
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Detecting Kernel Memory Bugs through Inconsistent
Memory Management Intention Inferences

Dinghao Liu, Zhipeng Lu, and Shouling Ji, Zhejiang University; Kangjie Lu,
University of Minnesota; Jianhai Chen and Zhenguang Liu, Zhejiang University;

Dexin Liu, Peking University; Renyi Cai, Alibaba Cloud Computing Co., Ltd;
Qinming He, Zhejiang University

https://www.usenix.org/conference/usenixsecurity24/presentation/liu-dinghao-detecting

Detecting Kernel Memory Bugs through Inconsistent Memory Management
Intention Inferences

Dinghao Liu1, Zhipeng Lu1, Shouling Ji1, Kangjie Lu2, Jianhai Chen1, Zhenguang Liu1, Dexin Liu3,
Renyi Cai4, and Qinming He1

1Zhejiang University, 2University of Minnesota, 3Peking University, 4Alibaba Cloud Computing Co., Ltd

E-mails: {dinghao.liu, alexious, sji}@zju.edu.cn, kjlu@umn.edu,

chenjh919@zju.edu.cn, liuzhenguang2008@gmail.com, dxliu@pku.edu.cn, renyi.cry@alibaba-inc.com, hqm@zju.edu.cn

Abstract
Modern operating system kernels, typically written in low-
level languages such as C and C++, are tasked with managing
extensive memory resources. Memory-related errors, such
as memory leak and memory corruption, are common oc-
currences and constantly introduced. Traditional detection
methods often rely on taint analysis, which suffer from scala-
bility issues (i.e., path explosion) when applied to complex OS
kernels. Recent research has pivoted towards leveraging tech-
niques like function pairing or similarity analysis to overcome
this challenge. These approaches identify memory errors by
referencing code that is either frequently used or semantically
similar. However, these techniques have limitations when ap-
plied to customized code, which may lack a sufficient corpus
of code snippets to facilitate effective function pairing or simi-
larity analysis. This deficiency hinders their applicability in
kernel analysis where unique or proprietary code is prevalent.

In this paper, we propose a novel methodology for detect-
ing memory bugs based on inconsistent memory management
intentions (IMMI). Our insight is that many memory bugs,
despite their varied manifestations, stem from a common un-
derlying issue: the ambiguity in ownership and lifecycle man-
agement of memory objects, especially when these objects are
passed across various functions. Memory bugs emerge when
the memory management strategies of the caller and callee
functions misalign for a given memory object. IMMI aims to
model and clarify these inconsistent intentions, thereby miti-
gating the prevalence of such bugs. Our methodology offers
two primary advantages over existing techniques: (1) It uti-
lizes a fine-grained memory management model that obviates
the need for extensive data-flow tracking, and (2) it does not
rely on similarity analysis or the identification of function
pairs, making it highly effective in the context of customized
code. To enhance the capabilities of IMMI, we have integrated
a large language model (LLM) to assist in the interpretation of
implicit kernel resource management mechanisms. We have

Shouling Ji and Qinming He are the co-corresponding authors.

implemented IMMI and evaluated it against the Linux kernel.
IMMI effectively found 80 new memory bugs (including 23
memory corruptions and 57 memory leaks) with 35% false
discovery rate. Most of them are missed by the state-of-the-art
memory bug detection tools.

1 Introduction

The operating system (OS) kernel constitutes a foundational
component of modern computing systems, serving as the crit-
ical intermediary between hardware and user-level applica-
tions. Within the kernel, memory resources are ubiquitously
employed to maintain data structures, manage I/O buffers, and
facilitate inter-process communication, thereby highlighting
their essentiality in kernel functionality. However, the com-
plexity inherent in memory management introduces a mul-
titude of memory-related bugs such as memory leaks, use-
after-free (UAF), and double-free. These defects not only
compromise system stability and performance by leading to
resource exhaustion and unpredictable behavior, but also pose
severe security threats. Exploitation of such vulnerabilities
can result in unauthorized access, privilege escalation, and
ultimately, system compromise [21, 35, 37, 39]. Given the
universality of memory objects in the kernel space and the
potential for widespread harm, it is imperative to address these
memory bugs with rigorous and systematic approaches.

