
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Peep With A Mirror: Breaking The Integrity of
Android App Sandboxing via Unprivileged

Cache Side Channel
Yan Lin, Jinan University; Joshua Wong, Singapore Management University;

Xiang Li and Haoyu Ma, Zhejiang Lab; Debin Gao, Singapore Management University
https://www.usenix.org/conference/usenixsecurity24/presentation/lin-yan

Peep With A Mirror: Breaking The Integrity of Android App Sandboxing via
Unprivileged Cache Side Channel

Yan Lin1, Joshua Wong2, Xiang Li3, Haoyu Ma3∗, Debin Gao2

1Jinan University, Guangzhou, China
2Singapore Management University, Singapore, Singapore

3Zhejiang Lab, Hangzhou, China

Abstract

Application sandboxing is a well-established security princi-
ple employed in the Android platform to safeguard sensitive
information. However, hardware resources, specifically the
CPU caches, are beyond the protection of this software-based
mechanism, leaving room for potential side-channel attacks.
Existing attacks against this particular weakness of app sand-
boxing mainly target shared components among apps, hence
can only observe system-level program dynamics (such as
UI tracing). In this work, we advance cache side-channel
attacks by demonstrating the viability of non-intrusive and
fine-grained probing across different app sandboxes, which
have the potential to uncover app-specific and private program
behaviors, thereby highlighting the importance of further re-
search in this area.

In contrast to conventional attack schemes, our proposal
leverages a user-level attack surface within the Android plat-
form, namely the dynamic inter-app component sharing with
package context (also known as DICI), to fully map the code
of targeted victim apps into the memory space of the at-
tacker’s sandbox. Building upon this concept, we have devel-
oped a proof-of-concept attack demo called ANDROSCOPE
and demonstrated its effectiveness with empirical evaluations
where the attack app was shown to be able to successfully
infer private information pertaining to individual apps, such
as driving routes and keystroke dynamics with considerable
accuracy.

1 Introduction

In the past decade, Android has become the predominant
mobile operating system and is boasting the largest market
share in global smartphone sales volume [4]. With Android
smartphones serving as ubiquitous personal handheld devices,
countless personal private data (e.g., user email and contact
list) and a variety of persistent identifiers (e.g., IMEI) are

∗Corresponding author

accessed and processed daily. The emergence of the Android
ecosystem has also attracted numerous malicious attacks [12],
a large portion of which either gain device control [13, 23]
or steal private user information such as chats [37] and geo-
graphic locations [22]. To protect user privacy from unautho-
rized access, Android sandboxes user-space apps to prevent
them from interacting arbitrarily with each other and the key
system components. When first introduced in Android 5, the
app sandboxing mechanism was implemented on top of the
mandatory user-based access control of SELinux [43]. It in-
herits the UID/GID permission model of Linux and enforces
each app to be run in an isolated process space by assigning
a unique UID at installation time. By default, two isolated
apps (without a pre-established trust relationship) cannot in-
teract; any app is not allowed to access system components
or resources without the corresponding permissions. Subse-
quent Android versions continued to improve their security
mechanisms, e.g., Android 10 introduced Scoped Storage [14]
which restricts an app’s access to external storage.

Nevertheless, it has been shown in real-world practices
that an app may circumvent Android’s sandboxing and
gain access to protected data without user consent, which
is mostly achieved by means of covert or side-channel tech-
niques. In particular, covert channels enable communication
between two colluding apps so that one app can share its
permission-protected data with another app lacking those
permissions [27]. The research community has previously
explored the potential for covert channels in Android using
local sockets and shared storage [32], as well as other un-
orthodox means such as vibrations and accelerometer data [6].
However, typical covert channels can be easily detected by
dynamic analysis, e.g., TaintDroid [15] and XManDroid [10].
Side channels, on the other hand, occur when there are alter-
nate means to access the protected resource that is not audited
by security mechanisms. Side-channel attacks take advantage
of unintended leakage of information through features such
as power consumption, electromagnetic emissions, timing,
or even sound. The typical scenarios of side-channel attacks
involve inferring sensitive data (e.g., encryption keys and

USENIX Association 33rd USENIX Security Symposium 2119

passwords) and private user information (examples including
gender [33], identity [44], and even driving routes [35]). At-
tempts have also been made to exploit cache-based side chan-
nels for the purpose of breaching Android’s app sandboxing.
For instance, ARMageddon launched side-channel attacks on
libinput.so, a system-shared library, to monitor keyboard
presses [30]. Zhang et al. used the same strategy on another
system-shared library, namely libinputflinger.so [50].
However, existing work only managed to exploit shared code
across different processes due to Android’s system architec-
ture; in addition, these adversarial approaches are susceptible
to various system factors and noises in practice [47], limiting
their capabilities to rough estimations of what is happening at
a coarse granularity.

In this paper, we propose ANDROSCOPE, a fine-grained
side-channel attack that compromises the Android app sand-
boxing mechanism. Our attack leverages a user-level attack
surface of the Android platform, namely the dynamic code
loading mechanism using package context (DICI). Specif-
ically, while the previous work explored the possibility of
exploiting DICI in code reuse attacks [17], our investigation
targets a more fundamental question, namely “how code of
another app is accessed by components within the current
sandbox during DICI”, and find that when an app attempts to
invoke external methods via DICI, it loads the corresponding
code files (belonging to the victim app) into the memory space
of the attack app as a side effect. We confirmed that this un-
documented feature applies to all types of executables on the
Android platform, including Dalvik Executable (Dex), ahead-
of-time (AOT) compiled code, and third-party native libraries,
and such code loading turns out to be successful even if the
external invocation request is rejected (due to proper security
measures). This observation thus enables carefully crafted
cache-based side-channel attacks to completely break app
sandboxing and permission-based access control, allowing
a stealthy app to, for the first time, monitor detailed runtime
behavior of other apps non-intrusively without any unusual
privileges.

We tested the effectiveness of ANDROSCOPE on monitor-
ing the method execution of a number of open-source apps
and confirmed that ANDROSCOPE could effectively extract
sensitive and app-specific user behavior. As two representative
use cases, we demonstrate that ANDROSCOPE successfully
infers driving routes taken by a navigation app and keystroke
dynamics of a communication app. In conclusion, we make
the following contributions.

• For the first time, we identified another layer of security
threat exposed by Android’s undocumented DICI mech-
anisms, which could lead to inter-app privacy leakage
that bypasses Android’s app sandboxing.

• We have implemented a proof-of-concept attack frame-
work called ANDROSCOPE, which leverages the DICI
vulnerability to conduct non-intrusive inter-app runtime

behavior monitoring via the cache-based side channel
with zero privilege. ANDROSCOPE shows its capability
to directly probe a victim’s private code, surpassing prior
methods that relied on shared libraries and system APIs.

• We conducted a comprehensive evaluation on the ef-
fectiveness of ANDROSCOPE using real-world devices
and apps, which confirmed the validity of DICI-based
sandbox breach and suggested that the issue may be
universal to all Android-based systems. The result also
demonstrates that ANDROSCOPE addresses concerns
about background noise as raised in previous approaches
focused on the shared libraries and system APIs.

2 Background

2.1 Android App Sandboxing

App sandboxing is a fundamental security feature of the An-
droid operating system, which helps protect the device and
user data by isolating each app from both other apps and
the rest of the system. This ensures that apps cannot inter-
fere with each other’s operations or access unauthorized re-
sources and data. The construction of the app sandbox is
based on three mechanisms, namely Discretionary Access
Control (DAC) [11], Mandatory Access Control (MAC) [41],
and the Android permissions [16] mechanism. Both DAC and
MAC are inherited from Linux. Specifically, DAC restricts
access to resources based on user and group identity. By as-
signing each application a unique UNIX user ID (UID) and a
dedicated directory, Android runs each app in its own indepen-
dent user space with the file system set up in a way that each
app can only access its own data and resources. MAC further
enforces finer-grained protections by dictating whether an in-
process action is allowed based on a set of pre-defined policies
concerning the security contexts (i.e., collections of security
labels that classify resources) of the involved parties. Last
but not the least, Android permissions control data sharing
among apps of UIDs and system resources (such as camera,
GPS, contacts, and etc.). An app must declare permissions in
advance (or, in the case of dangerous permissions, explicitly)
so that invocations can be granted.

Android’s use of MAC policy has evolved over time to
meet the increasing demands of mobile security. In the early
versions of Android (before Android 4.3), it relied heavily
on DAC and allowed apps to run with the permissions of the
user who installed them. This provided only limited security
as apps had broad access to the privileged resources. With
the release of Android 4.3, SELinux was introduced as an
additional layer of security, but the implementation was per-
missive by default, i.e., it logged policy violations but did
not actively enforce policies. Android finally switched its
SELinux to enforcing mode since Android 5 to actively en-
force the pre-defined security policies.

