
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Secure Account Recovery for a
Privacy-Preserving Web Service

Ryan Little, Boston University; Lucy Qin, Georgetown University;
Mayank Varia, Boston University

https://www.usenix.org/conference/usenixsecurity24/presentation/little

Secure Account Recovery for a Privacy-Preserving Web Service

Ryan Little
Boston University

Lucy Qin
Georgetown University

Mayank Varia
Boston University

Abstract

If a web service is so secure that it does not even know—
and does not want to know—the identity and contact info of
its users, can it still offer account recovery if a user forgets
their password? This paper is the culmination of the authors’
work to design a cryptographic protocol for account recovery
for use by a prominent secure matching system: a web-based
service that allows survivors of sexual misconduct to become
aware of other survivors harmed by the same perpetrator. In
such a system, the list of account-holders must be safeguarded,
even against the service provider itself.

In this work, we design an account recovery system that,
on the surface, appears to follow the typical workflow: the
user types in their email address, receives an email containing
a one-time link, and answers some security questions. Behind
the scenes, the defining feature of our recovery system is
that the service provider can perform email-based account
validation without knowing, or being able to learn, a list of
users’ email addresses. Our construction uses standardized
cryptography for most components, and it has been deployed
in production at the secure matching system.

As a building block toward our main construction, we de-
sign a new cryptographic primitive that may be of independent
interest: an oblivious pseudorandom function that can either
have a fully-private input or a partially-public input, and that
reaches the same output either way. This primitive allows us
to perform online rate limiting for account recovery attempts,
without imposing a bound on the creation of new accounts.
We provide an open-source implementation of this primitive
and provide evaluation results showing that the end-to-end
interaction time takes 8.4-60.4 ms in fully-private input mode
and 3.1-41.2 ms in partially-public input mode.

Content Warning: This paper discusses, at a high level, the
issue of sexual assault on college campuses, particularly in
Section 1. From Section 3 onward, the paper is more focused
on the technical design of the account recovery protocol.

1 Introduction

Account recovery—the ability for users to regain access
to their accounts after losing their password—is a near-
ubiquitous feature of account-based web services. However,
the typical account recovery system is not private, and relies
on the web service to retain some information about the exis-
tence of an account under some identity (e.g., a username or
email address). In this work, we designed an account recov-
ery process to be compatible with a secure matching system
operated by a nonprofit organization, Callisto, that uses con-
ventional account recovery workflows but does not retain any
plaintext information about a user’s email address, username,
security questions, or security answers. As of October 2023,
this protocol has been deployed by Callisto for their match-
ing system, which is currently available on college campuses
across the United States.

We discuss the application space of secure matching sys-
tems to provide context for this work, and then elaborate on
the challenge of account recovery in this setting and provide
details about our protocol. While this protocol was designed to
support Callisto’s secure matching system, our cryptographic
techniques are generic and may also be used independently
by other web services that want to enable account recovery
without collecting personal information about users.

Overview of secure matching systems. Secure matching
systems are cryptographic tools that intend to support sur-
vivors of sexual assault by connecting them with one another.
Although statistics may be difficult to capture, there is evi-
dence that sexual assault is highly prevalent on college cam-
puses, in particular. A 2019 study across 33 universities found
that 13% of students experienced sexual assault while en-
rolled [21]. Due to mandatory reporting policies that limit
survivors’ control over their own narratives, victim-blaming,
fear of retaliation, and other barriers, survivors rarely formally
report incidents of sexual assault [32, 37, 55]. For those who
do, survivors may experience retraumatization through inter-
actions with the police and/or the legal system and may ulti-

USENIX Association 33rd USENIX Security Symposium 1993

mately feel failed by formal avenues of pursuing justice [54].
Inspired by the #MeToo movement, secure matching sys-
tems [6, 39, 48, 49, 61] allow survivors of sexual assault to
document their experiences and securely connect with other
survivors who have been harmed by the same perpetrator to
seek mutual support and explore different pathways either
collectively or individually, since healing and seeking justice
may look different for each survivor.

Callisto is a nonprofit organization that currently deploys a
free secure matching system across college campuses in the
United States [14]. Callisto allows survivors of sexual assault
to document details of their assault in an encrypted record
(for potential future use) and participate in matching with
other survivors. If two or more survivors match by providing
identifying information about the same perpetrator, contact
information for each survivor is revealed to a legal options
counselor (a lawyer) so that rather than being cryptograph-
ically protected, the same information is then protected by
attorney-client privilege [15]. Prior to a match, information
about both a survivor and perpetrator is not accessible to Cal-
listo. Once connected to a legal options counselor, survivors
are then offered the opportunity to connect with one another.
Upon connecting, they may choose to collectively pursue legal
justice, restorative justice, or nothing at all. Matching enables
survivors to seek support from a legal options counselor and
one another to explore options (individually or collectively)
for action, ideally providing each survivor more support when
decision-making about their options for pursuing further ac-
tion, should they want to.

The challenge of account recovery. In standard account
recovery processes, the service provider typically stores an
email address that it uses for validation and to share a link that
allows a user to regain access to their account. Since contact
information about a survivor may reveal sensitive information
(in our setting, whether an individual is a survivor of sex-
ual assault), privacy-respecting service providers like Callisto
cannot store any contact information about its users. Maintain-
ing a list of account-holders creates a sensitive and valuable
asset that may be targeted by bad actors. It may also create
vulnerability toward legal threats, through subpoenas for in-
formation about account holders. Hence, a secure matching
system must protect both data and metadata—even against
the service provider itself, or anyone who might attempt to
compromise it. In more detail:

1. All data submitted by survivors must be encrypted with
a key derived from the user’s password, so that the
service cannot access user-submitted information (e.g.
identifying information about a user, details of their as-
sault) until they have reached the matching threshold.
This cryptographic problem has been addressed in prior
works [6, 39, 48, 49, 61] with general-purpose secure
multi-party computation (MPC) and specific primitives
like oblivious pseudorandom functions, group signatures,

and verifiable secret sharing.
2. Additionally, the service provider must not have (or even

have a simple way to recover) a list of all account-
holders, since even the fact of a survivor using the system
is extremely sensitive. On its own, this problem can be
addressed using cryptographically oblivious login mech-
anisms (e.g., [45]), along with network and systems secu-
rity precautions supporting anonymous communications
and not keeping long-term logs that could later be exfil-
trated by a hacker or compelled by an authority.

When addressing these two requirements together, one runs
into a practical challenge: what happens if an account-holder
forgets their password? This issue is inevitable in a system
where strong, unique passwords are encouraged but logins
are infrequent, and by default it would make all of the user’s
encrypted data irrecoverable.

In a typical website, account recovery involves the ser-
vice provider sending an email to the email address on file;
however, this is incompatible with our no-metadata require-
ment. Even federating the email address list and the delivery
of emails among multiple servers using secure multi-party
computation [1, 38, 64] is insufficient for our needs because
it is slow, difficult to implement, and (most importantly) is
still vulnerable to the risk of all servers being compelled to
disclose their secret shares of the email list.

1.1 This work

In this work, we describe the design of an account recovery
system such that a web service provider (like Callisto) does
not store email addresses, and cannot easily provide a list of
all email addresses even if compelled to do so (e.g., through
a subpoena).

Protocol design. At a high level, our cryptographic proto-
col involves a client who (if honest) wishes to regain access
to their account, along with a collection of recovery servers.
The protocol uses email validation and a set of security ques-
tions/answers to determine whether the client should be given
access to the account. Only the client recovers the crypto-
graphic key that protects their account data; the recovery
servers never see the security answers or key material.

In more detail, our protocol has two phases: some work
is performed during account creation when the client knows
their password and cryptographic key material, and subse-
quently the client can run an account recovery procedure if
they forget the password and associated key. The recovery
procedure itself contains three parts: request, verification, and
restoration. First, the client requests recovery by (obliviously)
providing their email address and responses to any generic
questions (e.g., a phone number). Second, the servers verify
that the client has control of this email address. Third, the
servers fetch the client-specific security questions; the client’s

1994 33rd USENIX Security Symposium USENIX Association

answers to these questions can be used to restore access to
their account.

Design requirements. Our protocol is grounded in the
framework of trauma-informed design that acknowledges the
impact trauma may have on the user experience and seeks
to avoid retraumatization [15, 25, 63]. When designing an
account recovery process that is trauma-informed in this set-
ting, the user’s interactions with the process must be familiar
and easy to use: in particular, it must adhere to an expected
account recovery workflow (e.g., “click on a link”), run seam-
lessly in a web browser, and not impose any restrictions or
rate-limiting of legitimate uses.

On the back-end, our protocol had to accommodate the
resource constraints of Callisto. For ease of deployment and
maintenance on the web, the recovery servers must run on
commodity hardware and the protocol must only use standard
public and symmetric key cryptography in widely used and
available software libraries.

Our protocol has been implemented and tested, and as
of October 2023 is running live in production within Cal-
listo’s secure matching system. It uses only the cryptographic
primitives that were already in place for Callisto’s existing
matching process, for ease of development and maintenance.
However, we emphasize that our account recovery protocol
is independent of Callisto’s services; it is generic and can be
used by any privacy-respecting website that desires not to
keep personally-identifiable logs about their users.

Security guarantees. Our protocol provides security
against three types of attackers. As with account recovery
in other web services, email validation is our main security
protection against external attackers. If an attacker has addi-
tionally compromised some of our recovery servers, they must
still perform an online dictionary attack to obtain any email
address, which we rate-limit through honest recovery servers.
Finally, even if all of the recovery servers are compromised
then an offline dictionary attack is still needed—which is not
impossible, but onerous enough to allow Callisto to defend
itself against legal compulsion of the email list.

The challenge of rate-limiting. Beyond standard symmet-
ric key crypto primitives and a slow hash function, the only
crypto primitive that we require is an oblivious pseudoran-
dom function (OPRF). The client independently interacts with
each server to compute an OPRF for two distinct reasons: (a)
to hide the client’s email address, contact information, and
security answers from the recovery servers, and (b) as part
of our rate-limiting mechanism, whereby an honest recovery
server can detect and stop a brute-force dictionary attack of
contact information or security answers.