The most direct way to detect the aforementioned mem-
ory bugs is to statically track the data-flows of memory ob-
jects, which is commonly employed in the analysis of user-
space applications [4, 7, 38, 42]. For instance, a memory
leak is identified when a memory object remains unreleased
upon program termination, whereas use-after-free (UAF) or
double-free bugs arise when a memory object is accessed or
deallocated subsequent to its initial release without any inter-
vening reinitialization. However, the application of such a
straightforward approach to OS kernels is impeded by signifi-
cant scalability challenges. The vast codebase (e.g., the latest
Linux kernel comprises approximately 28 million source code
lines) introduces an overwhelming number of execution paths,

USENIX Association 33rd USENIX Security Symposium 4069

culminating in path and state explosion problems.
To mitigate this issue, practical kernel analysis tools instead

utilize function pairs for memory bug detection [2, 16, 17, 34].
Specifically, OS kernels commonly use abundant memory
management (MM) functions (e.g., kmalloc and kfree) to
orchestrate the lifecycle of dynamically allocated memory ob-
jects. These MM functions are intended to operate in concert,
reflecting the allocation and subsequent deallocation stages
inherent to the lifecycle of memory objects. Tools like K-
Meld [9] and Hector [26] identify memory leaks by scrutiniz-
ing the absence of the corresponding deallocation functions in
these pairs. SinkFinder [3] and NLP_EYE [30] leverage MM
functions to simplify the data-flow analysis in memory corrup-
tion detection. HERO [34] is specifically tailored to identify
bugs that emerge from the improper sequencing of function
pair usage. Some tools, on the other hand, employ similarity
analysis to address the scalability challenges in kernel analysis.
For example, IPPO [15] and NDI [46] detect memory bugs by
identifying inconsistent memory operations across program
paths that are semantically analogous.

These approaches have demonstrated their effectiveness in
identifying memory bugs within OS kernels. However, they
still suffer from several limitations. Firstly, there is an in-
herent assumption that the implementation of function pairs
is intrinsically correct. This presumption does not always
hold true within the complex landscape of OS kernels. In in-
stances where a function pair harbors internal defects, such as
a deallocation function failing to fully relinquish the memory
resources allocated by its counterpart, the presence of a bug
persists despite the ostensibly correct usage of the function
pairs. Secondly, these approaches heavily rely on the avail-
ability of existing correct code snippets to facilitate effective
MM function pairing or to perform similarity analysis. Tools
such as HERO [34] and ErrDoc [29] identify function pairs
within error handling paths by examining commonly paired
functions. Similarly, IPPO [15], NDI [46], MLEE [31], and
Hector [26] require at least one intra-procedural path that in-
cludes the anticipated memory release operation for accurate
bug detection. Given the extensive amount of specialized code
in OS kernels, many function pairs or code paths are unique,
lacking appropriate or analogous references for comparison.

Existing research indicates that memory bugs frequently
manifest within error handling paths [11, 12, 18, 29, 34, 44],
where programs attempt to release previously allocated mem-
ory resources to revert to prior states. Ideally, there should
be a consensus among all functions involved regarding the
responsibility for deallocating a memory object upon a partic-
ular failure. Our key observation is that a multitude of memory
bugs, despite their diverse symptoms, originate from a fun-
damental issue: the lack of clarity in ownership and lifecycle
management of memory objects when premature release is
necessitated. This is particularly problematic when memory
objects are shared across multiple functions. For instance,
if both caller and callee functions presume responsibility for

managing a memory object during error handling, a double-
free or UAF could happen, ultimately resulting in a memory
corruption. Conversely, if neither assumes this responsibil-
ity, the memory remains occupied, leading to a memory leak.
In essence, there exists inconsistent intentions regarding the
management of memory objects.

