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Abstract
SIM cards are widely regarded as trusted entities within mo-
bile networks. But what if they were not trustworthy? In this
paper, we argue that malicious SIM cards are a realistic threat,
and demonstrate that they can launch impactful attacks against
mobile devices and their basebands.

We design and implement SIMURAI, a software platform
for security-focused SIM exploration and experimentation.
At its core, SIMURAI features a flexible software implemen-
tation of a SIM. In contrast to existing SIM research tooling
that typically involves physical SIM cards, SIMURAI adds
flexibility by enabling deliberate violation of application-level
and transmission-level behavior—a valuable asset for further
exploration of SIM features and attack capabilities.

We integrate the platform into common cellular security
test beds, demonstrating that smartphones can successfully
connect to mobile networks using our software SIM. Ad-
ditionally, we integrate SIMURAI with emulated baseband
firmwares and carry out a fuzzing campaign that leads to the
discovery of two high-severity vulnerabilities on recent flag-
ship smartphones. We also demonstrate how rogue carriers
and attackers with physical access can trigger these vulnera-
bilities with ease, emphasizing the need to recognize hostile
SIMs in cellular security threat models.

1 Introduction

Today’s connected society relies on the uninterrupted avail-
ability and security of cellular networks, and their perpetually
connected mobile devices. Regardless whether these end de-
vices are feature-rich smartphones, low-power IoT devices,
or highly reliable industrial components—they all employ
Subscriber Identity Modules (SIMs)1 for authenticating and
connecting to mobile networks. Owing to their small size,
perceived narrow feature-set, and apparent single purpose—
authentication—SIMs are generally trusted to the point where
they may start acting as the root of trust [5, 8, 21].

1We refer to the ubiquitous notion of a ‘SIM card’, collectively as ‘SIMs’.

Conversely, in this paper, we highlight the prospect of
attacker-controlled SIMs, an often overlooked yet realistic
attack vector. For instance, consider tourists traveling abroad,
and purchasing a local SIM card from an unfamiliar oper-
ator to avoid roaming charges. Whether they get a prepaid
SIM card from an untrusted store, or an eSIM from a carrier
they haven’t heard of before; their phone is now attached to
a small networked computer that has a direct connection to
their phone’s baseband.

Typically, mobile networks are feature-rich, covering di-
verse use cases and offering specific capabilities for niche
subscriber groups. While some features may become obso-
lete, their implementations remain within the protocols and
software of the network. Modern operating systems, both for
desktop and mobile computers, made major leaps in com-
partmentalization, sandboxing, and permission management,
enhancing the overall security of end devices. However, real-
time operating systems driving cellular baseband firmware,
that manage nearly all aspects of mobile networks, often lack
these modern security features [38]. Nonetheless, mobile op-
erating systems, such as Android or iOS, prevent most apps
and outside entities from directly interfacing with the base-
band. SIMs, however, have a direct, privileged, and unfiltered
interface to the baseband. Hence, we explore baseband secu-
rity from the perspective of hostile SIMs. Contrary to popular
belief, SIMs do more than just store keys; authentication is
only one of their many offered facilities. Among other capa-
bilities, they can also run Java applets, send and receive Short
Message Service (SMS) messages, or open TCP/IP sockets.

Until now, research and testing with SIMs often relied on
self-provisioned hardware SIMs, or rudimentary software
stubs, with the sole task of authenticating to the network.
While SIM contents can be programmed onto special physical
SIMs, the card’s operating system behavior is locked-down
to be inflexible and standards-compliant, which limits the
freedom of experimentation. Software SIMs can fill that gap,
however, until now, there was no software SIM that would act
as an analog to a standards-compliant SIM by default, while
having the ability to violate that behavior when desired.
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We close that gap by designing and implementing SIMU-
RAI, a software research platform specializing in SIM card
security exploration. Its main components are an open-source
software SIM—SWSIM—powered by the underlying smart
card framework—SWICC. These software components are
standards-compliant by default but do not enforce this behav-
ior, which provides the flexibility required for them to work
as a research platform.

We evaluate SIMURAI in a series of experiments in com-
mon physical 2G/4G/5G cellular test beds, and a virtualized
4G setup, showcasing that SIMURAI is compatible with
COTS smartphones and provides a viable alternative to
hardware SIM cards in the lab. In addition, we also demon-
strate SIMURAI’s capabilities for security research: First, by
replicating a SIM-based spyware. Then, using SIMURAI in
combination with the FirmWire emulation platform [22] to
enable a fuzzing campaign against emulated User Equipment
(UE) images, we discover two high-severity memory
corruptions that were acknowledged by the affected vendor.
Motivated by the vulnerabilities found in baseband imple-
mentations, we evaluate the practicality of SIM-originating
attacks against baseband implementations with two exper-
iments: First, we analyze a SIM interposer and patch its
firmware to launch an attack, illustrating that SIM attacks
are feasible with short physical access. Second, we update
the SIM card remotely to install a malicious applet, show-
ing that hostile SIMs are a relevant threat to baseband security.

In summary, we make the following contributions:

• We stress the urgency to begin considering hostile SIMs
as an attack vector, and the resulting need for security-
focused SIM research tooling.

• We design and implement SIMURAI; an extensible soft-
ware research platform for SIM security research, con-
sisting of two main components: SWSIM, a software
SIM, and SWICC, the underlying smart card layer.

• We demonstrate two case studies in which we use
SIMURAI for security research. In particular, we imple-
ment a fuzzing campaign against commercial baseband
firmware implementations, leading to the discovery of
high-severity security vulnerabilities.

• We demonstrate that our discovered vulnerabilities can
be exploited either through (i) physical access or (ii) a
hostile SIM, and outline potential mitigations against
SIM-based attacks.

We provide the full source code and research artifacts for
SIMURAI at https://github.com/tomasz-lisowski/simurai.

2 Background

2.1 Cellular Baseband
Smartphones typically employ specialized processors for var-
ious tasks. The baseband processor handles mobile commu-
nication in its entirety. Its firmware is considered particularly
complex by functionality and size, as it typically implements
the full 2G, 3G, 4G and 5G network stacks, with the excep-
tion of the physical layer. This requires parsers for complex
binary formats (e. g., ASN.1), an IP stack, an IP Multimedia
Subsystem (IMS) stack, and more.

Across all these layers and protocols, the baseband
firmware handles untrusted input. For instance, fake base
stations may send SMS messages to nearby phones when
using the 2G standard, or they might inject malicious 4G or
5G messages before mutual authentication occurs between
the network and end devices.

Google notes that bugs in baseband implementations
“may potentially be abundant,” and calls for the adoption
of additional security measures such as using updated build
toolchains, deploying sanitizers in critical code, and tran-
sitioning to memory-safe languages [38]. At the same
time, despite recent advances, security testing of baseband
firmware remains a challenging and ongoing area of research
(e. g. [24, 25, 31, 32, 34, 52]).

2.2 Subscriber Identity Module
Smart cards, i. e., SIM cards, bank cards, biometric passports,
etc, are often built on top of an Integrated Circuit Card (ICC),
extended with domain-specific augmentations to perform spe-
cialized tasks. ICCs contain a CPU, ROM, RAM, a file system,
and a Card Operating System (COS) to manage resources and
enforce hardware-assisted security mechanisms.

SIMs implement technologies in a layered fashion, which
reflects the layering of standards used to define them. ETSI
standardizes the UICC2, which is a hardware and software
architecture based on the ICC and intended for use in telecom-
munication applications such as SIM cards [13]. In the context
of 3G, 4G, and 5G, 3GPP-issued standards extend the ETSI
documents for SIMs operating on 3GPP networks. SIMs sup-
porting the older, second-generation mobile telecommunica-
tion technology (2G), must instead implement GSM standards
maintained by ETSI and 3GPP.

Communication Protocol. All communication between
terminals3 and SIMs aims to exchange Application Protocol
Data Units (APDUs). Table 1 shows the structure of APDUs,
highlighting that each APDU is divided into two parts: (i) The

2UICC is not an acronym [13], although sometimes incorrectly referred
to as a Universal ICC; similar to Universal SIM (USIM).

3In cellular networks, end devices are commonly referred to as UE, or
terminal in the context of SIM communication.
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Table 1: Structure of short command and response APDUs.

Command

Field Description Size in Bytes

CLA Command Class 1
INS Instruction 1
P1 Parameter 1 1
P2 Parameter 2 1
Lc Encodes length of command data 0 or 1

Command Data 0 ≤ Nc ≤ 255
Le Encodes length of response data 0 or 1

Response

Response Data 0 ≤ Ne ≤ 256
SW1 First byte of the status word 1
SW2 Second byte of the status word 1

Command APDU (C-APDU), a command that is sent from the
terminal to the SIM, and (ii) the Response APDU (R-APDU),
a response sent from the SIM back to the terminal. Together,
a C-APDU and R-APDU form a Command/Response Pair (C-
RP) which completes the APDU. Note that in this protocol,
the SIM may never issue C-APDUs and the terminal may
never issue R-APDUs [12, 27].

Proactive Commands. APDUs are always initiated by the
terminal, but the SIM’s optional proactive features enable it
to issue proactive commands, which the terminal executes.
Once the SIM creates a proactive command, the next 9000
status word in the R-APDU is overwritten with a special 91XX
value, that informs the terminal that it can fetch a proactive
command. When timely execution of proactive commands
is important, the terminal may be requested to begin polling
the SIM with periodic STATUS APDUs; polling may also be
enabled by default [10, 12].

Proactive commands are different from APDUs, but they
remain feature-rich; for instance, they allow the SIM to dis-
play a menu, open the web browser, send an SMS message, or
obtain the terminal’s location [3, 10]. The proactive features
supported by a terminal are communicated to the SIM via the
TERMINAL PROFILE command.