2120 33rd USENIX Security Symposium USENIX Association

2.2 Dynamic Inter-App Component Sharing
with Package Context

The initial purpose of DICI is for inter-app communica-
tion so that one app can leverage resources from other
apps during its execution. Listing 1 shows an example
of DICI used in plugin implementation in the app with
package name kl.ime.oh, which intends to invoke a method
named predict that belongs to the M class of a Chinese key-
board plugin app called klye.hanwriting. Specifically, the API
createPackageContext is called at Line 7 to create a con-
text of klye.hanwriting. The second parameter of this API is
known as flags, allowing developers to specify how should
the package context be created, most notably:

• 0x0001 (CONTEXT_INCLUDE_CODE), allowing ac-
cess to the code in the loaded package.

• 0x0002 (CONTEXT_IGNORE_SECURITY), ignoring
any security restrictions. When it is enabled with CON-
TEXT_INCLUDE_CODE, code is loaded even if it un-
safe to do so. features of the accessed resources.

1 public boolean loadHW() {
2 try {
3 if (M.i.getPackageManager().

↪→ getPackageInfo(
4 "klye.hanwriting", DoneRec).versionCode

↪→ < 19){
5 return false;
6 }
7 Class <?> loadClass = M.i.

↪→ createPackageContext("klye.
↪→ hanwriting", 3).getClassLoader()
↪→ .loadClass("klye.hanwriting.M");

8 Class[] clsArr = new Class[3];
9 clsArr[DoneRec] = String.class;

10 clsArr[1] = Character.TYPE;
11 clsArr[2] = Integer.TYPE;
12 this.m1 = loadClass.getMethod("predict"

↪→ ,clsArr);
13
14 return true;
15 } catch (Throwable unused) {
16 return false;
17 }
18 }

Listing 1: Example of direct inter-app code invocation

In this example, the value 3 (0x0001|0x0002) en-
ables both flags CONTEXT_INCLUDE_CODE and
CONTEXT_IGNORE_SECURITY on loading the class
klye.hanwriting.M on-the-fly. The method object is acquired
with the class object containing it (Lines 9-13). Android first
locates the APK file based on the package name provided,
and then opens it and dynamically loads classes.dex into
the current address space.

Despite the lack of explicit documentation, DICI is a legit-
imate mechanism used by various apps published on Google
Play Store (see more details in Section 3.6). It is important to
emphasize that even if the method invocation fails (for valid
reasons like lack of permissions), the file loading operations
would have been completed as a side effect and would not be
revoked as long as the initiating app is not terminated. Our
tests confirmed that this undocumented component sharing
mechanism is viable on the most recent Android 14.

Existing work [17] pointed out that this mechanism can
be used to plagiarize supposedly-protected functionalities,
but the potential risk of side-channel attacks was overlooked.
As a matter of fact, both base.vdex and base.odex are
used by the Android Runtime for actual execution of apps,
such that the overhead of repeatedly verifying and optimizing
classes.dex can be avoided. With these observations, we
investigate how the DICI mechanism could be used to launch
side-channel attacks with the purpose of fully circumventing
Android app sandboxing.

2.3 CPU Caches and Side-Channel Attacks

Program execution often has temporal and spatial locality,
i.e., the most recently accessed memory addresses as well as
nearby addresses are often accessed in the near future. To
exploit locality, modern CPU architectures use caches to store
recently accessed code and data. These caches are often or-
ganized into multiple levels with different sizes and access
speeds. For example, on ARM CPUs, there are commonly two
levels of caches L1 and L2, with L1 being faster and smaller
while L2 being larger and slower. On multi-core CPUs, lower-
level caches (L2) are often shared among multiple CPU cores.
Modern caches are usually organized with an N-way associa-
tive table. The basic unit of memory allocation in a cache is
called a line or cache line of a typical size of 64 bytes.

An adversary could infer secret information about a
running program by observing its use of CPU caches,
which is typically called cache side-channel attacks.
Initially, cache side-channel attacks were performed on
cryptographic algorithms [25, 26, 36, 40, 45]. Previous
studies have explored different types of cache side-
channel attacks: EVICT+TIME [38], PRIME+PROBE [38],
FLUSH+RELOAD [48], and EVICT+RELOAD [19].
EVICT+TIME and PRIME+PROBE allow an adversary to
determine which cache sets are used during the victim’s
computation and have been exploited to attack cryptographic
algorithms [38]. In particular, in EVICT+TIME attacks, the
attacker first causes the victim to run, preload its cache lines,
and establish a baseline execution time. The attacker then
evicts a cache line of interest and runs the victim code again,
with a variation in execution time indicating that the line
of interest was accessed. PRIME+PROBE attacks pre-load
every cache line in the target cache set with its own memory
blocks so that the adversary can make sure her future memory

USENIX Association 33rd USENIX Security Symposium 2121

accesses will be served by the cache unless some of the cache
lines are evicted by the victim program during its execution.
Therefore, her own cache misses will reveal the victim’s
cache usage.

FLUSH+RELOAD [48] allows an attacker to determine
which specific instructions are executed and which specific
data is accessed by the victim program. Specifically, in
FLUSH+RELOAD attacks, the adversary shares some physi-
cal memory pages (e.g., through shared libraries and system
components) with the victim. By issuing flush instructions
on certain virtual address ranges, the adversary can flush the
(physical) cache lines that correspond to this address range out
of the entire cache hierarchy. Therefore, any future reading
(RELOAD) of the cache lines will be slower because they are
loaded from the memory unless they have been accessed by
the victim. Since some ARM processors do not have a flush
instruction, EVICT+RELOAD has been proposed by replacing
the flush instruction in FLUSH+RELOAD by eviction. This
paper makes use of FLUSH+RELOAD to trace the execution
of an app in Android.

3 ANDROSCOPE

In this section, we first provide an overview of the proposed
attack starting with the threat model. We then describe the
individual components of the attack in detail.

3.1 Threat Model
In the attack scenarios assumed by ANDROSCOPE, the ad-
versary’s general goal is to passively eavesdrop behavior of
another victim app. The adversary is assumed to be local, i.e.,
the attack process is co-located with the victim process on
the same physical device, and are both executed within the
same operating system environment. Nonetheless, the attack
process is considered to be isolated from the victim by app
sandboxing and is not allowed to break such isolation via
any intrusive approaches. We assume that the physical device
is a multi-core system, and the attack and victim processes
can run simultaneously on different cores. The attack pro-
cess can create a few threads that run continuously in the
background, but cannot attempt to obtain root privileges or
request any special permissions. The adversary could perform
offline reverse engineering of the victim app and correlate the
memory addresses of methods to be targeted by its runtime
surveillance.

3.2 Overall Workflow
Rather than leaking system-wide information via shared
code components as demonstrated in previous work, AN-
DROSCOPE is designed to monitor app-specific methods to
circumvent the protection of app sandboxing. In particular,
utilizing the DICI mechanism enables ANDROSCOPE to load

Figure 1: Overview of ANDROSCOPE

all the necessary executables of a victim app into the attacker’s
own memory space, creating a side-channel attack surface for
the attacker process to probe any method of the victim as if
observing it from inside using an endoscope (hence the name
“ANDROSCOPE”).

Figure 1 illustrates the overall workflow of the proposed
attack. ANDROSCOPE consists of three phases to create an
app-specific side-channel attack.

• Phase 1: Reconnaissance (Section 3.3) In order to de-
tect sensitive information through side-channel probing,
the adversary first determines which of the victim app’s
executable files are required and the offsets of the partic-
ular methods that are of interest. This is done offline with
the adversary obtaining and conducting reconnaissance
on the victim app’s APK in advance.

• Phase 2: Sandbox Penetration (Section 3.4) With the
reconnaissance results from Phase 1, the adversary de-
ploys ANDROSCOPE (likely via a cover app with seem-
ingly reasonable functionality) to detect whether the tar-
geted victim app has also been installed. Upon a positive
answer, ANDROSCOPE would leverage the DICI mecha-
nism to load necessary code files of the victim app. This
ensures that the ANDROSCOPE process shares physical
code pages with the victim app of the DICI-loaded code
files.

• Phase 3: Side-Channel Probing (Section 3.5) Af-
ter the prior steps, the adversary finally launches side-
channel probing of FLUSH+RELOAD to detect fine-
grained traces of executions occurring within the victim
app’s code region, and thus gaining awareness of the
sensitive runtime status of the victim.