Based on this insight, we introduce Inconsistent Memory
Management Intentions (IMMI) as a heuristic for memory bug
detection. We present an object-based method, augmented
by Large Language Models (LLMs), to deduce MM inten-
tions. The co-analysis leverages both the logical structure
of the program and the natural language elements embedded
within the code (e.g., code comments and implicit MM mech-
anisms). This enables precise inference of MM intentions
within kernel-space at a fine granularity. Additionally, we
propose several code slicing and summarization techniques to
balance the precision and efficiency of IMMI. IMMI offers sev-
eral distinct advantages over existing methods. Firstly, IMMI’s
inference of MM intentions requires the analysis of only a
limited set of code paths and call traces, thereby obviating
the need for extensive data-flow analysis across the kernel.
Secondly, IMMI operates independently of frequently used or
semantically similar code snippets, thus maintaining efficacy
in analyzing customized code. Additionally, IMMI does not
rely on function pairs to identify bugs, avoiding the constraints
associated with such methods.

We implement IMMI based on LLVM and apply it to the
Linux kernel. Remarkably, IMMI completes its analysis of the
entire kernel within 35 minutes, demonstrating its efficiency
and scalability. As of the submission of this paper, IMMI has
identified 80 new bugs, including 57 memory leak bugs, 6
UAF bugs, 16 double-free bugs and 1 null-pointer-dereference
bug. Most of them have been confirmed or fixed by community
maintainers with our patches. IMMI exhibits a false discovery
rate of 35%. The incorporation of LLM effectively eliminates
43% false positives reported by IMMI, while only incurring
an additional 4% in false negatives. We plan to open-source
IMMI to facilitate bug detection in more projects. In summary,
we make the following contributions.

• A new approach for memory bug detection. We introduce
IMMI, a heuristic-based method that identifies memory bugs
by analyzing inconsistencies in MM intentions. Compared
to existing approaches, IMMI does not require long-term
data-flow tracking, or frequently used or similar code snip-
pets, thus is effective in analyzing customized code.

• New techniques for MM intention inference. We pro-
pose multiple techniques in implementing IMMI. Firstly,
we propose an object-based analysis framework designed
to infer MM intentions with fine granularity. Secondly, we
introduce an object-based slicing methodology and a novel
demand-driven function summarization technique, to en-
hance the efficacy of our analysis. Thirdly, we incorporate

4070 33rd USENIX Security Symposium USENIX Association

1 /* net/smc/smc_er.c */
2 int smc_wr_alloc_link_mem(struct smc_link *link)
3 {
4 link->wr_tx_bufs = kcalloc(...);
5 if (!link->wr_tx_bufs)
6 goto no_mem;
7 link->wr_rx_bufs = kcalloc(...);
8 if (!link->wr_rx_bufs)
9 goto no_mem_wr_tx_bufs;

10 link->wr_tx_ibs = kcalloc(...);
11 if (!link->wr_tx_ibs)
12 goto no_mem_wr_rx_bufs;
13 ...
14 return 0;
15 ...
16 no_mem_wr_rx_bufs:
17 kfree(link->wr_rx_bufs);
18 no_mem_wr_tx_bufs:
19 kfree(link->wr_tx_bufs);
20 no_mem:
21 return -ENOMEM;
22 }

Figure 1: Example of callee-based management.

LLM into our framework to augment the capabilities of
IMMI significantly.

• New bugs in real-world OS kernel. We have found 80
new memory bugs in the widely-used Linux kernel with
the help of IMMI. We have reported these bugs, and most
of them have been confirmed or fixed by working with
the community maintainers. This results substantiate the
efficacy of IMMI as a tool for enhancing OS kernel security.