Consider the PROVIDE LOCAL INFORMATION command
shown in Figure 1. This instruction allows the SIM card to
obtain a variety of information from the terminal, including:
Date, time, time zone, IMEI of terminal, charge state of the
battery, network measurement results, or, as seen in this exam-
ple, location information. Note that all proactive commands
are encoded with ASN.1 BER-TLV rules [28]: BER-TLV
byte strings describe Data Objects (DOs). Each DO contains
a tag, length, and value; where the value contains as many
bytes as indicated by the length field. The value of a DO can
itself be a DO, a list of DOs, or a binary blob [12, 27].

0xD009 8103 00 26 00 8202 81 82
D009
│
│
│
├┬8103
││
││
││
│├──00
│├──26
│└──00
│
└┬8202
│
│
│
├──81
└──82

Tag: Device identities
Length: 2
Value:

Tag: Command details
Length: 3
Value:

Command number: 0
Command type:
Information: Location according to current NAA

Source: UICC
Destination: Terminal

Tag: Proactive command
Length: 9
Value:

PROVIDE LOCAL INFORMATION

Figure 1: Example of a BER-TLV-encoded PROVIDE LOCAL
INFORMATION proactive command. This command reads lo-
cation information from the UE based on the current Network
Access Application (NAA), i. e., USIM in most SIM cases.

File System. Files are organized into a forest of trees, with
Application DFs (ADFs) and one Master File (MF) at the root,
each sitting at the root of their respective trees, with Dedicated
Files (DFs) and Elementary Files (EFs) nested in each of them.
DFs are similar to directories and EFs are comparable to files.
The MF is a root of the whole forest, while also being a root
of one of the trees. This is important as it hints at the older
structure of the File System (FS), where ADFs did not exist,
and the MF contained all files.

eSIM. An embedded SIM (eSIM) is based on the embed-
ded UICC (eUICC), that is intended to be a non-removable
replacement for the UICC with identical core functionality.
This comprises applications, file system, and all other features
described in Section 2.2, which remain present in the eUICC
and work in largely the same manner. The core difference is
that subscriber credentials—packaged into a ‘profile’—need
to be remotely provisioned onto the eUICC. Each profile is
a representation of a file system and applications similar to
those stored on a regular UICC. Installed profiles can be en-
abled and disabled, and they are isolated to avoid cross-profile
communication [11].

Interposers. Interposers are paper-thin Machine-in-the-
Middle (MITM) devices placed between SIMs and phones;
they can be used to intercept and manipulate terminal-SIM
communications (see Appendix B), and they are often sold
to bypass SIM-locks, i. e., a lock that restricts the device to
exclusively using the network of a specific operator.
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SIM Research Tooling. Carrier-issued SIM cards can only
be programmed by the carrier and thereby are not suitable for
experimentation. As a result, suppliers like Sysmocom offer
SIMs with administrative pins necessary for altering file con-
tents and installation of smart card Java applets (cardlets) [63].
They can be programmed with any smart card reader and com-
patible software (e. g., pySIM [48] and shadySIM [35, 49] for
cardlets). Additionally, specialized hardware, such as SIM-
trace2 [50], can function as a SIM breakout board to enable
tracing of communication between SIMs and the terminals,
or to provide an interface to the terminal’s SIM reader.

3 Motivation

From a security perspective, SIM cards occupy a unique and
crucial role in protecting UEs and ensuring user safety. They
offer a comprehensive range of features and are widely re-
garded as a trustworthy component within the telecommuni-
cations stack. In this paper, we challenge this trust and make
a case for considering hostile SIMs in modern telecommuni-
cation threat models.

Although, at first glance, controlling SIMs appears to put
strong assumptions on the attacker, this capability can be
achieved through various methods:

1. Physical access to a UE or SIM. Attackers can, with brief
access, not only exchange the SIM card, but also install
interposers manipulating the communication between a
benign SIM and the baseband.

2. Remote SIM administration features. This is a standard-
ized feature of SIMs which enables rogue or compro-
mised carriers to provision malicious additions to SIMs
deployed in the field.

3. Supply-chain attacks. Access to the SIM at any stage
between manufacturing and distribution would allow an
attacker to implement backdoors on SIM cards.

4. Vulnerabilities in a SIM’s software stack. Attackers can
exploit vulnerable implementations to compromise the
SIM and launch further attacks.

Note that all of these types of attacks were already observed
in the wild: SIM interposers are sold to bypass carrier-lock
restrictions on iPhones, leaked documents suggest attacks
against SIM manufacturers [59], network operators were pre-
viously compromised [55], and the recent Simjacker malware
leveraged vulnerabilities in a pre-installed SIM Application
Toolkit (SAT) cardlets to distribute spyware [60].

Nonetheless, research elaborating on the threats of hostile
SIMs and potential defenses is sparse; we partially attribute
this to the lack of security-centric tooling for SIM card re-
search. While both physical, and minimal software research
SIM platforms exist, none of them provide the flexibility
(e. g., to holistically violate standards), and tooling required

to effectively carry out security research. Nevertheless, pre-
vious research in the domain of cellular security highlighted
the importance of test beds and versatile tooling: This line
of research saw many vulnerabilities discovered only after
Software-defined Radio (SDR) projects made radio protocol
stacks modifiable. With that in mind, this paper introduces
tooling that improves accessibility to dynamic testing of SIM-
related functionality and baseband implementations in the
context of attacker-controlled hostile SIMs.4

4 Design

We aim to directly support further security research by de-
signing SIMURAI to be extensible and customizable. While
the implementation generally adheres to the relevant stan-
dards, our platform does not enforce standards-compliance,
as such, it aims to provide researchers with sufficient flexibil-
ity. Altogether, SIMURAI embodies all core functionality in
hopes that it becomes useful, accessible, and that it contributes
towards the development of end-to-end cellular setups.

4.1 Overview
We provide an overview of SIMURAI in Figure 2 and show-
cases the logical flow of an APDU traversing the framework.
At its core, SIMURAI comprises of three main components:
(i) SWICC, a flexible platform for creating emulated ICCs,
(ii) SWSIM, which drives SWICC and offers SIM-specific
functionality, and (iii) an I/O layer which facilitates the con-
nection between a PC/SC-connected SIMURAI, running on a
host PC, and UEs.

4.2 SWICC
SWICC is SIMURAI’s component for creating various types
of smart cards on top of an emulated ICC. It handles all the
complexity associated with the transport and application lay-
ers, provides a variety of utilities that support processing of
APDUs, and uses a Finite State Machine (FSM) to simulate
a real ICC device. SWICC also provides a file system which
generally follows the standardized definition, while allowing
the hierarchy and content definitions to be imported and mod-
ified at run-time. It also supports the interindustry class of
commands that all ICCs need to recognize, but allows these
default implementations to be overridden. Due to the archi-
tecture of the APDU demultiplexer (demux), SWICC detects
when an instruction should be handled by a proprietary APDU
handler. In this case, the message will be delegated, via the
APDU demux, to the proprietary handler registered by a user
of the framework. Lastly, SWICC offers a response rewriting
API that allows direct modification of raw R-APDUs with
user-defined logic.

4i. e., we do not seek out to explore SIM implementations themselves.
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Figure 2: Overview of the SIMURAI architecture, showing the main components and the path of an incoming Command APDU
(C-APDU) from the UE to the resulting Response APDU (R-APDU): 1 the PC/SC component provides the interface to, e. g., a
physical UE and forwards data to 2 the demultiplexer that routes the command to the appropriate component, i. e. the APDU
handlers 3 or 4, depending on the command. The APDU handlers implement most of the logic. The Response Rewriter (RR) 5
allows users to inspect and override R-APDU contents on the fly. While all code can be modified, the icon denotes components
that explicitly allow users to register custom extensions.

4.3 SWSIM

SIMURAI leverages SWSIM to implement command classes
described by ETSI and 3GPP to handle APDUs sent by mo-
bile telecommunication devices such as cellular basebands.
SWSIM registers the APDU handlers it implements with
SWICC, effectively turning the ICC into a SIM card by ex-
tending its functionality. Furthermore, SWSIM provides SIM
specific applications, such as the USIM and proactive applica-
tions, that can be toggled on and off, or completely overridden
with custom implementations of the user.

4.4 I/O Interface

The last part of the SIMURAI platform is the I/O layer that
serves as an interface between SWICC and the UEs. Its core
is the IFD handler, connecting to a PC/SC middleware (e. g.,
pcscd). SWICC receives C-APDUs from the PC/SC middle-
ware via a custom network protocol and maps these to one
or more Transmission Protocol Data Unit (TPDU) messages.
These TPDUs are then sent to the SWICC card for processing.
Eventually, an R-APDU will be received from SWICC and
forwarded back to the PC/SC middleware, completing the C-
RP. Our architecture allows SIMURAI to flexibly connect to
different endpoints. For instance, we can attach SWICC-based
cards to a PC as if they were physical cards inserted into a
smart card reader, or use hardware breakout boards such as
the SIMtrace2 to connect to physical COTS UEs.

5 Implementation

The code running on smart cards is considered an implemen-
tation detail by the standards describing the ICC, UICC, and
SIM. Consequently, it is likely that any two ICC cards will

not operate identically, including SWICC, any SWICC-based
smart card, as well as any other SIM card emulator. We im-
plement SIMURAI in 14,449 lines of C code, with SWICC
accounting for ~55%, SWSIM for ~41%, and the PC/SC IFD
handler for ~4%.

5.1 swICC

We implement SWICC with a variety of utilities and self-
contained modules to work with ICC data and behaviors. Ad-
ditionally, we provide interfaces to ease card development. At
the core of SWICC sits an FSM tying together all the modules
and utilities to parse and handle incoming commands.