To achieve the expected attack goal, a number of technical
details are critical for the implementation of ANDROSCOPE.
Note that our study was carried out on two smartphones as

2122 33rd USENIX Security Symposium USENIX Association

Table 1: Experimental Devices

Xiaomi Mi 11 Lite Pixel 4a
Soc Snapdragon 732G Snapdragon 730G

Architecture big.LITTLE big.LITTLE

Processors 2x Kryo 470 Gold as big cores
6x Kryo 470 Silver as little cores

listed in Table 1, which are both mounted with Qualcomm’s
ARMv8-A CPUs that adopt big.LITTLE architectures. Both
devices have the cache line flushing instruction unlocked by
default, making it available in user space.

3.3 Reconnaissance

Recall that the purpose of the reconnaissance phase is to
determine which parts of a victim code are of interests in the
side-channel attack. While the specific methods to be targeted
can be selected via a careful manual analysis, the adversary
must still be able to parse different types of executable files
such that the linear address of these methods at runtime can
be correctly resolved.

Today, the Android platform uses a runtime environment
called Android runtime (ART) to execute methods in apps.
ART uses ahead-of-time (AOT) compilation and, starting
from Android 7.0, uses a combination of AOT, just-in-time
(JIT), and profile-guided compilations. Specifically, before
Android 8.0, an app is installed without any AOT compila-
tion, but an Optimized Dalvik EXecutable (ODEX) named
base.odex is generated with only Dalvik bytecode. When
the device is idle and charging, a compilation daemon AOT-
compiles frequently used code to machine code based on a
profile generated during the first few runs, and inserts the in-
structions into the ODEX file. Starting from Android 8.0, how-
ever, ART stopped merging the DEX files into base.odex but
introduced a VDEX file called base.vdex to store the copy of
original DEX files. In addition, an increasing number of An-
droid developers are incorporating third-party native libraries
in their applications for code reuse, CPU-intensive tasks, and
other purposes. According to the new runtime environment,
the adversary therefore needs to parse all the aforementioned
types of files so that the address of any potential targets of our
attack can be obtained.

3.3.1 VDEX file Parsing

In order to obtain the target addresses of methods executed by
the Dalvik Virtual Machine (DVM), we employ the vdexEx-
tractor [5] utility for the parsing of VDEX files. vdexExtractor
represents a command-line tool designed for the decompila-
tion and extraction of Android Dex bytecode from VDEX files.
These VDEX files are produced in conjunction with ODEX
files during the optimization of bytecode by the dex2oat ART

runtime compiler.
More specifically, we analyze the output file generated

by vdexExtractor and extract the offset value (referred to
as vdex_offset) corresponding to the method of inter-
est based on its method name. It is worth noting that
each method is subject to an additional fixed offset of
0x40 on our devices. The extra offset 0x40 is to account
for a 4-byte magic number and a 4-byte version field at
the beginning of the file. Consequently, the ultimate ad-
dress utilized in the FLUSH+RELOAD attack is computed
as follows: vdex_base_address + 0x40 + vdex_offset.
Here, vdex_base_address is determined by examining the
mapped location of base.vdex of the victim within the
/proc/self/maps directory of the attacker.

3.3.2 ODEX file Parsing

We employ the oatdump utility to acquire the target offset,
denoted as odex_offset, pertaining to a native-compiled
method subject to AOT compilation. Furthermore, our inves-
tigation reveals the presence of a constant offset of 0x1000
(which corresponds to the ELF header page) that is uniformly
applied to each native-compiled method on our devices. The
ultimate address computation is achieved by summing the
values of odex_base_address, which is ascertained by in-
specting the mapped location of base.odex associated with
the victim within the /proc/self/maps directory of the at-
tacker, with 0x1000 and odex_offset.

3.3.3 Third-Party Native Library Parsing

Parsing a native library can be accomplished with ease by
employing Executable and Linkable Format (ELF) analysis
tools like objdump and readelf. These tools facilitate the
retrieval of method offsets. In this paper, we make use of
objdump to disassemble the native library and obtain the
offset of the methods.

3.4 Sandbox Penetration

The most fundamental intention of Android’s app sandboxing
is to prevent any user process from accessing another pro-
cess’s private resources (e.g., code, data, config files). How-
ever, our observation on the undocumented DICI mechanism,
especially regarding its side effect of dynamic code loading,
puts a question mark on the effectiveness of app sandboxing.

Here we select Organic Maps, an open-source app from
F-Droid, as an exemplary target to illustrate how DICI can
be exploited to penetrate Android app sandboxing. Listing 2
shows the code snippet used for this mock attack testing,
where the invocations at Lines 3 and 4 implement DICI in
the exact same way as described in Section 2.2, only that the
parameter victimPackageName is set to app.organicmaps,
the package name of the victim app. We find that these two

USENIX Association 33rd USENIX Security Symposium 2123

1 pubic class MainActivity{
2 public void LoadVictim(String victimPackageName , String victimClass , Optional <String > victimMethod

↪→){
3 Context ike = this.createPackageContext(victimPackageName , Context.Context_INCLUDE_CODE |

↪→ Context.CONTEXT_IGNORE_SECURITY);
4 ClassLoader loader = ike.getClassLoader();
5 /*only loading third -party native libraries needs to execute the following code*/
6 Class utils = loader.loadClass(victimClass);
7 Method method = util.getDeclaredMethod(victimMethod.get(), String.class);
8 method.setAccessible(true);
9 method.invoke(null ,"/sdcard/Documents");

10 }
11 }

Listing 2: Code snippet of attack app

1 72c5fc3000 -72c71b9000 r-xp 00000000 /data/app/.../app.organicmaps/lib/arm64/liborganicmaps.so
2 72c77fc000 -72c8842000 r-xp 002b8000 /data/app/.../app.organicmaps/oat/arm64/base.odex
3 72c885f000 -72c91be000 r--p 00000000 /data/app/.../app.organicmaps/oat/arm64/base.vdex
4 72c950c000 -72c9512000 r-xp 0024f000 /data/app/.../com.example.AndroScope/base.apk
5 72ca449000 -72ca4d8000 r-xp 0002d000 /data/app/.../com.example.AndroScope/oat/arm64/base.odex
6 72ca4db000 -72ca9af000 r--p 00000000 /data/app/.../com.example.AndroScope/oat/arm64/base.vdex

Figure 2: Partial memory mapping of the attacker app with DICI

simple invocations are sufficient for the adversary to load
all the VDEX and ODEX files of Organic Maps into the
memory space of the attacker process. On top of this, we
also find that by invoking Java methods that would eventually
call a native method located in a particular third-party native
library, the specific native library will be mapped to the at-
tacker process as well. As shown in Lines 6 - 9 of Listing 2,
we implemented such an invocation using the reflection mech-
anism with parameters victimClass and victimMethod set,
respectively, to app.organicmaps.MwmApplication and
nativeSetSettingsDir. The Java method referred by this
particular reflection is known to eventually raise a Java Na-
tive Interface (JNI) call of the function ToNativeString
in library liborganicmaps.so. Figure 2 presents part of
the memory mapping of the ANDROSCOPE attack process
after running the mock attack snippet. We can see that, be-
yond its own executable, all three code files of the victim
Organic Maps, namely the base.odex, the base.vdex, and
the liborganicmaps.so, have been mapped into the address
space of the attacker app.

We repeated the same experiments for 1,000 apps down-
loaded from AndroZoo, a growing collection of Android ap-
plications from a few sources, including the official Google
Play. The results indicate that ANDROSCOPE can success-
fully load the VDEX and ODEX files of all the tested apps by
leveraging the DICI mechanism. In short, by using the DICI
mechanism, ANDROSCOPE can directly load a victim’s pri-
vate code. This enables it to surpass prior methods relying on
shared libraries and system APIs on resolution and resilience.

3.5 Side-Channel Probing

Compared to x86, ARM poses several technical challenges
for cache side-channel attacks. For starters, not all ARM
processors support the CLFLUSH instruction directly. How-
ever, ARM v8 offers instructions to flush data and instruction
caches, allowing ANDROSCOPE to adopt an instruction se-
quence as given in Listing 3 to launch FLUSH+RELOAD
attack.

1 // Cleans and Invalidates data cache by
↪→ address to Point of Coherency

2 asm volatile ("DC CIVAC , %0" :: "r"(address));
3 // Ensures completion of the cleaning and

↪→ invalidations
4 asm volatile ("DSB ISH");
5 // Synchronize the fetched instruction stream
6 asm volatile ("ISB");

Listing 3: Flush instruction in the FLUSH+RELOAD attack

Another challenge is that many ARM CPUs do not have a
data-inclusive shared last-level cache (LLC). Green et al. [18]
have also shown that there are other features in the ARM
CPU implementation that make an attack more difficult. For
instance, ARM devices implement inclusive and non-inclusive
caches alike with both properties co-existing even in the same
cache hierarchy. Fortunately, most ARM CPUs are cache-
coherent. When a process accesses a cache line not currently
cached in its own core, the CPU will try to fetch it from other
cores in case other processes are accessing it. If successful,
the resulting access will be much faster than accessing from

2124 33rd USENIX Security Symposium USENIX Association

memory. This feature has been exploited in recent work [30]
and in ANDROSCOPE as well.