2 Background and Study

2.1 MM Strategies of OS Kernels
OS kernels are responsible for managing substantial memory
resources. In the event of an error, it is imperative for kernel
functions to perform cleanup operations, reverting the system
to its pre-error state (i.e., error handling). Through an exten-
sive examination of the Linux kernel code, we have identified
two primary categories of error-induced memory management
strategies: callee-based management and caller-based manage-
ment.
Callee-based management. Figure 1 shows a typical exam-
ple of callee-based management in the Linux kernel. Specif-
ically, smc_wr_alloc_link_mem is responsible for allocating
multiple dynamic memory objects by calling kzalloc. In the
event of an allocation failure, the function employs a structured
jump to designated labels, ensuring the comprehensive deal-
location of all previously allocated memory. Consequently,
its caller can safely assume that, in the event of a failure in
smc_wr_alloc_link_mem, no partial allocations remain. This
eliminates the necessity for the caller to perform additional
cleanup, allowing it to concentrate solely on the resources
allocated prior to the call.
Caller-based management. Contrary to callee-based man-
agement, certain paradigms shift the onus of resource deallo-

1 /* drivers/media/usb/tm6000/tm6000-video.c */
2 static int tm6000_alloc_urb_buffers(struct tm6000_core *dev)
3 {
4 ...
5 dev->urb_buffer = kmalloc_array(...);
6 if (!dev->urb_buffer)
7 return -ENOMEM;
8

9 dev->urb_dma = kmalloc_array(...);
10 if (!dev->urb_dma)
11 return -ENOMEM;
12 ...
13 if (!dev->urb_buffer[i]) {
14 tm6000_err("unable to allocate ... buffer %i\n",
15 dev->urb_size, i);
16 return -ENOMEM;
17 }
18 ...
19 return 0;
20 }
21

22 static int tm6000_prepare_isoc(struct tm6000_core *dev)
23 {
24 ...
25 if (tm6000_alloc_urb_buffers(dev) < 0) {
26 tm6000_err("cannot allocate memory for urb buffers\n");
27

28 /* call free, as some buffers might have been allocated */
29 tm6000_free_urb_buffers(dev);
30 ...
31 return -ENOMEM;
32 }
33 ...
34 }

Figure 2: Example of caller-based management.

cation to the callers, as illustrated in Figure 2. In this example,
tm6000_alloc_urb_buffers also allocates multiple memory
resources using kmalloc_array. However, should an error
transpire, it merely returns an error code without perform-
ing any cleanup. As a result, the onus falls upon the caller
(tm6000_prepare_isoc in this example) to execute the appro-
priate release function (tm6000_free_urb_buffers) to free
the allocated memory when tm6000_alloc_urb_buffers fails.
While this approach may simplify the function’s control flows
by reducing the complexity of jump labels, it concurrently bur-
dens the callers with augmented resource management duties.

2.2 Impact of Inconsisitent MM Intentions
Both MM strategies are extensively employed to facilitate
comprehensive error handling. Nevertheless, when disparate
functions exhibit inconsistent MM intentions for a particular
memory object, the potential for memory bugs increases.
Memory corruption. When a callee function employs callee-
based management while its caller adopts caller-based man-
agement, there exists a potential for a memory object to be
accessed and subsequently deallocated following its initial
release. Such scenarios frequently precipitate UAF or double-
free vulnerabilities, which can lead to system crashes. Fur-
thermore, these forms of memory corruption can be exploited
to orchestrate sophisticated attacks, ultimately compromising
the integrity of the system and allowing adversaries to seize
control [6, 21].

USENIX Association 33rd USENIX Security Symposium 4071

Memory leak. Contrary to previous scenarios, another in-
consistency arises when a callee function utilizes caller-based
management while its caller adopts callee-based management.
This inconsistency can result in a memory object being ne-
glected, potentially culminating in a memory leak. Such leaks
are deemed security critical within OS kernels, as they may
precipitate denial-of-service (DoS) attacks, thereby rendering
the entire system inoperative [9, 31].

