
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

LR-Miner: Static Race Detection in
OS Kernels by Mining Locking Rules

Tuo Li, Tsinghua University; Jia-Ju Bai and Gui-Dong Han, Beihang University;
Shi-Min Hu, Tsinghua University

https://www.usenix.org/conference/usenixsecurity24/presentation/li-tuo

LR-Miner: Static Race Detection in OS Kernels by Mining Locking Rules

Tuo Li
Tsinghua University

Jia-Ju Bai
Beihang University

Gui-Dong Han
Beihang University

Shi-Min Hu
Tsinghua University

Abstract
Data race is one of the most common concurrency issues
in OS kernels, and it can cause severe problems like system
crashes and privilege escalation. Therefore, detecting kernel
races is important and necessary. A critical step of kernel
race detection is to identify locking rules that which variable
should be protected by which lock. However, due to insuffi-
cient documents of kernel concurrency, it is challenging to
identify accurate locking rules, causing existing approaches
to produce many false results in kernel race detection.

In this paper, we design a new static analysis approach
named LR-Miner, to effectively detect data races in OS ker-
nels by mining locking rules from kernel code. LR-Miner
consists of three key techniques: (1) a field-aware mining
method that constructs and statistically analyzes the structure
field relation between locks and accessed variables, to mine
accurate locking rules from kernel code; (2) an alias-aware
checking method to detect data races that violate the mined
locking rules; (3) a pattern-based estimation strategy to es-
timate the security impact of the found races and identify
harmful ones. We have evaluated LR-Miner on two popular
OS kernels including Linux and FreeBSD, and it finds 306
real races with a false positive rate of 19.9%. Among these
found races, 200 are estimated to be harmful, and 61 of them
have been confirmed by kernel developers. 10 harmful races
have been assigned with CVE IDs.

1 Introduction

To utilize multiple CPU cores in modern computer systems,
OS kernel code is often concurrently executed for high per-
formance, but inevitably introducing the risk of concurrency
issues. Data race is one of the most common concurrency
issues in OS kernels, and it can cause severe problems like
system crashes and privilege escalation. Many well-known
kernel vulnerabilities [22–25] are caused by data races. For
example, Dirty COW [24] is a dangerous vulnerability caused
by a data race in memory-management subsystem of Linux

kernel. By exploiting Dirty COW, the attacker can maliciously
corrupt critical memory and even obtain root privilege. Thus,
for security and reliability, detecting data races in OS kernels
is important and necessary.

Static analysis is a high-coverage and effective technique
of bug detection, without actual execution of the tested pro-
gram. Many existing approaches [1,2,10,31,32,43,52,61,70]
focus on static analysis of user-level applications for race
detection. Indeed, different from applications actively execut-
ing code, kernel code is often passively executed via system
calls invoked by upper-level applications [9, 67]. Thus, kernel
concurrency is actually caused by application concurrency
in many cases, without having explicit operations of thread
creation and termination like applications do. However, these
existing approaches require such thread operations to perform
concurrency analysis, and thus they cannot effectively check
kernel code to perform static race detection.

To detect kernel races, a few existing approaches [3, 14,
29, 64, 73, 74] perform static lockset analysis according to
kernel concurrency. They assume all the functions can be
concurrently executed or require the user to provide guidance
about code concurrency, and then use static lockset analysis
on concurrent functions to detect races. However, these ap-
proaches report many false races, and most of the found real
races are benign and thus have no harmfulness. Indeed, their
unsatisfactory results are caused by three main limitations:

(L1) They fail to identify accurate locking rules, namely
which variable should be protected by which lock. In fact, a
data race is often caused by missing necessary lock protec-
tion, and thus identifying locking rules is a critical step of
race detection. If locking rules are unavailable or inaccurate,
static lockset analysis will blindly search code paths and thus
produce many false results in race detection. However, due to
insufficient documents of kernel concurrency and complicated
logics of kernel code [6,54,60], it is difficult for these existing
approaches to statically identify accurate locking rules.

(L2) They fail to consider accurate alias relationships in
static lockset analysis. Such alias relationships involve both
locks and accessed variables, which are main objects handled

USENIX Association 33rd USENIX Security Symposium 6149

by static lockset analysis. If such alias relationships are ne-
glected or inaccurately identified, static lockset analysis will
make mistakes in checking the accessed variables protected
by the related locks, and thus produce many false results in
race detection. However, due to complex data structure usages
and complicated control flows in kernel code, it is difficult for
these existing approaches to identify and consider accurate
alias relationships during lockset analysis.

(L3) They never estimate the security impact of the found
races. A data race can be benign or harmful [44, 62]. Benign
races are deliberately introduced by developers to improve
the efficiency of concurrent execution, and they are expected
to cause no security problem when being triggered. Only
harmful races have security impact and can cause security
problems, and thus identifying such races is valuable for con-
currency bug detection. However, these existing approaches
fail to check the influence of racy variables on possible code
execution, and thus they cannot automatically identify harm-
ful races from the produced results.

To solve the above limitations and improve static analysis
of kernel race detection, we propose three key techniques:
(1) Field-aware mining method. To solve L1, our method
automatically mines accurate locking rules from kernel code,
by constructing and statistically analyzing the structure field
relation between locks and accessed variables. In OS kernels,
data structures are commonly used to share data between
concurrent functions [54, 63]. In this case, a shared variable
and its protection lock are often represented as different fields
but in the same data structure. Based on this concurrency
feature, our method analyzes each lock usage and variable ac-
cess involving data structure field, to identify locking relation,
namely which variable is actually protected by which lock
in the code. To improve analysis accuracy of data structure
fields, our method identifies locking relations based on field
graphs that represent access paths [17, 45]. Then, for each
variable in locking relations, this method statistically calcu-
lates the proportion of the accesses to this variable protected
by each involved lock among all the accesses to this variable.
If the proportion is large enough, indicating it is very likely
that this variable should be protected by the involved lock,
which is the locking rule mined by our method. Such locking
rules are used for subsequent kernel race detection, and they
can also help improve the documents of kernel concurrency.
(2) Alias-aware checking method. To solve L2, our method
performs static lockset analysis to detect data races that violate
the mined locking rules. To improve accuracy, our method per-
forms flow/context/field-sensitive and inter-procedural alias
analysis, to identify and utilize accurate alias relationships
involving both locks and accessed variables. To improve effi-
ciency, our method creates and uses function summaries con-
taining alias relationships to perform inter-procedural check-
ing. Moreover, our method performs SMT-based validation
of code-path feasibility for each reported race, to reduce false
positives in race detection.

Field-based
mining method

Locking rules

OS kernel code

Alias-aware
checking method

Data races

Pattern-based
estimation strategy

Harmful races

Figure 1: LR-Miner workflow.

(3) Pattern-based estimation strategy. To solve L3, our
strategy checks the racy-variable usage of each reported race,
based on some representative patterns that can cause security
bugs like null-pointer dereferences, double fetch issues, etc.
Our strategy can automatically estimate the security impact
of the reported races and identify harmful ones.

Based on the above three techniques, we design LR-Miner
(Locking Rule Miner), a new static analysis approach, to ef-
fectively detect data races in OS kernels by mining locking
rules from kernel code. LR-Miner has three stages shown in
Figure 1. LR-Miner first uses our field-aware mining method
to mine accurate locking rules from the kernel code; then uses
our alias-aware checking method to detect races according to
the mined locking rules; and finally uses our pattern-based
estimation strategy to identify harmful races from the found
races. We have implemented LR-Miner with LLVM [53], and
it performs automated analysis on the LLVM bytecode. Over-
all, we make three technical contributions in the paper:
• To improve static analysis of kernel race detection, we pro-

pose three key techniques: (1) a field-aware mining method
that constructs and statistically analyzes the structure field
relation between locks and accessed variables, to mine ac-
curate locking rules from kernel code; (2) an alias-aware
checking method to detect data races that violate the mined
locking rules; (3) a pattern-based estimation strategy to es-
timate the security impact of the found races and identify
harmful ones.

• Based on these key techniques, we design a novel static
analysis approach named LR-Miner, to effectively detect
kernel races by mining locking rules from kernel code. To
our knowledge, LR-Miner is the first systematic static anal-
ysis approach that detects kernel races by mining accurate
locking rules and identifies harmful races.

• We have evaluated LR-Miner on two popular OS kernels in-
cluding Linux and FreeBSD. It in total mines 2.7K locking
rules from kernel code, and finds 306 real races with a false
positive rate of 19.9%. Among the found races, 200 are es-
timated to be harmful as they can cause security problems,
and 61 of them have been confirmed by kernel developers.
10 harmful races have been assigned with CVE IDs. We
also perform experimental comparison to multiple existing
static approaches of kernel race detection (including Re-
lay [74], RacerX [29] and CPALockator [3]). The results
indicate that LR-Miner finds many real races missed by
these approaches, with fewer false positives.

6150 33rd USENIX Security Symposium USENIX Association

2 Background and Motivation

In this section, we first introduce kernel race and its static
detection, then study data structure usages for kernel concur-
rency, and finally introduce how to use locking rules in static
analysis for kernel race detection.

2.1 Kernel Race and Static Detection

Kernel race. To guarantee the correctness and security of ker-
nel concurrency, a shared variable accessed by concurrently-
executed threads should be protected by necessary synchro-
nization primitives like locks. Otherwise, when at least one
thread writes the shared variable during concurrent accesses,
a data race can occur, causing the value of this shared variable
to be uncertain.

In fact, a data race can be benign or harmful [44, 62]. Be-
nign races are deliberately introduced by developers to im-
prove the efficiency of concurrent execution, and they are
expected to cause no security problem when being triggered.
In comparison, harmful races are dangerous and can cause
security problems. These harmful races may corrupt critical
kernel data and affect important execution paths, and thus
can lead to system crashes, privilege escalation, etc. Many
well-known kernel vulnerabilities [22–25] are actually caused
by data races. Thus, for security and reliability, detecting data
races in OS kernels is important and necessary.
Static detection of kernel races. Static analysis is a popular
and effective technique of bug detection, and it can conve-
niently analyze all the possible code paths of the tested pro-
gram without actual execution. For this reason, static analysis
can achieve higher detection coverage and find many bugs
missed by runtime testing. In fact, many existing approaches
of static analysis have produced promising results of kernel
bug detection, but most of them [8, 34, 51, 57, 59, 71, 76, 85]
focus on detecting bugs in sequential code, and thus cannot
detect kernel races in concurrent code.

A few existing approaches [3, 14, 29, 64, 73, 74] use static
lockset analysis to detect kernel races, but they report many
false races, and most of the found real races are benign and
thus have no harmfulness. Indeed, their unsatisfactory results
are caused by three main limitations: (L1) lacking the iden-
tification of accurate locking rules (namely which variable
should be protected by which lock), (L2) neglecting accurate
alias relationships in static lockset analysis, and (L3) lacking
the estimation about the security impact of the found races.

Among the three limitations, we believe L1 is the most
important one, because locking rules directly reflect kernel
concurrency and thus determine basic analysis process of race
detection. However, there are lots of variables and locks in
kernel code, and thus it is error-prone and time-consuming to
consider all these variables and locks when identifying lock-
ing rules. L2 heavily affects the accuracy of race detection,
and L3 is related to the importance of the found races.