The idea of using an OPRF for rate-limiting is not new.
Several prior works have designed partially oblivious pseudo-

random functions (pOPRFs) where the server publicly sees
some information about which account is being accessed.
This approach can aid in rate-limiting (e.g., [33, 67]).

However, rate-limiting in our context is challenging. This
is because we need to hide the contact info and security an-
swers during both account creation and recovery, but we want
rate-limiting only in account recovery. Account creation is a
delicate moment for a survivor, and we do not want to risk
re-traumatizing them by denying signups due to rate-limiting.

K-pop: a new type of OPRF. As a result, in this work we
design a new kind of primitive that can operate either as a
pOPRF or as an OPRF. Identical outputs are produced in
either mode. During account creation, we desire a pOPRF
that uses a fresh public nonce as input, so that the servers are
assured that this PRF query is for a new account and therefore
do not need to impose rate-limiting. During account recovery,
we desire a standard OPRF to hide which account is being
accessed; hence, only here is rate-limiting needed.

We call this new primitive a kaleidoscopic partially obliv-
ious PRF, or K-pop. In this work, we provide a formal defi-
nition of a K-pop along with a construction from any group
where the Discrete Diffie-Hellman assumption is hard (e.g.,
elliptic curve groups), in the random oracle model.

1.2 Our contributions
In summary, this work provides three contributions.

First, we contribute a new primitive called a kaleidoscoping
partially oblivious PRF, or K-pop. This function can be calcu-
lated either as an OPRF or pOPRF, and reaches the same result
either way. We construct a K-pop without bilinear maps and
provide an open-source implementation of this construction.

Second, we use the K-pop in order to construct an inter-
active protocol for account recovery where even the service
provider does not require, and does not learn, the email ad-
dresses of its account-holders. This construction uses only
standard public and symmetric key primitives that are avail-
able in many crypto libraries. This construction has been
developed, tested, integrated, and deployed within Callisto’s
matching system.

Third, we provide two proofs of security of our account re-
covery protocol: a game-based security analysis against static
adversaries, and a universally composable (UC) security [18]
analysis against adaptive adversaries. In both analyses, a key
challenge is to ensure security up to abort against malicious
adversaries, but while avoiding the use of zero knowledge
proofs (and therefore, also avoiding verifiable OPRFs).

1.3 Ethics and limitations
The question of whether a new technology is even needed and
appropriate must be determined in consultation with subject-
matter experts and in partnership with relevant communities.

USENIX Association 33rd USENIX Security Symposium 1995

Since these systems are intended to support survivors of sex-
ual assault, designing any cryptosystem (new or otherwise)
should only be done if deemed necessary and useful to sur-
vivors. Development of this account recovery protocol was
specifically requested by Callisto, based on their users’ needs.

We wish to stress the importance of developing technology
through a trauma-informed lens that minimizes the risk of
retraumatization. Lack of account recovery may exacerbate
existing trauma as it prevents survivors from accessing prior
information they had submitted. This may produce feelings
of loss of control as personal details about sexual violence
they had experienced are rendered inaccessible. Reactions to
trauma, such as heightened anxiety and hypervigilance, can
also impact survivors’ interactions with technology [25]. It is
therefore critical that an account recovery process is familiar
and easy to use so as to not increase survivors’ cognitive
burden. When creating this account recovery process, we
worked extensively with Callisto to make sure that the design
would meet their technical constraints and also enable them
to use a common and familiar user interface on the front end.
As part of our ongoing work together, we have been in regular
communication with Callisto about the publication of this
work, which they are supportive of.

Both our problem formulation and our proposed solution
have important limitations. First, our threat models are tai-
lored to the specific needs of Callisto. Assumptions made in
some of our threat models, such as honest server behavior dur-
ing account creation and a non-colluding set of servers, may
not be reasonable for other web services. Second, implement-
ing our protocol necessarily increases the attack surface of
the web service. A security bug in implementation could ex-
pose user information and put vulnerable users at risk. Third,
providing stronger anonymity on the Internet may not always
be a desirable goal, and we stress the importance of working
with domain experts to determine the appropriate balance
between any privacy technology and other social principles,
policy objectives, or legal requirements in the context of a
particular web service.

Lastly, our work does not address the structural barriers
that make it difficult for survivors of sexual assault to find
support and seek their own pathways toward accountability
and healing. We note the significant barriers survivors face in
addressing harms due to victim-blaming and institutional fail-
ures. Our protocol, and secure matching systems in general,
are not solutions to this root problem, but nevertheless may
be helpful to some survivors when navigating their options.

2 Technical Overview

In this section, we provide an informal summary of the tech-
nical contributions in this work. We begin by detailing the
system setup, threats considered, and rationale for our design
choices. Then, we describe our K-pop and account recovery
constructions and explain how they build upon prior work.

2.1 Design principles and threat model
In this section, we take a deeper dive into the security threats
and design considerations that influence our protocol design.

System setup. The account recovery system contains two
types of actors: one or more clients who possess user accounts
in the system, and a collection of N servers who participate in
account recovery. The design follows the ‘anytrust’ paradigm
in which only one server needs to be honest to provide the
strongest security, and it also provides some meaningful secu-
rity guarantees even if all N servers are compromised. Here,
an honest server has two responsibilities: not sharing its OPRF
secret key with the other servers, and properly enforcing rate
limits on requests from clients and the other servers. All
network communications are protected using TLS, and the
adversary is presumed to have some amount of network con-
trol but not a fully global view—for instance, we presume
that the adversary does not have full visibility or control of
the client’s email service provider.

Design principles. In this section, we expand upon the
design requirements discussed in §1.1. Then, we describe
some design accommodations that were deemed acceptable in
our setting by our team and Callisto. While admittedly some
of these principles are specific to our specific tech transition,
nevertheless we believe that many of our design principles—
and the motivations behind them—may generalize to other
web services that want private account recovery.

As discussed in §1.3, our account recovery system is de-
signed for survivors of sexual assault who may be using the
system while having just experienced trauma. It is essential
that any technology that is built is trauma-informed and is
designed to account for these experiences to avoid retrauma-
tization. Since user accounts for Callisto’s matching system
contain personal information that may include details about
sexual assault, it is imperative that survivors are able to access
their accounts quickly and seamlessly. Therefore, an account
recovery process must be easy and familiar for survivors to
use. As such, we designed a protocol to be compatible with a
front-end user experience that is common to account recov-
ery: a user enters their email along with additional contact
information and receives security answers they must respond
to. Survivors should not be burdened with learning new mech-
anisms that are complicated or unfamiliar. Trauma-informed
design principles such as safety and trust [63] are pursued
by creating an account recovery process that operates in a
predictable manner while respecting the privacy of the user’s
personal information.

We impose three server-side requirements. First, the recov-
ery servers must run on commodity machines without mak-
ing any specific assumptions about the hardware. These con-
straints are common in many web applications on the cloud,
and in particular we rejected the use of trusted hardware due

1996 33rd USENIX Security Symposium USENIX Association

to concerns about cost, challenges with upgrades and mainte-
nance, and security vulnerabilities (e.g., [13,23,34,51,52,68]).
Second, to simplify software development and maintenance,
the recovery servers must only use common crypto primi-
tives with widely-used software libraries. In particular, we
avoided the use of pairing-based cryptography since these
libraries are less widely available in deployment settings and
less understood by the general software engineering commu-
nity. Third, for ease of deployment, the recovery servers must
be able to communicate independently with the client (e.g., to
execute separate instances of the OPRF protocol) rather than
with each other; that said, they can maintain joint state like a
counter acting as a nonce.

On the flip side, a non-collusion assumption in the anytrust
setting was deemed acceptable if it provides defense-in-depth
such that no collection of all-but-one recovery servers (or
the engineers who administer them) can recover email ad-
dresses. Moreover, we deemed it to be acceptable if the recov-
ery servers learn the client’s email address at the moment of
account creation for two reasons: (a) the website’s onboarding
process already involves sending an email at the moment of
account creation, and (b) the main threat was deemed to be
bulk, retrospective extraction of already-registered accounts
rather than the smaller set of accounts created or recovered
during the interval of server compromise.

We remark that it is possible to protect addresses even
during the act of email delivery by using MPC for TLS [1,64],
but even that would not prevent against a different threat: one
of compulsion. Due to our focus on trauma-centered design
and ensuring that the secure matching system itself could not
be used to harm survivors, it was important to consider the
possibility that all servers become under control of a single
adversary through technical or legal means, and even then to
avoid a large-scale breach of users’ identity and data.

Threats and security guarantees. We require that the ac-
count recovery system provide correctness (up to abort) and
privacy against three types of malicious adversaries. We em-
phasize upfront that this work focuses on threats and mitiga-
tions at the cryptographic level. As stated in §1.3, this work
does not impose any new barriers to an adversary’s ability to
exploit a web service; instead, we seek to mitigate the damage
of an adversary who controls some or all recovery servers.

1. An external adversary who interacts with the recov-
ery system protocols (but lacks control of any recov-
ery server) should be unable even to determine whether
any email address they do not control corresponds to an
account in the system. Looking ahead, our account re-
covery protocol achieves this goal by not providing any
information to the client to determine whether an email
address matches an account in the system—at least, not
until the moment that an honest client receives an email
in her inbox.

2. An internal adversary who has compromised some of
the recovery servers must be restricted from performing
a brute-force attack of email addresses. The threat here
is that an internal adversary might conduct a probing at-
tack in which it pretends to be a client, submits a variety
of different email addresses, and uses its insider access
to determine whether an account exists by observing
whether an email is sent out to the victim. We address
this threat in two ways: first to require some additional
information beyond the email address even at the first
step of recovery request, and second to have the honest
server(s) perform online rate limiting of the attacker. In
particular, we intentionally avoid providing any deter-
ministic function of the client’s data to an individual
server, because that could be used to perform an offline
dictionary attack.

3. A legal adversary that subpoenas all recovery servers
must still need to execute a (now inevitable) offline brute-
force attack to learn any account information, and fur-
thermore they must be required to perform a brute-force
attack after the last server has been compromised. Look-
ing ahead, our recovery request and account restoration
protocols provide this guarantee through their use of a
slow, password-based hash function to make offline dic-
tionary attacks slower and more costly. Moreover, the
slow hash function requires the outputs of the K-pop,
which prevents so-called “pre-computation attacks” [45]
and ensures that the expensive offline attack must occur
after the servers are corrupted.

