Analysis. Despite runtime UI collect-
ing still has work to do in terms of performance and cover-
age [31], we choose dynamic UI information as the detection
basis, considering: ① Active evasion attacks. According to
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our empirical study, adversaries can build layout files with
advanced evasion techniques. Therefore, we cannot capture
accurate UI visual appearances with only static layout trees;
② Runtime UI adjustments. It is a common practice to update
UIs at runtime, and dynamic analysis works for obtaining UI
properties with runtime updates; ③ Protected app source code.
While benign apps adopt obfuscation [2] and packers [75]
to protect codes from reverse-engineering, Android malware
also increasingly leverages these techniques to evade detec-
tion [71]. Besides, Android apps could mask their runtime
behaviors via anti-emulator techniques [7, 78]. As a counter-
measure, we make UIHASH’s UI extraction module easy to
deploy on both emulators and physical devices.
Defense against GUI Squatting Attack. UIHASH by de-
sign can detect spoofing UIs generated by GUI squatting at-
tacks [14], the state-of-the-art method for developing phishing
apps. To fabricate a UI, the attack specifies control attributes
(e.g., width, height and margins) with fixed values analyzed
from the original screenshot. Each layout file resulting from
this attack contains a single root ViewGroup with all the re-
maining controls as its children. This new layout structure
usually differs significantly from the original one. Thus, GUI
squatting attacks can easily evade tree-based detection. Nev-
ertheless, UIHASH can detect these spoofing UIs based on
UI# similarity, raising the bar of GUI squatting attacks.
Threat to Vadility. Android apps can use FLAG_SECURE flag
to prevent specified UIs from being captured. While we can
gain root access and employ an Xposed mod [4] to bypass
this flag, we refrain from implementing such a solution, as
apps involved in privacy-sensitive tasks may require device
integrity (e.g., by Attestation API [23]). To extend UI capture
capabilities, we can integrate UIHASH with heuristic GUI
testing tools [27, 43]. UIHASH can also benifit from Chrome
DevTools [21] when handling WebView.

For generality, we divide the screen equally when abstract-
ing UI. It’s worth mentioning that optimizing grid parameters,
such as employing unevenly distributed grids to prioritize spe-
cific screen areas, could improve UIHASH’s effectiveness in
some scenarios. We leave this as a subject for future research.

7 Related Work

There has been active research inspecting app similarity based
on different app features, including code [19,28,55,73], static
assets (e.g., images, icons, and XML files) [35, 44, 85] and
UI. We categorize Android UI similarity detections into two
groups based on their detection basis (static layout tree struc-
ture or runtime screenshot image). To our best knowledge,
we are the first to discuss active evasion attacks from both
tree-based and image-based aspects.
Tree-based Detections. Sun et al. propose DroidEagle [70],
a system for similar UI detecting by measuring their tree edit
distance (TED) or tree hashing. TED is also the metric for sim-
ilarity measuring in other works such as FUIDroid [45] and

RepDroid [79]. In addition to comparing trees, researchers
also conduct pairwise similarity comparison on UI compo-
nents [52], and feature engineering based on tree node at-
tribute [67] or hierarchy structure [30] to compare UI similar-
ity. Patil et al. [58] build a tree-based graph and train a graph
matching network (GMN) for UI similarity detection.

All the above approaches take layout trees or hierar-
chy trees of UI as input. However, they do not use visual-
appearance-related features like control visual type and size.
Moreover, various active evasion attacks are available to mod-
ify trees, resulting in tree-based detection bypassing.
Screenshot-based Detections. Another research stream of
UI-based similar app detection is based on extracting and
comparing screenshot features. Perceptual hash (pHash) is a
popular image descriptor [34, 49, 51, 56]. For example, Mal-
isa [49] detects repackaging apps by calculating hash values
of screenshots for a rough sampling and making further con-
firmation via layout trees.

Screenshot-based methods are not robust against simple
UI modifications (e.g., changing background color or image
contents) and adversarial noises (or tiles) [68, 69]. In contrast,
UIHASH focuses on representing UI’s visual appearance fea-
tures instead of making strict pixel-level comparison.

8 Conclusion

In this paper, we propose a novel approach, UIHASH, to detect
similar Android UIs based on their visual features perceived
by users. Aiming to sketch UI appearances, we abstract them
into #-shaped grids, which we refer to as UI#. We then de-
velop a neural network architecture to distill visual features
from UI# representations and compare their similarity. We
evaluate UIHASH using 52,390 real-world apps. The experi-
ment results demonstrate UIHASH’s accuracy and robustness
in detecting similar UIs. We also discover that similar UIs gen-
erated by active evasion attacks are already prevalent in the
wild, invalidating existing tree-based and screenshot-based
detection methods.
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1 <!--Make a view invisible by its attributes-->
2 <Button android:id="@+id/c" ... android:

layout_marginTop =5000dp/>
3 <Button android:id="@+id/d" android:alpha="0"/>
4 <Button android:id="@+id/e" android:padding =6000dp>
5 <!--Make a view invisible in a view group-->
6 <LinearLayout ...>
7 <TextView android:layout_weight="0" ...
8 android:layout_width="match_parent"
9 android:layout_height="match_parent"/>

10 <Button android:id="@+id/f"
11 android:layout_weight="1"
12 android:layout_width="match_parent"
13 android:layout_height="match_parent"/>
14 </LinearLayout >
15 <RelativeLayout ...>
16 <Button android:id="@+id/g" ...
17 android:layout_toLeftOf="@id/z"
18 android:layout_toRightOf="@id/z"/>
19 <Button android:id="@+id/z" .../>
20 </RelativeLayout >

Listing 3: Five ways to insert invisible controls (underlined).
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A Active Invasion Attack via Invisible Views

An effective way for adversaries to implement an active inva-
sion attack is by inserting any number of invisible views (view
groups or controls) into a layout tree, as Listing 3 shows. The
imperceptible views contribute nothing to UI’s visual appear-
ance but break down the tree-based detections. Note that many
view attributes are available for such active invasion attacks.
For example, the last Button in Listing 3 makes its size zero
by position-related (instead of size-related) attributes.

