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Abstract

Given the remarkable achievements of existing learning-based

malware detection in both academia and industry, this pa-

per presents MalGuise, a practical black-box adversarial at-

tack framework that evaluates the security risks of existing

learning-based Windows malware detection systems under the

black-box setting. MalGuise first employs a novel semantics-

preserving transformation of call-based redividing to

concurrently manipulate both nodes and edges of malware’s

control-flow graph, making it less noticeable. By employ-

ing a Monte-Carlo-tree-search-based optimization, MalGuise

then searches for an optimized sequence of call-based

redividing transformations to apply to the input Windows

malware for evasions. Finally, it reconstructs the adversar-

ial malware file based on the optimized transformation se-

quence while adhering to Windows executable format con-

straints, thereby maintaining the same semantics as the origi-

nal. MalGuise is systematically evaluated against three state-

of-the-art learning-based Windows malware detection sys-

tems under the black-box setting. Evaluation results demon-

strate that MalGuise achieves a remarkably high attack suc-

cess rate, mostly exceeding 95%, with over 91% of the gener-

ated adversarial malware files maintaining the same seman-

tics. Furthermore, MalGuise achieves up to a 74.97% attack

success rate against five anti-virus products, highlighting po-

tential tangible security concerns to real-world users.

1 Introduction

With the sustainable development of computer technology,

the proliferation of malware, short for malicious software,

has emerged as a grave security threat that performs malicious

activities on computer systems. In particular, the widespread

adoption of the Microsoft Windows family of operating sys-

tems (i.e., Windows) has rendered it a primary target for mal-

ware attacks. According to AV-TEST [8], the first three quar-

∗Xiang Ling and Zhiyu Wu are the co-first authors. Bin Wang and

Jingzheng Wu are the co-corresponding authors.

ters of 2022 have witnessed approximately 59.58 million new

instances of Windows malware, constituting over 95% of all

recently identified malware samples during this period [7]. To

defend against the ever-increasing Windows malware, consid-

erable research efforts with cutting-edge technologies have

been devoted to Windows malware detection [12, 40, 61]. Ba-

sically, Windows malware detection can trace its history back

to signature-based malware detection in the 1990s, which

mainly blacklists suspicious software based on a frequently

updated database of previously collected malware signatures.

Evidently, signature-based malware detection cannot detect

new or previously unknown malware. In the past two decades,

a variety of machine learning (ML) and deep learning (DL)

models have been explored and employed for Windows mal-

ware detection, collectively referred to as learning-based Win-

dows malware detection [40,61] in this paper. Leveraging the

high learning capacities of ML/DL models, learning-based

Windows malware detection has demonstrated its ability to

detect newly emerging and even zero-day malware, establish-

ing itself as a pivotal component of contemporary mainstream

anti-virus products in a fiercely competitive market [28, 43].

It is well known that signature-based malware detection

can be easily evaded by traditional obfuscation techniques,

such as compression, encryption, register reassignment, code

virtualization, etc. However, with the widespread availabil-

ity of de-obfuscation tools and the advanced capabilities of

learning-based malware detection, traditional obfuscations

are largely ineffective in evading learning-based malware de-

tection [2, 30, 48, 63]. On the other hand, recent studies have

unveiled that ML/DL models are inherently vulnerable to ad-

versarial attacks [21, 34, 35, 37, 58] in various domains (e.g.,

computer vision, natural language processing), by which the

adversary maliciously creates adversarial examples as the

input to trigger the target ML/DL model to make mistakes.

Therefore, in addition to traditional obfuscations, this paper

explores adversarial attacks with a specific focus on evad-

ing present-day learning-based Windows malware detection

systems. It should be noted that this paper does not aim to

substitute traditional obfuscations, but rather to complement
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their limitations in evading advanced learning-based malware

detection due to its widespread adoption and escalating promi-

nence in both academia and industry [28, 43, 61].

In particular, this paper attempts to explore an adversar-

ial attack under the realistic black-box setting for effectively

and efficiently generating practical adversarial malware files,

which are capable of evading learning-based Windows mal-

ware detection systems. Towards this, we identify two key

challenges (C#1 & C#2) that need to be addressed as follows.

• C#1: How to generate practical adversarial malware files

that maintain the same semantics as the original ones while

remaining less noticeable to possible defenders? Previous

adversarial attacks mainly consist of i adding irrelevant API

calls [3,13,26,54], ii manipulating raw bytes of malware par-

tially or globally [5,19,31,33,41,51], and iii manipulating the

control-flow graph (CFG) of malware by injecting semantic

nops [63]. We argue that the first two types of adversarial at-

tacks ( i & ii ) are either impractical as they generate adversar-

ial features rather than files, or are strictly limited to specific

malware detection like MalConv [48]. While the third type
iii exhibits improved scalability against CFG-based malware

detection, it only considers coarse-grained transformations

that manipulate CFG’s nodes, rendering it quite noticeable

and easily detectable by defenders. Thus, to tackle C#1, we

propose a novel fine-grained transformation towards CFG,

namely call-based redividing, which not only manipu-

lates the nodes (i.e., instruction blocks) but also the edges,

i.e., the control-flow relationships between two blocks.

• C#2: How to efficiently search in the vast and discrete

space of malware under the black-box setting such that the

optimized adversarial malware file can evade learning-based

Windows malware detection? We investigate existing state-

of-the-art black-box adversarial attacks, including gradient

estimations with surrogate models [3, 31, 54], evolutionary

algorithms [13, 41], and reinforcement learning [5, 63]. It

is evident that those attacks based on gradient estimations

heavily rely on prior information (e.g., training data, model

architecture) about the target system. Likewise, those attacks

based on evolutionary algorithms and reinforcement learning

are computationally expensive due to the vast and discrete

space of malware. Thus, we address C#2 by employing a

Monte Carlo tree search (MCTS)-based optimization to effi-

ciently search for the optimal adversarial malware that can

successfully evade the target malware detection system.

To sum up, this paper proposes a practical adversarial attack

framework, namely MalGuise, against learning-based Win-

dows malware detection systems under the black-box setting.

As depicted in Fig. 2, MalGuise first represents the input Win-

dows malware as the CFG and introduces a novel semantics-

preserving transformation of call-based redividing that

can manipulate both nodes and edges of CFG, making it less

noticeable compared to previous attacks. Then, we employ

an MCTS optimization that could effectively and efficiently

guide MalGuise to search for an optimal sequence of call-

based redividing transformations within the vast and dis-

crete space of malware under the black-box setting. Finally,

based on the optimized transformation sequence, MalGuise

reconstructs the adversarial malware file while adhering to

the constraints of Windows executables, thereby successfully

evading the target Windows malware detection system while

preserving the same semantics as the original malware.

We evaluate the attack effectiveness of MalGuise against

three representative learning-based Windows malware detec-

tion systems (i.e., MalGraph, Magic, and MalConv) compared

with two state-of-the-art adversarial attacks on a large wild

dataset containing hundreds of thousands of Windows mal-

ware and goodware samples. Evaluation results show that

MalGuise is agnostic to the target learning-based Windows

malware detection systems and consistently achieves a high

attack success rate exceeding 95%. Meanwhile, we empiri-

cally verify that MalGuise can generate realistic adversarial

malware files with a probability of over 91%, a significant

improvement over previous adversarial attacks that achieved

probabilities of less than 50% or failed completely. Further-

more, to understand the security risks of anti-virus products

in the wild, we evaluate and observe that the attack success

rate of MalGuise against five commonly used commercial

anti-virus products can reach a range of 11.29% to 74.97%.

To summarize, we highlight our key contributions as follows:

• To understand and assess the security risks of present-day

learning-based Windows malware detection, we propose a

practical black-box adversarial attack framework MalGuise

that generates realistic adversarial malware files.

• To the best of our knowledge, MalGuise is the first to apply

a more fine-grained transformation to the CFG of Windows

malware, call-based redividing, which not only manip-

ulates its nodes (i.e., instruction blocks) but also its edges,

i.e., the control-flow relationship.

• Evaluations demonstrate that MalGuise not only effec-

tively evades state-of-the-art learning-based Windows mal-

ware detection with attack success rates exceeding 95%, but

also evades five commercial anti-virus products, achieving

attack success rates ranging from 11.29% to 74.97%.

2 Preliminaries & Threat Model

2.1 Preliminaries on learning-based malware

detection

Fig. 1 provides an overview of learning-based malware de-

tection. First, as ML/DL models only operate on numeric

data, the training and testing samples are pre-processed by

feature engineering before inputting. Formally, feature en-

gineering can be formulated as φ : Z→X , which produces

a feature vector x in the feature-space X (i.e., x∈X ) for a

given executable z in the problem-space Z (i.e., z∈Z). Then,

using training samples, the ML/DL model is employed and

trained as the learning-based malware detection f : Z→Y .

7394    33rd USENIX Security Symposium USENIX Association



That is, given an executable z∈Z, f can predict a correspond-

ing label y in the label-space Y (i.e., y∈Y = {0,1}), such

that f (z)= y, in which y=0 denotes goodware while y=1

denotes malware. For ease of notations like [36, 40], we de-

note the learning-based malware detection that can return the

malicious probability as g : Z→R, in which g(z) denotes the

predicted malicious probability for z and the opposite benign

probability is naturally inferred as 1−g(z).