FILE: linux-6.2/include/linux/fs.h

424. struct address_space {
425. struct inode *host;
426. struct xarray i_pages;
427. struct rw_semaphore invalidate_lock;

 /* protected by the i_pages lock */

436. unsigned long nrpages;
437. pgoff_t writeback_index;

444. }

(c) The address_space structure

FILE: linux-6.2/include/linux/xarray.h

296. struct xarray {
297. spinlock_t xa_lock;
298. gfp_t xa_flags;
299. void __rcu *xa_head;
230. }

FILE: linux-6.2/drivers/scsi/lpfc/lpfc.h
900. struct lpfc_hba {

1307. struct list_head active_rrq_list;
1308. spinlock_t hbalock;

1444. struct lpfc_fcf fcf;

1609. }

(a) The lpfc_hba structure

FILE: linux-6.2/include/linux/hid.h
769. struct hid_driver {

......
 /* Protected by dyn_lock */

773. struct list_head dyn_list;
774. spinlock_t dyn_lock;

809. }

(b) The hid_driver structure

Figure 2: Example structures about kernel concurrency.

2.2 Structure Usages for Kernel Concurrency

In OS kernels, data structures are commonly used to share
data between concurrent functions [54, 63]. In this case, a
shared variable and its protection lock are often represented
as different fields but in the same data structure. Figure 2
shows three examples of this concurrency feature in Linux:

In Figure 2(a), the structure lpfc_hba is used by Linux lpfc
SCSI drivers. In this structure, the lock field hbalock actually
protects some other fields, including fcf, according to code
implementation and our discussion with kernel developers.

In Figure 2(b), the structure hid_driver is used by the
human interface drivers in the Linux kernel. In this structure,
the lock field dyn_lock protects the list field dyn_list, as
described in its definition comment.

In Figure 2(c), the structure address_space is used by the
filesystems in the Linux kernel. In this structure, the integer
field nrpages is protected by the lower-layer nested field
i_pages->xa_lock, as described in its definition comment.

We believe this feature can help to describe locking rules
in a simpler way, without considering all the accessed vari-
ables and locks in kernel code. Specifically, when a lock and
a variable are different fields in the same data structure, they
may have protection relation. In this way, a locking rule is
specifically described as: which data field should be pro-
tected by which lock field. As for the accessed variable and
locks in unrelated data structures, we consider that they have
no protection relation and thus neglect them when identify-
ing locking rules. Though using this simpler way, identifying
locking rules from kernel code still has two main difficulties:

(D1) As shown in Figure 2(b) and Figure 2(c), the code
comments clearly describe the locking rules of some structure
fields. However, many parts of kernel code are not sufficiently
commented or documented [6, 54, 60] (Figure 2(a) is such an
example that has no code comment about locking protection),
and thus just analyzing code comments and kernel documents
is insufficient and infeasible to identify locking rules.

(D2) As shown in Figure 2(a) and Figure 2(b), the lock
field and its protected data field are in the same layer of data
structure. However, this phenomenon is not always correct.
For example, as shown in Figure 2(c), the protection lock

USENIX Association 33rd USENIX Security Symposium 6151

FILE: linux-6.2/drivers/scsi/lpfc/lpfc_hbadisc.c
1230. int lpfc_linkdown(struct lpfc_hba *phba)

1251. spin_lock_irq(&phba->hbalock);
1252. phba->fcf.fcf_flag &= ...;
1253. spin_unlock_irq(&phba->hbalock);

1323. }

FILE: linux-6.2/drivers/scsi/lpfc/lpfc_hbadisc.c
1858. void lpfc_register_fcf(struct lpfc_hba *phba)

1864. spin_lock_irq(&phba->hbalock);
1865. if (!(phba->fcf.fcf_flag & ...)) {...}
1886. spin_unlock_irq(&phba->hbalock);

1908. }

FILE: linux-6.2/drivers/scsi/lpfc/lpfc_hbadisc.c
1597. void lpfc_mbx_cmpl_reg_fcfi(struct lpfc_hba *phba, ...)

1612. spin_lock_irq(&phba->hbalock);
1613. phba->fcf.fcf_flag |= ...;
1614. spin_unlock_irq(&phba->hbalock);

1640. }

FILE: linux-6.2/drivers/scsi/lpfc/lpfc_hbadisc.c
6961. void lpfc_unregister_fcf_rescan(struct lpfc_hba *phba)

 // No protection of phba->hbalock!

6979. phba->fcf.fcf_flag = 0; // Race!

7009. }

Figure 3: Example of locking rule usage.

field i_pages->xa_lock is a lower-layer nested field of the
data field nrpages, but they are both in the same structure
address_space. Thus, it is necessary to consider different
layers of nested structures when identifying locking rules.

2.3 Race Detection Using Locking Rules

We illustrate how to utilize locking rules for kernel race de-
tection, by using the lpfc SCSI driver in Linux 6.2. From
Figure 2(a), we have a locking rule that the data field fcf
should be protected by the lock field hbalock in the structure
lpfc_hba. In Figure 3, the three functions lpfc_linkdown,
lpfc_mbx_cmpl_reg_fcfi and lpfc_register_fcf all
protect the variable phba->fcf.fcf_flag using the lock
phba->hbalock, and thus they conform to the locking rule.
However, in the function lpfc_unregister_fcf_rescan,
the variable hba->fcf.fcf_flag is not protected by the lock
phba->hbalock in any calling context of this function, which
violates the locking rule, and thus a data race occurs. This race
is found by our approach LR-Miner, and has been confirmed
and fixed by the related kernel developers.

Inspired by the example, we can detect kernel races by
checking the lock usages and variable accesses according to
locking rules; if there is a violation of the rules, a possible
data race will be reported. However, achieving this idea still
faces three main challenges:

(C1) How to identify accurate locking rules? As described
in Section 2.2, identifying locking rules is difficult, due to in-
sufficient kernel documents/comments and complex structure
layers. LockDoc [54] is the sole existing systematic approach
of identifying locking rules in OS kernels for race detection,

and it is based on dynamic analysis. It analyzes the execution
traces of the provided workloads, to identify locking rules.
However, due to the limited code coverage of the provided
workloads, LockDoc misses many execution situations for
the analyzed traces, which affects the accuracy of the mined
locking rules. In our opinions, static analysis can conveniently
analyze all the possible execution situations without actual
kernel execution, so it can be used to identify accurate locking
rules. RacerX [29] is the sole static approach that can identify
simple locking rules from kernel code, but its used techniques
(like field-insensitive and non-alias analysis) are imprecise
and non-systematic for locking-rule mining, and thus it has
a high false positive rate of over 40% in its race-detection
experiments. As a result, it is important but challenging to
systematically mine accurate locking rules in OS kernels.

(C2) How to effectively check locking rules? In kernel code,
due to heavy use of pointers and data structures, the alias rela-
tionships between variables can be very complex. On the one
hand, if such alias relationships are neglected or inaccurately
identified when checking locking rules, many false results
would be produced in race detection. On the other hand, the
OS kernel is large-size and has lots of functions, and thus
checking locking rules by identifying and considering ac-
curate alias relationships can be quite time-consuming. For
these reasons, improving both the accuracy and efficiency of
locking-rule checking with alias relationships is challenging
for kernel race detection.

(C3) How to identify harmful races from the results? As
described in Section 2.1, a data race can be benign or harmful,
and only harmful races can cause security problems. Several
approaches [44, 56, 62, 77] control thread scheduling and an-
alyze execution traces of the tested programs, to reproduce
the given races and estimate their security impact. However,
because thread scheduling of concurrent programs has much
non-determinism, these approaches cannot always stably re-
produce and effectively analyze all the given races. In our
opinions, static analysis is a feasible way of identifying harm-
ful races, because it does not require race reproduction and
can achieve high analysis coverage. However, we find that
this way has not been well explored so far.

3 Key Techniques

To address the three main challenges mentioned in Section 2.3,
we propose three key techniques. For C1, we propose a field-
aware mining method that constructs and statistically analyzes
the structure field relation between locks and accessed vari-
ables, to mine accurate locking rules from kernel code. For
C2, we propose an alias-aware checking method to detect
data races by checking whether a variable access violates the
mined locking rules. For C3, we propose a pattern-based esti-
mation strategy to estimate the security impact of the found
races and identify harmful ones. We will introduce these three
techniques as follows:

6152 33rd USENIX Security Symposium USENIX Association

3.1 Field-Aware Locking-Rule Mining

Method design. We design our method inspired by an ex-
isting dynamic analysis approach LockDoc [54], which an-
alyzes the execution traces to identify locking rules about
structure fields. Similar to LockDoc, our method has two ba-
sic steps: (S1) It first analyzes each lock usage and variable
access involving data structure field, to identify locking rela-
tion, namely which data field is actually protected by which
lock field in the code. (S2) For each data field in locking rela-
tions, it statistically calculates the proportion of the accesses
to this data field protected by each involved lock field among
all the accesses to this data field; if the proportion is large
enough, it considers that this data field should be protected
by the involved lock field, which is a mined locking rule.

However, our method is based on static analysis, and has
two significant differences compared to LockDoc:

(1) LockDoc requires the user to provide various workloads
for trace analysis; but due to limited code coverage of these
workloads, LockDoc misses many execution situations for the
analyzed traces, which affects the accuracy of the mined lock-
ing rules. To solve this problem, our method should statically
mine locking rules from kernel code, without the requirement
of workloads or execution traces.

(2) LockDoc never considers nested structures, so it can-
not identify the locking rules involving the fields in different
layers of nested structures. However, such locking rules are
common in kernel code, like the example in Figure 2(c). To
mine such locking rules, our method should accurately ana-
lyze the fields in different layers of nested structures. For this
purpose, we use a new description form named field graph to
describe the relation between each data field and lock field in
structures (including nested ones).
Field graph. This form is based on access path [17, 45],
to represent the relations between different structure fields
(including nested ones). We introduce it as follows.

A field graph is defined as FG =< N,E >, where N is a
set of nodes, and each node represents a field. Note that a
field can be in the lower-layer structure. E is a set of edges,
and each edge is labeled with a field and represents how a
lower-layer field is accessed from a higher-layer structure.
For convenience, a basic data type like char, int or float is
regarded as a special structure that only contains a single field.
For a nested structure with multiple layers, accessing a lower-
layer field from a higher-layer structure can be expressed as
an access path from the node representing the higher-layer
structure to the node representing the lower-layer field. Fields
in different functions with the same access path are regarded
as identical fields. In a field graph, two fields in different
layers are in the same structure if the nodes representing them
have a common ancestor.