Finally, all of these security properties must hold even against
honest clients who have performed account recovery or
changed their security questions, potentially several times.
Looking ahead, our account recovery protocol uses client and
server nonces to ensure domain separation of the space that
must be brute-forced before vs. after an account reset.

2.2 Our model of account recovery

Our account recovery protocol has 4 procedures: account
creation and the 3 parts of account recovery (plus a simple ini-
tialization step for the servers to generate their cryptographic
keys). We presume the client (who we call Alice) already has
a web account with a key ku (e.g., derived from her password)
that is used for encryption of her account data at rest.

Account creation. The client Alice begins this procedure
with her user account key ku, and the goal is for her to prepare
and upload some cryptographic material that facilitates later
recovery of ku. Specifically, she (obliviously) provides her
account’s email address E, responses to additional generic
questions like her phone number x, a set of personalized se-
curity questions Q together with their corresponding answers
A and a recovery email address e where she would like to be

USENIX Association 33rd USENIX Security Symposium 1997

contacted if recovery is needed (this can, but does not have
to, be the same as the account email address E). Anyone who
later proves ownership of the recovery email account e and
knows the answers x and A to the generic and personalized
security questions will be able to recover the account key ku.

Recovery request. After Alice forgets her password, she
(obliviously) submits her email address E and her responses
x to any additional questions asked of everyone. Importantly,
Alice herself receives no output from this protocol; she does
not yet know whether E and x matched any previously-created
accounts. If a match exists, then the servers receive (secret
shares of) Alice’s recovery email address e and security ques-
tions Q. This stage has two purposes: involving the servers for
online rate-limiting of any dictionary attack, and providing the
servers with the information they need to perform verification
and ask personalized security questions to the client.

Account verification. The servers send an email to Alice’s
recovery address e containing a one-time link. In this work,
we model the email delivery as an instance of secure message
transmission FSMT. This functionality can be instantiated by
the servers in the clear (in which case they temporarily learn
Alice’s email address and must then delete it afterward) or
using secure multi-party computation (so that they can jointly
send the email while individually not learning e) [1, 38, 64].

Account restoration. This stage begins when the client
clicks on the link from the email, which (among other things)
contains her security questions Q. The client obliviously
provides her corresponding security answers A, which—if
correct—can be used to recover her key ku. The servers re-
ceive no output from restoration. Upon restoration, Alice
should immediately re-run account creation to choose a new
password for her account and select (possibly new, or possibly
the same) security questions and answers to protect her keys.

2.3 Related work

In this section, we describe some prior work that informs our
choice of a protocol design.

Secure matching systems. Secure matching systems1 are
cryptographic protocols that aim to augment informal “whis-
per networks” that exist in many communities such as college
campuses. They permit a collection of survivors of sexual
assault to determine whether they have been harmed by the
same individual—even though the survivors have never met
each other, never communicate directly with each other, and
may never be online at the same time as each other. To accom-
plish this goal, secure matching systems use special-purpose
secure computation among a non-colluding set of servers.

The work of Rajan et al. [61] was the first to construct a
cryptographically secure matching system; their work relies
on non-collusion of two servers, and it provides confidential
matching when two survivors provide identifying informa-
tion about the same individual. Subsequent works achieved
stronger functionality and integrity guarantees, at the expense
of requiring a public key infrastructure and an honest major-
ity among 3 or more servers. WhoToo [49] allows for each
survivor to choose their own matching threshold (potentially
greater than two), and adds traceability for false accusations.
Arun et al. [6] contribute a constant-time matching protocol
to determine, after each submission, whether any collection
of reports has exceeded the threshold. WhoToo+ [39] fixes
some ambiguities in WhoToo and extends it also to support
matching with a constant number of online operations. Finally,
Shield [48] improves upon the work of Arun et al. in two ways:
hiding the threshold chosen by each survivor, adding integrity
checks against fake and duplicative submissions.

MPC and TEEs. Secure multi-party computation (MPC)
is a cryptographic technique for a collection of servers to
perform a joint computation while not learning any of the
underlying data. While the fundamental concepts of MPC
have been known for four decades [10, 11, 24, 35, 70], MPC
on its own is typically incapable of withstanding the threat of
legal adversaries, as we describe in more detail in §2.5.

Trusted execution environments (TEEs) offer an alterna-
tive method to protect sensitive data using hardware isolation
(rather than cryptography). They have been proposed in com-
mercial processors (e.g., [4,5,26,46,66]), academic prototypes
(e.g., [27, 40, 62, 69]), and cloud-based services [3, 36, 57].
However, nearly all of these systems are subject to both phys-
ical and remote attacks (e.g., [13, 23, 34, 51, 52, 68]), and it re-
mains an open question as to what extent the vision of trusted
hardware can be realized. For these reasons and due to our
design requirement to operate on general-purpose hardware,
we avoid use of TEEs in this work.

Oblivious PRFs. A pseudorandom function (PRF) is a de-
terministic but “random-looking” function y = fk(x) in which
the mapping between the input x and output y is unpredictable
without knowledge of the secret key k. An oblivious PRF is
an interactive protocol to evaluate fk(x) that hides the server

1While some other works in this area refer to these systems as “secure
allegation escrows,” we have selected an alternative name based on Callisto’s
terminology for their service [16], which they describe as a “matching system.”
The use of the term “allegation” may unintentionally imply a lack of belief
in survivors’ experiences. As advocates have noted in a guide on language
use for sexual assault [47], “Many people say they use the word ‘alleged’ to
refer to sexual assault cases, because they have not reached a final resolution
within the criminal justice system . . . However, it is important to keep in
mind that only a miniscule percentage of sexual assaults ever make their way
through the entire criminal justice process. . . . [A]lmost all sexual assaults
remain “unresolved” by the legal system, and it would be inappropriate to
refer to all such reports (or even disclosures) of sexual assault as ‘alleged.’ ”

1998 33rd USENIX Security Symposium USENIX Association

key k and the client input x from each other; it also allows the
server to perform service-wide rate-limiting by refusing to
participate after some number of queries within a time period.
A partially oblivious pseudorandom function (pOPRF) has
two inputs fk(xkal,xpriv), where the server provides k and xkal,
and the client provides xpriv. This additional ‘nonce’ or ‘salt’
input xkal can be used to perform per-account rate-limiting
while still hiding the client’s input xpriv.

There are a wide variety of OPRF works in the literature,
starting with the work of Naor and Reingold [58]. Modern
constructions tend to be based on a Hashed-Diffie-Hellman
PRF fk(x) = H(x)k that is secure in the random oracle model,
or the Dodis-Yampolskiy PRF fk(x) = g1/(k+x) [31]; we will
use some ideas from both of these constructions in this work.
Both styles of OPRFs also have verifiable counterparts that
add integrity checks [33,42], often via zero-knowledge proofs
(which we purposely avoid in this work as discussed in §2.1).
We refer readers to the SoK by Casacuberta et al. [22] for
additional OPRF and pOPRF constructions.

Among their many uses, OPRFs and pOPRFs have found
value in several applications involving oblivious interactions
on the web with passwords or other low-entropy secrets, such
as (threshold) password-protected secret sharing [8, 42, 44],
password hardening services [33, 50], compromised pass-
word checkers [60,65], password-authenticated key exchange
[42, 45, 67], and single sign-on [9]. Many of these works
also provide universally composable (UC) security models
of OPRFs, optionally with a threshold or verifiability require-
ment. Looking ahead, we use the UC modeling of Jarecki et
al. [44] in this work, which is intentionally designed to avoid
the verifiability requirement. We also desire security against
pre-computation attacks, as defined within OPAQUE [45].

2.4 Overview of our K-pop protocol

In this section, we provide an informal overview of our con-
struction of a kaleidoscoping partially oblivious PRF, or K-
pop. As a reminder, this is a function that can be calculated as
an OPRF or pOPRF, and reaches the same result either way.
In other words, the input xkal is kaleidoscopic in that it can be
rapidly changed between being client- or server-provided.

We observe that if bilinear maps are permissible, then
it is straightforward to build a K-pop. Concretely, the
Pythia pOPRF of Everspaugh et al. [33] is computed as
fk(xkal,xpriv) = e(H1(xkal),H2(xpriv))

k, where H1 and H2 are
random oracles. Using standard techniques for oblivious ex-
ponentiation (shown in §3), this function f can be easily com-
puted either as an ordinary OPRF (where the client computes
the bilinear map and the server obliviously exponentiates by
k) or as a pOPRF (where the client blinds the left input before
the server computes the bilinear map).

However, introducing a bilinear map violates our design
principle only to use widely available crypto libraries. As a
result, we have designed a K-pop that can be built purely from

group and finite field operations, in the random oracle model.
Constructing this is non-trivial, as there are no OPRFs and
pOPRFs in the literature [22] that already compute the same
outputs as each other.

Our starting point for this work is the recent pOPRF of
Tyagi et al. [67]. It uses the pseudorandom function fam-
ily fk(xpriv,xkal) = H2(xkal,xpriv,H1(xpriv)

1/(k+H3(xkal))), which
combines characteristics of the Hashed-DH and Dodis-
Yampolskiy OPRFs described in §2.3. We extend this con-
struction to a K-pop by providing an OPRF protocol as well,
which uses additively homomorphic encryption between the
server (who holds k) and the client (who holds xkal) to com-
pute the exponent 1

k+H3(xkal)
that is used in oblivious exponen-

tiation. While the OPRF mode requires a larger number of
public-key operations, this mode of our K-pop only needs to
be executed in the (less frequent) account recovery phase.

2.5 Overview of our account recovery protocol
This section provides a high-level description of our account
recovery protocol. To provide some intuition about the chal-
lenges involved in this construction, we iteratively build it up
by describing several ideas that look promising but ultimately
fall short of meeting our objectives. We then propose changes
until arriving at our final construction.