Network. The protocol implemented for SWICC provides
the ability to transfer raw TPDU data, contact states, control
requests, and control responses. It is designed such that a
receiver obtains a constant-width header, followed by as many
data bytes as indicated in the header. Control requests allow
for mocking a cold or warm reset of the ICC. This is useful
when working with software operating at the application layer,
since in this case, contact states and transmission layer details
are extraneous. SWICC uses its FSM and APDU handlers to
determine the length of command data that should be received
from the terminal. The responses reuse a one byte control
field to indicate success or failure states.

TPDU Parsing. SWICC implements a flexible transport
layer that communicates an expected data length with the
physical layer, but will accept longer and shorter buffers. The
number of parts in which a TPDU is received, can be arbitrar-
ily large or small and the number of parts does not influence
how the TPDU will be processed. For simplicity, our current
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{"disk": [{
"type": "file_mf",
"id": "3F00",
"contents":[{

"type": "file_ef_transparent",
"id": "2FE2",
"contents": {

"type": "hex",
"contents": "988812010000500180F4"

}}]}]}

Listing 1: A simple SWICC file system defined in JSON. It
contains one tree (one MF); inside the tree is one file.

implementation of SWICC, offers only the T = 0 transmis-
sion protocol, drastically reducing complexity as it allows to
trivially map between TPDUs and C-APDUs. In regards to
our choice of T , to the best of our knowledge, the T = 1 trans-
mission protocol is rarely supported by commercial SIMs.

Handling C-APDUs. Within the set of valid command
classes, the SWICC implementation only supports the in-
terindustry class, with all others being marked as proprietary
(adhering to [27]). The instruction class of incoming com-
mands can contain additional information such as a secure
messaging indication, a desired logical channel, or a command
chaining indication. SWICC delegates the extraction of addi-
tional information from proprietary instruction classes to the
proprietary C-APDU handlers registed by the user (e. g., the
handlers provided by SWSIM or a user). Each C-APDU han-
dler may decide what procedure bytes to send, and therefore,
how to receive command data. Additionally, the C-APDU
handler is responsible for tracking sent procedure bytes and
ensuring that the correct amount of data is received. SWICC
supports these operations by counting procedure bytes, vali-
dating universal status words, and buffering data to simplify
handling of C-APDUs.

BER-TLV. Many instructions in the universal and in-
terindustry classes encode their responses as BER-TLV ob-
jects [12,27]. In order to alleviate the complexity of encoding
and decoding such objects, we include an easy-to-use utility
as part of SWICC which is directly used by multiple C-APDU
handler implementations.

File System. SWICC implements a file system that closely
(although not exactly) models the standardized FS for ICCs;
we highlight all noteworthy divergences in Section 8. To offer
a flexible and human-configurable interface to the FS, SWICC
enables the generation of its internal file system from a JSON
description. Listing 1 illustrates a small example of a file
system definition for SWICC.

5.2 SWSIM

SWSIM implements C-APDU handlers for a minimal set of
instructions contained in classes defined by ETSI and 3GPP
standards. These classes contain the common instruction set
of 3G/4G/5G, and dedicated instructions for 2G. While 2G-
only SIMs have a very simple file system, 3G (and newer)
SIMs host a more substantial FS hierarchy, with most com-
plexity coming from the introduction of the USIM application
(ADF). SIMURAI’s SWSIM implementation includes exam-
ples of JSON file system definitions for both cases.

Supporting Custom Proactive Commands. SWSIM pro-
vides a default proactive application that can be disabled or
overridden with a user-defined implementation. When the
default application is enabled, the APDU demux of SWSIM
will execute a ‘step’ function provided by the proactive ap-
plication. This function may generate a new command and
place it inside an internal buffer. Subsequently, SWSIM will
attempt to override the next R-APDU status word indicating
success with the value indicating the availability and length
of the proactive command. In case that the terminal does not
directly react, SWSIM will repeatedly override status words
until the terminal retrieves the proactive command with a
FETCH C-APDU.

5.3 I/O: The PC/SC IFD Handler

SIMURAI’s IFD handler connects to a PC/SC middleware
which exposes an interface to connect—usually physically—
card readers as PC/SC devices. The IFD handler takes care
of card connections, ensures that C-APDUs get delivered cor-
rectly, and that all states presented by the connected card get
translated into valid R-APDUs. Commodity PC/SC middle-
ware (e. g., Linux’s pcsc-lite) requires all drivers to contain
a list of supported devices, such that when any of them is
attached, the correct driver can be loaded. SIMURAI’s virtual
reader has no hardware dependencies; therefore, our driver
lists /dev/null as the only supported device. Because the
null device is always present, the PC/SC middleware is tricked
into automatically loading the SIMURAI IFD handler.

6 Evaluation

Recall that our goal is to demonstrate not only the advantages
of SIMURAI for security research, but also the critical need
to consider SIM-based attacks as a potential attack vector for
baseband firmware. As such, we set out to answer two main
research questions:

RQ1 Can SIMURAI aid security research?

RQ2 Are malicious SIM cards a realistic attack vector?
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Figure 3: We integrate SIMURAI into three common cellular
research setups. Setup 1 consists of 2G (Yate), 4G (srsENB
and srsEPC), and 5G (srsGNB and Open5Gs) networks, and
COTS UE with SIMtrace2 and cardem-firmware acting as
the bridge to PC/SC-attached SIMURAI. Setup 2 contains an
emulated srsRAN network and srsUE with SIMURAI attached
via PC/SC. Setup 3 integrates SIMURAI with FirmWire, a
baseband emulation platform.

To answer RQ1, we first integrate SIMURAI in representative
cellular research lab setups and connect it to an emulation
platform to demonstrate its core functional capabilities (Sec-
tion 6.1). Then, using these setups, we demonstrate that we
can carry out security-relevant experiments. In particular, we
first reproduce crucial components of SIM-based spyware
and then carry out a fuzzing campaign against commodity
baseband implementations (Section 6.2).

To answer RQ2, we implement two case studies of attacks
originating from a hostile SIM, exemplifying the capabilities
of physical attackers and rogue operators (Section 6.3).

6.1 Integration into Cellular Test Beds
We integrate SIMURAI into three common research setups:
A physical 2G/4G/5G test bed involving COTS UE, an emu-
lated srsRAN network with srsUE, and FirmWire-emulated
basebands. We outline these in Figure 3.

Setup 1: Physical UE in 2G/4G/5G Networks. We per-
form experiments with multiple COTS smartphones to evalu-
ate if they can successfully communicate with SIMURAI as
their SIM. Figure 4 shows our setup which consists of SIMU-
RAI connected directly to commodity smartphones through
SIMtrace2. The SIMtrace2 device runs on cardem firmware
which changes the behavior of the device, from passively trac-

UE1 UE2

USRP B210

Workstation

SIMtrace2

Figure 4: SIMURAI integrated into a 4G/5G cellular test bed.

ing communication, to actively intercepting and forwarding
messages over USB to a PC/SC-connected card [51]. SIM-
trace2 then provides the electrical and transmission-layer in-
terface necessary for valid data exchanges, but does not per-
form processing of the exchanged APDUs; all SIM-related
information is passed to the SIMURAI implementation where
we have full control over how it is processed. The networks are
based on Yate [45] for 2G, srsENB and srsEPC for 4G [20,62],
and srsGNB and Open5Gs [47] for 5G.

We verify that each smartphone can successfully connect
to our test networks. With respect to SIMURAI, this shows
that the smartphone can successfully access the SIMURAI
FS when interacting with required files, and that it can use
the SIM to run the authentication algorithm (Milenage for
4G/5G, none for 2G). Table 2 summarizes our results for all
tested smartphones. As demonstrated, SIMURAI proved to
be a widely compatible SIM replacement. In practice, this
means that SIMURAI contains the files, and supports the sub-
set of instructions required to establish a connection with the
network, and provides a functional implementation of Rijn-
dael and Milenage functions. If any of these core components
misbehaved, no connection would be established.

Our testing also solidified the fact that no two UE imple-
mentations are the same. At first our iPhone 15 tests were
unsuccessful because SIMURAI was missing an UPDATE
RECORD APDU handler. We added this missing feature and
observed no further negative results. All remaining devices
only required SIMURAI to be reconfigured with different keys
and file contents, no source changes were necessary.

Setup 2: Emulated, SRS-based Network. srsRAN is a
comprehensive software framework that provides a nearly
complete end-to-end cellular setup. It includes implementa-
tions for the core network, an eNodeB, and a UE, making it a
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Table 2: List of COTS UEs tested with SIMURAI.

Vendor Model Release SoC Baseband Version 2G 4G 5G

Apple iPhone 15 09.2023 A16 1.55.04
iPhone X 11.2017 A11 8.50.04

Samsung

Galaxy A14 03.2023 S5E3830 A145FXXU4BWK8
Galaxy S22 02.2022 S5E9925 S901BXXU7DXA6
Galaxy A52s 5G 09.2021 SM7325 A528BXXS6FXA1
Galaxy A41 05.2020 MT6768 A415FXXU1ATD1
Galaxy S10e 03.2019 S5E9820 G970FXXSGHWB3
Galaxy S9 03.2018 S5E9810 G960FXXS7CSJ3
Galaxy S7 edge 03.2016 S5E8890 G935FXXU8EUE1
Galaxy S7 03.2016 MSM8996 G930UUESBCTA3
Galaxy Core Prime 11.2014 MSM8916 G360FXXU1AOA1

Google Pixel 7 10.2022 GS201 g5300q-230626-230818-B-10679446
Pixel 6 10.2021 Tensor g5123b-116954-230511-B-10112789

OnePlus Nord CE 2 02.2022 MT6877 M_V3_P10
Oppo Find X5 02.2022 SM8350 Q_V1_P14
ZTE Blade A54 09.2020 SC9863A 4G_MODEM_22B_W23.33.3_P3

Oukitel C19 04.2020 MT6735 E598_37_Q0_LWG_V0.1.2_S200602
Motorola One Vision 06.2019 S5E9610 S337AP_KANE_SGCS_QB4946070

: Supported : Not supported : Network generation not supported by device

preferred choice for research setups. Similarly to Setup 1, the
UE component, srsUE, can integrate with a card reader to ac-
cess hardware SIM. This capability allows for the integration
of SIMURAI via SIMtrace2. To further test the versatility of
SIMURAI, we attach it directly to the SIM layer of the UE
implementation, srsUE, using its PC/SC interface. This direct
attachment bypasses the need for any hardware, facilitating
the direct exchange of APDUs between the UE and SIM.
This integration was straightforward and successful. The addi-
tion of SIMURAI represents a step towards achieving a fully
virtual, end-to-end cellular setup.