Training Samples 

with Labels

Testing Sample(s)

Feature

Engineeringx = ϕ(z)
Model

Training

Model

Prediction

𝑧 ∈ 𝒵𝑦 ∈ 𝒴

y = f z = g(

Malware

y = 1

Goodware

y = 0

Trained

Model

x ∈ 𝒳y ∈ 𝒴
𝑦 ∈ 𝒴𝑧 ∈ 𝒵 𝑥 ∈ 𝒳𝑦 = 𝑓 𝑧

Figure 1: A overview of learning-based malware detection.

2.2 Threat Model

Following the widely used framework of modeling threats in

adversarial machine learning [47], we report our threat model

in terms of goal, knowledge, and capability as follows.

Adversary’s Goal. Aiming at evading learning-based mal-

ware detection, it is hugely profitable for the adversary to mis-

classify malware as goodware, but not vice versa. Therefore,

the primary goal of the adversary is to generate an adversarial

malware file zadv derived from an input malware z ∈ Z (i.e.,

f (z) = 1) with minimal efforts, such that zadv ∈ Z can not

only evade the target learning-based malware detection f (i.e.,

f (zadv) = 0) but also preserve the same semantics as z [40].

Adversary’s Knowledge and Capability. We start with an

adversary who intends to perform the classic zero-knowledge

black-box attack [42, 47] against the learning-based malware

detection system. It indicates that the adversary has no prior

information on the target system in terms of training data,

extracted feature sets, employed learning algorithms with pa-

rameters, and model architectures with weights. However, it

should be clarified that the zero-knowledge black-box attack

retains some minimal information about the target system, in-

cluding the specific detection task (e.g., static or dynamic anal-

ysis), the employed feature type that represents executables

(e.g., image, sequence, or graph), and the querying feedback.

In this paper, we restrict the adversary’s knowledge to only

knowing that our target system is based on static analysis that

focuses on advanced abstract graph representations like CFG,

and knowing the predicted label f (z) along with or without its

probability g(z) after inputting z. Furthermore, to ensure that

realistic adversarial malware files can be generated, the adver-

sary has the capability of manipulating Windows executables

while adhering to its standard specifications [45].

3 Design of MALGUISE

3.1 Problem Formulation

Targeting learning-based Windows malware detection, the

primary goal of this paper is to generate a realistic adver-

sarial malware file zadv ∈ Z from a given malware z, such

that zadv is not only misclassified as goodware but also main-

tains the same semantics as z. To this end, we explore the

problem-space attack [47] that applies semantics-preserving

transformations within the problem space that can transform

z to zadv step-by-step. In particular, as formulated in Eq. (1),

we start to define the first black-box attack scenario with the

malicious probability g(·) by reducing the probability that

zadv is predicted as malicious as much as possible.

argmax
T

g(z)−g(zadv) ▶ with predicted probabilities (1)

argmin
T

f (zadv) ▶ without predicted probabilities (2)

s. t.: f (z) = 1, f (zadv) = 0, zadv = T(z) ∈ Z (3)

T = T1 ◦T2 ◦ · · · ◦Tn ∈ T (4)

in which T ∈ T denotes one of the atomic transformations

that can transform one executable into another semantics-

preserving executable; T = T1 ◦ · · · ◦Tn denotes a finite and

ordered sequence of n transformations that z can step-by-step

transform z into an adversarial malware, i.e., zadv = T(z).
Similarly, Eq. (2) defines another stricter black-box setting

where the adversary can only obtain the predicted label f (·)
without any predicted probabilities, which simply minimizes

the predicted label of zadv to 0 since 0 denotes goodware.

3.2 Overview Framework of MALGUISE

As depicted in Fig. 2, the overview framework of MalGuise

mainly consists of three backbone phases, i.e., ➀ adversarial

transformation preparation, ➁ MCTS-guided searching, and

➂ adversarial malware reconstruction, which are elaborated in

the following parts of §3.2.1, §3.2.2, and §3.2.3, respectively.

Malware Control-flow 
Graph (CFG)

Assembly
Code

Available Semantics-preserving 
Transformations

a) Manipulating Edges of CFG
— Call-based Redividing

b) Manipulating Nodes of CFG
— Semantic NOPs Injecting

Selection

① Adversarial Transformation 
Preparation

Optimized Control-
flow Graph

③ Adversarial Malware 
Reconstruction

Adversarial
Assembly Code

Adversarial
Malware

② MCTS-Guided Searching

Expansion

Simulation

Backpropagation

Figure 2: The overview framework of MalGuise.
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3.2.1 Adversarial Transformation Preparation

To prepare adversarial transformations that manipulate the

given malware while preserving its semantics, we initially

represent a malware sample as the CFG, in which each node

denotes a basic block and each edge denotes a control-flow

path between two basic blocks during execution. The main

reason to represent malware with CFG is twofold. i) CFG

encapsulates the intrinsic control flows during execution, con-

taining rich semantic and structural information of assembly

instructions. Therefore, if we can manipulate both CFG’s

nodes and edges, we can change both the semantics and struc-

tures for generating possible adversarial malware files in a

more fine-grained fashion, thereby making them less notice-

able by possible defenders. ii) CFG has gained widespread

adoption in various software analysis tasks [39], and CFG-

based malware detection is extensively proven to be tech-

nically advanced and highly effective in both industry and

academia [23, 38, 59]. Therefore, if we could successfully

attack these advanced CFG-based malware detection as rep-

resentative cases, it would demonstrate the state-of-the-art

attack effectiveness of MalGuise.

However, if we transform one executable into another by

directly manipulating its CFG, it is extremely easy to cause

various unexpected issues like addressing or processing errors,

rendering the transformed executable unable to execute prop-

erly or even crashing immediately. To circumvent these issues

and avoid being noticeable by potential defenders, we propose

a novel semantics-preserving transformation for Windows ex-

ecutables, namely call-based redividing. It redivides the

basic blocks that contain at least one “call” instruction for

concurrently manipulating both nodes and edges in the CFG.

To be specific, for a given executable, the call-based

redividing first identifies and annotates all available basic

blocks with “call” instruction(s). Then, supposing there is a

basic block v containing a “call” instruction, it takes the “call”

as the dividing line, and attempts to redivide the original basic

block v into a combination of three consecutive basic blocks

(i.e., the fore-basic-block v f ore, the post-basic-block vpost , and

the mid-basic-block vmid). Finally, to avoid the basic block of

vmid being easily noticed by defenders due to having only two

instructions of “call” and “jmp”, call-based redividing

enriches the assembly instructions in vmid by injecting seman-

tic nops [14, 41] before the “call” or between the “call” and

“jmp”, and employs the context-free grammar from [41] to

generate the semantic nops diversely.

As illustrated in Fig. 3, we first show one basic block of

the latest “LockBit 3.0”, an active and famous ransom gang,

as a representative example in Fig. 3(a). After applying the

transformation, Fig. 3(b) shows the transformed composite

of three consecutive basic blocks, in which the ends of two

basic blocks (i.e., v f ore and vmid) are two newly added “jmp”

instructions, and those assembly instructions between “call”

and “jmp” in vmid are newly added semantic nops.

.   .   .   .   .   . 
push  eax 
jmp   loc_42C000

lea  eax, [ebp+var_1] 
.   .   .   .   .   .
push  eax 
call  sub_41B348 
mov  [ebp+var_2], eax 
call  sub_41B204 
mov  ebx, eax 
.   .   .   .   .   . 
lea  esi, [esi+0F8h]

call   sub_41B2F4 
.   .   .   .   .  . 
dec   ah 
inc   ah 
.   .   .   .   .  . 
jmp   loc_41B033

.   .   .   .   .   .
push  eax
call        sub_41B2F4 
lea  eax, [ebp+var_1] 
.   .   .   .   .   .
push  eax 
call  sub_41B348 
mov  [ebp+var_2], eax 
call  sub_41B204 
mov  ebx, eax 
.   .   .   .   .   . 
lea  esi, [esi+0F8h]

v vfore

vpost

vmid

(a) Before transformation.

.   .   .   .   .   . 
push  eax 
jmp   loc_42C000

lea  eax, [ebp+var_1] 
.   .   .   .   .   .
push  eax 
call  sub_41B348 
mov  [ebp+var_2], eax 
call  sub_41B204 
mov  ebx, eax 
.   .   .   .   .   . 
lea  esi, [esi+0F8h]

call   sub_41B2F4 
.   .   .   .   .  . 
dec   ah 
inc   ah 
.   .   .   .   .  . 
jmp   loc_41B033

.   .   .   .   .   .
push  eax
call        sub_41B2F4 
lea  eax, [ebp+var_1] 
.   .   .   .   .   .
push  eax 
call  sub_41B348 
mov  [ebp+var_2], eax 
call  sub_41B204 
mov  ebx, eax 
.   .   .   .   .   . 
lea  esi, [esi+0F8h]

v vfore

vpost

vmid

(b) After applying a call-based redividing.