MPC-based approaches. A natural approach here is to
use MPC, either generally (e.g., run account recovery as a
large circuit) or using private information retrieval, encrypted
database search, or other special-purpose primitives. Within
our 3-step recovery request, verification, and restoration pro-
cedure, it might seem at first glance that the hardest approach
to satisfy with MPC is the email verification step. But actually
this part is mostly a solved problem: Abram et al. [1] showed
how a coalition of MPC servers can collectively emulate TLS
1.3 communications, and MPCAuth [64] applied this tech-
nique to email delivery in such a way that the servers never
learn the client’s email address or contents of the email.

Instead, the primary challenge is to withstand the threats
of an internal and legal adversary during the recovery request
and restoration steps, since MPC-based approaches typically
do not (a) provide any form of rate-limiting of queries or (b)
stop a colluding coalition of all servers from instantly recon-
structing all data. Here the recent TLS-OPAQUE construction
of Hesse et al. [38] is more promising: it uses secure com-
putation of TLS for email delivery along with an OPRF that
could be adapted to ensure that the client’s data (e.g., email
address and security questions/answers) is protected by online
rate limiting if even a single server is honest and requires an
offline dictionary attack even after all servers are corrupted.
In this work, we purposely choose not to use any form of
MPC-for-TLS since (a) it is slow and non-standard to imple-
ment, (b) it is not necessary to satisfy our design principles
(§2.1), and (c) even with MPC-for-TLS, it remains unclear

USENIX Association 33rd USENIX Security Symposium 1999

how to protect the client’s data using an OPRF. We focus on
this latter question next.

OPRF-based approaches. When using an OPRF in ac-
count recovery, an initial thought might be for recovery re-
quest to involve a standard OPRF on the email address E:
that is, to have the client and servers calculate y = fk(E) and
to protect the client’s user account key using y. However,
this approach would allow an external adversary to conduct
a brute-force search of others’ email addresses. A better ap-
proach is to reveal y only after verifying that the client controls
the email address. Even so, an internal adversary (who ma-
liciously also acts as a client) could perform a brute-force
search of email addresses and recover user data; ultimately,
email addresses do not have enough entropy on their own.

Hence, we wish to add additional questions, but here we
face a chicken-and-egg issue. Ideally, we want each client
to be able to choose their own custom security questions,
and then construct some method where the OPRF output y is
used by the servers to retrieve each client’s custom questions.
But since a retrieving client has forgotten all passwords and
crypto keys, any brute-force attacker would also be able to
read the same security questions. Hence, an internal adversary
could use the mere fact that security questions have been suc-
cessfully retrieved to conclude that an email address E must
be registered in the system.2 We resolve this issue by allow-
ing for generic questions for additional information x (e.g.,
a phone number) and computing the OPRF as y = fk(E,x)
where y is used as a key to unlock a second layer of custom
security questions. In this way: the generic questions provide
increased resistance against brute-force attack by an internal
adversary, and the custom questions provide stronger (and
industry standard) protection against external adversaries.

The next challenge is that if the same OPRF y = fk(E,x) is
used during account creation and recovery, then both need to
be rate-limited or else an internal adversary could use account
creation requests to brute-force y. We resolve this issue by
using a K-pop togther with a server-chosen nonce n that is
guaranteed to be unique for all account creation requests.
Then, we can run a pOPRF y = fk(n,(E,x)) during account
creation and the corresponding OPRF during recovery. With
a K-pop, we can enforce rate-limiting of account recovery
requests in such a way that we do not know which account is
being recovered and need not rate-limit account creation.

Finally, any OPRF-based approach (on its own) does noth-
ing against a legal adversary in control of all servers, since
a PRF provides no security against the key-holder. We re-
solve this issue by feeding y into a slow cryptographic hash

2We remark that this leakage is not inherent from a cryptographic perspec-
tive; indeed, it is possible to calculate the security questions pseudorandomly
from the email address E so that it can be retrieved whether or not E was
ever registered in the system. But we rejected this approach because it went
against our goal of trauma-informed care: if a survivor accidentally mistyped
their email address, we did not want to subject them to try in vain to respond
to an incorrect set of security questions.

Symbol Description

C Client
Si Recovery server i
N Number of recovery servers (default is N = 2)
λ Cryptographic security parameter, e.g., 256 bits
ku Client’s user account key (which decrypts account data)
H Cryptographic hash function, modeled as a random oracle
E Client’s email address associated with the account
x Client’s answers to any generic questions (e.g., contact info)
e Client’s recovery email address (can be the same as E)
Q Security questions chosen by the client
A Answers to the client-chosen security questions
n Nonce chosen publicly by the recovery servers
m Nonce chosen privately by the client
r Recovery string, set as r = e ∥ Q ∥ m ∥ padding
ℓ fixed length of the recovery string after padding is applied
D Database held by both recovery servers (this stores all data

provided by all clients during account creation)
Êi Result of the K-pop run in recovery request with server i
Âi Result of the K-pop run in recovery restoration with server i
id Client’s identifier for her record in the database D
ctr,ctu Ciphertexts produced by the client to store in the server

database; they are a one-time pad of r and ku, respectively
kE ,kA One-time pad keys for the ciphertexts above
k Server’s secret key for an OPRF
xpriv Client’s private input to an OPRF or pOPRF
xkal Input provided by the server in a pOPRF, or by the client in

an OPRF

Table 1: Notation used in this paper.

function H that can slow down the rate of offline brute-force
attempts. Importantly, the OPRFs of all servers are performed
first and only the results are fed into H, so that this offline
brute-force attack must occur after the moment that all server
keys are compromised. In this way, our construction is secure
against pre-computation attacks [45]. This finally yields a
secure construction, which we describe in detail in §4.

3 Kaleidoscopic Partially Oblivious PRF

In this section, we define and construct a new primitive that
we call a kaleidoscopic partially oblivious PRF, or K-pop
for short. This primitive is named for the fact that it can be
quickly changed between an OPRF and a pOPRF at will.

3.1 Preliminaries
In this section, we briefly introduce the notation and OPRFs
that we use in this work. We describe other cryptographic
primitives (hash functions, Diffie-Hellman groups, and addi-
tively homomorphic encryption) in the full version of this
work [53].

Notation. In this work, we often use upper-case letters like
S to denote finite sets, and calligraphic letters D to denote
distributions. The notation x← D means to sample x from
the distribution D, and the notation x← S means to select

2000 33rd USENIX Security Symposium USENIX Association

Functionality FSMT

• Upon invocation, with input (send,sessionid,R,m) from a sender party S that is intended for a receiver party R, send a message
(sent,sessionid,S,R, |m|) to the adversary A∗.

• Upon receiving message (delivered,sessionid) from A∗: If not yet generated output, then output (sent,sessionid,S,R,m) to R.
• Upon receiving message (corrupt,sessionid,m′,R′) from the environment Env: record being corrupted. Additionally, if no output

has been generated yet, then output (sent,sessionid,S,R′,m′) to R′.

Figure 1: Secure message transmission functionality FSMT, adapted from [18]. In this work, we model both network communi-
cation via TLS and the act of sending an email from the servers to the client’s email provider as instantiations of FSMT.

Functionality FOPRF

An instance of this functionality is uniquely defined by a session id sessionid= (OPRF,sid) containing the party ID of the server (sid).
The functionality interacts with both the server Ssid and anyone who acts in the role of a client C, including possibly the adversary A∗.

• Upon receiving (Init,sessionid) from the server Ssid, uniformly sample kid←$ {0,1}λ, and initialize an empty table T (kid,x).
• Upon receiving (Eval,sessionid,qid,x) from a client C (which can be adversary A∗) where qid is a unique identifier for this Eval

query: end this invocation if called before Init. Otherwise, record ⟨qid,C,x⟩ and send (EvalContinue,sessionid,qid) to A∗.
• Upon receiving (EvalContinue,sessionid,qid,kid∗) from A∗: end this invocation if there is no record with qid. Otherwise, find

and delete record ⟨qid,C,x⟩. If Ssid is honest, set kid∗← kid (i.e., use the correct key). Next, fetch ρ← T (kid∗,x) as follows:
– If T (kid∗,x) is defined, then look up ρ← T (kid∗,x) and send (EvalComplete,sessionid,qid,ρ) to C.
– Otherwise pick ρ at random from {0,1}ℓ, assign T (kid∗,x) := ρ, and send (EvalComplete,sessionid,qid,ρ) to C.

• Upon receiving (OfflineQuery,sessionid,x,kid∗) from C: fetch ρ← T (kid∗,x) as above. Send (OfflineQuery,sessionid,ρ) to C.
• Upon receiving (corrupt,pid) from the environment Env: mark the party corresponding to pid as corrupted. Additionally:

– For corruption of the server, send kid to the adversary.
– For corruption of a client C, send all corresponding records ⟨qid,C,x⟩ to the adversary.

Figure 2: Functionality FOPRF, based on Jarecki et al. [43] modified to use a unique query identifier qid like Das et al. [28] to
track commands sent to FOPRF about the same evaluation query. FOPRF does not guarantee honest behavior by the server; the
key identifier kid corresponds to the server’s choice of key to use when responding to each query. OfflineQuery allows anyone to
evaluate the OPRF on input x and key id kid∗ of their choice—which is unlikely to match the honest kid unless S is corrupted.

x uniformly at random from the set S. We also use [n] =
{1, . . . ,n} to denote the set of integers from 1 to n, inclusive.

We denote the protocol participants using bold letters. A
client is denoted as C, and a server is denoted as S. For pro-
tocols that contain multiple servers, we use subscripts to dis-
tinguish them: server 1 is denoted as S1, server 2 is S2, and
so on. We also use Adv to denote a real-world adversary who
attempts to attack our protocol—either maliciously or semi-
honestly, as stated in the respective theorem statements—and
Sim to denote the corresponding ideal-world simulator. See
Table 1 for a detailed list of all variables used in this work.

Oblivious pseudorandom function. As described in §2.3,
an OPRF is an interactive two-party protocol in which a client
C has input x, a server S has input k, and they jointly com-
pute y = fk(x) in such a way that neither party learns any-
thing about the other input. However, the server can deviate
from the protocol, and correctness is not guaranteed in this
case. Formally, we model an OPRF as an instantiation of the
UC functionality FOPRF shown in Figure 2, which we adapt
from Jarecki et al. [43] with a small tweak to add support for
server-side rate-limiting. If a client submits an input x and the
server is honest, then the client receives the correct output—

potentially after some adversarially-chosen delay since this is
an interactive protocol. If the server is malicious, then it could
act as though it used a different key or produce a random
output, which the functionality also accounts for.