Setup 3: Emulation Platform. Our third experimental
setup integrates SIMURAI into FirmWire [22], a recently pub-
lished full-system emulation platform for baseband firmware
images. The authors of [22] explicitly note that "to enable
a fully virtual UE, USIM peripheral support would need to
be prototyped into FirmWire. This would yield more accurate
processing of messages, especially those which require a SIM
card such as SMS or USSD". Hence, we believe that integrat-
ing SIMURAI with this emulation platform can play a crucial
part in fully virtualizing COTS UEs for security testing.

Unfortunately, unlike the tools discussed in the previous
two case studies, FirmWire lacks a PC/SC interface or any
means of connection a physical or virtual SIM, further com-
pounding the issue. Therefore, we reverse engineered the base-
band firmware for Samsung Exynos-based UEs supported by
FirmWire and identified how it would interact with a physical

SIM card. Based on our insights, we implemented a USIM
peripheral, which uses SIMURAI’s low-level interfaces to
exchange TPDUs between our platform and FirmWire.

Our USIM peripheral implementation, consisting of 299
lines of Python code, enables successful data exchange be-
tween the frameworks at the TPDU level. We experimentally
verified compatibility of our SIMURAI integration for the
different Shannon-based UEs supported by FirmWire and
present the results in Table 3. The log messages of FirmWire
indicate a successful initialization of the baseband’s USIM
task and elaborate accesses to SIMURAI’s file system for all
successfully tested firmware versions. In the case of firmware
targeting Samsung Galaxy S7 and Samsung Galaxy S7 edge
phones, the interaction between the firmware and USIM pe-
ripheral changed sufficiently to render our current peripheral
implementation inoperable. While we expected that a single
USIM peripheral is unlikely to work with all emulated UEs
due to changes in hardware and firmware, we note that our
implementation already spans multiple phone models and
generations, indicating that physical USIM peripherals are
rarely subject to drastic changes.

6.2 SIMURAI as a Research Platform
6.2.1 Simulating SIM Spyware

Previous research has shown the potential for spyware-like
features to be embedded in SIM applications. Notably, Mon-
keycalendar and Gopherset are two examples of SIM-based
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Table 3: Baseband firmwares tested for SIMURAI support
through a USIM peripheral.

Model Chipset FW Version Result

One Vision S337AP RSA31.Q1-48-36-23
S10 G973F CP_G973FXXU9FUCD
S10e G970F CP_G970FXXSGHWC2
S9 G960F CP_G960FXXUGFUG4
S8 G950 CP_G950FXXU1AQI7
S8+ G955 CP_G955FXXU1AQF7
S7Edge G935 CP_G935FXXU8ETI2
S7 G930 CP_G930FXXU8ETI2

spyware identified in the NSA’s ANT catalog (which became
public in 2013) [6]. These SIM-based spywares exfiltrate sen-
sitive information—such as a victim’s location, phonebook,
SMS messages, and call logs—using SMS SUBMIT messages.
A similar technique was observed in the more recent Sim-
jacker attack [41, 60]. We chose to re-implement the cru-
cial part of the Simjacker spyware to test the adaptability of
SIMURAI. Our intuition is that an open-source mimicry im-
plementation of the spyware can help the research community
to assess the severity of this threat and investigate tractable
countermeasures, especially as SIMURAI can closely monitor
and modify individual operations.

For our implementation, we use Setup 1 described in Sec-
tion 6.1. The core functionality of the spyware, i. e., location
retrieval and data exfiltration via SMS, is realized using proac-
tive commands (i. e., PROVIDE LOCAL INFORMATION and
SEND SHORT MESSAGE). We extended SIMURAI to send
these proactive commands to the UE, as shown by Figure 5,
and could observe the location information being sent via
the network to the second UE. The ease of re-implementing
this spyware—overall, our proof-of-concept consists only of
89 lines of C code—demonstrates not only are there severe
privacy issues when considering malicious SIM cards as an
attack vector, but also the upside of having a research platform
to evaluate attacks in a quick and flexible manner.

6.2.2 Fuzzing UE Implementations

In the last decade, fuzzing has become one of the most
prevalent techniques for uncovering implementation flaws,
a trend which is also noticeable in cellular security re-
search [17, 18, 22, 40, 52]. Hence, we set out to use SIMURAI
to enable an efficient fuzzing setup to test the robustness
of proactive command handling embedded in commodity
baseband firmware. We deliberately chose these proactive
commands as the fuzz target because: They can be triggered
directly from a malicious SIM card, they provide a variety of
different functionality, and they require complex parsers for
many different binary formats, as outlined in Section 2.2.

SIM UE1 UE2

(NAA location)

PROVIDE LOCAL
INFORMATION

(phone num., location)

SEND SHORT
MESSAGE

(phone num., location)
SMS SUBMIT

Network

Figure 5: Message exchange for the location-stealing spyware.
The SIM implementation is provided by SIMURAI.

Attempt 1: Physical Setup. Our first, naïve approach was
to connect a physical phone to SIMURAI (i. e., using Setup 1).
Unfortunately, our experiments on a Motorola One Vision5

quickly unveiled that terminals throttle the connection to the
SIM when repeatedly receiving malformed data, resulting
in execution speeds of less than one test case per second.
Additionally, the lack of fast reset mechanisms and transpar-
ent feedback channels created further challenges: We cannot
know the state of the target when a given input is processed,
and without additional feedback, such as coverage, we cannot
rank inputs for further mutation and testing.

We conclude that while technically possible, fuzzing in this
case proved limited and ineffective.

Attempt 2: Emulated Setup. Given the roadblocks of phys-
ical fuzzing, we decided to leverage emulation, i. e., our Setup
3 consisting of SIMURAI connected to FirmWire. With this
setup, we tested the most recent firmware available for the
Motorola One Vision6 in a long-lasting fuzzing campaign.
We used AFL++ v4.09a [16] as the fuzzer and distributed
the fuzzing efforts across 10 cores on an AMD EPYC 7662
64-Core CPU running Ubuntu 18.04; we fuzzed the target
for 18 days. Additionally, we used SIMURAI to generate
an expansive multi-thousand entry corpus of valid proactive
commands to be used as seed inputs.

Approach. Implementing a fuzzing campaign against the
proactive command handlers in FirmWire is not straightfor-
ward. The fuzzing methodology of the emulation platform
expects that fuzzers are implemented as tasks for the emulated
baseband real-time operating system, and that fuzzing inputs
are sent via the operating system’s message queues. However,
we noticed that sending messages directly to the USAT task,
which dispatches incoming proactive commands, would fail
because the task was missing important state initialization.

As a result, we decided to pivot our fuzzing to a hybrid
approach: We use SIMURAI to serve SIM-related requests to

5M3BA0, Baseband S337AP_KANE_SGCS_QB4946070
6XT1970-3_KANE_RETEU_11_RSA31.Q1-48-36-23
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Physical Access – Interposer

Original
SIM

Interposer
Smartphone

Rogue Carrier – SIM Update

Smartphone

SIM Update SIM Update

Network
Original

SIM

Figure 6: We use two separate setups to demonstrate the
feasibility of SIM-originating attacks against basebands. The
Interposer in the first setup is inserted between original SIM
and smartphone. In the second setup, we update a SIM card
over-the-air to showcase the threat of rogue carriers.

FirmWire until initialization is completed, and the emulated
baseband would assume the presence of a SIM card. Then, we
create a snapshot of the emulated baseband state and use it as
basis for fuzzing. During fuzzing, we prefix the fuzzing input
with the baseband internal indicator for proactive commands
and provide this modified input to the USAT task. We note
that this approach would also be possible by connecting a
physical SIM, via SIMtrace2, to FirmWire for initialization.
However, before our work, FirmWire neither exposed a PC/SC
interface nor included a USIM peripheral, preventing the use
of SIMtrace2 altogether. Additionally, eliminating the need
for hardware eases the creation of powerful and parallelizable
fuzzing setups.

Results. During our fuzzing campaign, the fuzzing in-
stances cumulatively executed 490 million test cases and
found 63 crashes. After manual deduplication, we could nar-
row down the root cause for the crashes to two distinct vul-
nerabilities: (i) A null-pointer dereference during handling
of the SEND SMS command, and (ii) a heap buffer overflow
during handling of the SEND SS proactive command.

To verify whether the discovered vulnerabilities were
present on more recent devices, we replayed the crashing
inputs using SIMURAI on Google Pixel 6 and Google Pixel
8 devices. We could verify the presence of vulnerability (i)
on both devices, and vulnerability (ii) on the Pixel 6. Inter-
estingly, for vulnerability (ii), the device would, with some
inputs, also crash indicating a PREFETCH ABORT error mes-
sage, which indicates a possible corruption of the program
counter. Both vulnerabilities were acknowledged by Google
as high-severity, and got assigned the following identifiers:
CVE-2023-50806 and CVE-2024-27209.

Original
SIM UE

Read ICCID

981234...

Read ICCID

988812...

Interposer

Figure 7: An interposer intercepts and selectively manipulates
the communication between a phone and SIM card.