Figure 3: The call-based redividing redivides one basic

block in the “LockBit 3.0” ransomware (i.e., Fig. 3(a)) into a

composite of three consecutive basic blocks (i.e., Fig. 3(b)).

3.2.2 MCTS-Guided Searching

Recalling our adversarial attack formulated in §3.1 and the

call-based redividing transformation towards the CFG

representation (i.e., x = φ(z)) of a given malware z in §3.2.1,

we decompose MalGuise into first finding an optimized trans-

formation sequence T that consecutively transforms the orig-

inal CFG x into an adversarial CFG of xadv (detailed in this

part of §3.2.2), and then reconstructing the final adversarial

malware file (i.e., zadv), which will be detailed in §3.2.3.

In essence, the optimal solution we are solving here is an

optimized sequence of transformations T = T1 ◦ · · · ◦TN of

length N, and each Tk = {I
call
k ,I

s-nops
k } involves two decision-

making processes: i) Selecting one of all available “call” in-

structions to be redivided, i.e., Icallk , and it should be noted

that Icallk can be repeatedly selected in a recursive manner; ii)

Determining the proper semantic nops to be injected, namely

I
s-nops
k , and it can be generated infinitely by the employed

context-free grammar [41]. In short, determining an optimal

T in MalGuise requires exploring and optimizing in an infi-

nite and discrete space with a limited computational budget

under the black-box setting. To this end, our key idea is to

employ an MCTS-guided searching algorithm [17] for two

major reasons. First, MCTS has been widely and successfully

used to solve the long-standing challenging problem of com-

puter Go [17, 49] and other difficult optimization problems

that require little or no domain knowledge [10]. Second, our

task of optimizing T under the black-box setting is strictly

limited to searching in an infinite and discrete space without

prior knowledge. Therefore, we argue that an MCTS-guided

searching algorithm aligns well with our task requirements.

Algorithm 1 presents the MCTS-guided searching algo-

rithm, which inputs a given malware z with its CFG x and

outputs the transformation sequence T. Firstly, we obtain all

available instructions Icall from x and initialize the MCTS’s

root node z and T(line 2–3). Meanwhile, we limit the max-
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Algorithm 1: MCTS-Guided Searching Algorithm.

Input :a given malware z with its CFG x, target system f ,

max length N, simulation number S, budget C.

Output : the transformation sequence T.

1 Begin

2 I
call ← GetAllCalls(x);

3 v, T← InitMCTSRootNode(x,Icall), /0 ; //initialize

4 for i← 1 to N do //loop upto maximum length

5 for j← 1 to C do //loop upto computation budget

6 if random(0,1)<0.5 then //avoid unlimited expansion

7 vselected ← Selection(v);
8 else

9 vselected ← Expansion(v);
10 reward ← Simulation(vselected , f ,S);
11 BackPropagation(vselected ,reward);

12 vnode← ChildWithHighestReward(v);
13 T← T.append(vnode.T );
14 xadv← vnode.x;

15 if Evaded( f ,xadv)==True then

16 return T

17 v← vnode

imum length of the optimized transformation sequence to

N (line 4–17) and limit the maximum number of iterations

of MCTS to C, i.e., the computational budget (line 5–11).

As for the MCTS optimization process, we follow the four

standard steps (i.e., Selection, Expansion, Simulation,

and Backpropagation) (line 6–11). It is noted that, as call-

based redividing can be performed unlimitedly, the game

tree of MCTS can be unlimitedly expanded downwards, i.e.,

Expansion. Therefore, we force to select the most promising

child node (i.e., Selection) in the established game tree via

a simple random sampling (line 6). After C iterations, we can

thus obtain the child node vnode with the highest reward value,

append its transformation into the transformation sequence

T, and update the adversarial CFG xadv (line 12–14). Finally,

if xadv evades f , return the transformation sequence T, other-

wise, continue to use vnode as the root node for the next round

until reaching the maximum length N. For simplicity, more

implementation details can be found in Appendix A.

3.2.3 Adversarial Malware Reconstruction

Finally, we reconstruct the adversarial malware zadv = T(z)
based on the original malware file z and the optimized transfor-

mation sequence T, which is briefly outlined in Algorithm 2.

It is noted that each transformation Tk = {I
call
k ,I

s-nops
k } and

we denote Acall
k as the address of Icallk . We first calculate the

space required for all call-based redividing transforma-

tions in T as ∆ (line 2–6). Meanwhile, let Sslack and Aslack

denote the size and address of the slack space in the “.text”

section of z, respectively. Similarly, let Alast and Slast de-

note the address and size of the last section. If ∆ is less

than the size of slack space, we directly take Aslack as the

Algorithm 2: Adversarial Malware Reconstruction

Input :original malware z, the transformation sequence T.

Output : the adversarial malware zadv.

1 Begin

2 ∆← 0 ;

3 for k← 1 to N do

4 ∆← ∆+GetSize(Icallk )+GetSize(I
s-nops
k );

5 I
jmp
k ⇐⇒ jmp [Acall

k +GetSize(Icallk )];

6 ∆← ∆+GetSize(I
jmp
k ) ;

7 if ∆ < Sslack then //inject into the slack space

8 Ain j← Aslack

9 else //inject into a new section

10 Ain j← Alast +RoundUp(Slast , page_size) ;

11 take actions to meet the standard specifications;

12 zadv←Adv_Patch(z,T,Ain j) ; //refer to Algorithm 3

13 return zadv.

injecting address Ain j(line 7–8). Otherwise, we will add a

new section, whose starting injection address is computed

as Ain j = Alast+RoundUp(Slast , page_size)(line 9–10). This

is because, according to the standard Windows executable

specifications [45], its section size must be a multiple of the

architecture’s page size (i.e., 4KB for x86 and MIPS), to pre-

vent unexpected issues (e.g., addressing errors) that may arise

during execution. Apart from this, other subsequent actions

should be taken to meet the Windows specifications, such

as setting the size for the “.text” section or the newly added

section and adjusting other fields (e.g., “size of image”) in the

header of Windows executables.

After obtaining the injecting address Ain j, we reconstruct

zadv with the procedure of Adv_Patch, which is mainly

outlined Algorithm 3. In particular, we first replace the

selected I
call
k instruction with a new jmp instruction (i.e.,

“jmp [A
in j

k ]”), which transfers the control-flow to the inject-

ing address for the k-th transformation in the new destina-

tion, i.e., A
in j

k (line 4). Secondly, starting from the injecting

address A
in j

k of either the slack space or the newly added

section, we deposit Icall
k and I

s-nops
k in order (line 5–7). Sub-

sequently, we inject a new jmp instruction (i.e., I
jmp

k ⇐⇒
jmp [Acall

k +GetSize(Icallk )]), which transfers the control-flow

backward to the next instruction of Icall
k in the original section

(line 8–9). Finally, after all of N transformations are applied,

we can reconstruct the final adversarial malware zadv that

preserves the same semantics as the original malware z.

Fig. 4 shows the conceptual layout of the generated adver-

sarial “LockBit” after taking one call-based redividing

transformation. It is important to note that, just applying two

optimized transformations of call-based redividing to

“LockBit 3.0”, the generated adversarial “LockBit” can suc-

cessfully evade three state-of-the-art learning-based malware

detection (i.e., MalGraph, Magic, and MalConv) and the fa-

mous anti-virus product of Kaspersky in our evaluation.
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Algorithm 3: Procedure of Adv_Patch(z,T,Ain j)

1 Begin

2 zadv, A
in j
1 ← z, Ain j;

3 for k← 1 to N do

4 zadv← Patch(zadv, Acall
k , jmp [A

in j
k ]) ;

5 zadv← Patch(zadv, A
in j
k , Icall

k ) ;

6 A
in j
k ← A

in j
k +GetSize(Icall

k );

7 zadv← Patch(zadv, A
in j
k , I

s-nops
k ) ;

8 A
in j
k ← A

in j
k +GetSize(I

s-nops
k );

9 zadv← Patch(zadv, A
in j
k , I

jmp
k ) ;

10 A
in j
k+1← A

in j
k +GetSize(I

jmp
k );

11 return zadv

0x41B033: lea eax, [ebp+var_1] 
.   .   .   .   .   .

0x41B041: push  eax 
0x41B042: call         sub_41B348 
0x41B047: mov [ebp+var_2], eax 
0x41B04A: call  sub_41B204 
0x41B04F: mov  ebx, eax 

.   .   .   .   .   .
0x41B05D: lea esi, [esi+0F8h]

.   .   .   .   .   .
0x41B02D: push  eax
0x41B02E: jmp   loc_42C000 

0x42C400: call  sub_41B2F4 
.   .   .   .   .   .

0x42C453: dec  ah 
0x42C455: inc  ah 

.   .   .   .   .   .
0x42C4A7: jmp loc_41B033

Section Information

".text" section newly added section

 Addressing Order 

...... 
 section

......
 section

 Header 
Information

DOS Header

DOS Stub

PE Header

Section 
Table 

Figure 4: The conceptual layout of the reconstructed adversar-

ial Windows malware file for the “LockBit 3.0” ransomware.