3.2 Defining K-pop

Like an OPRF or pOPRF, a K-pop is an interactive protocol
between two participants who we call the client C and the
server S. Concretely, a K-pop is a keyed family of pseudo-
random functions with two inputs f K-pop

k (xkal,xpriv). Looking
ahead to our account recovery protocol: the client will execute
independent instances of K-pop with each recovery server.

The K-pop can be computed either as a pOPRF or OPRF.
Concretely, the input xkal is kaleidoscopic in that it can be
rapidly changed between being public to the server (in pOPRF
mode) or private to the client (in OPRF mode). Importantly,
the K-pop returns the same answer in either mode.

We formalize these requirements through the UC func-
tionality FK-pop provided in Figure 3, which codifies both the
functionality and security requirements of K-pop. It calls the
OPRF functionality FOPRF (Fig. 2) as a subroutine. We stress
that FK-pop makes the same call to FOPRF whether the input

USENIX Association 33rd USENIX Security Symposium 2001

Functionality FK-pop

An instance of this functionality is identified by a session id sessionid= (K-pop,sid) containing the party ID sid of its server. It interacts
with the server S and any client C (possibly the adversary A∗), it has a subroutine FOPRF and a query limit L, and it operates as follows.

• Upon receiving (Init,kid) from server Ssid: set ctr← 0 and send (Init,kid) to FOPRF. (Other methods abort if called before Init.)
• Upon receiving (Reset) from the server Ssid: set ctr← 0 and send the message (ResetComplete) to A∗.
• Upon receiving (Eval,sessionid,OPRF-mode,qid,xkal,xpriv) or (Eval,sessionid,pOPRF-mode,qid,xkal,xpriv) from a client C:

– Send an error (Eval,sessionid,qid,⊥) to A∗ if there was a prior message with qid, or if S is honest and ctr > L.
– If in pOPRF mode: send (Eval,sessionid,qid,xkal) to A∗, and wait for a response (EvalContinue,sessionid,qid).
– Increment query counter ctr← ctr+1, and send (Eval,sessionid,qid,(xkal,xpriv)) to FOPRF on behalf of C.

• Upon receiving (EvalComplete,sessionid,qid,ρ) from FOPRF: output (EvalComplete,sessionid,qid,(xkal,xpriv),ρ) to client C.
• Upon receiving (OfflineQuery,sessionid,xkal,xpriv,kid

∗) from C: send this message to FOPRF, and send its response to client C.
• Upon receiving (corrupt,pid) from the environment Env: mark the party with pid as corrupted, and send (corrupt,pid) to FOPRF.

Figure 3: Functionality FK-pop with subroutine FOPRF. Differences between OPRF and pOPRF modes are shown in a box .
FK-pop maintains a counter ctr of the number of Eval queries, and it enforces a limit of L evaluations between Reset commands.

K-pop in pOPRF mode

Client (knows xkal,xpriv) Server (knows k,xkal)

r←$ {1, . . . , p}

α = H1(xpriv)
r

pOPRF

xkal, α

stop if query
limit exceeded

v = k+H3(xkal)

γ = β
1/r β β = α

1/v

Output H2(xkal,xpriv,γ)

Figure 4: K-pop in pOPRF mode, where both the client and
server know xkal. The server need not be honest; it can use
incorrect k∗ or x∗kal in its oblivious exponentiation. All com-
munications use secure message transmission FSMT (Fig. 1).

xkal is provided by the server (in pOPRF mode) or by the client
(in OPRF mode). Since FOPRF does not know whether it was
called in OPRF or pOPRF mode, its response must be the
same in both cases; in other words, FK-pop ensures identical
outputs in the OPRF and pOPRF modes by design. Also, note
that if the parties are honest, then FK-pop is guaranteed to be
deterministic and repeatable because FOPRF is.

However, if the server S is malicious, then in pOPRF mode
it can ignore the agreed-upon xkal and choose a different x∗kal.
While one could incorporate a verifiability guarantee into a
K-pop, we choose not to do so because it is not needed in
our account recovery protocol in §4 and this way we do not
need to use zero knowledge proofs. Instead, we leave it up
to any protocol that uses K-pop to detect and abort in case of
malicious server behavior.

K-pop, in OPRF mode

Client (knows xkal,xpriv) Server (knows k)

(sk,pk)←$ HomKeyGen()

pk,JkK JkK = HomEncpk(k)

r,s←$ {1, . . . , p}
t←$ {1, . . . ,N/p}

α = H1(xpriv)
r

JzK = HomEvalpk(t p

+ s(JkK+H3(xkal)))
OPRF

α,JzK
stop if query limit exceeded

z = HomDecsk(JzK)
z = z mod p

γ = β
s/r β β = α

1/z

Output H2(xpriv,xkal,γ)

Figure 5: K-pop in OPRF mode, where xkal and xpriv are both
private inputs supplied by the client. All communications use
secure message transmission FSMT (Fig. 1). The first message
can be sent in a preprocessing step or using a PKI.

3.3 Constructing K-pop

In this section, we construct a K-pop by combining and ex-
tending techniques from Tyagi et al. [67] and Miao et al. [56].
Specifically, our K-pop construction computes the same func-
tion as the pOPRF of Tyagi et al. [67]:

f K-pop
k (xkal,xpriv) = H2

(
xkal,xpriv,H1(xpriv)

1/(k+H3(xkal))
)
.

Here, H1 is a cryptographic hash function whose output is a
point on an elliptic curve group, and H2 and H3 are random
oracles that return finite field elements. We use xpriv and xkal to

2002 33rd USENIX Security Symposium USENIX Association

denote the inputs, where xpriv is always a secret input supplied
by the client, and xkal is the kaleidoscopic input. In the OPRF
mode, xkal is chosen by the client and kept secret from the
server; by contrast, in the pOPRF mode, xkal is known and
agreed upon by the client and server.

This construction by Tyagi et al. [67] combines ideas from
two prior PRF families: the Dodis-Yampolskiy [31] PRF
fk(x) = g1/(k+x) and the Hashed-DH PRF fk(x) = H(x)k. The
outer-most hash function H2 is useful to provide extraction
for UC security, in the random oracle model [42]. Below, we
reproduce the pOPRF design of Tyagi et al. [67], and then
we construct an OPRF that computes the same result. In both
cases, we model all network communications with a secure
message transmission functionality FSMT in Fig. 1; that said,
it is sufficient to use an authenticated communication channel
as defined in several prior works (e.g., [7, 18–20]).

pOPRF Mode. We begin by describing the K-pop in
pOPRF mode. Because the server knows xkal, it can com-
pute (k+H3(xkal))

−1 and use this as the exponent in a two-
message oblivious exponentiation protocol with the client, as
illustrated in Figure 4. Finally, the client computes the outer
hash function H2. This mode exactly follows the work of
Tyagi et al. [67] (but without a zero knowledge proof), and
it is the more efficient of the two modes: it requires 3 group
exponentiations along with some hash function evaluations.

OPRF Mode. It remains to compute the same function in
OPRF mode, in which xkal (like xpriv) is a secret known only
to the client that the server is not supposed to learn. Rather
than having the server compute v = k+H3(xkal) directly, in
this mode we have the client and server compute v together,
using additively homomorphic encryption so that neither party
learns any intermediate state along the way. Let p denote
the order of the elliptic curve group, and let the notation JxK
denote a homomorphic encryption of the plaintext value x.

First, we describe the main technique under the simplify-
ing assumption that the plaintext space of the homomorphic
encryption algorithm is also a group of order p. With this sim-
plifying assumption, we can perform a secure computation of
the required addition and multiplicative inversion as follows.

1. The server chooses an ephemeral key pair for homomor-
phic encryption, computes JkK= HomEnc(k), and sends
this ciphertext to the client.

2. The client chooses two blinding factors r,s←{1, . . . , p}.
The client computes the group element α = H1(xpriv)

r

in the same way as in the pOPRF mode, and also uses
homomorphic addition and scalar multiplication to com-
pute the ciphertext JzK corresponding to the plaintext
z = s(k +H3(xkal)). The client sends α and JzK to the
server.

3. The server decrypts z, inverts it, and sends β = α1/z =

H1(xpriv)
r

s(k+H3(xkal)) to the client.

4. The client computes γ = βs/r = H1(xpriv)
1/(k+H3(xkal)).

Correctness is clear by inspection, and privacy against the
server follows from the fact that z is blinded using s so that
the server cannot learn the client’s xkal.

The remaining challenge is to address the fact that the
exponents and HomEnc plaintexts are not from the same
group, which we handle using a technique from Miao et
al. [56]. Concretely, let N≫ p denote the order of the plain-
text space within an additively homomorphic encryption
scheme, like Paillier [59] or Camenisch-Shoup [17] encryp-
tion (for the latter, we omit the integrity check). The issue here
is that we wanted the homomorphic evaluation to produce
z = s(k+H3(xkal)) mod p because the server plans to use z
as an exponent, but the homomorphic evaluation performs
the calculation mod N instead. If N ≫ p2 then the calcula-
tion z = s(k+H3(xkal)) mod N does not perform any modular
wrapping at all, so the blinding is ineffective and revealing
z to the server would allow it to learn information about the
size of the client’s secrets s and H3(xkal). Fortunately, there is
a simple solution to this problem shown by Miao et al. [56]:
add a random multiple of p, so that the resulting plaintext is
z = s(k+H3(xkal))+ t p mod N, where t ← {1, . . . ,N/p} is
another blinding factor chosen by the client. In this way, z still
reduces to the correct exponent mod p with overwhelming
probability, and its size does not reveal information about the
client’s secret inputs.

This protocol requires 3 group exponentiations (just like
pOPRF mode) along with one homomorphic encryption, eval-
uation, and decryption. We illustrate the protocol in Figure 5
and prove the following theorem in the full version [53].