Field graph is updated by handling each arrow operator (->)
and dot operator (.). For example, for each instruction like
v2 = v1->f , our method inserts an edge labeled with f from

FILE: Linux-6.2/drivers/.../exynos4-is/fimc-capture.c

1468. int fimc_subdev_get_fmt(...) {

1472. struct fimc_dev *fimc = sd->dev_priv;
1473. struct fimc_ctx *ctx = (&fimc->vid_cap)->ctx;
1474. struct fimc_frame *ff = &ctx->s_frame;
1475. struct v4l2_mbus_framefmt *mf;

1483. mf = &fmt->format;
1484. mutex_lock(&fimc->lock);

1486. switch (fmt->pad) {
1487. case FIMC_SD_PAD_SOURCE:

1491. mf->width = ff->width;
1492. mf->height = ff->height;
1493. break;

1501. }
1502.
1503. mutex_unlock(&fimc->lock);

1507. }

ctx

ff

sd

fimc

fmt

mf

dev_priv

vid_cap

ctx

s_frame

width height

lock

pad

width height

format

1491 1492
1491 1492

1474 1486 1483

1473

1473 1484

1472

n1

n2

n3 n4

n5

n6

n7 n8

n9

n10 n11

n12 n13

(a) Part of the exynos4-is driver code in Linux 6.2 (b) Final field graph of the code

struct_name:
fimc_dev

Figure 4: Example of field graph.

the node representing v1 to the node representing v2. After
this operation, v2 can be expressed as an access path v1.f
Example. Figure 4(a) shows a part of the exynos4-is driver
code in Linux 6.2. We use this example to illustrate how to
build a field graph and how to check whether two fields in dif-
ferent layers are actually in the same structure with the built
field graph. Take the instruction fimc = sd->dev_priv at
Line 1472 as an example, it gets the field dev_priv of sd
(represented by n1), and then assigns this field to fimc (rep-
resented by n2), so our method inserts an edge labeled with
dev_priv from n1 to n2, indicating that the lower-layer field
fimc can be accessed through the access path sd.dev_priv
from the higher-layer structure sd. After handling all arrow
operators in the code, our method figures out the final field
graph shown in Figure 4(b). Take the fields ff->width and
fimc->lock as an example, they are represented by n7 and
n4 separately, and these two nodes have a common ances-
tor n2 which represents the higher-layer structure named
fimc_dev. Therefore, the two fields are identified to be in this
common structure. To indicate the relation between the two
fields, we use access paths to them from their common ances-
tor (namely fimc_dev.vid_cap.ctx.s_frame.width and
fimc_dev.lock) to represent these fields. For convenience,
in the remaining examples of this paper, the inner access path
vid_cap.ctx.s_frame is omitted, and the structure fields
such as fimc_dev.vid_cap.ctx.s_frame.width will be
represented as fimc_dev...width.

S1: Locking relation construction. Based on field graph,
locking relations can be identified by checking whether the
accessed variable of each variable-access instruction is in the
same data structure with the held locks. To get the held locks
at each variable-access instruction, our method performs a
static lockset analysis. Typically, lockset analysis maintains
a set of locks held at each program site, and updates the set
according to lock-acquire/release function calls. Specifically,
when encountering a lock-acquire function call, our method
adds the acquired lock of this call into the lockset; and when
encountering a lock-release function call, our method drops

USENIX Association 33rd USENIX Security Symposium 6153

CollectLockingRelation(func)
Input: func – Analyzed function in the kernel code
Output: LR_set – Set of the collected locking relations
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

field_graph := ∅;
lock_set := ∅;
LR_set := ∅;
foreach code path cp in func do

foreach instruction inst in cp do
if inst is a lock-acquire/release function call then

lock_set := LockSetAnalysis(inst);
else if inst is an arrow operation then

field_graph := UpdateFieldGraph(inst);
else if inst is a variable-access instruction then:

var := GetAccessedVariable(inst);
access_type := GetAccessType(inst);
foreach lock in lock_set do

anc := FindCommonAncestor(var, lock, field_graph);
if anc is not NULL then
 APvar := GetAccessPath(var, anc, field_graph);

APlock := GetAccessPath(lock, anc, field_graph);
insert [<APvar, APlock>, access_type, cp] into LR_set;

end if
end foreach

end if
 end foreach
end foreach
return LR_set;

Figure 5: Process of collecting locking relations.

the handled lock of this call from the lockset. To collect lock-
ing relations, when encountering a variable-access instruction,
for each lock l in the lockset, our method checks whether the
accessed variable v and the lock are different fields but in the
same data structure, by checking whether the nodes represent-
ing v and l have a common ancestor (representing a common
higher-layer structure) in the field graph. If so, our method
records a locking relation <APv, APl>, where APv means the
access path from the common higher-layer structure to the
variable v, and APl means the access path from the common
higher-layer structure to the lock l.

Figure 5 shows the process of collecting locking relations.
It creates a locking relation set LR_set, which stores all lock-
ing relations. Each element in the set is a triple [lr, type, cp],
where lr is the constructed locking relation, type is how the
data field involving in the locking relation is accessed (either a
write or a read) and, cp is the code path of the locking relation.
Like existing approaches [6,51], this process starts from each
function that has no explicit caller function in kernel code.
Note that this process performs inter-procedural analysis, by
combining the code paths of the callee and caller functions
to get complete code path. Given a code path of the analyzed
function, for each instruction in the code path, this process
performs lockset analysis, updates field graph or constructs
locking relations according to different types of the instruction
(Lines 5–22). Specifically, for a lock-acquire/release function
call, this process updates the lockset (Line 7). For an arrow
operation, this process updates the field graph according to the
handled instruction (Line 9). For a variable-access instruction,
this process first gets the accessed variable and the access
type (Lines 11–12). Then, for each lock in the lockset, this

FILE: Linux-6.2/drivers/.../exynos4-is/fimc-capture.c

1468. int fimc_subdev_get_fmt(...) {

1472. struct fimc_dev *fimc = sd->dev_priv;
1473. struct fimc_ctx *ctx = (&fimc->vid_cap)->ctx;
1474. struct fimc_frame *ff = &ctx->s_frame;
1475. struct v4l2_mbus_framefmt *mf;

1483. mf = &fmt->format;
1484. mutex_lock(&fimc->lock); // Lock

1486. switch (fmt->pad) {
1487. case FIMC_SD_PAD_SOURCE:

1491. mf->width = ff->width; // Access
1492. mf->height = ff->height; // Access
1493. break;

1501. }
1502.
1503. mutex_unlock(&fimc->lock);

1507. }

ctx

ff

sd

fimc

fmt

mf

dev_priv

vid_cap

ctx

s_frame

width height

lock

pad

width height

format

n1

n2

n3 n4

n5

n6

n7 n8

n9

n10 n11

n12 n13

(a) Part of the exynos4-is driver code in Linux 6.2 (b) Locking relations in field graph

struct_name:
fimc_dev

Lockset:
{fimc->lock}

Figure 6: Example of constructing locking relations.

process traverses the field graph to find a common ancestor
of the accessed variable and the lock (Line 14). If a common
ancestor is found (Line 15), this process gets the access paths
from the ancestor to the accessed variable and the lock (Lines
16–17), and records them as a locking relation (Line 18). Be-
sides, the access type and the code path are also recorded for
subsequent locking rule mining.
Example. Figure 6 illustrates how our method constructs
locking relations for the example code in Figure 4. In Fig-
ure 6(a), in the code path 1468→1486→1487→1491 (denote
as CP1), the lock fimc->lock is acquired at Line 1484, and
thus it is added into the lockset. Then, the code accesses
five fields including fmt->pad, mf->width, mf->height,
ff->width and ff->height. However, in Figure 6(b), only
the two nodes representing the data fields ff->width and
ff->height (n7 and n8), and the node representing the lock
field fimc->lock (n4) have a common ancestor (n2). Take
ff->width and fimc->lock as an example, the access paths
from the common ancestor to the nodes representing them
are fimc_dev...width and fimc_dev.lock, and the access
is a read. Thus, our method inserts [<fimc_dev...width,
fimc_dev.lock>, read, CP1] into the locking relation set.
Similarly, our method also inserts [<fimc_dev...height,
fimc_dev.lock>, read, CP1] into the locking relation set
for the access to fimc_dev...height.

S2: Locking rule mining. After collecting locking relations,
for each data field involved in them, our method statistically
calculates the proportion of the accesses to this data field
protected by each involved lock field among all the accesses
to this data field, to mine locking rules. We observe differ-
ent functions can have quite different numbers of code paths.
Thus, distinguishing locking relations by code paths may be
unfair for diverse functions, which can reduce the accuracy of
locking rule mining. To address this problem, our method dis-
tinguishes locking relations by calling contexts, like existing
approaches [42, 58]. Specifically, given a data field APv and a
lock field APl, our method first counts the number numprotected
of calling contexts containing the locking relation <APv, APl>

6154 33rd USENIX Security Symposium USENIX Association

Simplified Code Path CP1:
fimc_subdev_set_selection
 -> mutex_lock(&fimc_dev.lock); [Line 1645] // Lock
 -> set_frame_crop [Line 1665]

 -> fimc_dev.vid_cap.ctx.s_frame.width = width [Line 514] // Write
 -> fimc_dev.vid_cap.ctx.s_frame.height = height [Line 515] // Write

Locking relation: <fimc_dev...width, fimc_dev.lock, Write, CP1>
 <fimc_dev...height, fimc_dev.lock, Write, CP1>

Simplified Code Path CP2:
fimc_subdev_get_selection
 -> mutex_lock(&fimc_dev.lock); [Line 1588] // Lock

 -> r.width = fimc_dev.vid_cap.ctx.s_frame.width [Line 1619] // Read
 -> r.height = fimc_dev.vid_cap.ctx.s_frame.height [Line 1620] // Read

Locking relation: <fimc_dev...width, fimc_dev.lock, Read, CP2>
 <fimc_dev...height, fimc_dev.lock, Read, CP2>

FILE: linux-6.2/drivers/media/platform/samsung/exynos4-is/fimc-capture.c

Simplified Code Path CP3:
fimc_subdev_set_selection
 -> mutex_lock(&fimc_dev.lock) [Line 1645] // Lock
 -> fimc_capture_try_selection [Line 1646]

 -> tmp_min_h = ffs(fimc_dev.vid_cap.ctx.s_frame.width) - 3 [Line 660] // Read
 -> tmp_min_v = ffs(fimc_dev.vid_cap.ctx.s_frame.height) - 1 [Line 661] // Read

Locking relation: <fimc_dev...width, fimc_dev.lock, Read, CP3>
 <fimc_dev...height, fimc_dev.lock, Read, CP3>

Simplified Code Path CP4:
fimc_subdev_set_fmt
 -> mf->width = fimc_dev.vid_cap.ctx.s_frame.width [Line 1548] // Read
 -> mf->height = fimc_dev.vid_cap.ctx.s_frame.height [Line 1549] // Read
Locking relation: <fimc_dev...width, NULL, Read, CP4>

 <fimc_dev...height, NULL, Read, CP4>

Mined Locking Rule: <fimc_dev...width, fimc_dev.lock>

Figure 7: Example of mining locking rules.

from the locking relation set returned by CollectLockingRela-
tion() in Figure 5, and then counts the number numall of all the
calling contexts containing accesses to APv using a dataflow
analysis. If the proportion of numprotected among numall is
larger than a threshold T (set to 0.7 in this paper, as described
in Section 5.1), and at least one of all the access is a write, our
method mines a locking rule <APv, APl> that the data field
APv should be protected by the lock field APl.
Example. In Figure 7, our method collects four accesses
(numall) to fimc_dev...width, including one write and
three reads, three (numprotected) of which are protected by the
lock fimc_dev.lock. Thus, the proportion of numprotected
among numall is 0.75. As the proportion is large, our method
infers the data field fimc_dev...width should be pro-
tected by the lock field fimc_dev.lock, and mines a locking
rule <fimc_dev...width, fimc_dev.lock>. Similarly, our
method mines another locking rule <fimc_dev...height,
fimc_dev.lock> for accesses to fimc_dev...height.