6.3 SIM Attack Case Studies

In the previous section, we find vulnerabilities in baseband im-
plementation reachable through malicious, SIM-originating,
messages. Consequently, we want to assess and demonstrate
the practical feasibility of these attacks. Figure 6 summarizes
our case studies.

6.3.1 Physical Access: Interposer

Threat Model. For our first attack case study, we assume an
attacker with short-term physical access to the victim’s phone.
While this may appear like a strong attacker, this scenario can
be relatively easily achieved for highly targeted attacks.

The Attack. We base our attack on a SIM interposer; a “thin
SIM” that is positioned between the SIM card and the phone’s
card reader, as shown in Figure 7. The attacker could insert
it by gaining access to the phone’s SIM slot. We found that
certain commercially available interposers are (i) updateable
using a smart card reader, (ii) the update files contain the raw,
unencrypted, and unobfuscated, firmware of the interposer,
and (iii) the card does not perform any integrity checks on the
received firmware update.

We found out that the interposer runs an unidentified RISC-
V CPU, and through analysis of the update process, we found
commands that: Boot the chip into a bootloader, delete mem-
ory regions, and flash new firmware. We were able to analyze
the firmware, particularly the portion that performs the in-
terception of SIM communication. With that knowledge, we
create a patched firmware that triggers the vulnerability we
found in Section 6.2.2. Overall, our binary patches required
the modification of 57 bytes to trigger vulnerability (i), and
42 bytes to trigger vulnerability (ii), with the core difference
being the crashing proactive command itself.

Evaluation. We prepare the patched firmware and flash it
to an interposer. We open the SIM tray, sandwich the inter-
poser and SIM together, and close the SIM tray with both the
original SIM and the interposer attached to the phone’s SIM
reader. In our experience, this takes only a few seconds and
requires no further manipulation of the SIM tray (i. e., it fits
well inside all devices we were able to test).
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This experiment showcases that anybody with physical
access can sneak-in the interposer inside the phone, and po-
tentially launch attacks from this platform. In our proof-of-
concept interposer firmware, the vulnerability is triggered
immediately when the phone accesses the SIM card; in some
cases (e. g., when the phone is powered off), it might happen
with a delay. A more complex firmware patch could allow a
deliberate, attacker-controlled delay. Usually, interposers only
inject or manipulate selectively, and pass other SIM card com-
munication through. Thereby, the attack could be launched
without impeding the functionality of the original SIM card.

6.3.2 Rogue Carrier: Over-the-Air SIM Card Update

Threat Model. For our second case study, we showcase the
capabilities of rogue carriers in more detail. From a user’s
perspective, there are multiple possible ways to encounter
such carriers, for instance via insider threads, supply chain
attacks, or law enforcement with access to the network.

The Attack. Carriers can update both the file system con-
tent and applications on a SIM card remotely [1]. These proce-
dures are secured with pre-shared keys, programmed into the
UICC and known to the operator. To remotely load applets
onto a SIM card, the operator can use a special class of Short
Messages (SMS), commonly known as binary SMS. While
this update procedure is well-known and documented by the
academic community [35], we could not find any openly avail-
able implementations of remote OTA updates.

Remote SIM Updates. The SMS header indicates that the
message is addressed to the SIM card (rather than the phone,
like a regular text message). The phone forwards the contents
of the SMS to the SIM and thereby acts like a remote card
reader. It is important to note that the SMS payload is en-
crypted and integrity protected, so that only the issuer of the
SIM card can run remote APDU commands and thereby push
updates to the SIM. Generally, the remote update procedure
is similar to an update through a card reader. Figure 8 shows
the encapsulation of APDUs within an SMS-DELIVER packet.
The phone wraps the whole SMS into a GlobalPlatform EN-
VELOPE command and sends it to the SIM card. Locally, one
would directly send the ENVELOPE with the SMS to the SIM.

Setup. Our setup consists of an srsEPC core network and
an srseNB base station connecting to a LimeSDR Mini SDR
inside a faraday cage. We modify srsEPC to enable SMS de-
livery through NAS Downlink Messages. The core network
is greatly simplified in our experiment, i. e., commercial net-
works would typically use a separate entity that manages the
delivery of SMS. Furthermore, we use the most modern and
simple form of SMS delivery using NAS Downlink Messages.
Other ways exist (e. g., SMS-over-IMS); however, these dif-
ferences do not affect the OTA update mechanism.

NetworkUE
SIM

Forward SMS
Registration

Authentication

SMS DELIVER

{ SIM Data Download

SIM APDU

AppletLOAD

Figure 8: Process of installing a cardlet OTA.

Evaluation. We prepare a SIM applet that triggers the vul-
nerability through a proactive command, and compile that
applet into the Java Card CAP format. We then identify the
targeted card to retrieve the necessary keys to update the SIM.
Using the keys, we create encrypted, SMS-wrapped APDUs
that load the applet chunk by chunk onto the card. These AP-
DUs are then fed to the core network, which encapsulates the
SMS and delivers them to the SIM card.

In our experiment, the remote installation was successful,
and the applet successfully sent the malicious commands
to the baseband. The experiment demonstrates that a rogue
carrier—as the issuer of the SIM card inside the phone—can
push remote updates and trigger the SIM-exposed baseband
vulnerability. After successful installation, we can remotely
remove the applet from the SIM again to make the entire
operation more covert.

7 Mitigation

We are not aware of mitigations currently in place to inhibit
the threat of SIM-originating attacks under our assumed threat
model of rogue carriers or with physical access. The inclu-
sion of SIM-originating attacks into threat models would
justify the hardening of cellular basebands, as called for by
Google [38, 39], and thereby reduce the susceptibility of this
attack surface in the future.

Currently proposed, SIM-related security advancements
largely target aspects other than baseband security: Jing-
hao et al. propose to secure the channel between SIM card and
phone to stop interposers from intercepting and manipulating
the data in transit [66]. If deployed and enforced, this would
indeed render the local attacker with physical access ineffec-
tive. The SecureSIM scheme, however, is primarily designed
to protect the SIM card, not the baseband. Hence, it would
require further evaluation if the scheme could also protect the
baseband or if the interposer could launch an attack before the
(secured) communication with the original SIM starts. The
introduction of the eSIM is sometimes associated with gains
in security—and indeed, an embedded SIM does not easily
allow placing an interposer inbetween (however, many eUICC
are surface-mounted, so access is not impossible). While this
certainly raises the bar for physical attackers, the issue with
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potential rogue carriers remains, as the eSIM has the same
baseband communication capabilities and is also controlled
by the carrier. RILDefender, Simjacker, and others discuss
threats related to binary SMS—and call for filtering by the
carrier or in the Android system [60,65]. While these defenses
work against third-party-originating SMS, they do not protect
against the rogue carrier that we assume.

One effective mitigation could be to disable the processing
of proactive commands in the baseband. This mostly reduces
the functionality of SIM cards to a file system and breaks legit-
imate use-cases of proactive commands, but greatly reduces
the available attack surface. If basebands expose that option
to the smartphone operating system, the smartphone could
selectively disable them. Similarly to the option to disable 2G,
disabling proactive commands could be a user-facing option,
or part of a lockdown mode as found in iOS.

Additionally, during our analysis of the vulnerabilities, we
noticed that commodity baseband firmware appears to ship
code that—according to the TERMINAL PROFILE—is not sup-
ported, and, hence, never needed by the smartphone. There-
fore, we think that even without reducing functionality, base-
bands have potential for de-bloating the code shipped within
the firmware. Similarly to Google’s call for updating the build
toolchains [38], baseband firmware developers and integrators
could disable unused features at build time.

8 Discussion

Scalability. Security tooling, especially when used for
fuzzing, needs to allow for scalability and SIMURAI is no
exception. In physical setups, the main bottleneck for scala-
bility is the required hardware: Each instance of SIMURAI
would require a dedicated SIMtrace2 device to connect to a
UE. For emulated settings, however, each emulator instance
can be paired to a unique instance of SIMURAI, allowing for
easy scaling. The main roadblock to scaling emulated fuzzing
to arbitrary UEs is FirmWire support and the need to create
a USIM peripheral for the targeted hardware platform. This
requires a significant amount of manual engineering and re-
verse engineering efforts. Nevertheless, as shown in Table 3, a
single implementation is likely to cover multiple generations
of UEs from a given vendor.

Realism of Presented Attacks. In our experiments, we
show two example attacker models leveraging hostile SIMs.
Attackers with physical access can use an interposer to inject
an arbitrary payload into the communication between the
phone and the original SIM card. Rogue carriers can use their
ability to update SIM cards remotely to install malicious SIM
card applets and launch the attack from there.

We cannot assess the real-world possibility of obtain-
ing physical access to relevant phones or access to remote
SIM management. However, previous incidents demonstrated

misuse of telecom infrastructure for attacks against sub-
scribers [55, 59] and the technical challenge of programming
an interposer for physical access is relatively low. In our ex-
periments, SIMURAI allowed for quick prototyping of proof-
of-concept attack implementations for both scenarios, show-
casing the threats posed by hostile SIMs.

Additional Proactive Attack Surface. During our fuzzing
and dissection of proactive commands, we found two addi-
tional curiosities with security relevance. First, the standard
explicitly defines an OPEN BROWSER proactive command,
which would attempt to open a browser visiting a specified
URL. We found this proactive command to be supported by
most modern COTS UEs, with the caveat that the user would
be asked for confirmation to open the browser. However, the
text in the notification asking for confirmation is completely
SIM-controlled. Given that modern smartphone exploit chains
often require victims to visit attacker-controlled websites in
the process, this feature could provide an additional 1-click
exploit attack surface.