Theorem 1. Assume that group G satisfies the one-more gap
strong Diffie-Hellman inversion assumption and that HomEnc
satisfies indistinguishability under a chosen plaintext attack
(IND-CPA). Then, the K-pop protocol ΠK-pop (in Figures 4-5)
UC-realizes the ideal functionality FK-pop in the presence of a
programmable random oracle Fpro.

4 Account Recovery

In this section, we describe our cryptographic protocol for
private account recovery. Our protocol consists of the four
stages described in §2.2: account creation, recovery request,
account verification, and account restoration. Below we de-
scribe constructions for each protocol, with full details pro-
vided in Figures 6-8. For simplicity, our constructions are
written here for the setting of N = 2 servers, but the protocols
immediately generalize to allow for more servers. We provide
a security analysis of this protocol in §4.6 and the the full
version of this work [53].

USENIX Association 33rd USENIX Security Symposium 2003

Client Server 1 Server 2

m $←− {0,1}256 Agree on unique nonce n

n
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

E
−−−→

pOPRF mode

K-pop
E,x E,k1

Ê1

pOPRF mode

K-pop
E,x E,k2

Ê2

pOPRF mode

K-pop
n,(A ∥ m) n,k1

Â1

pOPRF mode

K-pop
n,(A ∥ m) n,k2

Â2

id,kE = H(E ∥ Ê1 ∥ Ê2)

kA = H(A ∥ m ∥ Â1 ∥ Â2)

r = E ∥ Q ∥ m ∥ padding

ctr = kE ⊕ r

ctu = kA⊕ ku

id,ctr,ctu
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

id,ctr,ctu
−−−→

Store (id,ctr,ctu,n) in a database shared between both servers

Figure 6: Account Creation

4.1 Initialization

Each server independently and secretly chooses a K-pop key.
We denote server i’s K-pop key as ki. Additionally, a com-
mon database DB is initialized, and each server is granted
read/write access.

4.2 Account creation

Account creation allows a client to register a new account in
the system. We depict the complete procedure in Figure 6.
The client begins by choosing the following information:

• E, the client’s official email address for this account,
• e, a personal email address to use in account recovery,

• x, additional personal information provided in response
to any generic questions, such as a telephone number,

• ku, a cryptographic key used to encrypt all account data,
• Q, a set of client-chosen security questions,
• A, the client’s answers to the security questions Q,
• m, a randomly generated nonce of length λ, where λ

denotes the security parameter (e.g., 256 bits), and
• r = e ∥Q ∥m, a recovery string padded to fixed length ℓ.

First, the servers jointly agree on a unique nonce n for
the client. This nonce is immediately sent to the client, who
sends back their email string E to both servers. The servers
should verify the client’s email at this point by emailing them
a link. Also, providing E to the servers serves a cryptographic
purpose in our protocol: the client makes a K-pop query to

2004 33rd USENIX Security Symposium USENIX Association

Client Server 1 Server 2

OPRF mode

K-pop
E,x k1

Ê1

OPRF mode

K-pop
E,x k2

Ê2

id,kE = H(E ∥ Ê1 ∥ Ê2)

id,kE
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

id,kE
−−→

Each server aborts if id is not in the database. Else:

r = kE ⊕ ctr
Contact client via contact information stored in r using FSMT,
send the message (Q,m,ctu,n)

Figure 7: Recovery Request

each server in pOPRF mode, using email E as the public input
and personal info x as the private input. Let Ê1 and Ê2 denote
the respective K-pop outputs to the client.

Next, the client computes H(E ∥ Ê1 ∥ Ê2), where H is a
slow password-based key derivation function of variable out-
put length (modeled as a random oracle). The slowness of this
function is the reason why our construction provides offline
rate limiting against a legal adversary, and the fact that it uses
the outputs of the K-pop means that an offline attack can only
be performed after the adversary compromises all servers. We
parse the output of H into two strings: id is the first λ bits of
this output, and kE is the next ℓ bits. This ensures that kE is
the same length as r. The client then computes a one-time-pad
ciphertext ctr of r encrypted under key kE .

Then, the client makes another K-pop query to each server
in pOPRF mode, this time using n as the public input and A ∥
m as the private input, receiving back the respective outputs
Â1 and Â2. Using the same password-based key derivation
function H, they compute kA = H(A ∥ Â1 ∥ Â2), where kA is
of length λ. The client then XOR-s kA with their user key
to produce a one-time-pad ciphertext ctu. Finally, the client
sends id,ctr, and ctu to each server. The servers store these
values together with the nonce n in a single row of the shared
database DB.

4.3 Recovery request
In this stage, the client initiates a request to recover their ac-
count after losing their user key. We assume that the client
still remembers the same email string E and personal infor-
mation string x used during account creation. We depict the
full protocol in Figure 7.

Recovery requests begin with the client making a K-pop
query to each server in OPRF mode, using inputs E and x,
and receiving back outputs Ê1, Ê2. Note that the inputs are
the same ones the client provided to the K-pop during account
creation, but this time E is a private input instead of a public
input. Since both K-pop modes of operation compute the same
function, the outputs are the same as in account creation.

The client computes id,kE = H(E ∥ Ê1 ∥ Ê2), and sends
id and kE to each server. The servers can then look up id
in their shared database and retrieve the corresponding ctr
ciphertext. Both servers can decrypt this with kE to reveal
the client’s r string, which consists of their recovery email
address e, security questions Q, and nonce m.

To impose rate limiting on recovery requests, each server
can restrict the number of K-pop queries they respond to in
OPRF mode. This limit will not restrict the server’s ability
to process account creations, since all K-pop operations in
account creation are run in pOPRF mode.

4.4 Account verification
In this stage, the recovery servers send an email to the re-
covery address e. This email contains a customized link that
encodes the message (Q,m,ctu,n). The servers only agree to
participate in account restoration if the client clicks on this
link within a short time interval.

Our protocol supports two options for account verification.
First, the verification step can be done non-cryptographically
by having the recovery data r revealed to the servers at the
end of the recovery phase, in which case they can send an
email in the clear to the recovery address e. This approach has
the advantage of being easier to implement, since all other

USENIX Association 33rd USENIX Security Symposium 2005

Client Server 1 Server 2

Q,m,ctu,n
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Q,m,ctu,n
←−−

Abort if messages differ

A = Answers to Q

OPRF mode

K-pop
n,(A ∥ m) k1

Â1

OPRF mode

K-pop
n,(A ∥ m) k2

Â2

kA = H(A ∥ m ∥ Â1 ∥ Â2)

Output ku = kA⊕ ctu

Figure 8: Account Restoration

aspects of our account recovery protocol use standard public
and symmetric key primitives, but it has the disadvantage
that the servers temporarily learn the contact info of clients
during account recovery and must be trusted to delete this
information promptly. (Still, we stress the importance here of
learning at most the email addresses of clients who perform
account recovery, rather than a full list of account-holders.)
Second, the servers can jointly perform account verification
under secure multi-party computation, in order to prevent any
server from learning the client’s email address. In this case,
either the Oblivious TLS protocol of Abram et al. [1] or the
MPCAuth protocol [64] would suffice.

In our modeling, we consider both of these options as in-
stantiations of the UC functionality for secure message trans-
mission FSMT, as shown in Figure 1.

4.5 Account restoration

This final stage of the protocol is shown in Figure 8. Concep-
tually, this stage is most similar to recovery request, in that it
starts with the client submitting K-pop queries to each of the
servers in OPRF mode, this time with inputs xpriv = (A ∥ m)
and xkal = n. Additionally, the client computes a slow hash
function on the OPRF inputs and outputs. One difference
between the stages is that account restoration is intended to
provide an output to the client, not the servers. Ergo, recov-
ering the one-time pad key kA from the OPRF outputs is
nearly the end of the protocol; all that remains is to use this
ephemeral key to recover the user account key ku.

After the client’s account has been restored, it is crucial that
they immediately reset their account information (e.g., the
password that they have forgotten) so they maintain access in

the future. While most of the reset process involves properties
of the service outside of our modeling, one step that is crucial
is to perform another instance of account creation in order to
choose a new nonce to protect the account going forward (and
optionally new security questions and answers, if desired).

4.6 Security analysis
In this work, we provide game-based and simulation-secure
security analyses of our account recovery construction.

First, we provide an indistinguishability game-based secu-
rity analysis in the full version of this work [53] Our game
defines an adversarial model in which the attacker can stat-
ically corrupt one of two recovery servers, and adaptively
corrupt any number of clients. The adversary can additionally
control when honest clients create accounts and run account
recovery. The adversary wins if they are able to distinguish
between an uncorrupted client’s real user key and a randomly
sampled key. We prove that our account recovery scheme has
the following security.

Theorem 2. An adversary that sends at most q messages to
honest parties has advantage at most q

|A| + ε in the random
oracle model, where ε is negligible in the security parameter,
and A is a set of possible security question answers from
which real clients’ answers are uniformly sampled.

This result demonstrates the effectiveness of rate-limiting
against internal adversaries. Rate-limiting allows honest re-
covery servers to effectively impose a q value limiting the
number of queries that other servers can make. The honest par-
ties can therefore restrict the advantage of internal adversaries
via the choice of q.

2006 33rd USENIX Security Symposium USENIX Association

Figure 9: Performance of K-pop implementation over different choices of elliptic curve group and cryptographic hash function.
Each bar represents the average of 1000 measurements.

Our game-based analysis additionally shows that our ac-
count recovery construction detects adversarial deviations
from the protocol during account recovery and restoration
and therefore provides security up to abort, even though our
K-pop on its own does not provide verifiability. This proof
is conceptually the simpler one to understand, but it restricts
the adversary to a single server corruption and only protects
accounts created prior to the corruption.

Second, in the full version [53], we provide a simulation-
based analysis with universally composable (UC) security in
the model of Canetti [18]. We write a protocol description
Πacc in the UC style, contribute an idealized version of our
protocol as the functionality Facc, and prove the following.

Theorem 3. Protocol Πacc UC-realizes functionality Facc in
the random oracle model.

This analysis provides a stronger guarantee because it does
not restrict the power of the adversary: it can act maliciously
from the beginning and in all phases of account creation, re-
covery, verification, and restoration. To prove Theorem 2, we
construct a simulator Sim and argue the environment Env’s
view is identically distributed whether it interacts with (a)
Πacc and real-world adversary Adv in the FK-pop-hybrid world
or (b) Facc and Sim in the ideal world. Our formal theorem
statements and proofs are provided in the full version [53].