4 Evaluation

This section is dedicated to conducting evaluations aiming at

answering the following five research questions:

• RQ1 (Attack Performance): What is the attack perfor-

mance of MalGuise against the state-of-the-art learning-

based Windows malware detection systems?

• RQ2 (Impacting Factors): What impacting factors affect

the attack performance of MalGuise?

• RQ3 (Utility Performance): Does the adversarial malware

generated by MalGuise maintain the original semantics?

• RQ4 (Real-world Performance): To what extend does

MalGuise evade existing commercial anti-virus products?

• RQ5 (Possible Defenses): What is the attack performance

of MalGuise against potential defenses?

4.1 Evaluation Setup

4.1.1 Benchmark Dataset

We utilize the same benchmark dataset as employed in prior

studies [38]. This dataset is a balanced wild dataset of 210,251

Windows executables with 108,610 goodware and 101,641

malware, consisting of 848 different malware families. As

summarized in Table 1, we split it into three disjoint train-

ing/validation/testing sets and more details are in Appendix B.

Table 1: Summary statistics of the benchmark dataset.

Dataset Training Validation Testing Total

Malware 81,641 10,000 10,000 101,641

Goodware 88,610 10,000 10,000 108,610

Total 170,251 20,000 20,000 210,251

4.1.2 Target Systems with Detecting Performance

We evaluate the attack performance of MalGuise against two

kinds of target systems (i.e., learning-based malware detection

systems and real-world anti-virus products) as follows.

• Learning-based Windows malware detection systems.

We first employ three SOTA learning-based malware detec-

tion (i.e., MalGraph [38], Magic [59], MalConv [48]) from

either top-tier academic conferences or highly cited publica-

tions. To avoid possible biases, we directly adopt their publicly

available implementations with default hyper-parameters and

evaluate their detecting performance with three commonly

used metrics, i.e., AUC, TPR/FPR, and balanced Accuracy

(bACC). Table 2 shows that all of them show similar detect-

ing performance as presented in their original publications,

affirming their excellent performance in detecting malware.

Table 2: The detecting performance of three learning-based

Windows malware detection systems in our testing dataset.

Target

Systems

AUC

(%)

FPR = 1% FPR = 0.1%

TPR (%) bACC (%) TPR (%) bACC (%)

MalGraph 99.94 99.34 99.18 92.78 96.36

Magic 99.89 99.02 99.02 89.28 94.59

MalConv 99.91 99.22 99.12 86.54 93.22

• Anti-virus products. We additionally employ five anti-

virus products, i.e., McAfee, Comodo, Kaspersky, ClamAV,

and Microsoft Defender ATP (MS-ATP) [44], due to their

widespread recognition in the security community of Win-

dows malware detection. In particular, McAfee, Comodo, and

Kaspersky are three award-winning commercial anti-viruses

recommended in [52]. ClamAV [16] is the most popular open-

sourced anti-virus engine, which has been extensively em-

ployed in both academia and industry. MS-ATP [44] is a

learning-based security protection tool for Windows and is

awarded a perfect 5-star rating by [4]. Notably, we do not

employ VirusTotal as it strongly advises against using their

anti-viruses for comparative evaluations [55].

4.1.3 Baseline Attacks

We compare MalGuise with two kinds of baseline attacks, i.e.,

adversarial attacks and obfuscations. In principle, to facilitate
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fair comparisons, we follow the same evaluation settings of

all baseline attacks as their publications or implementations.

• Adversarial attacks: We employ two SOTA adversarial

attacks: i) MMO [41] is a white-box adversarial attack that

uses gradient-based optimizations to guide binary diversifica-

tion tools to manipulate the raw bytes of Windows malware.

Its maximum iteration number is 200 and the increment rate

of adversarial malware size is limited to 5%. ii) SRL [63]

is a black-box adversarial attack that employs reinforcement

learning to iteratively inject semantic nops into the malware’s

CFG. Its maximum iteration number, the injection budget, and

the modified basic blocks are set to be 30, 5%, and 1250, re-

spectively. Notably, SRL only generates the adversarial CFG

features rather than realistic malware files, making it incom-

patible with MalConv, which requires raw bytes as inputs.

• Obfuscations: We employ three obfuscation tools that

have been widely employed to obfuscate Windows executa-

bles and follow their default settings for evaluations. In partic-

ular, UPX [53] is an open-source and universal packing tool

for executables by performing compression on the entire file;

VMProtect [56] typically uses code virtualization for obfusca-

tions via simulating a virtual machine executing the key part

in executables; Enigma [20] employs a combination of mul-

tiple obfuscation techniques, e.g., import table elimination,

API simulation, code virtualization, etc.

4.1.4 Evaluation Metrics

We employ two kinds of evaluation metrics as follows.

• Attack Success Rate (ASR). ASR is the most common

evaluation metric for adversarial attacks [37, 41, 63]. Given a

candidate malware set Z, ASR is defined as the ratio of gen-

erated adversarial malware that successfully evades the target

system (i.e., f (zadv)=0) among all malware (i.e., f (z)=1).

ASR =
|( f (z) = 1)∧ ( f (zadv) = 0)|

| f (z) = 1|
, ∀z ∈ Z (5)

where | · | counts the number that meets the condition.

• Semantics Preservation Rate (SPR). As the generated

adversarial malware might not preserve the same semantics

as the original malware, i.e., it cannot be executed or lose the

original malicious behaviors. To this end, we define SPR as

the ratio of adversarial malware with the original semantics

preserved among all adversarial malware as follows.

SPR =
|Sem(z,zadv) = 1|

|( f (z) = 1)∧ ( f (zadv) = 0)|
, ∀z ∈ Z (6)

where Sem(z,zadv)=1 denotes zadv and z maintain the same

semantics. §4.2.3 will detail how to measure SPR empirically.

4.1.5 Implementation Details

MalGuise is primarily implemented with Python and evalu-

ated on a computer equipped with 20 Intel Xeon CPUs, 128

GB memory, and 4 NVIDIA GeForce RTX 3090. Firstly,

MalGuise uses IDAPython in IDA Pro 6.4 [24] to disassem-

ble Windows executables and represent them as CFGs. In

the MCTS-guided searching algorithm, by default, we set

the max length N to 6, set the computational budget C to

40, set the simulation number S to 1, and limit the size of

injected semantic nops to no more than 5% of the original

size. To reconstruct the adversarial malware file, we mainly

employ two Python libraries, pefile1 and LIEF2, to parse and

patch Windows executables. It is worth noting that, those

injected semantic nops can be generally divided into four cat-

egories: arithmetic (e.g., “add eax, 1; sub eax, 1”), logical

(e.g., “add eax, eax”), comparison (e.g., “cmp eax, eax”),

and data transfer (e.g., “push eax; pop eax”).

4.2 Evaluation Results & Analysis

4.2.1 Answer to RQ1 (Attack Performance)

To assess the attack performance of MalGuise, we evaluate it

by comparing its ASR performance with all baseline attacks

on all 10,000 testing malware samples from the benchmark

dataset, which is illustrated in Table 3. Recall in §4.1.3, MMO

is a white-box adversarial attack, serving as an upper bound

to assess the attack performance of its black-box attacks. All

three obfuscations only apply to the w/o prob. scenario as

they do not require any feedback from the target system.

Table 3: The ASR performance (%) comparisons between

MalGuise and baseline attacks against three target systems

under two black-box scenarios, i.e., w/ prob. and w/o prob.

Black-box

Scenarios
Attacks

MalGraph Magic MalConv

FPR

=1%

FPR

=0.1%

FPR

=1%

FPR

=0.1%

FPR

=1%

FPR

=0.1%

w/

prob.

MMO 15.55 52.30 12.82 40.13 11.99 39.66

SRL 2.39 19.59 25.38 86.77 — —

MalGuise 97.47 97.77 99.29 99.42
34.36

(97.76)

97.38

(99.77)

w/o

prob.

MMO 3.73 27.83 3.41 25.46 2.46 20.72

SRL 2.59 15.28 3.84 47.48 — —

UPX 0.55 4.43 3.30 39.80 0.31 9.32

VMProtect 0 0 0.23 4.33 0 0

Enigma 0.81 11.69 0 28.96 0 0.24

MalGuise 96.84 96.49 99.27 99.07
31.41

(95.18)

88.02

(99.77)

“—” means SRL does not apply to MalConv as it cannot generate real malware files.

For all attacks, Table 3 shows that lower FPR values for

the three target systems correspond to higher ASRs achieved

by each attack. The reason is evident that a lower value of

1pefile: https://github.com/erocarrera/pefile
2LIEF: https://lief-project.github.io
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FPR allowed by the binary classifier indicates it has a higher

threshold. Hence, the adversary can more easily reduce the

predicted malicious probability to a level below the threshold.

Additionally, it is evident that each attack performs no better

in the scenario of w/o prob. than in the scenario of w/ prob.

Adversarial attacks: MMO achieves low ASR perfor-

mance against all three target systems in both attack scenarios.