Second, the standard also defines a RUN AT proactive com-
mand which would directly execute a SIM-specified AT com-
mand on the UE. Previous research has shown that attacker-
controlled AT commands can have severe consequences
(e. g., lock screen bypass [64] or flashing of compromised
firmware [53]). Although none of the UEs we tested reported
support for this proactive command in their terminal profiles,
we still found the code paths handling this command in the
baseband firmware images we reverse engineered. Even if
this code is not reached under normal operation, we argue
that its presence introduces an unnecessary attack surface
which could be used by attackers during exploitation. Given
that the UEs do not report support for this feature, we believe
that debloating according parts of the baseband firmware to
remove unsupported parts would be a viable step to improve
its overall security, as discussed in Section 7.

Limitations. The SWICC file system does not model the
ICC file system exactly. SWICC considers File IDentifiers
(FIDs) globally unique. Unfortunately, we later observed
that due to FID reuse between DF.GSM and ADF.USIM,
this prevented SIMURAI from supporting both DF.GSM and
ADF.USIM at the same time. Another limitation is that SIMU-
RAI is not designed to be a replacement for production SIMs,
as it lacks security features like file access conditions.

The core design of SIMURAI also relies on a maximum
message length aligned with regular APDUs, this makes it
difficult to extend the design to support extended APDUs, i. e.,
APDU messages with a maximum length of around 65k bytes.
For a similar reason, we believe that implementing additional
transmission protocols would also be challenging.
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9 Related Work

Cellular Security. Multiple studies focus on cellular stan-
dards, either by studying the standard itself or the implemen-
tation of its procedures. Some authors model the cellular
standard and compare that with models inferred from an im-
plementation, showing implementation issues and deviations
from security goals [9, 23, 24, 29, 32, 34, 52]. Hussain et al.
identify that many previously discovered flaws are based on
an insecure connection establishment procedure [56]. In an
overview study, Rupprecht et al. analyze the various protocol
weaknesses and identify several root causes [58].

Software SIM. A notable development in simulation of
smart cards is the VSmartCard project [43], which provides an
implementation of a generic ICC. In that regard, it is similar to
our swICC component. However, we consider swICC to be an
improvement as it supports file system persistence and TPDU-
level communication, while VSmartCard operates only at the
application layer with APDUs. Concurrent to our work, the
Onomondo SoftSIM, a software-only SIM implementation,
was released [46]. SoftSIM provides a partially overlapping
feature set with SWSIM, but primarily targets the needs of
commercial IoT vendors rather than security research. vSIM
by Kasper & Kuntze et al. [30] is a theoretical software SIM
architecture which relies on a trusted platform module (TPM)
to achieve security guarantees similar to those offered by a
physical SIM card. The authors conclude that a software-only
SIM is possible, but they do not provide a publicly available
prototype. SIMulator [57] is one notable SIM simulation
project that uses a hybrid approach where a real SIM card
would process most commands, and only selected commands
would be intercepted and handled in software. While this does
indeed fulfill the need to selectively manipulate commands,
requiring a hardware SIM limits scalability, especially with
the fuzzing use case in mind.

SIM-Related Security. To our knowledge, there are only a
few academic works in the context of SIM cards. Most related
to our work is a study by Jinghao et al. that identifies the issue
of unprotected SIM-smartphone communication, and designs
an improved access control for SIM cards [66]. While they do
identify interposers as potential threats, they consider them a
threat to the secrets stored on the SIM card. In contrast, we
use them to highlight the risks towards the baseband. Related
to the capabilities that smartphones expose via binary SMS,
Wen et al. propose RILDefender to detect and block SMS
attacks in Android’s Radio Interface Layer (RIL) [65]. In our
case, the harmful payload could not be filtered at the RIL as
it comes directly from the SIM.

There are notable contributions at non-academic venues
that discuss SIM-related threats. The “Simjacker” analysis
exposes multiple on-SIM applets as vulnerable to remote
code execution, and shows how this allowed localization of

phones [60]. ShadySIM [35, 49] by Koscher and Butler pro-
vides a valuable tool for provisioning of applets. We use Sim-
jacker as an example and implement a similar spyware within
our SIMURAI framework to evaluate its extensibility. The
same author presents an overview of past attacks that used bi-
nary SMS and calls, for better protection of SIM applets, and
network-side filtering [41]. Nohl points out that OTA updates
may use weak protection and, among other measures, calls
for carriers to filter binary SMS from unknown sources [44].
Burgess reports the use of proactive commands on various
carrier applets [7]. In a talk at 35C3, Sesterhenn finds Linux
driver vulnerabilities triggered by a smart card [61].

Baseband Fuzzing. Fuzzing work in context of base-
band firmware include ARIstoteles [36], LTEFuzz [33],
Berserker [54] and 5Ghoul [18]. Besides this, re-hosting [15]
is a relatively new approach for security analysis of embed-
ded systems, which enabled fuzzing of emulated baseband
firmware as shown with Basesafe [40] and FirmWire [22]. In
contrast to SIMURAI, none of these approaches consider the
SIM card as an attack vector in their fuzzing setup.

Mobile Ecosystem. Many aspects of cellular network secu-
rity are defined by non-technical phenomena: Lee et al. find
that flaws within customer authentication processes of US-
based carriers enable SIM swapping, i. e., associating a phone
number with a new SIM with the goal of identity fraud [37].
McDonald et al. analyze the issues users face with phone
numbers being a de-facto identifier for online services [42].

10 Conclusion

In this paper, we argued for the inclusion of hostile SIMs, as
an attack vector, in cellular security threat models. Various
scenarios can lead to a compromised SIM, including rogue
operators, physical attackers, and vulnerabilities in the SIM
itself. To demonstrate the importance of this revised threat
model and to facilitate additional research, we design and
implement SIMURAI, a first-of-its-kind research platform
that provides security analysts with flexible control over SIM
card communication.

We integrate SIMURAI in common cellular test bed setups
and demonstrated its capabilities for security research: Among
others, we showed how SIMURAI enabled us to perform a
fuzzing campaign against COTS UE implementations leading
to the discovery of two high-severity security vulnerabilities
in recent Google smartphones, affecting millions of devices.

Finally, we demonstrated how various attackers could ex-
ploit hostile SIMs to trigger the identified vulnerabilities, and
we proposed potential mitigations to address these issues.
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Coordinated Disclosure

We reported the vulnerabilities identified during our research
to Google. These vulnerabilities were assigned CVE-2023-
50806 and CVE-2024-27209 with patches released as part of
the Google Pixel updates in March 2024.

Acknowledgements

We would like to thank the anonymous reviewers and shep-
herd for their insightful and constructive comments. We would
further like to thank Bedran Karakoc, Daniel Klischies, and
Dominik Maier (in no particular order) for their help, com-
ments, and discussion. This research was funded in part by
UKRI EP/V000454/1 and supported via an Android Security
and PrIvacy REsearch (ASPIRE) Award from Google. The
results feed into DSbDtech.

References

[1] 3GPP. Security mechanisms for the (U)SIM application
toolkit; Stage 2. TS 23.048 V5.9.0.

[2] 3GPP. Subscriber Identity Module Application Program-
ming Interface (SIM API) for Java Card™. TS 03.19
V8.5.0.

[3] 3GPP. Universal Subscriber Identity Module (USIM)
Application Toolkit (USAT). TS 31.111 V18.5.1.

[4] 3GPP. (U)SIM Application Programming Interface
(API); (U)SIM API for Java™ Card. TS 31.130 V18.0.0.

[5] Zaheer Ahmad, Lishoy Francis, Tansir Ahmed, Christo-
pher Lobodzinski, Dev Audsin, and Peng Jiang. Enhanc-
ing the Security of Mobile Applications by Using TEE
and (U)SIM. In IEEE Conference on Ubiquitous Intel-
ligence and Computing and Conference on Autonomic
and Trusted Computing (UIC-ATC), 2013.

[6] Jacob Applebaum, Judith Horchert, Ole Reissmann, Mar-
cel Rosenbach, Jörg Schindler, and Christian Stöcker.
NSA’s Secret Toolbox: Unit Offers Spy Gadgets for
Every Need. Spiegel International, spiegel.de, 2013.

[7] David Burgess. Proactive SIMs. DeepSec 2021,
deepsec.net, 2021.

[8] Dhiman Chakraborty, Lucjan Hanzlik, and Sven Bugiel.
simTPM: User-centric TPM for Mobile Devices. In
USENIX Security Symposium, 2019.

[9] Yi Chen, Yepeng Yao, XiaoFeng Wang, Dandan Xu,
Chang Yue, Xiaozhong Liu, Kai Chen, Haixu Tang, and
Baoxu Liu. Bookworm Game: Automatic Discovery of
LTE Vulnerabilities Through Documentation Analysis.

In IEEE Symposium on Security and Privacy (S&P),
2021.

[10] ETSI. Smart Cards; Card Application Toolkit (CAT).
TS 102 223 V17.3.0.

[11] ETSI. Smart Cards; Embedded UICC; Requirements
Specification. TS 103 383 V14.0.0.

[12] ETSI. Smart Cards; UICC-Terminal interface; Physical
and logical characteristics. TS 102 221 V18.1.0.

[13] ETSI. Smart Cards; Vocabulary for Smart Card Platform
specifications. TR 102 216 V5.1.0.

[14] ETSI. (U)SIM Application Programming Interface
(API); (U)SIM API for Java™ Card. TS 131 130
V18.0.0.

[15] Andrew Fasano, Tiemoko Ballo, Marius Muench,
Tim Leek, Alexander Bulekov, Brendan Dolan-Gavitt,
Manuel Egele, Aurélien Francillon, Long Lu, Nick Gre-
gory, Davide Balzarotti, and William Robertson. SoK:
Enabling Security Analyses of Embedded Systems via
Rehosting. In ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS), 2021.

[16] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. AFL++: Combining Incremental Steps of
Fuzzing Research. In USENIX Workshop on Offensive
Technologies (WOOT), 2020.