3.2 Alias-Aware Race Checking

Method design. Due to heavy use of pointers and data struc-
tures in large-scale kernel code, static race detection can be
inaccurate and time-consuming. Inspired by DLOS [7] that
detects kernel deadlocks, we use function summaries to re-
duce the time of inter-procedural analysis. However, DLOS
uses an intra-procedural and flow-insensitive alias analysis,
which can introduce much inaccuracy. To improve accuracy
and efficiency, we propose an alias-aware checking detection
based on field graph (in Section 3.1). It uses a flow/field-
sensitive intra-procedural analysis to construct field graphs

representing alias relationships, detect races in single function
and create a function summary containing alias relationships.
When detecting races across functions, it performs a context-
sensitive inter-procedural analysis with such summaries.
Representation of aliased variables. Our method focuses
on alias relationships involving locks and accessed variables,
based on their field graphs. Specifically, in a field graph, the
aliased variables are represented by different access paths
ending with the same node. However, for lockset analysis in-
volving alias relationships, it is necessary to use one common
access path to represent multiple aliased variables. Indeed,
the locks and accessed variables shared by different threads
often come from function arguments [5,64]. Thus, our method
selects one access path starting from the node representing
function argument, to represent these aliased variables.
Intra-procedural analysis. Based on the above representa-
tion of aliased variables, our method performs lockset analysis
and race detection by handling the following instructions:

• For each lock-acquire/release function call, our method first
extracts the access path APl of the handled lock l, and then
performs lockset analysis with APl for this call.

• For each variable-access instruction, our method first ex-
tracts the access path APv of the handled variable v. Then,
for each locking rule <APv, APlx> mined in Section 3.1, our
method checks whether APlx is in the lockset. If not, a rule
violation is reported as a possible race.

After analyzing a function, our method creates and main-
tains a function summary for inter-procedural analysis. This
function summary records the access paths and related in-
structions for all the lock-acquire/release function calls and
variable accesses in the analyzed function. Formally, a func-
tion summary can be defined as a set of pairs <inst, APv>,
where inst is an instruction of lock-acquire/release function
call or variable access, and APv is the access path of the vari-
able handled by inst.
Inter-procedural analysis. When encountering a function
call, our method first looks for the summary of the called
function. If not found, our method performs intra-procedural
analysis of the called function and creates its function sum-
mary. Then, our method instantiates the function summary by
replacing each formal argument with actual argument. Finally,
the instantiated summary of the called function is spliced to
the call site of the caller function and stored as a part of the
summary of the caller function.

During inter-procedural analysis, our method uses lockset
analysis and detects the violations of the mined locking rules
as possible races, like intra-procedural analysis.
Example. Figure 8 illustrates how our method detects races
across multiple functions, using the mined locking rule in
Figure 7. This figure shows three functions and their partial
instructions. Suppose that the analysis order of our method
is set_frame_crop → __fimc_capture_set_format →
fimc_subdev_set_fmt. After analyzing set_frame_crop,

USENIX Association 33rd USENIX Security Symposium 6155

FILE: Linux-6.2/drivers/.../exynos4-is/fimc-capture.c
1007. int __fimc_capture_set_format(..., fimc, ...) {

1010. struct fimc_vid_cap *vc = &fimc->vid_cap;
1011. struct fimc_ctx *ctx = vc->ctx;

 // Create and use function summary

1043. set_frame_crop(&ctx->s_frame, ...);

1047. }

FILE: Linux-6.2/drivers/.../exynos4-is/fimc-core.h
509. void set_frame_crop(f, ...) {

514. f->width = width; // Access
515. f->height = height; // Access
516. }

FILE: Linux-6.2/drivers/.../exynos4-is/fimc-capture.c
1509. int fimc_subdev_set_fmt(..., sd, ...) {

1513. struct fimc_dev *fimc = sd->dev_priv;

1515. struct fimc_vid_cap *vc = &fimc->vid_cap;
1516. struct fimc_ctx *ctx = vc->ctx;
1517. struct fimc_frame *ff;

1551. ff = &ctx->s_frame;

1554. mutex_lock(&fimc->lock); // Lock

 // Create and use function summary

1566. set_frame_crop(ff, ...);

1573. }

Summary(set_frame_crop)
 Access f.width
 Access f.height

Actual argument: ctx.s_frame

Summary(__fimc_capture_set_format)
 Access fimc.vid_cap.ctx.s_frame.width
 Access fimc.vid_cap.ctx.s_frame.height

Access Path: fimc.vid_cap.ctx.s_frame

Actual argument: ff

Summary(__fimc_capture_set_format)
 Lock sd.fimc.lock
 Access sd.fimc.vid_cap.ctx.s_frame.width
 Access sd.fimc.vid_cap.ctx.s_frame.height

Access Path: sd.fimc.vid_cap.ctx.s_frame

Get Access Path

Actual->Formal
Argument

Get Access Path

Actual->Formal
Argument

Figure 8: Example of alias-aware race checking.

our method records two variable accesses at Lines 514 and
515 in its function summary. When analyzing the func-
tion call to set_frame_crop at Line 1043 in the function
__fimc_capture_set_format, our method first calculates
the access path of the actual argument ctx->s_frame, namely
fimc.vid_cap.ctx.s_frame, and then replaces the formal
argument f in the function summary of set_frame_crop
with the calculated access path to instantiate variable ac-
cesses in the summary. Finally, our method splices the instan-
tiated variable accesses to the function summary of the caller
function __fimc_capture_set_format, and then checks
whether the instantiated accesses violate the minded lock-
ing rules. In this example, the two accesses to the fields
fimc_dev...width and fimc_dev...height are not pro-
tected by the lock fimc_dev.lock, which violates the mined
locking rules in Figure 7. Thus, our method reports two pos-
sible races here. When analyzing the function call at Line
1566 in fimc_subdev_set_fmt, the function summary of
set_frame_crop is reused to avoid repeated analysis of the
definition of set_frame_crop, which can reduce the time
usage of race detection. In fimc_subdev_set_fmt, the ac-
cesses are all protected by the lock fimc_dev.lock acquired
at Line 1554, and thus our method reports no race here.

3.3 Pattern-Based Harmfulness Estimation

Method design. Inspired by Portend [44] that reproduces
and identifies harmful races, we estimate the security impact
of the found races by analyzing code information. Different
from Portend that executes the tested program to analyze
trace information, we aim to statically analyze source code
for security estimation without program execution. For this
purpose, we propose a pattern-based estimation strategy that
performs propagation analysis of the racy variables, accord-

(a) Null-pointer dereference

lock(dev->lock);
dev->data = 100;
unlock(dev->lock);
dev->racy_var = NULL;

(b) Error handling bypassing

if (dev->racy_var > 100) { // Check
 err = -EINVAL;
 goto err_free; // Error handling

}

(c) Undefined behavior

if (dev->racy_var > 100) // Br1
 count = dev->racy_var;
if (count > max) // Br2
 unregister_device(dev);
while (count > 0) {...} // Br3

(d) Double fetch

if (dev->racy_var <= 0) // Fet1
 goto err_abort;
lock(dev->lock);
data = max % dev->racy_var; // Fet2
unlock(dev->lock);

Figure 9: Four patterns of identifying harmful races.

ing to some representative patterns that can cause security
problems. Overall, our strategy has two main steps:

S1: Identifying racy-variable accesses. The alias-aware
checking method in Section 3.2 reports the variable-access
instruction of each found race. If this instruction is a read,
this step just passes this access into the next step. If this
instruction is a write, namely other reads of the racy variable
can be affected due to the uncertain value caused by this write,
this step identifies the racy variable, and uses a field-based
analysis [6, 37] of the kernel code to identify other accesses
that possibly read the racy variable. These accesses are all
handled in the next step.

S2: Checking usage patterns from racy-variable accesses.
For each racy-variable access identified by S1, this step per-
forms a flow/field/context-sensitive inter-procedural analysis
starting from the access, to analyze the propagation of the racy
variable and check its usage. The found race is considered
to be harmful, if the racy variable’s usage satisfies one of the
following patterns:

P1) Null-pointer dereference (NPD): affecting NULL as-
signment or check. When the racy variable is a pointer that
is assigned or checked by NULL, the concurrent access of
this pointer may cause a null-pointer dereference. We select
this pattern because many reported kernel vulnerabilities (like
CVE-2023-31081 [26] and CVE-2023-46862 [27]) are caused
by this pattern, and they can lead to DoS attacks. Figure 9(a)
shows an example of this pattern.

P2) Error handling bypassing (EHB): affecting error check.
When the racy variable affects a branch check of error han-
dling, the race can make the kernel abnormally bypass er-
ror checks to access the resources already released by other
threads due to error occurrence. We select this pattern be-
cause error handling are necessary but error-prone in OS ker-
nels [41,57], and error handling bugs can lead to DoS attacks,
memory corruption and other security problems. Figure 9(b)
shows an example of this pattern.

P3) Undefined behavior (UB): affecting multiple branches.
When the racy variable affects multiple (≥3) branches, the
race can cause kernel control flow to be non-deterministic at
runtime, which may lead to undefined behaviors. We select
this pattern because some existing fuzzing approaches [42,79]
for kernel race detection reveal the security impact of such
races. Figure 9(c) shows an example of this pattern.

6156 33rd USENIX Security Symposium USENIX Association

LR-Miner

Locking-rule
miner

Clang
compiler

Race
detector

LLVM
bytecode

Locking rules

Information
collector

Function
information

Data races

OS kernel
source code

Race
estimator

Harmful races

Figure 10: LR-Miner architecture.

P4) Double fetch (DF): affecting variable check and usage
without a common lock. When the racy variable is checked
before being used, but this check and use are not protected by
a common lock, the race can cause a double fetch issue where
the checked value and used values are inconsistent. We select
this pattern because many double fetch issues in OS kernels
are caused by code concurrency, and they can cause DoS
attacks, restriction bypassing and other security problems [75,
80]. Figure 9(d) shows an example of this pattern.

These four bug types are selected, as many approaches [8,
38, 42, 51, 79, 81] have proven their harmfulness and use dif-
ferent ways to detect them. However, these approaches focus
on static analysis of sequential code [8,38,51,81] or dynamic
analysis [42, 79] with limited coverage. In comparison, our
strategy focuses on static analysis of concurrent code, and
thus has significant difference from these approaches.

4 LR-Miner Approach

Based on the three key techniques introduced in Section 3,
we design a new static analysis approach named LR-Miner,
to effectively detect data races in OS kernels by mining lock-
ing rules from kernel code. We have implemented LR-Miner
with the Clang compiler [18] to perform static analysis on the
LLVM bytecode of OS kernels. Figure 10 shows the architec-
ture of LR-Miner, which has four phases:
Phase1: Code compilation. First, the Clang compiler com-
piles the kernel source code into LLVM bytecode. During the
compilation, the operators “.” and “->” are all compiled to
LLVM getelementptr (GEP) instructions. Then, the informa-
tion collector scans each LLVM bytecode file to record the
information about each function (including function name and
function definition position) in a database. The information
is used in the subsequent phases for inter-procedural analysis
across source files.
Phase2: Locking-rule mining. The locking-rule miner uses
our field-aware mining method to mine locking rules from
kernel code. The mined locking rules are recorded in a read-
able form, to help detect races and understand the restriction
of kernel concurrency.
Phase3: Race detection. The race detector uses our alias-
aware checking method to detect the violations of the mined
locking rules as data races. Note that for a given race, there
may be multiple code paths from the entry function to its

problematic instruction, and thus many repeated races can be
reported. To drop repeated results, for a new possible race, the
detector checks whether its problematic instruction is identical
to any existing race. If so, this possible race is considered to
be repeated and dropped.
Phase4: Harmfulness estimation. The race estimator uses
our pattern-based estimation strategy to estimate the security
impact of the found races and identify harmful ones. Note
that a race can simultaneously satisfy two or more patterns
presented in Section 3.3, so the estimator matches it with the
most suitable pattern according to the usage of racy variable.
Global variable handling. In kernel code, some global locks
are used to protect global variables, and they are unrelated
to function arguments. To handle such situations, LR-Miner
specifically introduces a virtual node in the field graph, and
this node is the ancestor of all global variables and locks. In
this way, the accessed global variable and the global protection
lock have a common ancestor, and thus they can be normally
handled during locking rule mining and race detection.
Atomic access handling. To ensure the atomicity of variable
accesses in concurrent execution, some special functions and
macros (like atomic_inc and READ_ONCE in the Linux ker-
nel) are used. If such a function or macro is encountered
during static analysis, LR-Miner neglects the related variable
accesses in race detection.
False positive dropping. On the one hand, similar to exist-
ing approaches of kernel bug detection [7, 8, 51], LR-Miner
uses an SMT solver Z3 [84] to validate code-path feasibil-
ity during static analysis, which can drop false races caused
by infeasible code paths. Specifically, for each possible race,
LR-Miner translates instructions in the related code path into
constraints using the Z3 grammars, and then checks whether
these constraints can be satisfied. If not, LR-Miner regards
the possible race as a false positive and thus drops it. On
the other hand, similar to existing approaches of kernel race
detection [29, 64, 74], LR-Miner drops the races occurring in
the functions for kernel-module initialization and removal, by
matching function names with keywords like “init” and “re-
move”, as such functions are expected to have no concurrency
during module execution.