Particularly, in the case of FPR=1% for all target systems, the

ASRs of MMO are below 16% and 4% in the scenarios of w/

prob. and w/o prob., respectively. These imply that, although

MMO theoretically can be used against all target systems, it

shows inferior attack performance against them. The main rea-

son we conjecture is that, since MMO manipulates the entire

raw bytes of malware with binary diversification techniques

in general, it does not take into account the discriminative

features employed in different target systems.

For SRL, in both scenarios of w/ prob. and w/o prob., it

shows obviously higher ASRs against Magic than MalGraph

in both FPRs. This is mainly because SRL is specifically

designed to attack Magic which purely builds on CFG. How-

ever, the hierarchical nature of MalGraph that combines both

the function call graph and CFG further weakens the attack

performance of SRL, as SRL only manipulates nodes of CFG

and neglects to manipulate its edges.

Obfuscations: It is observed that all three obfuscations

show inferior attack performance, which once again validates

that traditional obfuscation tools are largely ineffective against

learning-based malware detection [2, 30, 48]. Specifically,

VMProtect achieves the worst attack performance against all

three target systems, while UPX and Enigma show slightly

better attack performance, but remain unsatisfactory with all

achieved ASRs not exceeding 40%. This is mainly because,

VMProtect typically obfuscates only a small portion of the

malware file [56, 57], while both UPX and Enigma can glob-

ally obfuscate the entire malware file, which slightly increases

the likelihood of altering the discriminative semantic features.

However, as UPX and Enigma remain unknown without the

security experts’ intervention, it is still challenging to purpose-

fully manipulate the discriminative semantic features. More

evaluations in terms of size alteration ratio are in Appendix C.

Compare MalGuise with all baseline attacks: Table 3

shows that MalGuise achieves the best attack performance

against all three target systems in all scenarios and cases.

When attacking MalGraph and Magic in all scenarios and

cases, all ASR values achieved by MalGuise exceed 97%.

More importantly, even in the strict attack scenario of w/o

prob., MalGuise still maintains its ASR performance nearly

unchanged, i.e., decrease by no more than 1%, compared to

the scenario of w/ prob. When attacking MalConv, although

the ASR performance of MalGuise is much better than that

of all baseline attacks, its ASR is still relatively poor (i.e.,

below 35%) in the case of FPR=1%. However, when inves-

tigating MalGuise in the subsequent §4.2.2, we find that its

attack performance against MalConv is highly dependent on

the injected semantic nops. Thus, by incorporating the 25

most frequently used semantic nops, MalGuise is improved

to achieve higher ASRs of 97.76% and 95.18% against Mal-

Conv in both w/ prob. and w/o prob. scenarios, respectively.

Answer to RQ1 (Attack Performance): Prior obfuscations

and adversarial attacks either cannot provide satisfactory

attack effectiveness or fail to scale well to different types of

learning-based Windows malware detection. However, even

in the strict black-box attack scenario (w/o prob.), MalGuise

is agnostic to learning-based Windows malware detection

with a high attack success rate exceeding 95% in most cases.

4.2.2 Answer to RQ2 (Impacting Factors)

We conduct a series of ablation studies to explore the impact-

ing factors that affect the attack performance of MalGuise.

Impact of key parts in call-based redividing. The

core of MalGuise is to apply the transformation of call-

based redividing, which primarily involves two key parts:

† injecting semantic nops and ‡ redividing call instructions,

for manipulating the CFG’s nodes and edges, respectively. To

examine the impact of the above two parts, we compare the

ASR performance of MalGuise with its two variants that ap-

ply only one of the key parts (i.e., MalGuise
† and MalGuise

‡)

under the attack scenario of w/ prob.

From Table 4, both MalGuise
† and MalGuise

‡ show almost

negligible attack performance (with ASRs below 5%) against

both MalGraph and Magic in both FPRs. When attacking

MalConv, MalGuise
‡ still shows inferior attack performance,

while MalGuise
† shows better attack performance, achiev-

ing ASRs of 23.04% and 79.86% in the cases of FPR=1%

and FPR=0.1%, respectively. The reason is evident that the

essence of MalGuise
† is to inject semantic nops into malware,

which can significantly and directly alter their raw bytes.Thus,

MalGuise
† can easily affect the detecting performance of

MalConv which inputs the raw bytes of malware. Finally,

comparing with the above two variants, MalGuise achieves

considerably higher attack performance with over 97% ASR

in all cases. More evaluations against anti-viruses are in Ap-

pendix C. All the above observations indicate that MalGuise

with only manipulating either CFG’s nodes or edges demon-

strates inferior attack performance, and only by combining

both can the attack performance of MalGuise be maximized.

Impact of the number of modified basic blocks in CFG.

We investigate the impact of the number of modified basic

blocks for all generated adversarial malware that success-

fully evade the three learning-based malware detection when

FPR=1%, and show their corresponding frequencies in Fig. 5.

It is observed that over 98% of all adversarial malware files

that successfully evade the target systems only require modi-

fying no more than four basic blocks in its CFG. In particular,

MalGuise only needs to modify one basic block to make 61%

of malware samples evade Magic, and only modify two ba-

sic blocks to make 79% and 56% of malware samples evade

7400    33rd USENIX Security Symposium USENIX Association



Table 4: The ASR performance (%) of three MalGuise vari-

ants against three target systems under the scenario of w/ prob.

MalGuise

Variants

MalGraph Magic MalConv

FPR=1% FPR=0.1%FPR=1% FPR=0.1%FPR=1% FPR=0.1%

MalGuise
† 0.02 4.35 1.70 3.34 23.04 79.86

MalGuise
‡ 0.10 4.87 0.10 1.42 0.17 1.86

MalGuise 97.47 97.77 99.29 99.42
34.36

97.76

97.38

99.77

MalGraph and MalConv, respectively. These evaluations indi-

cate that, by only modifying a small number of basic blocks

in CFG, MalGuise could offer excellent attack performance

against all three learning-based malware detection systems.
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Figure 5: Frequency of the number of modified basic blocks

of all adversarial malware that evades the three target systems.

Impact of different types of semantic nops. When per-

forming MalGuise against MalConv, we examine the impact

of different opcodes in the injected semantic nops by pre-

senting the occurrence frequency of different opcodes that

lead to successful evasions in Fig. 6. It is observed that, some

opcodes (e.g., dec/inc, xor) occur with a relatively high fre-

quency, while some others (e.g., cmp and test) occur with a

lower frequency. Next, we limit MalGuise to use the 25 most

frequently used opcodes, it is observed from Table 3 that the

ASR performance of MalGuise ASR against MalConv has

significantly increased, highlighting the importance of differ-

ent types of semantic nops in MalGuise. To sum up, we can

conclude that the attack performance of MalGuise can be sig-

nificantly improved by fine-tuning the types of semantic nops

to be injected. More evaluations about the impact of the size

of semantic nops for MalGuise are discussed in Appendix C.
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Figure 6: Occurrence frequency of different opcodes in se-

mantic nops that lead to successful evasions against MalConv.

Impact of the hyper-parameters in MCTS. We inves-

tigate the impact of the hyper-parameters in MCTS (i.e., C

and N in Algorithm 1) for MalGuise. First, for the computa-

tion budget C, we follow the same implementation settings

detailed in §4.1.5 and only vary C to 10, 20, 30, 40, 50, and

60. From Fig. 7, it is observed that, as C increases from 10

to 20, the ASRs of MalGuise rise sharply up to over 97%

against all three target systems. When C reaches 20, its ASR

performance tends to stabilize at a high value of over 97%.

Similarly, for the max length N, we only vary N (i.e., 2, 4,

6, 8, and 10) to show its impact on MalGuise in Fig. 8. It is

observed that when N=2, the overall attack performance of

MalGuise against all three target systems is pretty well, with

ASRs exceeding 97%. With the increase of N, the ASRs of

MalGuise remain stable at a high value of over 97% against

all target systems. These observations indicate that MalGuise

can achieve high attack performance even with no more than

two transformations of call-based redividing employed.
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Figure 8: Impact of the max

length N.

Answer to RQ2 (Impacting Factors): To sum up, targeting

different learning-based malware detection systems, differ-

ent hyper-parameters in MalGuise have different impacts

on the attack performance, and thereby we can fine-tune its

hyper-parameters to enhance its attack performance.

4.2.3 Answer to RQ3 (Utility Performance)

As previously defined in Eq. (6), we evaluate the utility per-

formance of MalGuise and two baseline adversarial attacks

in terms of semantics preservation rate (SPR), whose core is

to judge whether the adversarial malware zadv has the same

semantics as the original malware z, i.e., Sem(z,zadv). Due

to the inherent complexity of executables, there is no exact

solution to judge Sem(z,zadv) [6] and we resort to an empir-

ical verification to judge it by collecting and comparing the

two API sequences (i.e., APIzadv
and APIz) invoked by both

zadv and z when they are run on the Cuckoo sandbox [18].

As shown in Eq. (7), to quantify the semantic difference be-

tween zadv and z, we thus compute a normalized edit distance

distnorm(z,zadv) between the two API sequences as follows.

distnorm(z,zadv)=
Distance(APIz,APIzadv

)

max(l(APIz), l(APIzadv
))
∈ [0,1] (7)

in which Distance(APIz,APIzadv
) denotes the edit distance

between two sequences and l(·) denotes the sequence length.