One additional challenge is regarding the big.LITTLE ar-
chitecture [31] adopted by many ARM CPUs consist of a
System-on-a-Chip (SoC) made from two discrete computing
clusters, one low-power group of cores and one high-power
group. It appears that only cores among big and LITTLE
have the proper cache coherency protocol that can be ex-
ploited, which requires the attacker and victim to be on dif-
ferent classes of cores. Further, we find it interesting that
flushing takes significantly more time on the big cores (likely
due to their cache replacement policy). As a result, ANDRO-
SCOPE pins the attack threads on the “LITTLE” cores, both
for performance consideration and also for reasons that high-
value victim apps tend to exploit “big” cores for better user
experiences.

Additionally, the existing threshold calibration method
lacks reliability across devices from various manufacturers
and models. Therefore, we have devised an adaptive strategy
to accurately calculate the runtime cache hit/miss threshold
on any given device. Specifically, we dynamically adjust the
hit/miss threshold during runtime by monitoring the occur-
rence of false positives following a FLUSH+RELOAD oper-
ation. If the number of false positives exceeds a predefined
threshold, we decrease the hit/miss threshold accordingly.

Last but not the least, given that side-channel probing is, af-
ter all, not a deterministic metric, we introduce a simple voting
mechanism to improve the accuracy, which is by all means to
monitor multiple addresses in the same method and come to
the cache hit/miss conclusion according to the majority. Due
to the minimum cache line size, we avoid monitoring more
than one address in the same 64-byte code snippet. Moreover,
our tests show that ARM CPUs tend to trigger the pre-fetching
mechanism when a continuous segment of address space is
accessed more than four times in a short period, causing any
subsequent side-channel accesses to contribute nothing but
false positives. Therefore, we also avoid probing more than
four addresses of the same targeted method.

Note that for ARM processors that do not have a flush in-
struction, ANDROSCOPE makes use of the EVICT+RELOAD
approach [46] to carry out its cache side-channel attacks.

3.6 DICI in Real-World Apps

To understand the usage of DICI in real-world Android
apps (a different experiment from that described in Sec-
tion 3.4 where DICI was used by our attacker app), we utilize
Soot [21] and FlowDroid [7] to construct and parse the call
graph in 1,000 apps downloaded from AndroZoo, tracing how
DICI is employed in the analyzed apps to gain insights into
the prevalence and utilization of DICI. In summary, we find
that DICI is used by 227 apps to load code in Google Mobile

Services (GMS), including YouTube Kids1, XPlayer2, and QR
& Barcode Scanner3. Additionally, we find that 412 apps call
createPackageContext to obtain the context of other ap-
plications without loading the code, allowing them to access
data stored in the SharedPreferences of other applications.

4 Evaluation

Now we present our experiences in applying ANDROSCOPE
to attack two real-world applications, Organic Maps and
Briar, for the purpose of inferring sensitive user behavior.
The two victim applications are chosen due to them being
primary targets of recent attacks, which enables us to com-
pare with related work and reveal the unique offering of AN-
DROSCOPE in attack scenarios involving unauthorized, app-
specific behavior inferring. Table 2 summarizes the prior work
on the two applications as well as the new perspectives AN-
DROSCOPE offers. Although our attack scheme shares some
common objectives with prior work, it offers two important
unique properties. First, it does not require any specific per-
mission, unlike prior work that leverages sensor readings. Sec-
ond, it captures finer-grained behaviors of the targeted victim
app in particular, unlike prior work that leverages system-level
method invocations which include noise from other apps. The
two apps also allow us to demonstrate our capability in moni-
toring all three types of victim code, including ODEX, VDEX,
and native libraries.

To evaluate the extent and precision to which ANDRO-
SCOPE can monitor app-specific behaviors across different
app sandboxes, we implemented our scheme demo as a reg-
ular third-party app to carry out the mock attacks. In the
following subsections, we go into details of each experiment
and explain the specific target methods to be monitored, the
intermediate results in detecting method executions, and the
resulting overall capability in inferring user behaviors.

Recall that ANDROSCOPE monitors multiple addresses in
one method and applies simple output voting to improve our
accuracy of CPU cache side-channel monitoring. When at-
tacking Organic Maps, our attack app leverages up to four
targets within a single method at least four cache lines apart
and uses an output voting threshold of three out of four;
whereas for Briar, ANDROSCOPE uses up to three targets
within a method at least two cache lines apart with an out-
put voting threshold of two out of three. This is because
that methods of Briar are generally shorter than those of
Organic Maps. We further discuss such practical settings at
the end of this section.

1MD5: ecad46e3eb7cf31430e0c5f25e9d860f
2MD5: fe9cc8e71e0857db0c2ef3bb0b2a983b
3MD5: 8628586a3984cf74673019d59d3311dd

USENIX Association 33rd USENIX Security Symposium 2125

Table 2: Comparison with Previous Work on Inferring App Behavior

App Organic Maps Briar
Sensitive behavior to be inferred Route taken in driving navigation Keystroke dynamics in typing

Information leveraged
Prior work Gyroscope, accelerometer, and magnetometer [35] Timing of system-level method execution [30]

ANDROSCOPE
Timing of app-level method execution

Methods from ODEX and native libraries Methods from VDEX

Unique offering by ANDROSCOPE
• No permissions needed • No permissions needed
• Detecting start/end of navigation session • Detecting start/sending of a message

4.1 Inferencing Driving Routes
In this subsection, we investigate the potential of tracking
users’ mobility without explicitly requesting permissions to
access the phone sensors or location services. More specifi-
cally, we demonstrate that ANDROSCOPE can accurately re-
cover the route taken by the victim device user by tracing the
execution of methods in the navigation app Organic Maps.
Our observation is that when the vehicle approaches a turn,
a turning notification audio will be played, and the detection
of the execution of such audio-playing methods enables our
attack app to recover the timestamps of each turning, which
can be used to infer the route. Here we assume that the at-
tacker has knowledge of the travel area of the victim (e.g.,
known to live in Boston) via other means such as analyzing
IP addresses or social networks.

Monitored methods. We monitor driving-related methods
encompassing route initiation, directional transitions, mo-
ments of immobility, and culmination. The primary objec-
tive of this study is to ascertain the effectiveness of ANDRO-
SCOPE in elucidating the execution of these procedures. The
details about these methods can be found in Table 3. No-
tably, the first three methods are intrinsic to a third-party
native library, while the last method pertains to the ODEX
file. When the vehicle approaches a directional change,
both GetDirectionTextId and requestAudioFocus are in-
voked. In cases where vehicular motion is interrupted, for
instance, at traffic lights, method OnViewportChanged is fur-
ther scrutinized to determine whether the vehicle remains
in motion along its designated route or is at a standstill.
Lastly, method nativeGenerateNotifications serves the
dual purpose of signaling the commencement and culmination
of a driving session.

Implementation. Besides the technical details described in
Section 3.4 and 3.5, our attack app leveraged the same algo-
rithm proposed by SENSOR [35] to process the logged cache
hit timestamps for the selected methods and subsequently in-
fer driving routes indicated by the gathered data. This design
is to make our approach as comparable as possible with the
previous work of the same attack purpose.

A sample route. Figure 3 illustrates an example of the
tested driving route and its corresponding side-channel

cache-hit timestamps for the monitored methods. The par-
ticular route had five turns (Figure 3a) which resulted
in six cache hits for methods GetDirectionTextId and
requestAudioFocus, out of which the first five indicated
turns while the last one corresponded to an arrival notification.
When the vehicle was stationary, we can see that there was no
cache hit for method OnViewportChanged, whereas method
nativeGenerateNotifications was always invoked. This
enables us to deduct vehicle stationary time to arrive at a more
accurate driving duration between two consecutive turns.

Intermediate results in detecting turnings. We randomly
chose 33 routes in two cities, namely Boston and Waltham
(provided by Narain et al. in their work of SENSOR), and
simulated the driving using Appium [1] by replaying the GPS
coordinates along with the timestamps for both two devices
Listed in Table 1. Result of ANDROSCOPE in correctly identi-
fying the turns can be found in Table 4, where we report that
our attack accurately identified the turns for 30 and 28 routes
(out of 33) in Boston and Waltham respectively. Among the
mistaken ones, ANDROSCOPE missed one turn for two routes
and falsely identified an additional “turn” for one route in
Boston. For Waltham, ANDROSCOPE identified one addi-
tional “turn” for three routes and failed to identify any turns
for two routes. The timing of all correctly identified turnings,
on the other hand, were all detected accurately.