5 Evaluation

We evaluate LR-Miner on the two OS kernels including Linux
(version 6.2) and FreeBSD (version 14.0), and their versions
are the latest minor releases as of our evaluation. Table 1
shows their information, and source code lines are counted by
CLOC [19]. For the Linux kernel, we use the kernel config-
uration allyesconfig to enable all kernel code for the x86-64
architecture. For the FreeBSD kernel, we use the GENERIC
configure file for the x86-64 architecture. We run the evalua-
tion on a regular x86-64 desktop with sixteen Intel i7-10700
CPU@2.90GHz processors and 64GB physical memory.

USENIX Association 33rd USENIX Security Symposium 6157

OS Version Source files (*.c) LOC
Linux 6.2 28.3K 14.2M
FreeBSD 14.0 19.6K 9.2M

Table 1: Information about the two checked OS kernels.

Description Linux FreeBSD

Code analysis Source files (analyzed/all) 22.5K/28.3K 4.2K/19.6K
Source code lines (analyzed/all) 13.9M/14.2M 3.3M/9.2M

Locking-rule
mining

Identified locking relations 52.1M 16.8M
Mined locking rules 1.6K 1.1K

Race detection

Times of handling called functions 57.1M 12.8M
Times of reusing function summaries 53.3M 12.7M
Dropped false races (path/concurrency) 4.4K/1.2K 4.5K/1K
Found races (real/all) 273/341 33/41

Harmfulness
estimation

Handled racy-variable accesses 1,381K 127K
Identified harmful races 173 27
Harmful patterns (NPD/EHB/UB/DF) 26/59/50/38 11/6/10/0

Time usage

Locking-rule mining 1h33m 56m
Race detection 10h43m 4h3m
Harmfulness estimation 7h26m 3h35m
Total time 21h48m 9h32m

Table 2: Analysis results of the two OS kernels.

5.1 Bug Detection
We run LR-Miner to automatically mine locking rules, detect
kernel races and estimate their harmfulness. The proportion
threshold T used by our field-aware mining method is set
to 0.7 in the evaluation. We select this value as it can help
LR-Miner achieve good accuracy of race detection, according
to our experience of kernel development and detection results
of small-scale code bases. The user can conveniently change
this threshold as needed. Then, we manually check all the
races found by LR-Miner. Table 2 summarizes the results,
and we make the following observations:
Code analysis. LR-Miner in total analyzes 17.2M lines of
code in 26.7K source files, within 32 hours. The remaining
6.2M lines of code in 21.2K source files are not analyzed,
because they are not enabled by the configurations for the
x86-64 architecture. We believe that LR-Miner can find more
kernel races, if these source files can be compiled with proper
configurations for other architectures.
Locking-rule mining. LR-Miner identifies 68.9M locking
relations from the code of the two kernels. By analyzing these
locking relations and the related variable accesses, LR-Miner
mines 2.7K locking rules (including 1.6K in Linux and 1.1K
in FreeBSD) indicating which data field should be protected
by which lock field. Besides race detection, we believe that
these locking rules can also help to improve the documents
about kernel concurrency and benefit the secure development
of new kernel code.
Race detection. Based on the mined locking rules, LR-Miner
finds 382 kernel races, including 341 in Linux and 41 in
FreeBSD. 11.1K false races are dropped, because their code
paths are infeasible (8.9K) or their caller functions have no
concurrency (2.2K). We spent 18 hours on checking these
races, and identified 306 of them (including 273 in Linux and
33 in FreeBSD) to be real. Thus, LR-Miner achieves a false

Part Filesystem Network Driver Others
All Network SCSI Others

Races 29 (9%) 36 (12%) 198 (65%) 43 42 113 43 (14%)
Harmful 19 (10%) 29 (15%) 126 (63%) 28 27 71 26 (13%)

Table 3: Distribution of the found races.

positive rate of 19.9%, which is lower than many existing
static approaches of kernel race detection [3, 29, 64, 73, 74].

Efficiency improvement. During race detection, LR-Miner
uses function summaries to avoid repeated analysis of the
same functions. Specifically, to perform inter-procedural anal-
ysis, LR-Miner handles called functions for 69.9M times,
66M (94%) of which are handled by reusing function sum-
maries, without the need of analyzing function definitions
again. Thus, race-detection efficiency is largely improved.

Harmfulness estimation. For the 306 real races, LR-Miner
first identifies 1,508K accesses to the racy variables in kernel
code, and then estimates the security impact of these races by
analyzing the identified accesses according to four patterns
introduced in Section 3.3. LR-Miner identifies 200 harmful
races (173 in Linux and 27 in FreeBSD). Specifically, 37 can
cause null-pointer dereferences (NPD), 65 can cause error
handling bypassing (EHB), 60 can cause undefined behaviors
(UB), and 38 can cause double fetch (DF) issues.

Race distribution. We classify all the real and harmful races
found by LR-Miner, according to the category of the kernel
part containing the race. Table 3 shows the distribution results
of the real and harmful races. We find that drivers have over
60% of the real and harmful races, indicating that drivers are
more error-prone than other kernel parts and thus deserve
more attention in race detection. We also classify the driver
races by driver class, and show the result in Table 3. We find
that network and SCSI drivers together have over 40% of the
real and harmful races in all drivers, possibly because these
drivers have more concurrent code than other driver classes.

Harmful race reporting. We reported all the 200 harmful
races to kernel developers, and 61 of them (including 51 in
Linux and 10 in FreeBSD) have been confirmed. We are still
waiting for the response of the remaining ones. Moreover,
10 harmful races have been assigned with CVE IDs. Some
kernel developers also expressed their interests of integrating
LR-Miner in their continuous integration (CI) testing systems
to help detect races during kernel development.

Security impact of the found harmful races. We manually
check these races and find that: 37 NPD races can cause null-
pointer dereferences, leading to DoS attacks; 65 EHB races
can bypass error handing to cause use-after-free vulnerabili-
ties due to accessing the resources released by other threads,
leading to memory corruption; 60 UB races can make kernel
control flow non-deterministic to cause undefined behaviors,
leading to DoS attacks; 38 DF races can cause double fetch is-
sues where the checked value and used value are inconsistent,
leading to restriction bypassing and memory corruption.

6158 33rd USENIX Security Symposium USENIX Association

5.2 False Positives and Negatives

False positives. LR-Miner reports 76 false races in the two
kernels, for four main reasons:

R1) LR-Miner mines some false locking rules due to over
lock protection of the data field that should not be protected.
In a data structure, if a lock field is often used to protect many
other fields, LR-Miner will mine the related locking rules.
But in fact, only one specific field should be protected while
the other fields are not, and thus some mined locking rules
are actually false, causing 53 false races to be reported.

We infer that over lock protection is introduced, as the
related developers fail to identify which data fields should
be protected by a given lock field, and thus just blindly add
lock protection for extra fields together. Although over lock
protection hardly causes security bugs, it can reduce kernel
concurrency and degrade OS performance. Thus, it is mean-
ingful to detect over lock protection in kernel code.

R2) In order to reduce memory overhead and accelerate
data passing across different functions, an integer can be di-
vided into several bit vectors to represent different data struc-
ture fields in kernel code. However, in the LLVM bytecode,
the accesses to these vectors are divided into a load and sev-
eral bit operations. At present, LR-Miner cannot correctly
distinguish the accesses to different structure fields in this
case, causing 14 false races to be reported.

R3) In some kernel functions, special assertions are used
at the entry of these functions, to guarantee that the required
lock is held. However, LR-Miner does not specially handle
these assertions, and thus maintains incorrect locksets during
analysis, causing 6 false races to be reported.

R4) LR-Miner still errs when handling some complicated
cases, like checking the accesses to array elements via non-
constant indexes and validating path feasibility related to com-
plex arithmetic conditions. This reason causes 3 false races.

False negatives. LR-Miner may still miss some real races
for three main reasons:

R1) LR-Miner maintains and checks locksets by analyzing
the arguments of lock-acquire/release function calls, but some
lock-acquire/release functions (such as rcu_read_lock and
rcu_read_unlock in the Linux kernel) have no argument
in the calls to them. Thus, LR-Miner neglects the calls to
these functions during locking-rule mining and race detection,
which may miss the related real races.

R2) Some locks are represented as array elements that are
used via non-constant indexes (such as dev->locks[i]) in
kernel code, and analyzing these locks is error-prone. Thus,
LR-Miner neglects such locks during lockset analysis to re-
duce false positives, but may miss the related real races.

R3) Some locks are customized in special forms like refer-
ence counts and condition variables, instead of calling lock-
acquire/release functions. Thus, LR-Miner cannot handle
such locks, which may miss the related real races.

5.3 Case Studies of the Found Harmful Races
Figure 11 shows four harmful races found by LR-Miner in
Linux and FreeBSD. All of these races have been confirmed.
NPD race in the FreeBSD firewire driver. In Figure 11(a),
the pointer field ir->stproc is dereferenced without hold-
ing lock in the function fw_read at Line 363. However, in
many other functions, this pointer field is accessed with the
lock acquired by calling FW_GLOCK, like Line 471 in the func-
tion fw_write (note that it->stproc in this function and
ir->stproc in fw_read are actually identical). Thus, there
is a race at Line 363. Moreover, it->stproc is checked
with NULL at Line 417, namely it can be NULL, and thus
ir->stproc can be also NULL at Line 363, causing a null-
pointer dereference. The attacker can exploit this harmful race
to crash the kernel and perform DoS attacks.
EHB race in the Linux media driver. In Figure 11(b),
the data field dmxdev->exit is checked for error handling
without holding lock in the function dvb_dvr_read at Line
271. However, in many other functions, this data field is
accessed with the lock dmxdev->mutex, like Line 1456 in
the function dvb_dmxdev_release. Thus, there is a race
at Line 271. Meanwhile, we observe that in the function
dvb_dmxdev_release, after dmxdev->exit is set to 1 at
Line 1456, dvb_unregister_device is called at Line 1470
to release the data buffer used in the driver; in the func-
tion dvb_dmxdev_release, if dmxdev->exit is 0 in the er-
ror check at Line 271, dvb_dmxdev_buffer_read is subse-
quently called at Line 273 to read the data buffer. Thus, in
a special execution order in form of Lines 1455→ 271→
1456→ 1457→ 1470→ 273, the race can bypass the error
check at Line 271 and cause that dvb_dmxdev_buffer_read
is executed after dvb_unregister_device, namely the data
buffer is read after being released, leading to a use-after-free
vulnerability. The attacker can exploit this harmful race to
corrupt the memory of data buffer and inject malicious data.
UB race in the Linux SCSI driver. In Figure 11(c), the
data field phba->fcf.fcf_flag is written without holding
lock in the function lpfc_unregister_fcf_rescan at Line
6979. However, in many other functions, this data field is ac-
cessed with the lock phba->hbalock, like Lines 6791, 6797,
6834 and 6942 in the function lpfc_sli4_async_fip_evt.
Thus, there is a race at Line 6979. Moreover, in the function
lpfc_sli4_async_fip_evt, there are at least four branches
are directly affected by phba->fcf.fcf_flag, and thus this
race can disorder the code execution to cause undefined be-
havior of the driver. The attacker can exploit this harmful race
to interfere driver execution and perform DoS attacks.
DF race in the Linux sound subsystem. In Figure 11(d),
the data field card->total_pcm_alloc_bytes is checked
without holding lock in the function do_alloc_pages at
Line 41. However, in many other functions, this data field
is accessed with the lock card->memory_mutex, like Lines
62 and 63 in the function do_free_pages. Thus, there is a