However, since malware may perform random actions dur-

ing execution [27], the API sequences collected by running
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the same malware z twice in the same sandbox may be differ-

ent, which means distnorm(z,z) almost can not take the value

of 0. Therefore, we calculate the value of Sem(z,z) ∈ {0,1}
by comparing the distnorm(z,z) with a general distance thresh-

old dist∆. To determine dist∆, we first analyze all original

malware samples in the same sandbox twice and then select

the value at the 99.5-th percentile among all the corresponding

distnorm(z,z) as dist∆. After that, as shown in Eq. (8), we can

finally determine whether zadv and z have the same semantics

by comparing their normalized edit distance distnorm(z,zadv)
with dist∆, and further evaluate SPR according to Eq. (6).

Sem(z,zadv)=

{

1 ifdistnorm(z,zadv)<dist∆

0 otherwise.
(8)

Due to the extreme resource and time consumption of the

above evaluation process, we randomly select 10% from all

adversarial malware that successfully evades the correspond-

ing target system in §4.2.1 for the subsequent evaluations and

present the evaluation results in Table 5. Apparently, evaluat-

ing the utility performance of SRL is not applicable as it only

generates adversarial features rather than realistic adversarial

malware files. As for MMO, it is observed that the achieved

SPR values against three target systems are at a low level, i.e.,

approximately ranging from 40% to 50%. It indicates, only

less than 50% of adversarial malware generated by MMO pre-

serve their original semantics. However, MalGuise achieves

the best utility performance of over 91% SPR for all three

target systems, which demonstrates the best effectiveness of

MalGuise in preserving their original semantics.

Table 5: The SPR (%) of MalGuise and two baseline adver-

sarial attacks against three target systems.

Attacks
MalGraph Maigc MalConv

FPR=1% FPR=0.1% FPR=1% FPR=0.1% FPR=1% FPR=0.1%

MMO 41.8 49.4 39.6 39.8 39.2 50.8

SRL — — — — — —

MalGuise 91.84 91.99 93.45 92.28 92.67 91.68

Causes for 9% failures. To investigate the causes behind

the approximately 9% of failures in preserving the same se-

mantics in the above evaluations, we conduct manual inspec-

tions using IDA Pro [24] and OllyDbg [62] and reveal two

primary reasons for these failures. First, there are a few mal-

ware samples that contain overlay, which is not part of the

official Windows executable format but is usually used to per-

form malicious behaviors in malware. Despite adhering to the

standard Windows executable format specifications, the adver-

sarial malware reconstruction phase in MalGuise might affect

the overlay of those few malware samples, thereby failing

to be executed identically or properly. Second, it is a stan-

dard process for Windows executables to push/pop the return

address onto/off the stack when handling the “call” instruc-

tion. However, there are few malware samples that contain

junk code, which might not follow the above process, e.g., not

popping the return address. These exceptions might render

MalGuise ineffective as MalGuise follows the standard Win-

dows specifications to reconstruct the adversarial malware.

Answer to RQ3 (Utility Performance): Prior adversarial

attacks either only generate non-executable adversarial “fea-

tures”, or generate a large portion of adversarial malware

losing their original semantics. However, MalGuise exhibits

the best utility performance with over 91% of generated ad-

versarial malware files preserving their original semantics.

4.2.4 Answer to RQ4 (Real-world Performance)

As discussed in §4.1.2, to further understand the real security

threats of MalGuise against anti-virus products, we empiri-

cally evaluate MalGuise against five commercial anti-virus

products by measuring their ASR performance on 1,000 test-

ing malware samples, which are randomly selected from the

testing dataset. It is noted that, the main reason for randomly

selecting 1,000 testing malware samples is that all five anti-

virus products are deployed remotely on another machine, and

their processing and scanning speeds are much slower than

the employed learning-based Windows malware detection.

Table 6: The ASR (%) of MalGuise against five anti-viruses.

Attacks McAfee Comodo Kaspersky ClamAV MS-ATP

MalGuise 48.81 36.00 11.29 31.94 70.63

MalGuise(S) 52.49 36.36 13.36 32.33 74.97

Increased ASR +3.68 +0.36 +2.07 +0.39 +4.34

We observe in Table 6 that, for four (i.e., McAfee, Comodo,

ClamAV, and MS-ATP) of the five evaluated anti-viruses,

MalGuise achieves ASRs of more than 30%. Especially for

MS-ATP, the achieved ASR ofMalGuise reaches upto 70.63%.

As discussed in §4.2.2, we further limit MalGuise to use the

25 most frequently used opcodes and denote this variant as

MalGuise(S) for brevity. Compared with the defaultMalGuise,

MalGuise(S) clearly leads to an overall improvement in the at-

tack performance for all five anti-virus products. In particular,

MalGuise(S) increases its ASR against MS-ATP by 4.34%,

implying it can be further improved by carefully fine-tuning.

Impact of different types of semantic nops. We further

investigate how the different opcodes in the injected semantic

nops affect the attack performance of MalGuise against anti-

virus products. Similarly, by limiting MalGuise to use the 25

most frequently used opcodes, Fig. 9 illustrates the occurrence

frequency of different opcodes of all generated adversarial

malware files that lead to successful evasions for five anti-

viruses. It is clearly observed that different anti-virus products

are sensitive to different semantic nops injected by MalGuise.
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Figure 9: Occurrence frequency of different opcodes in seman-

tic nops that lead to successful evasions for five anti-viruses.

Table 7: Distribution frequency (%) of the number of modified

blocks for adversarial malware that evades anti-virus products.

# of blocks McAfee Comodo Kaspersky ClamAV MS-ATP

1 96.66 94.28 88.17 97.54 38.21

2 4.58 4.71 9.68 2.05 42.88

3 0.76 1.01 2.15 0.41 17.35

4 0 0 0 0 1.17

5 0 0 0 0 0.39

Impact of the number of modified basic blocks. The dis-

tribution of the number of modified blocks in the adversarial

malware that successfully evades the target anti-viruses is

illustrated in Table 7. For all five anti-viruses, the number of

modified blocks in all the adversarial malware is less than

6. Especially for McAfee, Comodo, and ClamAV, more than

90% of adversarial malware only need to modify one block,

while the other two anti-virus products (i.e., Kaspersky and

MS-ATP) only need to modify two basic blocks. Therefore,

we can conclude that MalGuise can be applied against anti-

virus products by only modifying very few blocks in CFG.

Answer to RQ4 (Real-world Performance): MalGuise is

empirically evaluated to be effective against five anti-virus

products in the wild. In particular, MalGuise achieves attack

success rates of over 30% against four of them, presenting

potential tangible security concerns to real-world users.

4.2.5 Answer to RQ5 (Possible Defenses)

To understand the risks that potential artifacts in MalGuise

might be noticed and identified by defenders, we evaluate

MalGuise with four categories of possible defenses as follows.

(1) Adversarial training: Adversarial training is recog-

nized as one of the most effective defenses against adversarial

attacks [9]. Therefore, we evaluate the attack performance

of MalGuise against the three target learning-based malware

detection systems that have been defended using adversarial

training (i.e., the defended systems.) To set up, we re-train

them from scratch with nearly unchanged parameter settings,

except for integrating corresponding adversarial malware gen-

erated by MalGuise during the training process.

Fig. 10 shows, after being defended by adversarial training,

the detecting performance (i.e., AUC, TPR, and bACC) of the

three target systems remains basically unchanged, while the

corresponding ASR values achieved by MalGuise have been

decreased to some extent, indicating the defended systems’

robustness performance (i.e., the opposite of ASR) has indeed

improved. Nonetheless, it is clearly observed that, after being

defended by adversarial training, MalGuise remains highly

effective, achieving ASRs of 55.33%, 83.10%, and 50.68%

against MalGraph, Magic, and MalConv, respectively.
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Figure 10: The overall performance comparisons between the

original (before) and the defended (after) target systems.

(2) Binary code optimizations: Recalling that our pro-

posed call-based redividing transformation involves in-

jecting semantic nops and redividing “call” instructions to

manipulate CFG, which might be noticed by potential defend-

ers. Therefore, to evaluate MalGuise’s attack performance

against possible defenses based on binary code optimizations

(e.g., dead code removal or CFG reduction), we employ the

off-the-shelf IDA Pro plugin – Optimice3, which has won the

Hex-Rays’ IDA Pro plugin contest [25]. To set up, we take

Optimice’s binary code optimizations as the preliminary step

for the three target learning-based malware detection systems

and evaluate them under the black-box scenario of w. prob.

Table 8: The ASR performance (%) comparisons between the

original target systems and the defended systems by Optimice.

Target

Systems

Original

System

the defended system by Optimice

only w/ dead

code removal

only w/ CFG

reduction
w/ both

MalGraph 97.47 82.25 82.43 80.26 (-17.21)

Magic 99.29 97.94 96.91 93.85 (-5.44)

MalConv 97.76 80.07 75.15 74.63 (-23.13)

Table 8 shows that, with either dead code removal or CFG

reduction, or a combination of the above two, the ASR perfor-

mance achieved by MalGuise has decreased, suggesting the

3 https://code.google.com/archive/p/optimice/
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robustness performance of the defended systems has indeed

increased accordingly. However, even when defended with

binary code optimizations, MalGuise still achieves relatively

high attack performance, with ASRs exceeding 74%.