5 Implementation

We provide an open-source implementation of the K-pop con-
struction (from §3.3) in Sage.3 We emphasize that this code-
base is distinct from Callisto’s own implementation in Type-
Script for use on the web.

Our code is based on an implementation [41] of RFC
9497 [30], which standardizes the pOPRF construction of

3Our K-pop implementation code is available at
https://github.com/ryanjlittle/kpop-oprf.

Tyagi et al. [67]. Our implementation of the K-pop in pOPRF
mode uses their code directly, with the only modification be-
ing the removal of zero-knowledge proofs (since our construc-
tion does not require verifiability). For the OPRF mode, we
instantiate the additively homomorphic encryption scheme us-
ing an open-source implementation [29] of Paillier encryption
with a key length of 2048 bits.

5.1 Single-threaded experimental results

We evaluated our implementation on a 1.6GHz Intel Core
i5-10210U CPU with 16GB RAM. Figure 9 shows the client-
side and server-side performance of the K-pop in both modes
of operation for five different choices of Diffie-Hellman group
and hash function. Excluding network time, the end-to-end
time of a K-pop interaction takes 3.1-41.2 ms in pOPRF mode
and 8.4-60.3 ms in OPRF mode, depending on the choice of
group and hash function.

Our proof-of-concept implementation is not optimized for
speed, and we expect that the computation time can be re-
duced further. Even so, already these benchmarks lend cre-
dence to the efficiency of the account recovery protocol,
which requires two separate instances of the K-pop together
with a small number of hash function operations, XORs, and
database operations. Since all of these server-side costs are
negligible compared to the K-pop, our benchmarks show that
in a 2-server account recovery system, account creation and
the entire recovery procedure each run in 12.4-164.8 ms, ig-
noring network latency. The client-side runtime would be
dominated by the (tunable) cost of the slow, memory-hard
hash function like argon2 [12] or scrypt [2].

5.2 Multiprocessing experimental results

In a real-world deployment of our account recovery system,
the server side work can scale to a larger number of clients

USENIX Association 33rd USENIX Security Symposium 2007

https://github.com/ryanjlittle/kpop-oprf

Ciphersuite Mode Number of cores

1 2 4

ristretto255-SHA512
pOPRF 6.866 3.942 2.534

OPRF 8.829 5.364 3.671

decaf448-SHAKE256
pOPRF 13.259 8.165 5.566

OPRF 16.357 10.209 6.779

P256-SHA256 pOPRF 1.027 0.544 0.366

OPRF 3.823 2.289 1.416

P384-SHA384 pOPRF 1.584 0.889 0.616

OPRF 4.478 2.648 1.639

P521-SHA512 pOPRF 2.824 1.653 1.018

OPRF 5.547 3.368 2.326

Figure 10: Amortized evaluation time in milliseconds of K-
pop server running on P ∈ {1,2,4} parallel cores. Each data
point is the average of 512 measurements.

by running many K-pop instances in parallel. We attempted
to measure the performance in this setting by evaluating our
K-pop implementation locally running on multiple cores. We
simulated 512 (single-process) clients simultaneously inter-
acting with one server that delegates the server response for
each client to one of P processes run on separate parallel
cores, for P ∈ {1,2,4}. The work is evenly split such that
each core handles 512/P clients.

The performance results for this experiment are given in
Figure 10. Experiments were run on an 4-core 1.6 GHz Intel
Core i5-10210U CPU with 16GB RAM. On P = 4 cores,
the server performance is 2-3 times faster than a single-core
implementation, depending on the mode of operation and
ciphersuite. The run times for P = 1 core are slightly higher
than the results of the experiment of §5.1 due to overhead
from multiprocessing.

6 Conclusion

In summary, this work designs an account recovery protocol
that works under stringent functionality and privacy require-
ments. First, the service provider cannot know or learn the
email addresses of all clients. Second, the clients must be
able to follow a ‘normal’ account recovery workflow and
have the ability to choose their own security questions—but
again, without creating a visible mapping between identities
and their choice of security questions. Third, a non-collusion
assumption might be broken, and even in this setting the pro-
tocol must resist the adversary’s ability to recover client data.
Finally, our design uses the cryptographic building blocks
that our partner organization, Callisto, already understood and

knew how to implement and maintain, such as an oblivious
pseudorandom function.

Our design is inspired by the application to a secure match-
ing system, and it has been deployed for use in this setting.
That said, at least the first three requirements from above
are generic and can apply to other account-based privacy-
preserving services as well. This work shows that strong
security and privacy can be compatible with usability and
quality-of-life features like account recovery.

Acknowledgments

R. Little and M. Varia were supported by DARPA under
Agreement No. HR00112020021 and by the National Science
Foundation under Grants No. 1801564, 1915763, 2209194,
2217770, and 2228610. L. Qin was supported by the NSF
Graduate Research Fellowship while at Brown University
(where she was during the completion of most of this work)
and the Fritz Fellowship through the Initiative for Technol-
ogy and Society at Georgetown University. We thank Tracy
DeTomasi, Scott MacDonald, Ari Adair, and David Archer for
lending their expertise in engineering and trauma-informed
design through numerous conversations. We also thank the
anonymous reviewers and shepherd for their detailed, thought-
ful feedback on several iterations of this work.

References
[1] Damiano Abram, Ivan Damgård, Peter Scholl, and Sven Trieflinger.

Oblivious TLS via multi-party computation. In Kenneth G. Paterson,
editor, CT-RSA 2021, volume 12704 of LNCS, pages 51–74. Springer,
Heidelberg, May 2021.

[2] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Ste-
fano Tessaro. Scrypt is maximally memory-hard. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III,
volume 10212 of LNCS, pages 33–62. Springer, Heidelberg, April / May
2017.

[3] Amazon Web Services. AWS nitro system.
https://aws.amazon.com/ec2/nitro/, 2023.

[4] Apple Platform Security. Secure enclave.
https://support.apple.com/guide/security/secure-enclave-
sec59b0b31ff/web, 2021.

[5] ARM. TrustZone technology for the ARMv8-M architecture version
2.0. https://developer.arm.com/documentation/100690/0200/ARM-
TrustZone-technology, 2019.

[6] Venkat Arun, Aniket Kate, Deepak Garg, Peter Druschel, and Bobby
Bhattacharjee. Finding safety in numbers with secure allegation es-
crows. In NDSS 2020. The Internet Society, February 2020.

[7] Christian Badertscher, Ran Canetti, Julia Hesse, Björn Tackmann, and
Vassilis Zikas. Universal composition with global subroutines: Cap-
turing global setup within plain UC. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages
1–30. Springer, Heidelberg, November 2020.

[8] Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and Yanbin Lu.
Password-protected secret sharing. In Yan Chen, George Danezis, and
Vitaly Shmatikov, editors, ACM CCS 2011, pages 433–444. ACM Press,
October 2011.

2008 33rd USENIX Security Symposium USENIX Association

https://aws.amazon.com/ec2/nitro/
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology
https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology

[9] Carsten Baum, Tore Kasper Frederiksen, Julia Hesse, Anja Lehmann,
and Avishay Yanai. PESTO: proactively secure distributed single sign-
on, or how to trust a hacked server. In EuroS&P, pages 587–606. IEEE,
2020.

[10] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round com-
plexity of secure protocols (extended abstract). In 22nd ACM STOC,
pages 503–513. ACM Press, May 1990.

[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May
1988.

[12] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: New
generation of memory-hard functions for password hashing and other
applications. In EuroS&P, pages 292–302. IEEE, 2016.

[13] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
SGX cache attacks are practical. In WOOT. USENIX Association,
2017.

[14] Callisto. Mission + Vision.

[15] Callisto. Designing trauma-informed and inclusive technology for
survivors of sexual assault, November 2017.

[16] Callisto. Callisto Vault, June 2024.

[17] Jan Camenisch and Victor Shoup. Practical verifiable encryption and
decryption of discrete logarithms. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 126–144. Springer, Heidelberg, August
2003.

[18] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd FOCS, pages 136–145. IEEE Com-
puter Society Press, October 2001.

[19] Ran Canetti. Universally composable signature, certification, and au-
thentication. In CSFW, page 219. IEEE Computer Society, 2004.

[20] Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally compos-
able authentication and key-exchange with global PKI. In Chen-Mou
Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,
PKC 2016, Part II, volume 9615 of LNCS, pages 265–296. Springer,
Heidelberg, March 2016.

[21] David Cantor, Bonnie Fisher, Susan Chibnall, Shauna Harps, Reanne
Townsend, Gail Thomas, Hyunshik Lee, Vanessa Kranz, Randy Herbi-
son, and Kristin Madden. Report on the AAU Campus Climate Survey
on Sexual Assault and Misconduct, 2020.

[22] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. Sok: Oblivious
pseudorandom functions. In EuroS&P, pages 625–646. IEEE, 2022.

[23] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. SoK:
Understanding the prevailing security vulnerabilities in TrustZone-
assisted TEE systems. In 2020 IEEE Symposium on Security and
Privacy, pages 1416–1432. IEEE Computer Society Press, May 2020.

[24] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty uncon-
ditionally secure protocols (extended abstract). In 20th ACM STOC,
pages 11–19. ACM Press, May 1988.

[25] Janet X. Chen, Allison McDonald, Yixin Zou, Emily Tseng, Kevin A
Roundy, Acar Tamersoy, Florian Schaub, Thomas Ristenpart, and
Nicola Dell. Trauma-informed computing: Towards safer technol-
ogy experiences for all. In Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems, CHI ’22, New York, NY, USA,
2022. Association for Computing Machinery.

[26] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. Cryptology ePrint Archive, Report 2016/086, 2016.
https://eprint.iacr.org/2016/086.

[27] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum: Mini-
mal hardware extensions for strong software isolation. In Thorsten Holz
and Stefan Savage, editors, USENIX Security 2016, pages 857–874.
USENIX Association, August 2016.