[17] Matheus E Garbelini, Zewen Shang, Sudipta Chattopad-
hyay, Sumei Sun, and Ernest Kurniawan. Towards Au-
tomated Fuzzing of 4G/5G Protocol Implementations
Over the Air. In IEEE Global Communications Confer-
ence (GLOBECOM), 2022.

[18] Matheus E. Garbelini, Zewen Shang, Shijie Luo,
Sudipta Chattopadhyay, Sumei, and Ernest Kurniawan.
5GHOUL: Unleashing Chaos on 5G Edge Devices.
Technical report, Singapore University of Technology
and Design (SUTD) and I2R, A*STAR, 2023.

[19] GlobalPlatform. Card Specification V2.3.1.

[20] Ismael Gomez-Miguelez, Andres Garcia-Saavedra,
Paul D Sutton, Pablo Serrano, Cristina Cano, and Doug J
Leith. srsLTE: an open-source platform for LTE evolu-
tion and experimentation. In ACM International Work-
shop on Wireless Network Testbeds, Experimental Eval-
uation and Characterization (WiNTECH), 2016.

[21] GSMA. Common Implementation Guide to Using the
SIM as a ‘Root of Trust’ to Secure IoT Applications.
gsma.com, 2019.

4494    33rd USENIX Security Symposium USENIX Association

https://www.spiegel.de/international/world/nsa-secret-toolbox-ant-unit-offers-spy-gadgets-for-every-need-a-941006.html
~https://deepsec.net/docs/Slides/2021/Proactive_SIMs_David_Burgess.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/12/IoT.04-v1-Common-Implementation-Guide.pdf


[22] Grant Hernandez, Marius Muench, Dominik Chris-
tian Maier, Alyssa Milburn, Shinjo Park, Tobias
Scharnowski, Tyler Tucker, Patrick Traynor, and Kevin
R. B. Butler. FirmWire: Transparent Dynamic Analy-
sis for Cellular Baseband Firmware. In Symposium on
Network and Distributed System Security (NDSS), 2022.

[23] Syed Rafiul Hussain, Omar Chowdhury, Shagufta
Mehnaz, and Elisa Bertino. LTEInspector: A System-
atic Approach for Adversarial Testing of 4G LTE. In
Symposium on Network and Distributed System Security
(NDSS), 2018.

[24] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim,
Omar Chowdhury, and Elisa Bertino. 5GReasoner: A
Property-Directed Security and Privacy Analysis Frame-
work for 5G Cellular Network Protocol. In ACM Confer-
ence on Computer and Communications Security (CCS),
2019.

[25] Syed Rafiul Hussain, Imtiaz Karim, Abdullah Al Ishtiaq,
Omar Chowdhury, and Elisa Bertino. Noncompliance as
Deviant Behavior: An Automated Black-box Noncom-
pliance Checker for 4G LTE Cellular Devices. In ACM
Conference on Computer and Communications Security
(CCS), 2021.

[26] ISO. Identification cards – Integrated circuit cards –
Part 3: Cards with contacts – Electrical interface and
transmission protocols. ISO/IEC 7816-3:2006(E).

[27] ISO. Identification cards – Integrated circuit cards – Part
4: Organization, security and commands for interchange.
ISO/IEC 7816-4:2020(E).

[28] ITU. Information technology – ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canoni-
cal Encoding Rules (CER) and Distinguished Encoding
Rules (DER). ITU-T X.690.

[29] Imtiaz Karim, Syed Rafiul Hussain, and Elisa Bertino.
ProChecker: An Automated Security and Privacy Anal-
ysis Framework for 4G LTE Protocol Implementations.
In IEEE Conference on Distributed Computing Systems
(DCS), 2021.

[30] Michael Kasper, Nicolai Kuntze, and Andreas U.
Schmidt. Subscriber Authentication in Cellular Net-
works with Trusted Virtual SIMs. In IEEE Confer-
ence on Advanced Communication Technology (ICACT),
2008.

[31] Eunsoo Kim, Min Woo Baek, CheolJun Park, Dongk-
wan Kim, Yongdae Kim, and Insu Yun. BASECOMP: A
Comparative Analysis for Integrity Protection in Cellu-
lar Baseband Software. In USENIX Security Symposium,
2023.

[32] Eunsoo Kim, Dongkwan Kim, CheolJun Park, Insu Yun,
and Yongdae Kim. BASESPEC: Comparative Analysis
of Baseband Software and Cellular Specifications for L3
Protocols. In Symposium on Network and Distributed
System Security (NDSS), 2021.

[33] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim.
Touching the Untouchables: Dynamic Security Analy-
sis of the LTE Control Plane. In IEEE Symposium on
Security and Privacy (S&P), 2019.

[34] Daniel Klischies, Moritz Schloegel, Tobias Scharnowski,
Mikhail Bogodukhov, David Rupprecht, and Veelasha
Moonsamy. Instructions Unclear: Undefined Behaviour
in Cellular Network Specifications. In USENIX Security
Symposium, 2023.

[35] Karl Koscher and Eric Butler. The Secret Life of SIM
Cards. DEF CON, 2013.

[36] Tobias Kröll, Stephan Kleber, Frank Kargl, Matthias
Hollick, and Jiska Classen. ARIstoteles – Dissecting
Apple’s Baseband Interface. In European Symposium
on Research in Computer Security (ESORICS), 2021.

[37] Kevin Lee, Benjamin Kaiser, Jonathan Mayer, and
Arvind Narayanan. An Empirical Study of Wireless
Carrier Authentication for SIM Swaps. In USENIX
Symposium on Usable Privacy and Security (SOUPS),
2020.

[38] Ivan Lozano and Roger Piqueras Jover. Hardening cellu-
lar basebands in Android. Google Security Blog, google-
blog.com, 2023.

[39] Ivan Lozano, Roger Piqueras Jover, Sudhi Herle, and
Stephan Somogyi. Hardening Firmware Across the
Android Ecosystem. Google Security Blog, google-
blog.com, 2023.

[40] Dominik Maier, Lukas Seidel, and Shinjo Park.
BaseSAFE: Baseband SAnitized Fuzzing through Emu-
lation. In ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WISEC), 2020.

[41] Cathal Mc Daid. STK, A-OK? Mobile Messaging At-
tacks On Vulnerable SIMs. Virus Bulletin Conference,
vblocalhost.com, 2021.

[42] Allison McDonald, Carlo Sugatan, Tamy Guberek, and
Florian Schaub. The Annoying, the Disturbing, and the
Weird: Challenges with Phone Numbers as Identifiers
and Phone Number Recycling. In ACM Conference on
Human Factors in Computing Systems (CHI), 2021.

[43] Frank Morgner and Dominik Oepen. VSmartCard.
github.com. [Online, accessed June 19, 2024].

USENIX Association 33rd USENIX Security Symposium    4495

https://security.googleblog.com/2023/12/hardening-cellular-basebands-in-android.html
https://security.googleblog.com/2023/12/hardening-cellular-basebands-in-android.html
https://security.googleblog.com/2023/02/hardening-firmware-across-android.html
https://security.googleblog.com/2023/02/hardening-firmware-across-android.html
https://vblocalhost.com/uploads/VB2021-Mc-Daid.pdf
https://github.com/frankmorgner/vsmartcard


[44] Karsten Nohl. Rooting SIM cards. Blackhat 2013,
blackhat.com, 2013.

[45] Null Team Impex. YateBTS. yatebts.com. [Online,
accessed June 19, 2024].

[46] onomondo. Onomondo UICC. github.com. [Online,
accessed June 19, 2024].

[47] Open5GS. Open Source Project of 5GC and EPC.
open5gs.org. [Online, accessed June 19, 2024].

[48] Osmocom Contributors. pySIM. Osmocom Wiki, os-
mocom.org. [Online, accessed June 19, 2024].

[49] Osmocom Contributors. shadySIM. Osmocom Wiki,
osmocom.org. [Online, accessed June 19, 2024].

[50] Osmocom Contributors. SIMtrace2. Osmocom Wiki,
osmocom.org. [Online, accessed June 19, 2024].

[51] Osmocom Contributors. SIMtrace2 Cardem. Osmocom
Wiki, osmocom.org. [Online, accessed June 19, 2024].

[52] CheolJun Park, Sangwook Bae, BeomSeok Oh, Jiho Lee,
Eunkyu Lee, Insu Yun, and Yongdae Kim. DoLTEst: In-
depth Downlink Negative Testing Framework for LTE
Devices. In USENIX Security Symposium, 2022.

[53] André Pereira, Manuel Correia, and Pedro Brandão.
USB Connection Vulnerabilities on Android Smart-
phones: Default and Vendors’ Customizations. In IFIP
Communications and Multimedia Security (CMS), 2014.

[54] Srinath Potnuru and Prajwol Kumar Nakarmi. Berserker:
ASN.1-based Fuzzing of Radio Resource Control Proto-
col for 4G and 5G. In IEEE Conference on Wireless and
Mobile Computing, Networking and Communications
(WiMob), 2021.

[55] Vassilis Prevelakis and Diomidis Spinellis. The Athens
Affair. IEEE Spectrum, spectrum.ieee.org, 2007.

[56] Syed Rafiul Hussain, Mitziu Echeverria, Ankush Singla,
Omar Chowdhury, and Elisa Bertino. Insecure Connec-
tion Bootstrapping in Cellular Networks: The Root of
All Evil. In ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WISEC), 2019.

[57] Sebastian Renner and Enrico Pozzobon. SIM Simulator.
Troopers’19, troopers.de, 2019.

[58] David Rupprecht, Adrian Dabrowski, Thorsten Holz,
Edgar Weippl, and Christina Pöpper. On Security Re-
search towards Future Mobile Network Generations.
IEEE Communications Surveys & Tutorials, 20(3):2518–
2542, 2018.

[59] Jeremy Scahill and Josh Begley. The Great SIM Heist:
How Spies Stole the Keys to the Encryption Castle. The
Intercept, theintercept.com, 2015.