2.3 Causes of Inconsisitent MM Intentions
In this section, we summarize three main causes of inconsis-
tent MM intentions based on our empirical analysis of the
Linux kernel and corresponding patches.
Complex logic in error handling. One of the predominant
factors contributing to MM inconsistencies is the intricate er-
ror handling logic, which is known to be error-prone. A single
kernel function may be responsible for managing multiple
memory resources, each necessitating distinct MM strategies.
Additionally, the complexity is exacerbated by the widespread
sharing and transfer of memory resources among different
modules and layers of abstraction. Such interactions neces-
sitate collaboration among developers with disparate coding
practices on managing the same memory objects, potentially
resulting in discrepancies in the understanding and implemen-
tation of MM strategies.
Imperfect code updating. The OS kernel is a dynamic en-
tity, subject to continuous evolution through frequent updates,
with a multitude of patches being integrated regularly. These
updates often originate from a diverse group of developers, in-
cluding those who may not have been involved in the original
development or maintenance of the codebase (e.g., security
analysts who provide bug fixing patches). Contributors who
lack a deep understanding of the existing code logic may inad-
vertently make assumptions about MM strategies that diverge
from the intended design, thereby introducing potential vul-
nerabilities into the system.
Implicit OS MM mechanisms. Modern OS kernels have
developed advanced MM mechanisms to simplify resource
management for kernel developers. For instance, the Linux ker-
nel employs reference counting, indirect calls, and compiler-
assisted techniques to facilitate automated memory resource
management, thereby obviating the need for explicit resource
release operations. When memory resources governed by
these mechanisms are intermingled with conventional re-
sources, or when transitioning resources to these mechanisms,
the potential for developer error escalates significantly.

2.4 Motivation of IMMI
Figure 3 illustrates a memory leak bug identified
by IMMI in the Linux kernel. In this example, the
memory object qdev->lrg_buf (line 5) allocated in
ql_alloc_buffer_queues is not released, leading to a

1 /* drivers/net/ethernet/qlogic/qla3xxx.c */
2 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
3 {
4 ...
5 qdev->lrg_buf = kmalloc_array(...);
6 if (qdev->lrg_buf == NULL)
7 return -ENOMEM;
8 ...
9 if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {

10 netdev_err(qdev->ndev, "lBufQ failed\n");
11 return -ENOMEM;
12 }
13 ...
14 return 0;
15 }
16

17 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
18 {
19 ...
20 if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
21 netdev_err(qdev->ndev, ...);
22 goto err_req_rsp;
23 }
24

25 if (ql_alloc_buffer_queues(qdev) != 0) {
26 netdev_err(qdev->ndev, ...);
27 goto err_buffer_queues;
28 }
29

30 if (ql_alloc_small_buffers(qdev) != 0) {
31 netdev_err(qdev->ndev, ...);
32 goto err_small_buffers;
33 }
34 ...
35 return 0;
36 ...
37 err_small_buffers:
38 ql_free_buffer_queues(qdev);
39 err_buffer_queues:
40 ql_free_net_req_rsp_queues(qdev);
41 err_req_rsp:
42 ...
43 return -ENOMEM;
44 }

Figure 3: A memory leak bug found by IMMI in the Linux kernel.

memory leak if an error occurs subsequent to resource
allocation, as indicated by the error code returned at line 11.
Existing approaches for detecting memory leaks typically
involve tracking data-flows associated with a specific memory
object [38, 41, 42] or referring to existing code snippets
to deduce proper usage patterns [15–17, 43]. However,
exhaustively tracing all potential paths to identify a definitive
path that neglects to release memory across the entire kernel
is impractical. In practice, many tools focus solely on
intra-procedural contexts [9, 15, 23], presuming that callers
will invariably manage errors and perform necessary cleanup
correctly, which is frequently invalidated. Moreover, in
the presented example, there is a lack of a reference for
resource deallocation (e.g., a release operation in alternative
error-handling paths of ql_alloc_buffer_queues), which
would result in its omission by current memory bug detection
methodologies.