B Design and Evaluation Details

Control Types for Reidentification. We illustrate the con-
trol types for reidentification in Table 10. All images in a
specific type share specific image characteristics, except for
the type Others, which consists of images shown on UIs and
uncommon controls (e.g., rating bar).
Baselines for App Similarity. We provide more details of
the baselines for calculating app similarity as follows: 1)
LibRadar [47]: an accurate and anti-obfuscation tool for
scanning third-party libraries. Given two library set La and
Lb, their similarity score is given by max{[La ∪ Lb]/[La −
Lb], [La∪Lb]/[Lb−La]}. 2) SimiDroid [37]: an app compari-
son framework that yields method signatures and representa-
tions of statements at the source code level. 3) Manifest-based
comparison: app comparison based on metadata (e.g., pack-
age), components, and permissions. We measure app similar-
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Type Description Examples
Input areas to enter texts

Button clickable rectangles or icons
CheckBox small areas to check off

List consecutive items in one template

Spinner areas with a mark to show a drop list
Tab banners for navigating
Text areas to show text contents

Toggle switches to make a boolean choice
Bar bars to show progress or fix values

Others
controls that do not belong to the
above types

Table 10: Control types for reidentification.

−6 −4 −2 0 2 4

14

16

18

20

22

24

26

28 repackage#2

repackage#3

login#2

(a) Zoom-in: pink boxes (left)

15 15.5 16 16.5 17

17.5

18

18.5

19

19.5

gamestart

(b) Zoom-in: blue box (right)

(c) Screenshots of login#2 (d) Screenshots of gamestart

Figure 20: UI samples for different clusters.

ity as that of LibRadar. 4) Resource-based comparison: we ap-
ply pHash [80] to find similar images and icons between two
apps and search for identical static resources of other types
by checksum comparison. Given the resource file sets of two
apps Fa and Fb, the number of similar images Ps, and the num-
ber of other identical resource files, Rs, the similarity score is
given by max{[Ps +Rs]/[Fa−Fb], [Ps +Rs]/[Fb−Fa]}.
More Details of UI# Clusters. We illustrate more zoom-
in plots and UI screenshots for the clustering results in Fig-
ure 18a. We find another login UI pattern as Figure 20c shows,
which is different to login#1 (Figure 18c). Besides, UIs in
repackage#2 and repackage#3 correspond to two repackag-
ing bundles (with 24 “India Newspapers” apps and 18 “Soft-
ware Stills” apps, respectively). For UIs in the gamestart
cluster, despite different background images, colors, texts, and
fonts, they are still grouped as they share a similar appearance
to achieve the same design goal (starting game and showing
an advertisement at the bottom of the screen).

Age <<< 222000 [[[222000,,,444000))) [[[444000,,,666000))) ≥≥≥ 666000 Others
Male 15 120 25 2 5

Female 12 56 54 5 2
Others 4 8 0 3 8

Table 11: Gender and age demographics of participants.

C User Study Details

We list the survey questions of our user study in Listing 4,
and summarize participant demographics in Table 11. Our
exit survey reveals that 81.2% of users have experienced UI
changes in their frequently-used apps, while 8.5% do not
notice any UI changes. Specifically, all users spending less
than one hour per day on apps or have no frequently used
apps report a lack of awareness of app UI changes.� �

A. Demographic Survey
A1. What is your age? (age range or “perfer not to say”)
A2. What is your gender? (gender or “perfer not to say”)
A3. Are you skilled in using your smartphone?

B. UI Similarity Evaluation
B1−B12. Would you perform login on this screen? (pic)

Yes, I accept to log in No, I reject logging in
B13. What factors prevented you from signing in? Select (

zero to all) options in order of importance.
□ Background color or image contents
□ The position relationship of interface elements (such

as buttons and input boxes)
□ Texts on the screen
□ Size of interface elements
□ Style (such as fonts, borders, and colors) of interface

elements (such as buttons and input boxes)
□ Else: (please f ill in the blank)

C. Exit Survey
C1. How much time do you spend per day on phone apps?

< 1 h ≥ 1 h but < 2 h ≥ 2 h but < 4 h ≥ 4 h
C2. How many apps do you use frequently?

0 1−3 4−6 7−8 > 8
C3. How many apps you have used have UI changes with

version updates?
All / Almost all (80%−100%)
Most (60%−80%)
About one−half (40%−60%)
A few (20%−40%)
None / Hardly any (0−20%)
I do not concern about app UIs

C4. Are you good at manipulating your smartphone?
No, I am not good at manipulating my smartphone
Yes, I can manipulate my smartphone smoothly
� �

Listing 4: User study questions.
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