Overall results in route reconstruction. We further
demonstrate the effectiveness of ANDROSCOPE by recon-
structing routes instead of solely focusing on the number of
recoverable turns, utilizing other information obtained by AN-
DROSCOPE, such as timestamps between turns. To perform
a fair comparison with SENSOR, we remove the additional
information SENSOR has (e.g., angles of the route curve) and
construct a setting with comparable inputs for SENSOR and
denote it as SENSOR_OT. The percentage of routes that can
be inferred by ANDROSCOPE, SENSOR, and SENSOR_OT are
shown in Table 5, which indicate that the timestamps obtained
by ANDROSCOPE can be used to effectively infer the route
of driving compared to SENSOR_OT. For example, 43% and
47% of routes can be inferred by ANDROSCOPE for mobile
phones Xiaomi Mi 11 Lite and Pixel 4a respectively, while
SENSOR_OT can only infer 37% of the routes for Boston.
For routes in Waltham, ANDROSCOPE can infer 64% of them

2126 33rd USENIX Security Symposium USENIX Association

Table 3: Method to be monitored

Method Name Description Type
GetDirectionTextId Indicates that the vehicle is approaching a turn liborganicmaps.so
OnViewportChanged Indicates whether the vehicle continues moving along the route

or is stationary
liborganicmaps.so

nativeGenerateNotifications Indicates that the navigation started and ended liborganicmaps.so
requestAudioFocus Indicates that the vehicle is approaching a turn base.odex

(a) Route example (b) FLUSH+RELOAD side-channel result

Figure 3: Route and FLUSH+RELOAD result.

for both mobile phones while SENSOR_OT can only infer
54% of them.

Comparison with Traditional Approach. We find that
when a turn is approaching, the monitored method
requestAudioFocus of Organic Maps eventually sends a
request to the Android service AudioManager by invok-
ing android.media.AudioManager.requestAudioFocus
located in /system/framework/arm64/boot-framework.oat.
This file contains compiled code for core framework classes
and methods provided by the Android framework and is
shared across user processes. This means that in order to
achieve the same attack described in this section like ANDRO-
SCOPE, existing work regarding cache-based side-channel at-
tacks against Android devices would have to probe the under-
lying system (framework) API as mentioned above to implic-
itly infer the navigation behaviors of Organic Maps. How-
ever, the audio focus mechanism provided by AudioManager
serves a wide spread of different types of apps, such as
Spotify and WhatsApp, enabling them to request exclusive
or temporary control over the audio output of the device. As

such, the execution of the aforementioned framework API
alone can mean various types of events (other than naviga-
tion), e.g., viewing short videos or hearing voice messages,
causing the existing Android side-channel work to be trapped
in significant noise interference.

To give an illustrative example, we built a customized app
called NoiseApp which is designed to continuously invoke
android.media.AudioManager.requestAudioFocus in
the background upon running (simulating music playing
apps like Spotify). Then, in the presence of NoiseApp,
the effectiveness of ANDROSCOPE is compared with the
traditional Android side-channel approach which can only
resort to framework API monitoring (utilizing the same
FLUSH+RELOAD approach). The result showed that during
the navigation of the same route in Figure 3, the compared
traditional side-channel approach picked up a total of 12,089
cache hits for the targeted framework API, out of which
12,083 were actually “noises" contributed by NoiseApp; on
the other hand, such noises had no impact on ANDROSCOPE
because it observes the method requestAudioFocus within
the code base of Organic Maps and is able to confirm the de-

USENIX Association 33rd USENIX Security Symposium 2127

Table 4: Routes distribution under ANDROSCOPE. Correctly identified means all identified turns correspond to ground truth.
Extra one means ANDROSCOPE mistakenly identified one additional turn while Miss one means ANDROSCOPE misses one turn
compared to ground truth. Failed means ANDROSCOPE cannot identify any turns at all.

.
City Xiaomi Mi 11 Lite Pixel 4a

Correctly identified Extra one Miss one Failed Correct identified Extra one Miss one Failed
Boston 30 1 2 0 30 1 2 0

Waltham 28 3 0 2 28 3 0 2

Table 5: Percentage of routes that can be inferred by ANDRO-
SCOPE, SENSOR, and SENSOR_OT

City ANDROSCOPE SENSOR SENSOR_OTXiaomi Pixel 4a
Boston 43% 47% 67% 37%

Waltham 64% 64% 93% 54%

tection with the observation on another in-app private method,
namely GetDirectionTextId.

In conclusion, there are two main aspects in which AN-
DROSCOPE goes beyond existing work, including (1) AN-
DROSCOPE demonstrates the capability of directly probing
a victim’s private code, surpassing previous methods relying
on system APIs; and (2) ANDROSCOPE dismisses concerns
about background noise as raised in the existing approach.

4.2 Inferring Keystroke Dynamics

In this subsection, we demonstrate that ANDROSCOPE can
be used to launch keystroke timing attacks as well. The high-
level observation is that by monitoring the callback methods
of keyboard pressing using our attack, an adversary could
obtain precise timing of each key press, which could be
subsequently used to infer the actual words and sentences
typed. Our work differs from the prior work of ARMaged-
don [30] in that we monitor app-level methods instead of
system-level methods, which not only eliminates noise intro-
duced by other apps when they execute the same system-level
method implementations, but also enables our attack to gain
more knowledge on what is being input by the user (e.g.,
characters or spaces). In addition, the method-level difference
also makes ANDROSCOPE immune to counter-measures like
KeyDrown [42] which runs through the same code path in the
shared library for all, fake and real, keystrokes.

Monitored methods. As depicted in Figure 4, Briar trans-
forms the “send” icon into an attachment icon in the absence
of text within the chat box, which is facilitated through the in-
vocation of the updateViewState method. Simultaneously,
the method onTextIsEmptyChanged is invoked whenever a
transition occurs within the chat box, either from an empty
state to a non-empty one or vice versa. Consequently, we
leverage cache hit events associated with these two methods
to signify the commencement and dispatch of a message. Fur-

thermore, the act of entering a character or depressing the
space bar triggers the execution of onTextChanged method,
whereas method countLeadingWhiteSpace is executed ex-
clusively when the current count of leading white spaces,
measured from the cursor position to the last character typed,
is zero.

Figure 4: Example of the main page of Briar

As shown in Listing 4, Briar implements its own over-
loaded version of the onTextChanged function, which is
called to notify that, within the parameter string s, the count
characters beginning at start have just replaced old text that
had length before. Specifically, if isEmpty is true (indicating
that the text was previously empty), it checks whether the char-
acters that were added (count) contain any leading whitespace
characters (Lines 3 - 8). If there are non-whitespace char-
acters among the added ones, it means the text is no longer
empty. If isEmpty is false and before is greater than 0 (in-
dicating that characters have been replaced), it checks from
the beginning of the text (index 0) to see if the entire text
consists of whitespace characters (Lines 8 - 15). Note that
after a spacebar is pressed, the current Android system will
set offset to zero. When subsequently the next letter is typed,
function countLeadingWhiteSpace will not be executed.

2128 33rd USENIX Security Symposium USENIX Association

Table 6: Method to be monitored in Briar

Method Name Description Purpose
onTextIsEmptyChanged Gets called when the chat box changes from empty to

non-empty or from non-empty to empty
Indicates the start of a message and the sent
of a message

updateViewState Updates the composite button functionality. When
there is no text in the chat box, the button becomes
an ‘attachment’ icon. When it is filled with text, the
button becomes a ‘send’ icon

Indicates the start of a message and the sent
of a message

onTextChanged Gets called whenever a letter is typed, deleted, or when
the space bar is pressed

Used together with method
countLeadingWhitespace to determine the
start of a new word.

countLeadingWhitespace Counts the number of leading whitespaces from the
current cursor position up until the last character typed

Used together with method onTextChanged
to determine a space has been entered and
indicates the start of a new word

1 public void onTextChanged(CharSequence s, int
↪→ start , int before , int count) {

2 if (emptyTextAllowed || listener == null)
↪→ return;

3 if (isEmpty) {
4 if (countLeadingWhitespace(s, start ,

↪→ count) < count) {
5 isEmpty = false;
6 listener.onTextIsEmptyChanged(false);
7 }
8 } else if (before > 0) {
9 // Characters have been removed or

↪→ replaced - check from the start
10 int length = s.length();
11 if (countLeadingWhitespace(s, 0, length)

↪→ == length) {
12 isEmpty = true;
13 listener.onTextIsEmptyChanged(true);
14 }
15 }
16 }

Listing 4: Code snippet of function onTextChanged

A sample message. For instance, consider the message
“This is a message sent”. Upon pressing the space bar fol-
lowing the word “This”, the value of offset was set to zero.
Subsequently, when the letter i was typed, in accordance with
the established policy, the code lines in the else condition
(Lines 10 - 13 of Figure 4) were not executed, thereby preclud-
ing the execution of the countLeadingWhiteSpace method.
However, upon typing s, the value of offset became one since
there was no white space immediately ahead of it, prompting
the invocation of the countLeadingWhiteSpace method.