[28] Poulami Das, Julia Hesse, and Anja Lehmann. DPaSE: Distributed
password-authenticated symmetric-key encryption, or how to get many
keys from one password. In Yuji Suga, Kouichi Sakurai, Xuhua Ding,
and Kazue Sako, editors, ASIACCS 22, pages 682–696. ACM Press,
May / June 2022.

[29] CSIRO’s Data61. Python paillier library.
https://github.com/data61/python-paillier, 2013.

[30] Alex Davidson, Armando Faz-Hernandez, Nick Sullivan, and Christo-
pher A. Wood. Oblivious pseudorandom functions (OPRFs) using
prime-order groups. Internet Requests for Comments, December 2023.

[31] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random func-
tion with short proofs and keys. In Serge Vaudenay, editor, PKC 2005,
volume 3386 of LNCS, pages 416–431. Springer, Heidelberg, January
2005.

[32] Marla E. Eisenberg, Katherine Lust, Michelle A. Mathiason, and Car-
olyn M. Porta. Sexual Assault, Sexual Orientation, and Reporting
Among College Students. Journal of Interpersonal Violence, 36(1-
2):62–82, 2021.

[33] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and
Thomas Ristenpart. The pythia PRF service. In Jaeyeon Jung
and Thorsten Holz, editors, USENIX Security 2015, pages 547–562.
USENIX Association, August 2015.

[34] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng Xie. Security
vulnerabilities of SGX and countermeasures: A survey. ACM Comput.
Surv., 54(6):126:1–126:36, 2022.

[35] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest
majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

[36] Google Cloud. Confidential computing concepts.
https://cloud.google.com/confidential-computing/confidential-
vm/docs/about-cvm, 2023.

[37] Christine L. Hackman, Sarah E. Pember, Amanda H. Wilkerson, Wanda
Burton, and Stuart L. Usdan. Slut-shaming and victim-blaming: a qual-
itative investigation of undergraduate students’ perceptions of sexual
violence. Sex Education, 17(6):697–711, November 2017.

[38] Julia Hesse, Stanislaw Jarecki, Hugo Krawczyk, and Christopher Wood.
Password-authenticated TLS via OPAQUE and post-handshake au-
thentication. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part V, volume 14008 of LNCS, pages 98–127. Springer,
Heidelberg, April 2023.

[39] Alejandro Hevia and Ilana Mergudich-Thal. Implementing secure
reporting of sexual misconduct - revisiting WhoToo. In Patrick Longa
and Carla Ràfols, editors, LATINCRYPT 2021, volume 12912 of LNCS,
pages 341–362. Springer, Heidelberg, October 2021.

[40] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu, Christo-
pher J. Rossbach, and Emmett Witchel. Telekine: Secure computing
with cloud GPUs. In NSDI, pages 817–833. USENIX Association,
2020.

[41] Internet Engineering Task Force. Oblivious pseudorandom functions
(OPRFs) using prime-order groups. https://github.com/cfrg/draft-irtf-
cfrg-voprf, 2023.

[42] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-
optimal password-protected secret sharing and T-PAKE in the
password-only model. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part II, volume 8874 of LNCS, pages 233–253. Springer,
Heidelberg, December 2014.

[43] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu.
Highly-efficient and composable password-protected secret sharing
(or: How to protect your bitcoin wallet online). In EuroS&P, pages
276–291. IEEE, 2016.

USENIX Association 33rd USENIX Security Symposium 2009

https://eprint.iacr.org/2016/086
https://github.com/data61/python-paillier
https://cloud.google.com/confidential-computing/confidential-vm/docs/about-cvm
https://cloud.google.com/confidential-computing/confidential-vm/docs/about-cvm
https://github.com/cfrg/draft-irtf-cfrg-voprf
https://github.com/cfrg/draft-irtf-cfrg-voprf

[44] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu.
TOPPSS: Cost-minimal password-protected secret sharing based on
threshold OPRF. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki
Kikuchi, editors, ACNS 17, volume 10355 of LNCS, pages 39–58.
Springer, Heidelberg, July 2017.

[45] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An
asymmetric PAKE protocol secure against pre-computation attacks. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 456–486. Springer, Heidelberg,
April / May 2018.

[46] David Kaplan, Jeremy Powell, and Tom Woller. AMD SEV-
SNP: Strengthening VM isolation with integrity protection and
more. https://www.amd.com/content/dam/amd/en/documents/epyc-
business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-
with-integrity-protection-and-more.pdf, 2020.

[47] Kimberly A. Lonsway and Sergeant Joanne Archambault. Suggested
Guidelines on Language Use for Sexual Assault. Technical report, End
Violence Against Women International, June 2013.

[48] Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal.
Shield: Secure allegation escrow system with stronger guarantees. In
WWW, pages 2252–2262. ACM, 2023.

[49] Benjamin Kuykendall, Hugo Krawczyk, and Tal Rabin. Cryptography
for #MeToo. PoPETs, 2019(3):409–429, July 2019.

[50] Russell W. F. Lai, Christoph Egger, Dominique Schröder, and Sherman
S. M. Chow. Phoenix: Rebirth of a cryptographic password-hardening
service. In Engin Kirda and Thomas Ristenpart, editors, USENIX
Security 2017, pages 899–916. USENIX Association, August 2017.

[51] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia che Tsai, and Raluca Ada
Popa. An off-chip attack on hardware enclaves via the memory bus. In
Srdjan Capkun and Franziska Roesner, editors, USENIX Security 2020,
pages 487–504. USENIX Association, August 2020.

[52] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang
Cheng. CIPHERLEAKS: Breaking constant-time cryptography on
AMD SEV via the ciphertext side channel. In Michael Bailey and
Rachel Greenstadt, editors, USENIX Security 2021, pages 717–732.
USENIX Association, August 2021.

[53] Ryan Little, Lucy Qin, and Mayank Varia. Secure account recovery for
a privacy-preserving web service. Cryptology ePrint Archive, Report
2024/962, 2024. https://eprint.iacr.org/2024/962.

[54] Katherine Lorenz, Anne Kirkner, and Sarah E. Ullman. A Qualitative
Study Of Sexual Assault Survivors’ Post-Assault Legal System Ex-
periences. Journal of Trauma & Dissociation, 20(3):263–287, May
2019.

[55] Mara Dolan. These Students Are Bringing Transformative Justice to
Their Campus. The Nation, January 2020.

[56] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti
Yung. Two-sided malicious security for private intersection-sum with
cardinality. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 3–33. Springer,
Heidelberg, August 2020.

[57] Microsoft Ignite. Azure confidential computing.
https://learn.microsoft.com/en-us/azure/confidential-computing/,
2023.

[58] Moni Naor and Omer Reingold. Number-theoretic constructions of
efficient pseudo-random functions. In 38th FOCS, pages 458–467.
IEEE Computer Society Press, October 1997.

[59] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Jacques Stern, editor, EUROCRYPT’99, volume
1592 of LNCS, pages 223–238. Springer, Heidelberg, May 1999.

[60] Bijeeta Pal, Mazharul Islam, Marina Sanusi Bohuk, Nick Sullivan, Luke
Valenta, Tara Whalen, Christopher A. Wood, Thomas Ristenpart, and

Rahul Chatterjee. Might I get pwned: A second generation compro-
mised credential checking service. In Kevin R. B. Butler and Kurt
Thomas, editors, USENIX Security 2022, pages 1831–1848. USENIX
Association, August 2022.

[61] Anjana Rajan, Lucy Qin, David W. Archer, Dan Boneh, Tancrède Le-
point, and Mayank Varia. Callisto: A cryptographic approach to de-
tecting serial perpetrators of sexual misconduct. In COMPASS, pages
49:1–49:4. ACM, 2018.

[62] Ling Ren, Christopher W. Fletcher, Albert Kwon, Marten van Dijk, and
Srinivas Devadas. Design and implementation of the ascend secure
processor. IEEE Trans. Dependable Secur. Comput., 16(2):204–216,
2019.

[63] SAMHSA’s Trauma and Justice Strategic Initiative. SAMHSA’s Con-
cept of Trauma and Guidance for a Trauma-Informed Approach. Tech-
nical report, Substance Abuse and Mental Health Administration, July
2014.

[64] Sijun Tan, Weikeng Chen, Ryan Deng, and Raluca Ada Popa. MP-
CAuth: Multi-factor authentication for distributed-trust systems. In
2023 IEEE Symposium on Security and Privacy, pages 829–847. IEEE,
2023.

[65] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan,
Patrick Gage Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek,
Sarvar Patel, Dan Boneh, and Elie Bursztein. Protecting accounts from
credential stuffing with password breach alerting. In Nadia Heninger
and Patrick Traynor, editors, USENIX Security 2019, pages 1556–1571.
USENIX Association, August 2019.

[66] Trusted Computing Group. Architecture overview. Specification Revi-
sion, 1, 2007.

[67] Nirvan Tyagi, Sofía Celi, Thomas Ristenpart, Nick Sullivan, Stefano
Tessaro, and Christopher A. Wood. A fast and simple partially oblivious
PRF, with applications. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages
674–705. Springer, Heidelberg, May / June 2022.

[68] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel SGX kingdom with transient out-of-order execution. In William
Enck and Adrienne Porter Felt, editors, USENIX Security 2018, pages
991–1008. USENIX Association, August 2018.

[69] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted
execution environments on GPUs. In OSDI, pages 681–696. USENIX
Association, 2018.

[70] Andrew Chi-Chih Yao. Protocols for secure computations (extended
abstract). In 23rd FOCS, pages 160–164. IEEE Computer Society
Press, November 1982.

2010 33rd USENIX Security Symposium USENIX Association

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://eprint.iacr.org/2024/962
https://learn.microsoft.com/en-us/azure/confidential-computing/

	Introduction
	This work
	Our contributions
	Ethics and limitations

	Technical Overview
	Design principles and threat model
	Our model of account recovery
	Related work
	Overview of our K-pop protocol
	Overview of our account recovery protocol

	Kaleidoscopic Partially Oblivious PRF
	Preliminaries
	Defining K-pop
	Constructing K-pop

	Account Recovery
	Initialization
	Account creation
	Recovery request
	Account verification
	Account restoration
	Security analysis

	Implementation
	Single-threaded experimental results
	Multiprocessing experimental results

	Conclusion