When examining this bug through the lens of MM in-
tentions, it becomes apparent that the absence of a re-
lease operation implies an expectation that the caller of
ql_alloc_buffer_queues (line 17) is responsible for clean-

4072 33rd USENIX Security Symposium USENIX Association

ing up qdev->lrg_buf upon failure. However, the caller
function does not address this failure, instead deferring the
cleanup of associated memory to a subsequent failure scenario
(i.e., invoking ql_free_buffer_queues at line 38 to deallocate
qdev->lrg_buf when ql_alloc_small_buffers fails). This
indicates an inconsistency between the assumptions of the
callee function and its caller regarding responsibility for mem-
ory management, leading to the observed memory leak. Our
analysis suggests that a more holistic approach, one that con-
siders the intentions inherent in MM practices, is necessary to
effectively detect and prevent such memory-related bugs.

3 Overview

3.1 Challenges in MM Intention Inference
The design of IMMI is inspired by the insight that many kernel
memory bugs come from the inconsistency of MM intentions.
Though the idea is intuitive, there are several technical chal-
lenges.
How to infer MM intentions? MM intention inference ne-
cessitates a sophisticated comprehension of kernel memory
operations and the ability to identify indicative patterns of
memory utilization intentions. This task involves dissecting
complex logic that dictates kernel behavior, which is non-
trivial. Additionally, the implicit memory management mech-
anisms embedded within OS kernels are not only pervasive
but also intricate, demanding a substantial depth of domain-
specific knowledge for precise interpretation. As a result, these
mechanisms frequently escape detection by conventional bug
detection tools. Furthermore, MM intentions could be con-
cealed within code comments, necessitating a level of natural
language understanding that typically exceeds the capabilities
of existing static program analysis techniques.

To address this challenge, we introduce a novel approach
that synergizes behavior-based MM intention analysis with
enhancements derived from large language models (LLMs).
Our approach involves analyzing and extracting MM inten-
tions from error handling logic, while concurrently leveraging
LLMs to interpret pertinent code comments and implicit kernel
MM mechanisms. IMMI aims to bridge the gap between the
explicit code and the implicit intentions of memory manage-
ment, thereby improving the accuracy and efficacy of kernel
memory bug detection.
How to balance precision and efficiency? Achieving a high
level of precision in MM analysis requires exhaustive and
meticulous scrutiny, which could be both resource-intensive
and protracted. For instance, identifying the memory leak
in Figure 3 necessitates an inter-procedural, path-sensitive,
and field-sensitive analysis approach, which is particularly
burdensome when examining large-scale OS kernels. On
the other hand, compromising on precision would result in a
significant increase in both false positives and false negatives.

To address this challenge, we introduce several techniques

aimed at bolstering the efficiency and scalability of our static
analysis, while maintaining a high level of precision. Specifi-
cally, we propose an object-based program slicing method
to confine the scope of our analysis. We also present a
novel approach for summarizing memory operations that opti-
mizes inter-procedural analysis. Diverging from conventional
function-level summary generation, our method segments sum-
maries into discrete units and reconstructs them on-demand.
This technique promises to deliver accurate guidance on mem-
ory operations without the need for costly inter-procedural
alias analysis.

3.2 The IMMI Framework
Figure 4 illustrates the workflow of IMMI, which consists of
three phases. In the first phase, IMMI accepts LLVM Inter-
mediate Representation (IR) files as input. IMMI constructs
control-flow graphs (CFGs) for individual functions and a
global call graph for the entire system. IMMI also implements
a specialized alias analysis to determine aliasing relationships
within functions.

In the second phase, IMMI first constructs memory opera-
tion summaries to facilitate following MM intention inference.
Following this step, IMMI proceeds to extract memory objects
in the target program and generates program slices centered
based on these objects. By analyzing these slices in conjunc-
tion with the memory operation summaries, IMMI infers the
MM intentions at the point of allocation within the respec-
tive functions. If IMMI detects divergent MM intentions for
a single memory object within a function, it classifies this as
a bug (i.e., intro-inconsistency), reports it immediately, and
halts further analysis.