[60] Adaptive Mobile Security. Simjacker Technical Paper.
enea.com, Version 10OCT19-v1.01, 2019.

[61] Eric Sesterhenn. In Soviet Russia Smart Card Hacks
You. Chaos Communication Congress 35, media.ccc.de,
2018.

[62] srsRAN Project. Open Source RAN. srsran.com. [On-
line, accessed June 19, 2024].

[63] sysmocom. sysmoISIM-SJA2 programmable
SIM/USIM/ISIM cards. sysmocom.de. [Online,
accessed June 19, 2024].

[64] Dave (Jing) Tian, Grant Hernandez, Joseph I. Choi,
Vanessa Frost, Christie Raules, Patrick Traynor,
Hayawardh Vijayakumar, Lee Harrison, Amir Rahmati,
Michael Grace, and Kevin R. B. Butler. ATtention
Spanned: Comprehensive Vulnerability Analysis of AT
Commands Within the Android Ecosystem. In USENIX
Security Symposium, 2018.

[65] Haohuang Wen, Phillip A. Porras, Vinod Yegneswaran,
and Zhiqiang Lin. Thwarting Smartphone SMS Attacks
at the Radio Interface Layer. In Symposium on Network
and Distributed System Security (NDSS), 2023.

[66] Jinghao Zhao, Boyan Ding, Yunqi Guo, Zhaowei Tan,
and Songwu Lu. SecureSIM: Rethinking Authentication
and Access Control for SIM/eSIM. In ACM Interna-
tional Conference on Mobile Computing and Network-
ing (MobiCom), 2021.

4496    33rd USENIX Security Symposium USENIX Association

https://media.blackhat.com/us-13/us-13-Nohl-Rooting-SIM-cards-Slides.pdf
https://yatebts.com/open_source/
https://github.com/onomondo/onomondo-uicc
https://open5gs.org/
https://osmocom.org/projects/pysim/wiki
https://osmocom.org/projects/pysim/wiki
https://osmocom.org/projects/cellular-infrastructure/wiki/Shadysimpy
https://osmocom.org/projects/simtrace2/wiki
https://osmocom.org/projects/simtrace2/wiki/Cardem
https://spectrum.ieee.org/the-athens-affair
https://troopers.de/troopers19/agenda/y9lar7/
https://theintercept.com/2015/02/19/great-sim-heist/
https://info.enea.com/Simjacker-Technical-Paper
https://media.ccc.de/v/35c3-9346-in_soviet_russia_smart_card_hacks_you
https://www.srsran.com/
https://sysmocom.de/products/sim/sysmousim/index.html


VCC

RST

CLK

AUX1

GND

VPP

I/O

AUX2

Figure 9: A 2:1 scale 4FF UICC with annotated electrical
contacts [12].

A SIMs: Additional Technical Details

In the following, we provide an additional technical descrip-
tion of the inner workings of SIMs as supplementary material.

A.1 Transmission Protocols
ICCs can offer one or more transmission protocols by adver-
tising them in the Answer-to-Reset (ATR). Every protocol is
assigned a unique number called the protocol type T . Three
most common types are as follows [26]:

• T = 0 offers a half-duplex transmission of characters.
This means that only one side may transmit at any time,
and that the smallest unit of transmitted data is a byte.

• T = 1 offers a half-duplex transmission of blocks. This
means that only one side may transmit at any time, and
that the smallest unit of transmitted data is a collection of
characters, i. e., multiple bytes that form a block frame.

• T = 15 indicates that the ATR contains the global in-
terface bytes, i. e., additional properties describing the
parameters of the integrated circuit of the card. While
not a protocol, it shows that the protocol type must not
only refer to communication protocols.

SIMs support protocols T ∈ {0,1,15}, but T = 0 and T = 15
are often the only two that get implemented. We tested 10
different commercial SIMs, from different vendors and dates
of production, and have not found a single card offering T = 1.

A.2 Communication Protocol
SIMs have one electrical contact dedicated to I/O (as shown
in Figure 9). This single wire acts as the physical layer for the
half-duplex data transfer protocol used for all terminal-to-SIM
communications.

TPDUs are used to transfer APDUs but contrary to contem-
porary computer networks, layers of the network do not wrap
the payload in progressively more headers to achieve encap-
sulation. Instead, the transmission layer introduces procedure
bytes, i. e., a type of acknowledgement, that controls all data
transmissions [12, 26].

All TPDUs sent to the card are mapped to C-APDUs that
are structured as shown in Table 1. Field P3 of the TPDU is
particularly important as it encodes fields Lc and Le of the
C-APDU, i. e., it indicates lengths of command and response
payloads.

Once a TPDU is received, the ICC creates a R-APDU per
Table 1 where the data is optional and the status word conveys
success, errors, or warnings concerning the processing of the
command [27]. The R-APDU is sent as-is, directly to the
terminal (no transmission-layer interference).

The ICC receives TPDUs in one or more 2-step exchanges;
it is done this way to ensure that both sides know how many
bytes will be sent over the data line, and to minimize the
amount of exchanged data if the card would like to reject or
process a command early. In step one, the interface transmits
a header to the ICC, and in step two, the ICC responds with
a procedure byte. The value of the procedure byte dictates
how the data exchange will proceed; the possible values are
as follows [26]:

• ACK (= INS of the TPDU), indicates that all remaining
data bytes shall be sent.

• ACK⊕ 0xFF (= INS⊕ 0xFF), indicates that the next
(one) data byte shall be sent.

• NULL, indicates that no more data shall be sent.

• SW1 followed by SW2 completes the command.

Depending on the procedure byte sent, the interface will pro-
ceed by: Sending the remaining chunks of the command data,
sending another command header, or waiting for a response.
In any case, after every chunk transmitted by the interface, the
ICC must respond with a procedure byte until it receives all
TPDU data. Once a TPDU is received, the ICC forms an R-
APDU and sends it back to the interface in a single message.
Crucially, an application layer message may require multiple
TPDUs to get fully transmitted, therefore the intermediate
R-APDUs are considered part of the transmission layer; only
the final R-APDU will be considered as a response to the
C-APDU.

A.3 Commands
The communication protocol is designed such that every ex-
change forms a C-RP out of a C-APDU and an R-APDU. For
any C-RP, the fields of the R-APDU are always interpreted in
the same way, conversely, the C-APDU is interpreted in one
of four ways, depending on the INS and CLA fields contained
in the command header [12, 26, 27].

Every instruction, in every command class, may take a
length Nc of data as input, and offer Ne data bytes as output.
Nc and Ne are encoded by fields Lc and Le of the C-APDU
respectively; four possible command encodings dictate the
absence or presence of L values:
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Table 4: Fields of a TPDU message for protocol T = 0.

Command

Field Description Size in Bytes

Header

CLA Command Class 1
INS Instruction 1
P1 Parameter 1 1
P2 Parameter 2 1
P3 Parameter 3 1

Data Command Data 0 ≤ n ≤ 255

Response

Response Data 0 ≤ Ne ≤ 256
SW1 Status word byte one 1
SW2 Status word byte two 1

1. Le and Lc are absent, hence Ne = 0 and Nc = 0.

2. Le is present and Lc is absent, hence Ne > 0 and Nc = 0.

3. Lc is present and Le is absent, hence Nc > 0 and Ne = 0.

4. Lc and Le are present, hence Nc > 0 and Ne > 0.

Values of N are encoded by L according to Equation 1 and
Equation 2. Furthermore, Lc = 0 is reserved for the extended
APDU, therefore it is undefined within SWICC or assumed
empty (Nc = 0) [27].

Ne =

{
Le if 0 < Le ≤ 255
256 if Le = 0

(1)

Nc =
{

Lc if 0 < Lc ≤ 255 (2)

A.4 Mapping APDUs to TPDUs
A C-APDU is transmitted using one or more TPDUs, there-
fore, it is important to describe how each case of the C-APDU
is mapped to TPDUs messages.

Case 1 requires a single TPDU header with P3 = 0x00. No
payload is present in neither the C-APDU nor R-APDU. The
final status word (R-APDU) is sent in response to the first
TPDU.

Case 2 requires a TPDU header with P3 = 0x00, then de-
pending on Le, the card will respond with a status word that
conveys the expected value of P3, or a response containing
256 bytes and a status word. In the first subcase, another
TPDU is sent with P3 = Le, and only then, the card will send
the desired response.

Case 3 Transmission of a case 3 C-APDU with P3 = Lc,
requires the use of the ACK procedure. The header must first
be acknowledged before the command data can be transmitted
to the card.

Case 4 In order to transmit a case 4 C-APDU, the command
chaining mechanism is necessary. Command chaining works
by first sending a case 3 C-APDU, to which the card will
respond with the status word: SW1 = 0x61 and SW2 = Le,
then sending one or more case 2 C-APDUs (with INS =
GET RESPONSE = 0xC0, P1 = 0x00, P2 = 0x00, and P3 =
Le) that retrieve the Le bytes from the card. This mechanism
may also be used in cases where the response data is oversized,
therefore does not fit in a single R-APDU [12, 27].

A.5 Java Card
SAT is an optional extension of SIMs, that allows installa-
tion of applications on the card. These applications are often
packaged into cardlets. Every cardlet is constrained to a very
narrow subset of the Java language where even string liter-
als are forbidden. This is done so that cards can contain a
stripped-down version of a Java Virtual Machine (JVM) for
executing the application when certain APDUs are received.
The COS provides standard and proprietary APIs for the ap-
plication to use when interacting with card hardware and
software [2, 4, 14, 19].

B SIM Interposer

Figure 10 shows a commercially available interposer for by-
passing iPhone carrier locks.

Figure 10: An interposer; a very thin, flexible smart card with
contacts on both sides. It is typically placed between a SIM
and the phone to intercept and rewrite communications.
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