It is important to note that throughout this entire process,
the onTextChanged method was consistently invoked. Con-
sequently, these two methods were employed to ascertain the
length of an individual word being typed. The method that
we probed on Google Pixel 4a can be found in Table 6 and all
four methods were located in the VDEX file.

The side-channel cache-hit result on these four methods is
shown in Figure 5. We can see that ANDROSCOPE accurately
identified the starting and sending time of a message from

the cache hits obtained for methods onTextIsEmptyChanged
and updateViewState. By analyzing the cache hit result for
methods onTextChanged and countLeadingWhitespace,
we can see that a cache hit on method onTextChanged and
no hit on method countLeadingWhitespace can be used to
indicate the first letter of a new word.

Results of keystroke timing detected We computed the
inter-keystroke timing difference between the ground truths
and ANDROSCOPE attacks with five human typing cases and
20 simulated (and replayed) typing cases, and the result is
shown in Figure 6. We can see that the timing difference
between the ground truth and our attack was trivial, indicating
that the obtained cache-hit timestamps may be directly used as
resources for keystroke timing attacks. More specifically, the
average keystroke timing difference between the ground truth
and our side-channel attack was only around 0.00005 seconds
while the average time for inter-keystroke was around 0.25
seconds.

Comparison with Traditional Approach. Armageddon
scans two addresses in the default AOSP keyboard, namely
Latin-IME.odex, to showcase the capability of word
length detection. This requires inspecting the memory
mapping file (i.e., /proc/pid/maps) of the system applica-
tion com.android.inputmethod.latin. However, access-
ing files like /proc/pid/maps which belong to another app’s
process requires root privilege (e.g., with a rooted Android de-
vice). The proposed approach, ANDROSCOPE, eliminates this
requirement and does not need any additional permissions.

4.3 Flexibility of ANDROSCOPE

Now we further investigate the flexibility of ANDROSCOPE
in probing the execution of a method under different config-
urations to better support the effectiveness of our approach.
Specifically, we set the maximum number of addresses to be
probed in a particular method to be five, and the minimum gap
between two consecutive addresses be one cache line, two
cache lines, and four cache lines, respectively. We tested 24

USENIX Association 33rd USENIX Security Symposium 2129

Figure 5: User input reference. The blue x is the ground truth obtained by instrumenting the app, which means the method is
really executed. The red x means the cache hit.

Figure 6: Keystroke time difference between side channel and
ground truth

methods in the VDEX file, ODEX file, and third-party native
library in apps Dolphin [2] and Briar, with the F1 score of
ANDROSCOPE in identifying the execution of each method
under different configurations shown in Figure 7. Here, “for-
ward” means the monitored addresses are ordered from low to
high, and ANDROSCOPE probes the lower one first; whereas
“backward” means the addresses are ordered reversely and the
higher address is probed first. We can see that although the F1
score differs from method to method4, for most methods we
can always find a configuration under which ANDROSCOPE
can work with a satisfying accuracy. This indicates that when
launching the proposed attack, an adversary is in fact quite
flexible w.r.t. the detailed attack strategy, the technical arsenal,
as well as the selection of target methods.

For certain methods, we observed suboptimal performance,
notably in methods 4, 19, and 20. Several factors may con-

4The reasons of the relatively unstable results may include the pre-
fetching mechanism, layout, and sequence of binary code in the address
space, sizes of individual methods, starting/ending offset of a method from
the nearest cache line boundary, and etc. We leave the more thorough investi-
gation regarding this observation as a future work.

tribute to this suboptimal performance, including but not lim-
ited to (1) The potential for cache pollution when a small
method shares a cache line with a preceding large method; (2)
Cases where a frequently executed method with a short du-
ration may exceed the probing resolution capabilities of AN-
DROSCOPE; (3) Situations where multiple probed addresses
share the same cache set, resulting in conflicts.

4.4 Performance Overhead

To evaluate the runtime overhead of ANDROSCOPE, we con-
ducted experiments by running our attack app on a series
of devices listed in Table 1, with it kept in the background
for the whole period. We then used one of the most popu-
lar benchmarks, Geekbench-6 [3], to assess the devices both
with and without appside running. Specifically, Geekbench
runs a series of tests on a processor and measures the time it
takes for the processor to complete these tasks. The faster the
CPU completes the tests, the higher the Geekbench score is.

We configured ANDROSCOPE to probe different numbers
of addresses, namely 276, 151, and 104 addresses in Dol-
phin, and ran Geekbench-6 10 times to obtain the average
score. As shown by the results presented in Figure 8, ANDRO-
SCOPE reduced the benchmark scores respectively by 18.09%,
14.98%, and 12.78% for the Xiaomi Mi 11 Lite with the three
experiment configurations. For the Pixel 4a, ANDROSCOPE
decreased the benchmark score by 27.49% when probing 276
addresses and by 23.13% and 20.14% when probing 151 and
104 addresses. The overhead mainly comes from the side-
channel probing. We expect such overhead to decrease when
ANDROSCOPE is configured to probe its target addresses less
frequently or when the attack is launched on more recent (and
powerful) devices.

2130 33rd USENIX Security Symposium USENIX Association

Figure 7: F1 score distribution under different configurations

Figure 8: Performance of ANDROSCOPE evaluated with Geek-
bench Benchmark

4.5 Number of Concurrent Addresses Moni-
tored

With this evaluation, we intend to demonstrate the capability
of ANDROSCOPE in monitoring multiple code addresses si-
multaneously. Currently, our FLUSH+RELOAD component
occupies one CPU core and conducts sequential polling on a
given set of target addresses. Therefore, here we progressively
increased the size of ANDROSCOPE’s target address set (+50
a time until the total amount of targets reaches 1,200), with
one particular address corresponding to a button click event
of a subject app always included; then, the subject app was
manually used with the being monitored button clicked for
100 times, to see how many of the clicks were identified. As
can be found in Figure 9, the accuracy of our approach was
maintained at 100% for Pixel 4a and Xiaomi Mi 11 Lite before
the number of scanned target addresses reached 400 and 250,
respectively. Beyond these thresholds, the accuracy decreased
gradually until down to 62% and 54% respectively when AN-
DROSCOPE scans 1,200 target addresses simultaneously. It
is important to highlight that the previous case studies on
Organic Maps and Briar (Section 4.1and 4.2) only involve
scanning 11 and five addresses, respectively. This underscores

Figure 9: Throughput of ANDROSCOPE, where “0” for the
size of ANDROSCOPE’s target address set indicates that the
subject app’s button click was monitored.

that scanning 400/250 addresses is sufficient in real attack
scenarios to enable ANDROSCOPE to achieve full capability.

4.6 Countermeasures

There are several steps one could take to help mitigate the
side-channel attack that we discover.

Firstly, DICI usage can be restricted in several ways. An-
droid OS could introduce an enhanced access control mech-
anism by adding a declaration to the AndroidManifest file.
This declaration would define which legitimate apps are al-
lowed to use DICI or determine which specific parts of the
code (such as classes) can be accessed by other applications
through DICI. By doing so, Android developers and system
administrators can exercise greater control over the scope and
permissions of DICI usage, ensuring that sensitive data and
functions are protected from unauthorized access.

We rely on reading the /proc/self/maps file to gather vi-
tal details about the VDEX, ODEX, and third-party native
libraries of victim apps that are mapped into the attacker’s
address space. Restricting access to this sensitive informa-
tion significantly raises the complexity of the proposed attack.

USENIX Association 33rd USENIX Security Symposium 2131

We modify the Android kernel to enhance security by selec-
tively omitting memory mapping information for files located
in other apps’ private directories. Specifically, we revise the
show_map_vma routine in task_mmu.c to not display mem-
ory mapping information when the resolved package name
does not match with the package name of the current task.

We also evaluated the runtime overhead of this counter-
measure by running Geekbench-6. The corresponding scores
with and without countermeasures are 1,840 and 1,863, re-
spectively, demonstrating a negligible runtime overhead.

Another way to mitigate the FLUSH+RELOAD attack we
proposed is to prevent physical memory sharing among apps.
This can be achieved by implementing techniques like the
copy-on-access method proposed by Zhou et al. [51]. With
this approach, a state machine is employed to meticulously
monitor the sharing of each physical page among distinct
security domains, such as containers. Whenever a shared page
is accessed by any security domain, an immediate page copy
operation is triggered. This proactive measure serves as a
strong defense against FLUSH+RELOAD attacks by disrupting
the mechanism that attackers could exploit.