USENIX Association 33rd USENIX Security Symposium 6159

FILE: FreeBSD-14.0/sys/dev/firewire/fwdev.c
314. int fw_read(struct cdev *dev, ...) {

325. d = dev->si_drv1;
326. fc = d->fc;
327. ir = d->ir;

362. FW_GUNLOCK(fc); // Unlock

// Race: ir->stproc can be NULL!
363. fwdma_v_addr(ir->stproc->poffset, ...);

388. }

Thread 1

(a) Null-pointer dereference in FreeBSD

FILE: FreeBSD-14.0/sys/dev/firewire/fwdev.c
447. int fw_write(struct cdev *dev, ...) {

459. d = dev->si_drv1;
460. fc = d->fc;
461. it = d->it;

469. FW_GLOCK(fc); // Lock
471. if (it->stproc == NULL) // Can be NULL

518. }

Thread 2

FILE: Linux-6.2/drivers/media/.../dmxdev.c
265. ssize_t dvb_dvr_read(struct file *file, ...) {

269. dvbdev = file->private_data;
270. dmxdev = dvbdev->priv;

// Race: error check can be bypassed!
271. if (dmxdev->exit) // No lock is held
272. return -ENODEV; // Error handling

// Read the buffer
273. return dvb_dmxdev_buffer_read(...);

277. }

Thread 1

(b) Error handling bypassing in Linux

FILE: Linux-6.2/drivers/media/.../dmxdev.c
1454. void dvb_dmxdev_release(...) {
1455. mutex_lock(&dmxdev->mutex);
1456. dmxdev->exit = 1;
1457. mutex_unlock(&dmxdev->mutex);

 // Release the buffer

1470. dvb_unregister_device(...);

1475. }

Thread 2

FILE: Linux-6.2/drivers/scsi/lpfc/lpfc_hbadisc.c
6961. int void lpfc_unregister_fcf_rescan(...) {

 // Race: multiple branches are affected!

6979. phba->fcf.fcf_flag = 0; // No lock is held

7009. }

Thread 1

(c) Undefined behavior in Linux

FILE: Linux-6.2/sound/core/pcm_memory.c

34. int do_alloc_pages(struct snd_card *card, ...) {

 // Race: inconsistent value in check and use

41. if (card->total_pcm_alloc_bytes + size > ...)

50. mutex_lock(&card->memory_mutex);
51. card->total_pcm_alloc_bytes += ...;
52. mutex_unlock(&card->memory_mutex);

55. }

Thread 1

(d) Double fetch issue in Linux

FILE: Linux-6.2/sound/core/pcm_memory.c

57. int do_free_pages(struct snd_card *card, ...) {

61. mutex_lock(&card->memory_mutex);
62. WARN_ON(card->total_pcm_alloc_bytes < ...);
63. card->total_pcm_alloc_bytes -= ...;
64. mutex_unlock(&card->memory_mutex);

67. }

Thread 2

FILE: linux-6.2/drivers/scsi/lpfc/lpfc_init.c
6741. void lpfc_sli4_async_fip_evt(...)

6785. spin_lock_irq(&phba->hbalock);

6791. if (phba->fcf.fcf_flag & ...) // Branch1

6797. if (phba->fcf.fcf_flag & ...) // Branch2

6834. if (phba->fcf.fcf_flag & ...) // Branch3

6942. if (phba->fcf.fcf_flag & ...) // Branch4

6948. spin_unlock_irq(&phba->hbalock);

6982. }

Thread 2

Figure 11: Four example harmful races found by LR-Miner.

race at Line 41. Moreover, in the function do_alloc_pages,
card->total_pcm_alloc_bytes is used with the lock at
Line 51, after being checked at Line 41, so the checked and
used values of this field can be inconsistent. Note that this
field is used to represent the total size of the PCM (Pulse
Code Modulation) buffers in sound subsystem, so this race
can cause buffer overflow when the value is changed after the
check. The attacker can exploit this harmful race to corrupt
the memory of PCM buffers and inject malicious sound data.

5.4 Comparison Experiment

We aim to compare with existing static approaches of kernel
race detection, including Relay [74], RacerX [29], CPALock-
ator [3], Goblint [73], Locksmith [64] and Lockpick [14]. We
select Linux 5.17 to check, as many of them can only check
old Linux kernel versions including 5.17 but excluding 6.2.

As for Relay, we build it from its source code [65] with
minor modification to parse Linux 5.17 code. As for Rac-
erX, its source code is not available, so we tried our best to
implement a RacerX-like tool referring to its paper. As for
CPALockator, we build it from its source code [21] based on
the race detection part of CPAchecker [20]. As for Goblint
and LockSmith, we downloaded their source code from their
repositories [35, 55], but encountered too many error when
parsing Linux 5.17 code. We tried our best to solve these er-
rors but failed. We contacted the authors of these approaches,
and they also had no solution of these errors. As for Lockpick,
it is not publicly available. Thus, we make a methodology
comparison with Goblint, LockSmith and Lockpick.

Note that LR-Miner uses our field-aware mining method
and alias-aware checking method to improve the accuracy
of kernel race detection, as well as the function summary to
improve the efficiency of data race detection. To validate the
value of these three key techniques, we implement three tools
by modifying LR-Miner: (1) LR-MinerFieldBased that uses a
field-based analysis when mining locking rules, without using
field graph to check whether the data field and lock field

are in the same structure; (2) LR-MinerNonAlias that neglects
alias relationships when detecting races with the locking rules
mined by LR-Miner; (3) LR-MinerNonSum that performs inter-
procedural analysis without using function summaries.

We run the three existing static approaches and three im-
plemented tools to check Linux 5.17 with a timeout of 7 days
(168h), and summarize the results in Table 4. We have the
following observations from the table:

(1) LR-Miner finds all the real and harmful races found
by Relay, RacerX-like and CPALockator, and it also finds
more real and harmful races missed by these approaches,
with a lower false positive rate. Note that Relay and RacerX-
like report too many races (12,291 and 20,457) that require
much manual work to check, so we randomly select 300 of
them to check. We analyze the methodology of the three
existing approaches according to their papers, and summarize
the following reasons why LR-Miner produces better results:

Relay uses classical lockset analysis [69] to detect races by
checking the intersection of locksets in different code paths,
without using locking rules about kernel concurrency. More-
over, it uses flow/field-insensitive alias analysis when main-
taining locksets, and neglects code-path feasibility during
analysis. In comparison, LR-Miner accurately mines locking
rules and detects races, with flow/field-sensitive alias analysis
and SMT-based path-feasibility validation.

RacerX uses imprecise dataflow analysis that can statisti-
cally identify simple locking rules from kernel code, without
checking whether the data field and lock field are in the same
structure. Moreover, RacerX neglects alias relationships and
code-path feasibility during analysis. Thus, RacerX produces
many incorrect locking rules and false races. In comparison,
LR-Miner uses field graph and considers alias relationships
to more accurately mine locking rules and detect races.

CPALockator combines imprecise but fast classical lock-
set analysis and precise but slow model checking, without
using locking rules. However, classical lockset analysis as-
sumes that all the functions can be concurrently executed,
which is actually incorrect during kernel execution [6]. More-

6160 33rd USENIX Security Symposium USENIX Association

Description Relay RacerX-like CPALockator LR-MinerFieldBased LR-MinerNonAlias LR-MinerNonSum LR-Miner
Found races 12,291 20,457 782 3,171 742 N/A 385
Real races 8 in 300 6 in 300 21 185 51 N/A 274
Harmful races 4 in 300 3 in 300 9 154 40 N/A 188
Time usage 1h7m 4h38m 126h15m 5h25m 5h32m >168h 5h51m

Table 4: Comparison results of Linux 5.17.

over, to accelerate model checking for concurrency analysis,
CPALockator sacrifices analysis accuracy by pruning many
code paths, simplifying path constraints, etc. In comparison,
LR-Miner mines accurate locking rules from kernel code,
without using the incorrect assumption used by CPALockator;
and then it uses alias relationships and function summaries to
improve both accuracy and efficiency of race detection.

(2) LR-Miner spends more time than Relay and RacerX-
like, as it has more complicated analyses of building field
graphs, computing accurate alias relationships, etc. LR-Miner
spends less time than CPALockator, as CPALockator heavily
suffers from concurrency state explosion of model checking,
despite achieving some acceleration by sacrificing accuracy.

(3) LR-Miner produces fewer false positives and nega-
tives than LR-MinerFieldBased and LR-MinerNonAlias, indicat-
ing our field-aware mining method and alias-aware checking
method can indeed help improve the accuracy of race detec-
tion. LR-MinerNonSum cannot finish analysis within the time-
out in our evaluation, indicating that summary-based analysis
is very important to improving the efficiency of race detection.

Goblint, Locksmith and Lockpick. We make methodology
comparison with them, according to their papers. Goblint
analyzes just driver code in the Linux kernel, by assuming
all driver interface functions can be concurrently executed.
However, this assumption is actually incorrect during kernel
execution [6], causing many false results. Locksmith checks
the intersection of locksets in different code paths, but using
the user’s annotations. However, the annotations can be wrong
provided by the inexperienced user, affecting the accuracy of
concurrency analysis. Lockpick requires the user to provide
lock specifications, to detect lock misuses including some
kinds of races. However, the user can provide wrong lock
specifications due to misunderstanding code logics, which
can cause many false results. By contrast, LR-Miner detects
races by mining locking rules that reflect kernel concurrency
conventions, without concurrency assumption, user annotation
or locking specifications, so it can achieve better accuracy.

6 Discussion

Field graph. LR-Miner exploits field graph to conveniently
describe the relation between each data field and lock field
in structures. Compared to existing field-based analysis [12,
31, 68] that uses just structure type and field name to identify
aliased structure fields, LR-Miner can achieve better accuracy
in lockset analysis by using field graph.