(3) Heuristic-based adversarial detection: To evaluate

the impact of possible defenders who are fully aware of the

implementation details of MalGuise, we implement an adap-

tive defense of heuristic-based adversarial detection, which

consists of two heuristic rules: R1 and R2. In particular, R1

indicates, other than the “.text” section, there exists another

or more sections with executable permission and fixed ad-

dresses inside. R2 indicates, there exists at least one basic

block that contains a “call” instruction followed by a “jmp”

instruction with semantic nops in between. It is noted that,

as MalGuise iteratively generates semantic nops with the

context-free grammar [41], determining whether a specific

code fragment is semantic nops is well-known as non-trivial

and undecidable [15, 50] and we thus employ Optimice [25]

to detect the semantic nops as above. To set up, we first

randomly select 15000 adversarial malware from all those

that have successfully evaded three learning-based Windows

malware detection systems and 15000 goodware from the

benchmark dataset, and then employ the above adversarial

detection to check whether the adversarial malware can be

detected, and finally show the detection results in Table 9.

Table 9: The detecting performance (i.e., TPR and FPR) of

adversarial detection based on two heuristic rules

Adversarial Detection TPR FNR=(100%-TPR) FPR

R1-based 70.15 29.85 5.66

R2-based 96.91 3.09 52.16

R1 &R2-based 67.75 33.25 2.95

It is observed that both TPR and FPR of R1-based adversar-

ial detection are low, suggesting that most goodware indeed

has only a “.text” section. However, there is a lot of adversar-

ial malware with only a “.text” section as long as the semantic

nops could be injected into the remaining slack space. More-

over, R2-based adversarial detection shows the best TPR but

the worst FPR. It indicates, although R2 can be used to detect

almost all adversarial malware, there exists over 50% of good-

ware is misclassified as adversarial malware. Similar to R1,

the adversarial detection that combines both R1 and R2 shows

a TPR of 67.7%, indicating that about 33.2% of adversarial

is misclassified as goodware, i.e., evading the corresponding

the adversarial detection. Moreover, it also shows an FPR of

2.9%, which is higher than the upper limit of FPR (e.g., 1% or

0.1%) that is tolerated by general malware detection systems.

To sum up, this adaptive defense of heuristic-based adver-

sarial detection can detect adversarial malware generated by

MalGuise to a certain extent as it is equipped with all the

implementation details of MalGuise. However, it also shows

the dilemma that TPR and FPR cannot be balanced simultane-

ously, i.e., failing to offer satisfactory detecting performance.

(4) Fuzzy hashing: As MalGuise is optimized to use as

few transformations as possible to preserve the same seman-

tics, it also enables possible defenders to use fuzzy-hashing-

based malware analysis (i.e., ssdeep [32], TLSH [46], Spam-

Sum [29], etc) for defenses, which has been extensively stud-

ied [11, 60]. To implement the fuzzy-hashing-based defenses,

we first submit all malware samples in the training set to ini-

tialize the malware database, and then use the validation set to

determine the thresholds satisfying FPR=1% and FPR=0.1%

for fair comparisons. After that, we evaluate the detecting per-

formance of fuzzy-hashing-based defenses within the testing

set, which is shown in Table 10. By comparing Table 2 with

Table 10, we find that all fuzzy-hashing-based defenses show

less stable and worse detecting performance.

Table 10: The detecting performance (i.e., AUC, TPR, bACC)

and ASR performance of fuzzy-hashing-based defenses

Fuzzy-hashing-

based defenses
AUC

FPR=1% FPR=0.1%

TPR bACC ASR TPR bACC ASR

ssdeep 83.92 57.61 78.70 52.94 10.16 55.31 100

TLSH 74.23 55.55 77.66 73.70 42.27 71.44 100

SpamSum 83.98 57.72 78.75 50.22 38.91 69.46 98.13

We further reinforce the three fuzzy-hashing-based de-

fenses by submitting all malware samples in the testing set to

the the malware database, indicating all these defenses have

full knowledge of the original malware samples and can use

fuzzy hashing for detection. Finally, we evaluate the ASR

performance of MalGuise against those reinforced defenses,

which is shown in the column named “ASR” in Table 10. It

is clearly observed that, in the case of FPR=1%, the ASRs

against all three reinforced defenses exceed 50%, and the

ASRs are nearly 100% for FPR=0.1%, exhibiting a high at-

tack success rate against fuzzy-hashing-based defenses.

Answer to RQ5 (Possible Defenses): MalGuise remains ex-

ceptionally effective against all three categories of possible

defenses even though they are adaptively equipped with the

knowledge of MalGuise.

5 Discussions

5.1 Related Work

Almost all existing studies on adversarial attacks against

malware detection predominantly focus on learning-based

malware detection with static features. Owing to the vast

diversity of feature representations employed by different

kinds of learning-based malware detection, researchers have

proposed different adversarial attacks tailored to these detec-

tion methods. For instance, to attack those malware detection

methods based on API calls, a line of adversarial attacks
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has been proposed via adding irrelevant API calls, which

are selected by gradient-based optimizations or greedy algo-

rithms [3, 13, 26, 54]. However, these adversarial attacks are

impractical because they generate adversarial API calls rather

than realistic executable malware files. As for these malware

detection based on raw bytes, especially for MalConv [48],

researchers have explored either partially modifying specific

regions or globally modifying all raw bytes while preserv-

ing the same semantics. For instance, all of [5, 19, 31, 33, 51]

rely on appending or injecting maliciously generated bytes

at specific locations of the input malware, while MMO [41]

globally manipulates its raw bytes with binary diversification

techniques. However, we argue that those adversarial attacks

are strictly limited to raw-bytes-based malware detection, and

thus cannot be scalable to other malware detection.

More recently, studies have begun to explore adversarial

attacks against more advanced malware detection based on

abstract graph representations. In 2022, Zhang et al. [63] pro-

posed SRL against CFG-based malware detection, which se-

quentially injects semantic nops into the CFG guided by re-

inforcement learning. Likewise, our work also aims to evade

advanced malware detection based on CFGs, but fundamen-

tally differs from SRL in three key aspects.

• Fine-grained transformations. SRL employs a coarse-

grained transformation that only manipulates nodes of CFG.

However, we propose a finer-grained transformation of

call-based redividing that manipulates both nodes and

edges, making it less noticeable to potential defenders.

• Not adversarial “features”. As discussed in §4.2.3, SRL

is a feature-space adversarial attack that essentially gener-

ates adversarial “features”, while ourMalGuise can success-

fully generate real adversarial malware files for evasions.

• Attacking generalizability. Existing adversarial attacks

like SRL are primarily evaluated with limited learning-

based malware detection models, while MalGuise addi-

tionally targets real-world anti-virus products in practice,

thereby demonstrating better attacking generalizability.

5.2 Possible Use Cases

We discuss possible use cases of MalGuise as follows. First,

MalGuise, a practical black-box adversarial attack, can com-

plement the blue team’s toolkit, addressing the limitations of

traditional obfuscations in attempts to evade present-day ad-

vanced learning-based malware detection. Second, MalGuise

could serve as a means for the R&D team of anti-virus vendors

to expose the underlying weaknesses of learning-based mal-

ware detection under development, and thus they can proac-

tively and purposefully improve the robustness of anti-virus

products. Third, comprehensive and impartial testing for anti-

viruses is crucial for ensuring transparency and fostering trust

between users and vendors. MalGuise offers a unique oppor-

tunity for third-party independent testing organizations like

AV-TEST [8] to assess anti-viruses comprehensively, given

the exceptional evasion capability of adversarial malware.

5.3 Potential Ethical Concerns

The primary objective of this study is to assess the secu-

rity risks of learning-based Windows malware detection with

adversarial attacks, an approved topic with established prece-

dence in earlier studies [22,40,41,47,63,64], which is largely

motivated by the concern for potential adversaries to craft

Windows malware capable of evading detection, and by high-

lighting the necessity for more robust learning-based Win-

dows malware detection methods. Even though our intent is

strict about assessing the security risks of learning-based Win-

dows malware detection with MalGuise, we recognize the po-

tential ethical concerns associated with our study. Therefore,

to strike a balance between avoiding potential ethical con-

cerns and assisting the security community in enhancing the

robustness of learning-based Windows detection, we limit our

code sharing to verified academic researchers only, following

the precedent established by previous studies [22, 47, 64].

6 Conclusion, Limitations and Future Work

This paper proposes a novel semantics-preserving transfor-

mation of call-based redividing, capable of concurrently

manipulating both nodes and edges of the CFG and fur-

ther presents an adversarial attack framework of MalGuise

against learning-based Windows malware detection under

the black-box scenario. Extensive evaluations demonstrate

that MalGuise can not only effectively evade state-of-the-art

learning-based Windows malware detection systems with an

attack success rate of mostly exceeding 95%, but also can

evade five commercial anti-virus products with an attack suc-

cess rate of up to 74.97%. We believe our study raises public

awareness about the security threats posed by adversarial

attacks in the domain of Windows malware detection and

calls for further studies to enhance the robustness of exist-

ing Windows malware detection. However, we recognize the

limitations and outline potential future work as follows.