5 Related Work

5.1 Cache Side-Channel Attacks on ARM

Most of the existing work so far has focused on x86 proces-
sors. For ARM, we are aware of some papers that specif-
ically explore the security of caches. ARMageddon [30]
makes use of the flush instruction provided by ARM v8
to launch FLUSH+RELOAD attacks to probe user input. It
also introduces PRIME+PROBE and EVICT+RELOAD attacks
for ARM processors that do not have the flush instruction.
Zhang et al. [50] give a systematic exploration of vectors
for FLUSH+RELOAD attacks on ARM processors and use
the FLUSH+RELOAD attacks to trace software execution. Au-
toLock [18] explores how the AutoLock feature found in some
ARM processors could be used to thwart some cache timing
attacks. It also shows how attackers can overcome the fea-
ture and perform EVICT+TIME and PRIME+PROBE attacks.
TruSpy [49] analyzes timing cache side-channel attacks on
ARM TrustZone and exploits cache contention between the
normal world and the secure world to leak secret informa-
tion from TrustZone protected code using PRIME+PROBE
attack. Lee et al. [28] explore FLUSH+RELOAD attacks on
the ARM FPGA by exploiting Accelerator Coherency Port
(ACP) and iTimed [20] makes use of PRIME+PROBE and
FLUSH+RELOAD to attack Apple A10 Fusion System-on-a-
Chip (SOC). Wang et al. [46] make use of EVICT+RELOAD
attacks to extract a user’s password and PIN.

5.2 Side-Channel Attacks on Mobile Sensors

IMU sensor readings on mobile devices have been used to
infer sensitive information too. Abdul Rehman et al. [24]
proposed and developed an application on the Android plat-
form that runs in the background and gathers information
in accelerometer, gyroscope, and magnetometer to infer the
keystrokes being typed. Some work [8, 34, 39] used the
accelerometer sensor to infer password inputs. Sashank et
al. [35] utilized the accelerometer, gyroscope, and magnetome-
ter to infer the route of driving. However, these approaches
are known to be very sensitive to random noise and heteroge-
neous human behavior patterns.

6 Discussion

6.1 Other Scenarios of ANDROSCOPE

In addition to monitoring method execution, ANDROSCOPE
exhibits the capability to infer sensitive data. A notable illus-
tration of this capability lies in the DICI mechanism, which
may be employed to access data stored in the SharedPrefer-
ences of another application. SharedPreferences serves as a
frequently utilized repository for storing key-value pairs, and
this repository can encompass sensitive information [9, 29].

6.2 Limitations

Due to the nature of DICI, an app can add noises to ANDRO-
SCOPE by invoking the monitored methods in the victim app.
This potential for noise arises from the fact that other apps can
inadvertently trigger the same methods that ANDROSCOPE is
monitoring. Since we FLUSH+RELOAD multiple functions at
the same time, the likelihood of these functions being called
together by another app is very low. Hence, most background
noise of this kind can be eliminated.

Secondly, a Java method will be compiled using the just-
in-time (JIT) compiler and stored in a code cache if it is
frequently executed. This optimization mechanism enhances
the performance of the application by allowing frequently
used methods to be readily available in compiled form. How-
ever, this code cache is specific to each individual application
and is not shared between the attack and the victim apps. Con-
sequently, ANDROSCOPE cannot be used to launch an attack
against this type of method. We observe the activation of
JIT compilation after methods have been executed more than
100 times. During periods of device idleness and charging,
Android initiates the re-compilation of applications based
on the aggregated profile generated during initial runs. At
this stage, high-frequency methods are incorporated as native
components within the ODEX file. Consequently, frequently
executed methods may experience temporary inaccessibil-
ity when located inside the code cache due to JIT compi-
lation. However, AndroScope regains access to such code

2132 33rd USENIX Security Symposium USENIX Association

by patiently waiting and subsequently reloading the ODEX
associated with the targeted application.

Thirdly, when an app targets Android 11 (API level 30)
or higher and queries for information about other apps in-
stalled on a device, the system filters this information by
default. In this case, the attacker needs to manually use the
<queries> element in the manifest file to declare the need
for package visibility, so that DICI can work. The <queries>
element allows developers to specify which packages or com-
ponents they need to access, granting their apps the necessary
permissions to interact with these elements. It’s a security
measure introduced by Android to protect user privacy and
data. While some application stores, like the Google Play
Store, may remove the malicious app, attackers can employ
various methods to install it, including through advertising
and phishing.

7 Responsible Disclosure

We have responsibly informed Google about the risk posed by
DICI regarding its potential to bypass Android app sandbox-
ing and infer private information related to individual apps
through cache-based side-channel attacks. Google informed
us that they have completed their assessment on June 7, 2024,
have determined that the issue is of moderate severity, and
will pass it to their feature team to fix in an upcoming release.
It remains unclear to us how this issue is to be fixed.

8 Conclusion

In this paper, we propose ANDROSCOPE, a side-channel at-
tack scheme that fully circumvents the application sandboxing
mechanism of Android by leveraging the DICI mechanism
supported by the platform. The experimental results on a num-
ber of real-world apps showed that ANDROSCOPE can be used
to successfully infer fine-grained user behavior by probing
app-specific methods executed in the victim processes, with
the attack app not conducting any intrusive operations, obtain-
ing root privilege or requesting any unusual permissions.

Acknowledgements

We thank our shepherd and the anonymous reviewers for
their valuable comments and suggestions that have helped
improve our paper. This research / project is supported by the
National Research Foundation, Singapore, and the Cyber Se-
curity Agency of Singapore under its National Cybersecurity
R&D Programme (Proposal ID: NCR25-DeSCEmT-SMU),
as well as the National Natural Science Foundation of China
(Grant Nos. 62302193 and 61932011) and the Guangdong-
Hong Kong Joint Laboratory for Data Security and Privacy
Preserving (Grant No. 2023B1212120007). Any opinions,
findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not reflect the
views of the National Research Foundation, Singapore, and
the Cyber Security Agency of Singapore.

References

[1] Appium. https://github.com/appium/
io.appium.settings/tree/master.

[2] Dolphin. https://dolphin-emu.org/.

[3] Geekbench webpage. https://www.geekbench.com/.

[4] statista. https://www.statista.com/statistics/
272698/global-market-share-held-by-mobile-
operating-systems-since-2009/.

[5] vdexextractor. https://github.com/anestisb/
vdexExtractor.

[6] Ahmed Al-Haiqi, Mahamod Ismail, Rosdiadee Nordin,
et al. A new sensors-based covert channel on android.
The Scientific World Journal, 2014, 2014.

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm
Sigplan Notices, 49(6):259–269, 2014.

[8] Adam J Aviv, Benjamin Sapp, Matt Blaze, and
Jonathan M Smith. Practicality of accelerometer side
channels on smartphones. In Proceedings of the 28th an-
nual computer security applications conference, pages
41–50, 2012.

[9] Laura Bello-Jiménez, Alejandro Mazuera-Rozo, Mario
Linares-Vásquez, and Gabriele Bavota. Opia: A tool
for on-device testing of vulnerabilities in android ap-
plications. In 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
418–421. IEEE, 2019.

[10] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko,
Thomas Fischer, and Ahmad-Reza Sadeghi. Xmandroid:
A new android evolution to mitigate privilege escalation
attacks. Technische Universität Darmstadt, Technical
Report TR-2011-04, 2011.

[11] Haining Chen, Ninghui Li, William Enck, Yousra Aafer,
and Xiangyu Zhang. Analysis of seandroid policies:
Combining mac and dac in android. In Proceedings of
the 33rd Annual Computer Security Applications Con-
ference, pages 553–565, 2017.

USENIX Association 33rd USENIX Security Symposium 2133

https://github.com/appium/io.appium.settings/tree/master
https://github.com/appium/io.appium.settings/tree/master
https://dolphin-emu.org/
https://www.geekbench.com/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://github.com/anestisb/vdexExtractor.
https://github.com/anestisb/vdexExtractor.

[12] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Min-
hui Xue, Yinxing Xue, Yang Liu, and Lihua Xu. An
empirical assessment of security risks of global android
banking apps. In Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering, pages
1310–1322, 2020.

[13] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, and Marcel Winandy. Privilege escalation at-
tacks on android. In Information Security: 13th Inter-
national Conference, ISC 2010, Boca Raton, FL, USA,
October 25-28, 2010, Revised Selected Papers 13, pages
346–360. Springer, 2011.

[14] Android Documentation. Scoped storage. https://
source.android.com/docs/core/storage/scoped.

[15] William Enck, Peter Gilbert, Seungyeop Han, Vasant
Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N Sheth. Taint-
droid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Transactions
on Computer Systems (TOCS), 32(2):1–29, 2014.