Exploitability of the found harmful races. After knowing
the locations of these harmful races, the attacker can inten-
tionally trigger them by preparing the related concurrency
workloads, and then can transform them into deterministic
vulnerabilities like null-pointer dereferences and use-after-
free issues, which can be exploited to perform DoS attacks,
privilege escalation, etc. Several works [49, 82, 86] have ex-
plored the vulnerability exploitation of such harmful races.
Detecting other concurrency issues. Besides races, we be-
lieve LR-Miner can be extended to detecting other concur-
rency issues in OS kernels, like atomicity violations, dead-
locks and concurrency use-after-free issues. For example,
LR-Miner can mine lock-order rules like that lock A should
be acquired before lock B when the two locks need to be held
together, and such rules can be used to detect kernel deadlocks
caused by ABBA locking cycles. Besides, LR-Miner can also
identify concurrency use-after-free by checking whether a
racy variable is freed by the kernel.
Limitations and future works. First, LR-Miner still reports
some false results due to neglecting bit vectors in structures,
omitting special assertions about locks, etc. Thus, we plan
to handle these cases in LR-Miner to further reduce false
positives. Second, LR-Miner fails to handle special locks,
like RCU and customized locks (including reference counts,
condition variables, etc), so it may miss some races involv-
ing these locks. Thus, we plan to study the usage of these
special locks, and improve LR-Miner to detect the related
races. Third, LR-Miner detects races caused by missing lock
protection at present, and fails to detect races involving non-
lock concurrency mechanisms like wait queue and completion
mechanisms. Thus, we plan to improve LR-Miner to support
the analysis of these mechanisms and detect the related races.
Fourth, LR-Miner just considers the sequential propagation of
racy variables in harmful estimation, without checking their
concurrent propagation across different functions, and thus
may introduce some inaccuracy. To solve this problem, we
plan to analyze possible thread interleavings and check the
related concurrent propagation, to improve the accuracy of
harmful estimation. Finally, besides races, we plan to extend
LR-Miner to detect other concurrency issues in OS kernels.

7 Related Work

Dynamic race detection. Many dynamic approaches detect
races based on address watchpoint [30, 40, 46], lockset analy-
sis [4,16,66,69,87], happens-before relation [11,13,33,50,83],

USENIX Association 33rd USENIX Security Symposium 6161

or hybrid of them [28, 47, 48, 72, 78]. However, these ap-
proaches require the tested program to actually cover differ-
ent thread interleavings for deep race detection. To solve this
problem, several dynamic approaches [15, 36, 39, 42, 79] in-
troduce coverage-guided fuzzing into race detection. These
approaches automatically control thread scheduling or inject
random delays, guided by new concurrency metrics that reflect
the covered thread interleavings during program execution.
Despite using concurrency fuzzing, these approaches still
miss some program code and infrequent thread interleavings,
due to limited test cases and testing time, causing many real
races to be missed.

Different from the above approaches, LockDoc [54] first
analyzes kernel execution traces to identify locking rules,
and then detects the violations of these rules as kernel races.
However, identical to the above approaches, LockDoc also
suffers from limited code coverage of kernel execution, and
thus it misses many execution situations for the analyzed
traces, which affects the accuracy of the mined locking rules.

Different from LockDoc, LR-Miner statically analyzes ker-
nel source code, to conveniently handle many more possible
execution situations, without actual kernel execution. Due
to higher analysis coverage, LR-Miner can achieve better ac-
curacy of locking-rule mining to benefit race detection and
detect more kernel races.

Static race detection. Many static approaches [1, 2, 10, 31,
32,43,52,61,70] focus on race detection in user-level applica-
tions. Indeed, different from applications actively executing
code, kernel code is often passively executed via system calls
invoked by upper-level applications [9, 67]. Thus, kernel con-
currency is actually caused by application concurrency in
many cases, without having explicit operations of thread cre-
ation and termination like applications do. However, these
approaches require such thread operations to perform concur-
rency analysis, and thus they cannot effectively check kernel
code to perform static race detection.

A few static approaches [3, 14, 29, 64, 73, 74] can detect
kernel races, based on the assumption that all the functions
can be concurrently executed or using the user’s annotations
about code concurrency. As this assumption is actually incor-
rect during kernel execution and the inexperienced user can
provide wrong annotations, these approaches can report many
false races. Moreover, some of these approaches [29, 64, 74]
use inaccurate lockset analysis that neglects field informa-
tion about accessed variables and protected locks, which can
produce many false results. Besides, these approaches fail to
estimate the security impact of the found races. In compar-
ison, LR-Miner mines locking rules and detects races with
precise field information and alias relationships, without con-
currency assumption or user annotation, so it can achieve
better accuracy in race detection. Besides, LR-Miner identi-
fies harmful races, according to representative patterns that
can cause security problems.

8 Conclusion

We design a novel static analysis approach named LR-Miner,
to detect races in OS kernels by mining locking rules from
kernel code. Among the found races, it can identify harmful
ones, according to representative patterns that can cause se-
curity problems. In the evaluation on Linux and FreeBSD,
LR-Miner finds 306 real races, 200 of which are estimated to
be harmful. 61 of the harmful races have been confirmed. In
experimental comparison to existing approaches, LR-Miner
finds more real races with better accuracy. LR-Miner is avail-
able on https://sites.google.com/view/LR-Miner/.

Acknowledgment

We thank anonymous reviewers for their helpful advice on
the paper. We also thank Linux kernel developers, who gave
useful feedback and advice to us.

References

[1] Martin Abadi, Cormac Flanagan, and Stephen N Freund.
Types for safe locking: static race detection for Java.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 28(2):207–255, 2006.

[2] Zachary Anderson, David Gay, Rob Ennals, and Eric
Brewer. SharC: checking data sharing strategies for
multithreaded C. In Proceedings of the 29th Interna-
tional Conference on Programming Language Design
and Implementation (PLDI), pages 149–158, 2008.

[3] Pavel Andrianov, Vadim Mutilin, and Alexey
Khoroshilov. CPALockator: thread-modular analysis
with projections. In Proceedings of the 27th Interna-
tional Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages
423–427, 2021.

[4] Yoshitaka Arahori. RangeLocker: adaptive range-
sensitive lockset analysis for precise dynamic race de-
tection. In Proceedings of the 19th International Sympo-
sium on High Assurance Systems Engineering (HASE),
pages 184–191, 2019.

[5] Jia-Ju Bai, Qiu-Liang Chen, Zu-Ming Jiang, Julia
Lawall, and Shi-Min Hu. Hybrid static-dynamic anal-
ysis of data races caused by inconsistent locking disci-
pline in device drivers. IEEE Transactions on Software
Engineering (TSE), 48(12):5120–5135, 2022.

[6] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min
Hu. Effective static analysis of concurrency use-after-
free bugs in Linux device drivers. In Proceedings of
the 2019 USENIX Annual Technical Conference, pages
255–268, 2019.

6162 33rd USENIX Security Symposium USENIX Association

[7] Jia-Ju Bai, Tuo Li, and Shi-Min Hu. DLOS: effective
static detection of deadlocks in OS kernels. In Proceed-
ings of the 2022 USENIX Annual Technical Conference,
pages 367–382, 2022.

[8] Jia-Ju Bai, Tuo Li, Kangjie Lu, and Shi-Min Hu. Static
detection of unsafe DMA accesses in device drivers. In
Proceedings of the 30th USENIX Security Symposium,
pages 1629–1645, 2021.

[9] Jia-Ju Bai, Yu-Ping Wang, and Shi-Min Hu. AutoPA:
automatically generating active driver from original pas-
sive driver code. In Proceedings of the 2018 Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 288–299, 2018.

[10] Sam Blackshear, Nikos Gorogiannis, Peter W O’Hearn,
and Ilya Sergey. RacerD: compositional static race de-
tection. In Proceedings of the 33th International Con-
ference on Object-Oriented Programming Systems Lan-
guages and Applications (OOPSLA), pages 1–28, 2018.

[11] Michael D Bond, Katherine E Coons, and Kathryn S
McKinley. PACER: proportional detection of data races.
In Proceedings of the 31st International Conference on
Programming Language Design and Implementation
(PLDI), pages 255–268, 2010.

[12] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard.
Ownership types for safe programming: Preventing data
races and deadlocks. In Proceedings of the 17th ACM
SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages
211–230, 2002.

[13] Yan Cai, Jian Zhang, Lingwei Cao, and Jian Liu. A
deployable sampling strategy for data race detection. In
Proceedings of the 2016 International Symposium on
the Foundations of Software Engineering (FSE), pages
810–821, 2016.

[14] Yuandao Cai, Peisen Yao, Chengfeng Ye, and Charles
Zhang. Place your locks well: understanding and de-
tecting lock misuse bugs. In Proceedings of the 32nd
USENIX Security Symposium, pages 3727–3744, 2023.

[15] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui,
Cen Zhang, Yuekang Li, Haijun Wang, and Yang Liu.
MUZZ: thread-aware grey-box fuzzing for effective bug
hunting in multithreaded programs. In Proceedings
of the 29th USENIX Security Symposium, pages 2325–
2342, 2020.

[16] Qiu-Liang Chen, Jia-Ju Bai, Zu-Ming Jiang, Julia
Lawall, and Shi-Min Hu. Detecting data races caused

by inconsistent lock protection in device drivers. In Pro-
ceedings of the 26th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER),
pages 366–376, 2019.

[17] Ben-Chung Cheng and Wen-Mei W Hwu. Modular
interprocedural pointer analysis using access paths: de-
sign, implementation, and evaluation. In Proceedings
of the 21st International Conference on Programming
Language Design and Implementation (PLDI), pages
57–69, 2000.

[18] Clang compiler. https://clang.llvm.org/.

[19] CLOC tool. https://cloc.sourceforge.net/.

[20] CPAchecker: configurable verification platform. https:
//cpachecker.sosy-lab.org/.

[21] CPALockator code in CPAChecker. https://github.
com/sosy-lab/cpachecker/tree/trunk/src/org/
sosy_lab/cpachecker/cpa/datarace.

[22] CVE-2009-1894: race in Linux Pulse Audio sound
server for privilege escalation. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2009-1894.

[23] CVE-2013-0871: race in Linux Ptrace part for privi-
lege escalation. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2013-0871.

[24] CVE-2016-5195: Dirty COW in Linux. https://www.
cve.org/CVERecord?id=CVE-2016-5195.

[25] CVE-2023-2006: race in Linux RxRPC network proto-
col for arbitrary code execution. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2023-2006.

[26] CVE-2023-31081: concurrency null-pointer derference
in Linux vidtv driver. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2023-46862.

[27] CVE-2023-46862: concurrency null-pointer derference
in Linux io_uring driver. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2023-46862.

[28] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran.
Goldilocks: efficiently computing the happens-before
relation using locksets. In Proceedings of the 2006 Inter-
national Workshop on Formal Approaches to Software
Testing, pages 193–208, 2006.

[29] Dawson Engler and Ken Ashcraft. RacerX: effective,
static detection of race conditions and deadlocks. In
Proceedings of the 19th International Symposium on
Operating Systems Principles (SOSP), pages 237–252,
2003.

USENIX Association 33rd USENIX Security Symposium 6163

[30] John Erickson, Madanlal Musuvathi, Sebastian Burck-
hardt, and Kirk Olynyk. Effective data-race detection
for the kernel. In Proceedings of the 9th International
Conference on Operating Systems Design and Imple-
mentation (OSDI), pages 151–162, 2010.

[31] Cormac Flanagan and Stephen N Freund. Type-based
race detection for Java. In Proceedings of the 21th Inter-
national Conference on Programming Language Design
and Implementation (PLDI), pages 219–232, 2000.

[32] Cormac Flanagan and Stephen N Freund. Detecting
race conditions in large programs. In Proceedings of the
2001 International Workshop on Program Analysis for
Software Tools and Engineering (PASTE), pages 90–96,
2001.

[33] Cormac Flanagan and Stephen N. Freund. FastTrack:
efficient and precise dynamic race detection. In Proceed-
ings of the 30th International Conference on Program-
ming Language Design and Implementation (PLDI),
pages 121–133, 2009.