• Verification of semantic preservation. To verify if the gen-

erated adversarial malware preserves the original semantics,

we have presented an automatic empirical verification in

§4.2.3 and Eq. (7) by comparing their API sequences in-

voked when running on the same sandbox environment.

While practical and reasonable, this empirical verification

cannot guarantee the strict semantic equivalence between

two malware in all possible environments since some mal-

ware may invoke random APIs in different environments.

• Dynamic-analysis-based malware detection. MalGuise

targets learning-based Windows malware detection, which

belongs to static analysis. Particularly, the core of MalGuise

is to manipulate the CFG of executables via the call-

based redividing transformation, which does not change

their execution flow and thereby does not impact dynamic
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analysis. Therefore, although dynamic analysis is less ubiq-

uitously deployed due to excessive time and resource con-

sumption, we leave generating adversarial malware against

dynamic-analysis-based malware detection as future work.

• Format-agnostic adversarial malware. Since there is no

malware analysis technique that is universally applicable

to all types of malware with different file formats and oper-

ating systems, existing malware analysis normally points

out the targeted file format and operating systemWhile in

this paper, our MalGuise targets the Windows malware in

the file format of portable executable, we will explore how

to generate format-agnostic adversarial malware against all

kinds of malware detection in future work.
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A More Implementation Detail in MALGUISE

Algorithm 4 outlines the main procedure of Selection. As

the possible paths in the game tree of MCTS are infinite,

exploring all the nodes in the game tree will substantially in-

crease the computational overhead. By employing the Upper

Confidence Bounds algorithm [10], Selection could select

the child of the MCTS node v with the highest score consider-

ing the trade-off between the visit times and the reward value

(line 4-6).
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Algorithm 4: Procedure of Selection(v).

1 Begin

2 max_score← 0;

3 for vchild in children of v do

4 exploit← vchild .reward/vchild .visits;

5 explore←
√

2ln(v.visits)/vchild .visits;

6 score← exploit +λ× explore;

7 if max_score < score then

8 max_score← score;

9 vselected ← vchild ;

10 return vselected ; //the most promising node to be explored

Algorithm 5 outlines the main procedure of Simulation

that returns the reward r. Based on the vselected , this procedure

iteratively expands the MCTS game tree until the simulation

number S is reached (line 3–6). In each iteration, the corre-

sponding CFG representation x of the expanded node is input

to the target malware detection system f , and the returned

reward is calculated as reward = 1− f (x) (line 6).

Algorithm 5: Procedure of Simulation(vselected, f,S)

1 Procedure Simulation(vselected , f ,S)
2 v′← vselected ;

3 for i← 1 to S do

4 v′← Expansion(v′);
5 x← v′.x;

6 reward← 1− f (x);

7 return reward

B More about the Benchmark Dataset

To fairly evaluate the effectiveness of learning-based malware

detection systems in detecting previously unseen malware,

we employ a time-based training/testing split. In particular,

for all malware, we take all malware samples before May 6,

2020, as the training set and equally divide the remaining

malware into the validation and testing set. For all goodware,

we randomly split them according to the percentages of the

training/validation/testing sets of malware. It is reported that

there is a total of 848 different malware families, in which

its training/validation/testing sets have 780/366/375 differ-

ent malware families, correspondingly. Fig. 11 illustrates the

distribution percentages of the top 30 malware families.

C More Evaluations

The below includes four more evaluations as follows.

(1) More evaluations in terms of size alteration ratio.

In Table 11, we measure the “size alteration ratio (%)” of

successfully evaded malware samples before and after the
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Figure 11: The distribution of top 30 malware families.

obfuscating process to observe the overhead introduced by

the obfuscation tools. It is clearly observed that the malware

size alteration ratio after being obfuscated by UPX is approxi-

mately 3× times that of MalGuise, while the size alteration ra-

tios after being obfuscated by VMProtect and Enigma exceed

980× times and 330× times that of MalGuise, respectively.

Table 11: The “size alteration ratio (%)” performance com-

parisons between MalGuise and three baseline obfuscations.

Attacks

MalGraph Magic MalConv

Avg.FPR

=1%

FPR

=0.1%

FPR

1=%

FPR

=0.1%

FPR

=1%

FPR

=0.1%

UPX -35.8 -28.2 -30.4 -19.6 -11.1 -27.8 23.3

VMProtect — — +822.7 +5343.8 — — 7767.7

Enigma +1737.3 +3850.5 — +2089.7 — +181.4 2613.1

MalGuise +7.97 +8.03 +7.89 +7.08 +7.97 +7.72 7.87

(2) More evaluations of MalGuise variants against anti-

virus products. Table 12 summarizes the ASR performance

of four MalGuise variants against five anti-virus products. In

a similar vein, MalGuise and MalGuise(S) achieve the best

attack performance than MalGuise
† and MalGuise

‡ when eval-

uated by all employed real-world anti-virus products. This

observation reconfirms that, only by concurrently applying

† injecting semantic nops and ‡ redividing call instructions,

the attack effectiveness of MalGuise can be maximized.

Table 12: The ASR performance (%) of four MalGuise vari-

ants against five anti-virus products.

Attacks McAfee Comodo Kaspersky ClamAV MS-ATP

MalGuise
† 28.82 30.96 4.15 27.22 —

MalGuise
‡ 44.03 33.41 6.05 29.75 —

MalGuise 48.81 36.00 11.29 31.94 70.63

MalGuise(S) 52.49 36.36 13.36 32.33 74.97

“—” indicates that we cannot evaluate MalGuise variants against MS-ATP

as Microsoft has changed its authorization process since about 2024 and has

not officially approved our application until now.

(3) Impact of the size of semantic nops for MalGuise.

We also investigate the impact of the size of the injected se-
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(b) The corresponding adversarial ransomware is mistakenly identified as goodware.

Figure 12: Illustration of a case study of how MalGuise manipulates one ransomware to evade the detection of ClamAV.

mantic nops for MalGuise against three target learning-based

malware detection systems in the cases of FPR=1%. Recall

from §3.2.3 that, the size of a newly injected section in Win-

dows executables must be a multiple of the architecture’s

page size (e.g., 4KB for Intel x86). To this end, we limit the

size of semantic nops generated by MalGuise to no more than

m×4KB (i.e., 1, 2, 3, 4, and 5) and present their attack perfor-

mance against three target systems in Table 13. It is observed

that, for both MalGraph and Magic, MalGuise requires only

one time the page size (m = 1) to achieve a relatively high

and stable ASR performance. Differently, MalGuise requires

about three times the page size (m = 3) to achieve a high

and stable ASR performance against MalConv. The main rea-

son we conjecture is that MalConv purely relies on the raw

bytes of malware, and MalGraph and Magic tend to rely on

structural information like the function call relationship or

control-flow information. Thus, altering the detecting output

of MalConv (i.e., evading its detection), requires MalGuise to

alter more raw bytes of the given malware, which is mainly

accomplished by injecting semantic nops. All the above in-

dicates that MalGuise can effectively evade learning-based

malware detection with a small size of injected semantic nops.

Table 13: The ASR performance % of MalGuise against three

target learning-based malware detection systems when the

size of semantic nops to be injected is limited to m×4KB.

Target Systems m = 1 m = 2 m = 3 m = 4 m = 5

MalGraph 96.31 97.49 97.60 97.54 97.61

Magic 99.16 99.15 99.17 99.17 99.20

MalConv 91.56 96.34 97.33 97.48 97.53

(4) Case study of how MalGuise evade ClamAV. To un-

veil how MalGuise evades real-world anti-virus products, we

present a case study of how MalGuise manipulates one wild

malware to evade ClamAV. We take ClamAV mainly because

four of the five employed anti-virus products are proprietary

and closed-source, and only ClamAV is open-sourced by

Cisco [16]. Notably, for ClamAV, an executable is reported as

malware if any of its signatures match those in the ClamAV

Virus Database (CVD), which is continuously updated with

the latest malware samples.

To set up our case study, we randomly select one newly

emerged malware variant from the WannaCry ransomware

attack [1], termed as WANNACRY
4. Subsequently, as illus-

trated in Fig. 12(a), WANNACRY is submitted to ClamAV

and deterministically detected as malware because the hash

signature of the “.text” section (i.e., “a5d0e70115ec99f7d77

0fe98861ca017”) exactly matches the signature in CVD. Fi-

nally, as illustrated in Fig. 12(b), after applying only a single

call-based redividing transformation with MalGuise, the

hash signature of the “.text” section has been changed to “9

39a8b36a29b27673de9ad4bd0623fed”, which is no longer

matched by any signature in CVD and is therefore mistakenly

identified as goodware in the end.

4Its SHA245 hash is 043bc5f8da479077084c4ec75e5c1182254366d-135

373059906bb6fed0bf5148
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