[16] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, and David Wagner. Android permissions demys-
tified. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 627–638,
2011.

[17] Jun Gao, Li Li, Pingfan Kong, Tegawendé F Bissyandé,
and Jacques Klein. Borrowing your enemy’s arrows: the
case of code reuse in android via direct inter-app code
invocation. In Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
pages 939–951, 2020.

[18] Marc Green, Leandro Rodrigues Lima, Andreas Zankl,
Gorka Irazoqui, Johann Heyszl, and Thomas Eisenbarth.
Autolock: Why cache attacks on arm are harder than
you think. In USENIX Security Symposium, pages 1075–
1091, 2017.

[19] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on inclusive
{Last-Level} caches. In 24th USENIX Security Sympo-
sium (USENIX Security 15), pages 897–912, 2015.

[20] Gregor Haas, Seetal Potluri, and Aydin Aysu. itimed:
Cache attacks on the apple a10 fusion soc. In 2021
IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pages 80–90. IEEE, 2021.

[21] Laurie Hendren, Patrick Lam, Jennifer Lhotak, On-
drej Lhotak, and Feng Qian. Soot, a tool for an-
alyzing and transforming java bytecode. World

Wide Web, http://www. sable. mcgill. ca/soot/tutorial/-
pldi03/tutorial. ps, 2003.

[22] Guangwu Hu, Bin Zhang, Xi Xiao, Weizhe Zhang, Long
Liao, Ying Zhou, and Xia Yan. Samldroid: a static taint
analysis and machine learning combined high-accuracy
method for identifying android apps with location pri-
vacy leakage risks. Entropy, 23(11):1489, 2021.

[23] Google Inc. Privilege escalation in google an-
droid. https://source.android.com/security/
bulletin/pixel/2021-01-01., 2021.

[24] Abdul Rehman Javed, Mirza Omer Beg, Muhammad
Asim, Thar Baker, and Ali Hilal Al-Bayatti. Alphalog-
ger: Detecting motion-based side-channel attack using
smartphone keystrokes. Journal of Ambient Intelligence
and Humanized Computing, pages 1–14, 2020.

[25] John Kelsey, Bruce Schneier, David Wagner, and Chris
Hall. Side channel cryptanalysis of product ciphers. In
European Symposium on Research in Computer Secu-
rity, pages 97–110. Springer, 1998.

[26] Paul C Kocher. Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems. In Annual
International Cryptology Conference, pages 104–113.
Springer, 1996.

[27] Butler W Lampson. A note on the confinement problem.
Communications of the ACM, 16(10):613–615, 1973.

[28] Heemin Lee, Sungyeong Jang, Han-Yee Kim, and
Taeweon Suh. Hardware-based flush+ reload attack
on armv8 system via acp. In 2021 International Confer-
ence on Information Networking (ICOIN), pages 32–35.
IEEE, 2021.

[29] Xiaodong Lin, Ting Chen, Tong Zhu, Kun Yang, and
Fengguo Wei. Automated forensic analysis of mobile
applications on android devices. Digital Investigation,
26:S59–S66, 2018.

[30] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémen-
tine Maurice, and Stefan Mangard. {ARMageddon}:
Cache attacks on mobile devices. In 25th USENIX Secu-
rity Symposium (USENIX Security 16), pages 549–564,
2016.

[31] Arm Ltd. big.little. https://www.arm.com/why-arm/
technologies/big-little.

[32] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon,
and Srdjan Capkun. Analysis of the communication
between colluding applications on modern smartphones.
In Proceedings of the 28th Annual Computer Security
Applications Conference, pages 51–60, 2012.

2134 33rd USENIX Security Symposium USENIX Association

https://source.android.com/docs/core/storage/scoped
https://source.android.com/docs/core/storage/scoped
https://source.android .com/security/bulletin/pixel/2021-01-01.
https://source.android .com/security/bulletin/pixel/2021-01-01.
https://www.arm.com/why-arm/technologies/big-little.
https://www.arm.com/why-arm/technologies/big-little.

[33] Yan Michalevsky, Dan Boneh, and Gabi Nakibly. Gyro-
phone: Recognizing speech from gyroscope signals. In
23rd USENIX Security Symposium (USENIX Security
14), pages 1053–1067, 2014.

[34] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Bal-
akrishnan, and Romit Roy Choudhury. Tapprints: your
finger taps have fingerprints. In Proceedings of the 10th
international conference on Mobile systems, applica-
tions, and services, pages 323–336, 2012.

[35] Sashank Narain, Triet D Vo-Huu, Kenneth Block, and
Guevara Noubir. Inferring user routes and locations
using zero-permission mobile sensors. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 397–
413. IEEE, 2016.

[36] Michael Neve, Jean-Pierre Seifert, and Zhenghong
Wang. A refined look at bernstein’s aes side-channel
analysis. In Proceedings of the 2006 ACM Symposium
on Information, computer and communications security,
pages 369–369, 2006.

[37] Lucky Onwuzurike and Emiliano De Cristofaro. Danger
is my middle name: experimenting with ssl vulnerabil-
ities in android apps. In Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mo-
bile Networks, pages 1–6, 2015.

[38] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: the case of aes. In Cryp-
tographers’ track at the RSA conference, pages 1–20.
Springer, 2006.

[39] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig,
and Joy Zhang. Accessory: password inference using
accelerometers on smartphones. In proceedings of the
twelfth workshop on mobile computing systems & appli-
cations, pages 1–6, 2012.

[40] Dan Page. Theoretical use of cache memory as a crypt-
analytic side-channel. Cryptology ePrint Archive, 2002.

[41] Ravi Sandhu and Pierangela Samarati. Authentication,
access control, and audit. ACM Computing Surveys
(CSUR), 28(1):241–243, 1996.

[42] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel
Weiser, Clémentine Maurice, Raphael Spreitzer, and Ste-
fan Mangard. Keydrown: Eliminating software-based
keystroke timing side-channel attacks. In Network and
Distributed System Security Symposium. Internet Soci-
ety, 2018.

[43] Asaf Shabtai, Yuval Fledel, and Yuval Elovici. Securing
android-powered mobile devices using selinux. IEEE
Security & Privacy, 8(3):36–44, 2009.

[44] Laurent Simon, Wenduan Xu, and Ross Anderson. Don’t
interrupt me while i type: Inferring text entered through
gesture typing on android keyboards. Privacy Enhancing
Technologies Symposium Advisory Board, 2016.

[45] Junko Takahashi, Toshinori Fukunaga, Kazumaro Aoki,
and Hitoshi Fuji. Highly accurate key extraction method
for access-driven cache attacks using correlation coeffi-
cient. In Australasian Conference on Information Secu-
rity and Privacy, pages 286–301. Springer, 2013.

[46] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B
Abu-Ghazaleh, Srikanth V Krishnamurthy, Edward JM
Colbert, and Paul Yu. Unveiling your keystrokes: A
cache-based side-channel attack on graphics libraries.
In NDSS, 2019.

[47] Minjun Wu, Stephen McCamant, Pen-Chung Yew, and
Antonia Zhai. Predator: A cache side-channel attack
detector based on precise event monitoring. In 2022
IEEE International Symposium on Secure and Private
Execution Environment Design (SEED), pages 25–36.
IEEE, 2022.

[48] Yuval Yarom and Katrina Falkner. {FLUSH+
RELOAD}: A high resolution, low noise, l3 cache {Side-
Channel} attack. In 23rd USENIX security symposium
(USENIX security 14), pages 719–732, 2014.

[49] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou,
and Y Thomas Hou. Truspy: Cache side-channel infor-
mation leakage from the secure world on arm devices.
Cryptology ePrint Archive, 2016.

[50] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang.
Return-oriented flush-reload side channels on arm and
their implications for android devices. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 858–870, 2016.

[51] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. A
software approach to defeating side channels in last-
level caches. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pages 871–882, 2016.

USENIX Association 33rd USENIX Security Symposium 2135

	Introduction
	Background
	Android App Sandboxing
	Dynamic Inter-App Component Sharing with Package Context
	CPU Caches and Side-Channel Attacks

	AndroScope
	Threat Model
	Overall Workflow
	Reconnaissance
	VDEX file Parsing
	ODEX file Parsing
	Third-Party Native Library Parsing

	Sandbox Penetration
	Side-Channel Probing
	DICI in Real-World Apps

	Evaluation
	Inferencing Driving Routes
	Inferring Keystroke Dynamics
	Flexibility of AndroScope
	Performance Overhead
	Number of Concurrent Addresses Monitored
	Countermeasures

	Related Work
	Cache Side-Channel Attacks on ARM
	Side-Channel Attacks on Mobile Sensors

	Discussion
	Other Scenarios of AndroScope
	Limitations

	Responsible Disclosure
	Conclusion