[34] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina
Narodytska, Jorge A Navas, Noam Rinetzky, Leonid
Ryzhyk, and Mooly Sagiv. Simple and precise static
analysis of untrusted Linux kernel extensions. In
Proceedings of the 40th International Conference on
Programming Language Design and Implementation
(PLDI), pages 1069–1084, 2019.

[35] Goblint repository. https://github.com/goblint/.

[36] Sishuai Gong, Dinglan Peng, Deniz Altınbüken, Pedro
Fonseca, and Petros Maniatis. Snowcat: efficient kernel
concurrency testing using a learned coverage predictor.
In Proceedings of the 29th International Symposium
on Operating Systems Principles (SOSP), pages 35–51,
2023.

[37] Nevin Heintze and Olivier Tardieu. Ultra-fast alias-
ing analysis using CLA: a million lines of C code in
a second. In Proceedings of the 22nd International
Conference on Programming Language Design and Im-
plementation (PLDI), pages 254–263, 2001.

[38] David Hovemeyer and William Pugh. Finding more null
pointer bugs, but not too many. In Proceedings of the
7th ACM SIGPLAN-SIGSOFT workshop on Program
Analysis for Software Tools and Engineering (PASTE),
pages 9–14, 2007.

[39] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar,
Byoungyoung Lee, and Insik Shin. Razzer: finding
kernel race bugs through fuzzing. In Proceedings of the
40th IEEE Symposium on Security and Privacy, pages
754–768, 2019.

[40] Yunyun Jiang, Yi Yang, Tian Xiao, Tianwei Sheng, and
Wenguang Chen. DRDDR: a lightweight method to
detect data races in Linux kernel. The Journal of Super-
computing, 72(4):1645–1659, 2016.

[41] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min
Hu. Fuzzing error handling code using context-sensitive
software fault injection. In Proceedings of the 29th
USENIX Security Symposium, pages 2595–2612, 2020.

[42] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu.
Context-sensitive and directional concurrency fuzzing
for data-race detection. In Proceedings of the 29th
Network and Distributed System Security Symposium
(NDSS), 2022.

[43] Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun
Zhang. Static data race detection for concurrent pro-
grams with asynchronous calls. In Proceedings of the
2009 International Symposium on the Foundations of
Software Engineering (FSE), pages 13–22, 2009.

[44] Baris Can Cengiz Kasikci, Cristian Zamfir, and George
Candea. Data races vs. data race bugs: telling the dif-
ference with Portend. In Proceedings of the 17th In-
ternational Conference On Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 185–198, 2012.

[45] George Kastrinis, George Balatsouras, Kostas Ferles,
Nefeli Prokopaki-Kostopoulou, and Yannis Smarag-
dakis. An efficient data structure for must-alias analysis.
In Proceedings of the 27th International Conference on
Compiler Construction (CC), pages 48–58, 2018.

[46] KCSAN: kernel concurrency sanitizer. https://
github.com/google/ktsan/wiki/KCSAN.

[47] Dileep Kini, Umang Mathur, and Mahesh Viswanathan.
Data race detection on compressed traces. In Proceed-
ings of the 2018 International Symposium on the Foun-
dations of Software Engineering (FSE), pages 26–37,
2018.

[48] KTSAN: kernel thread sanitizer. https://github.
com/google/kernel-sanitizers/tree/ktsan.

[49] Yoochan Lee, Changwoo Min, and Byoungyoung Lee.
ExpRace: exploiting kernel races through raising inter-
rupts. In Proceedings of the 30th USENIX Security
Symposium, pages 2363–2380, 2021.

[50] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman
Nath, and Rohan Padhye. Efficient scalable thread-
safety-violation detection: finding thousands of concur-
rency bugs during testing. In Proceedings of the 27th
International Symposium on Operating Systems Princi-
ples (SOSP), pages 162–180, 2019.

6164 33rd USENIX Security Symposium USENIX Association

[51] Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. Path-
sensitive and alias-aware typestate analysis for detect-
ing OS bugs. In Proceedings of the 27th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
859–872, 2022.

[52] Bozhen Liu, Peiming Liu, Yanze Li, Chia-Che Tsai,
Dilma Da Silva, and Jeff Huang. When threads meet
events: efficient and precise static race detection with
origins. In Proceedings of the 42nd International Con-
ference on Programming Language Design and Imple-
mentation (PLDI), pages 725–739, 2021.

[53] LLVM compiler infrastructure. https://llvm.org/.

[54] Alexander Lochmann, Horst Schirmeier, Hendrik
Borghorst, and Olaf Spinczyk. LockDoc: trace-based
analysis of locking in the Linux kernel. In Proceedings
of the 14th European Conference on Computer Systems
(EuroSys), pages 1–15, 2019.

[55] Locksmith code repository. https://github.com/
polyvios/locksmith/.

[56] Kai Lu, Zhendong Wu, Xiaoping Wang, Chen Chen, and
Xu Zhou. RaceChecker: efficient identification of harm-
ful data races. In Proceedings of the 23rd Euromicro
International Conference on Parallel, Distributed, and
Network-Based Processing, pages 78–85, 2015.

[57] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting
missing-check bugs via semantic-and context-aware crit-
icalness and constraints inferences. In Proceedings
of the 28th USENIX Security Symposium, pages 1769–
1786, 2019.

[58] Shan Lu, Soyeon Park, and Yuanyuan Zhou. Finding
atomicity-violation bugs through unserializable inter-
leaving testing. IEEE Transactions on Software Engi-
neering (TSE), 38(4):844–860, 2011.

[59] Aravind Machiry, Chad Spensky, Jake Corina, Nick
Stephens, Christopher Kruegel, and Giovanni Vigna.
DR.CHECKER: a soundy analysis for Linux kernel
drivers. In Proceedings of the 26th USENIX Security
Symposium, pages 1007–1024, 2017.

[60] Paul E McKenney and Jonathan Walpole. Introducing
technology into the Linux kernel: a case study. ACM
SIGOPS Operating Systems Review, 42(5):4–17, 2008.

[61] Mayur Naik, Alex Aiken, and John Whaley. Effective
static race detection for Java. In Proceedings of the
27th International Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 308–
319, 2006.

[62] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani,
Andrew Edwards, and Brad Calder. Automatically clas-
sifying benign and harmful data races using replay analy-
sis. In Proceedings of the 28th International Conference
on Programming Language Design and Implementation
(PLDI), pages 22–31, 2007.

[63] Brian Norris and Brian Demsky. CDSchecker: checking
concurrent data structures written with C/C++ atomics.
In Proceedings of the 28th international Conference on
Object Oriented Programming Systems Languages and
Applications (OOPSLA), pages 131–150, 2013.

[64] Polyvios Pratikakis, Jeffrey S Foster, and Michael Hicks.
Locksmith: practical static race detection for C. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 33(1):1–55, 2011.

[65] Relay code repository. https://cseweb.ucsd.edu/
~jvoung/race/.

[66] Gabriel Ryan, Abhishek Shah, Dongdong She, and
Suman Jana. Precise detection of kernel data races with
probabilistic lockset analysis. In Proceedings of the
44th IEEE Symposium on Security and Privacy, pages
2086–2103, 2023.

[67] Leonid Ryzhyk, Yanjin Zhu, and Gernot Heiser. The
case for active device drivers. In Proceedings of the
1st Asia-Pacific Workshop on Systems (APSys), pages
25–30, 2010.

[68] Amit Sasturkar, Rahul Agarwal, Liqiang Wang, and
Scott D Stoller. Automated type-based analysis of data
races and atomicity. In Proceedings of the tenth ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 83–94, 2005.

[69] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: a dynamic
data race detector for multithreaded programs. ACM
Transactions on Computer Systems (TOCS), 15(4):391–
411, 1997.

[70] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski,
Jaeheon Yi, and Cormac Flanagan. Sound predictive
race detection in polynomial time. In Proceedings of
the 39th International Symposium on Principles of Pro-
gramming Languages (POPL), pages 387–400, 2012.

[71] Xin Tan, Yuan Zhang, Xiyu Yang, Kangjie Lu, and
Min Yang. Detecting kernel refcount bugs with two-
dimensional consistency checking. In Proceedings of the
30th USENIX Security Symposium, pages 2471–2488,
2021.

[72] ThreadSanitizer: a data race detector for C/C++ pro-
grams. https://github.com/google/sanitizers/
wiki/ThreadSanitizerCppManual.

USENIX Association 33rd USENIX Security Symposium 6165

[73] Vesal Vojdani, Kalmer Apinis, Vootele Rõtov, Helmut
Seidl, Varmo Vene, and Ralf Vogler. Static race detection
for device drivers: the Goblint approach. In Proceed-
ings of the 31st International Conference on Automated
Software Engineering (ASE), pages 391–402, 2016.

[74] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. RELAY:
static race detection on millions of lines of code. In
Proceedings of the 2007 International Symposium on
The Foundations of Software Engineering (FSE), pages
205–214, 2007.

[75] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve
Dodier-Lazaro. How double-fetch situations turn into
double-fetch vulnerabilities: A study of double fetches
in the Linux kernel. In Proceedings of the 26th USENIX
Security Symposium, pages 1–16, 2017.

[76] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. Check
it again: Detecting lacking-recheck bugs in OS kernels.
In Proceedings of the 25th International Conference on
Computer and Communications Security (CCS), pages
1899–1913, 2018.

[77] Zhendong Wu, Kai Lu, Xiaoping Wang, Xu Zhou, and
Chen Chen. Detecting harmful data races through
parallel verification. The Journal of Supercomputing,
71:2922–2943, 2015.

[78] Xinwei Xie, Jingling Xue, and Jie Zhang. Acculock:
accurate and efficient detection of data races. Software:
Practice and Experience (SPE), 43(5):543–576, 2013.

[79] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-
soo Kim. KRACE: data race fuzzing for kernel file
systems. In Proceedings of the 41st IEEE Symposium
on Security and Privacy, pages 1643–1660, 2020.

[80] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and scalable detection
of double-fetch bugs in OS kernels. In Proceedings
of the 39th IEEE Symposium on Security and Privacy,
pages 661–678, 2018.

[81] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue.
VFix: Value-flow-guided precise program repair for null
pointer dereferences. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE),
pages 512–523, 2019.

[82] Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethu-
madhavan. Concurrency attacks. In Presented as part of
the 4th USENIX Workshop on Hot Topics in Parallelism
(HotPar), 2012.

[83] Kunpeng Yu, Chenxu Wang, Yan Cai, Xiapu Luo, and
Zijiang Yang. Detecting concurrency vulnerabilities
based on partial orders of memory and thread events. In

Proceedings of the 2021 International Symposium on
the Foundations of Software Engineering (FSE), pages
280–291, 2021.

[84] Z3: a theorem prover from Microsoft Research. https:
//github.com/Z3Prover/z3.

[85] Dongyang Zhan, Xiangzhan Yu, Hongli Zhang, and Lin
Ye. ErrHunter: detecting error-handling bugs in the
Linux kernel through systematic static analysis. IEEE
Transactions on Software Engineering (TSE), 49(2):684–
698, 2022.

[86] Shixiong Zhao, Rui Gu, Haoran Qiu, Tsz On Li, Yuex-
uan Wang, Heming Cui, and Junfeng Yang. OWL: un-
derstanding and detecting concurrency attacks. In Pro-
ceedings of the 48th International Conference on De-
pendable Systems and Networks (DSN), pages 219–230,
2018.

[87] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou.
HARD: hardware-assisted lockset-based race detection.
In Proceedings of the 13th International Symposium
on High Performance Computer Architecture (HPCA),
pages 121–132, 2007.

6166 33rd USENIX Security Symposium USENIX Association