In the third phase, IMMI performs a backward inconsistency
analysis for memory bug detection. This phase initiates with
a verification step to ascertain whether a memory object has
been propagated to the caller functions. If propagation is con-
firmed, IMMI meticulously analyzes the MM intentions for
the caller functions in relation to the memory object. If an
inconsistency arises between the MM intentions deduced in
the callees and those in the callers, IMMI flags this as a poten-
tial memory bug (i.e., inter-inconsistency). IMMI persistently
monitors the memory object across successive calling func-
tions if the immediate caller does not deduce a definitive MM
intention but rather delegates the MM responsibility to subse-
quent callers, thereby ensuring a comprehensive and thorough
analysis.

4 System Design

4.1 Alias Analysis
To enhance the analysis of data-flows associated with memory
objects, we employed path-based alias analysis [14], which is
based on the alias graph. This data structure comprises nodes

USENIX Association 33rd USENIX Security Symposium 4073

Construct program slices

Callee MM intention
inference

- Control-flow graph

Source
code

LLVM IRs

- Global call graph

- Alias results

Propagation to callers?

Caller MM intention
inference

Inter-inconsistent?

Construct memory
operation summarizes

Bug reports

Inconsistency AnalysisMM Intention InferencePre-processing

Y

YIntro-inconsistent?

N

Y

Determined

Undetermined

Figure 4: The overview of IMMI.

representing alias sets with edges that illustrate the relation-
ships between pointers of discrete alias sets, such as pointer
dereferencing and struct field accesses. A significant benefit
of this approach is its capability to record pointer relationships
comprehensively during the analysis. The approach is desiged
to be inter-procedural, flow-sensitive, and field-sensitive.

To augment the efficiency and accuracy of our analysis, we
reformed the alias updating algorithm to a flow-insensitive ver-
sion, confining its use to intra-procedural contexts. The incor-
poration of inter-procedural information is achieved through
a demand-driven summarization method, which will be ex-
pounded upon subsequently. Our approach limits alias anal-
ysis to the processes of summary computation and analysis
of specific code slices, averting the demands of an extensive,
full-program alias analysis.

Following the completion of alias analysis, the data-flow
relationships among distinct pointers are succinctly recorded
within the alias graph. It is pertinent to acknowledge that
for array types, the indices associated with element access
frequently vary and are non-static, presenting difficulties for
static analysis. Therefore, our alias analysis conservatively
assumes that elements within the same array act as aliases.

4.2 Memory Operation Summarization

Program summarization is an important technique in static
analysis for streamlining inter-procedural analysis. In this
paper, we focus on two primary types of memory operations
within our summarization framework: resource release and
resource resetting. Resource release is an essential element for
inferring MM intentions. On the other hand, resource resetting
significantly impacts the determination of potential bugs. For
instance, reassigning a pointer that denotes a memory object
typically signifies the end of that object’s lifetime. Addition-
ally, nullifying a pointer post-release, a practice known as
defensive programming, ensures that subsequent deallocations
of the same memory object are not misconstrued as double-
free errors, given that deallocating a null pointer in the kernel
is deemed safe.

Challenges. Current summarization techniques employed
for OS kernel analysis are either excessively coarse-grained
or prohibitively expensive. For instance, numerous memory
bug detection tools operate under the assumption that memory
allocations and deallocations have a one-to-one correspon-
dence, an assumption frequently invalidated by one-to-many
and many-to-many relationships. Goshawk [22] introduces a
structure-aware and object-centric approach to memory sum-
marization. Nonetheless, this strategy incurs significant over-
head. Kernel developers typically implement memory man-
agement in a layered fashion, leading to extensive call chains.
Consequently, memory summaries, especially for higher-level
functions such as driver probe routines, tend to represent an
excessive amount of memory resources. On the other hand, the
generation of summaries that are not subsequently utilized in
bug detection results in considerable waste of computational
and storage resources.

Our solution: demand-driven summarization. To address
the aforementioned challenges, we present a demand-driven
memory operation summarization technique. Our approach
involves decomposing memory operation summaries into dis-
crete pairwise interactions, which are then cataloged within a
global map. Each entry in this map meticulously records the
intricate details of these interactions, which is structure-aware.
When subsequent analysis necessitates a query of memory op-
erations for a specific function, IMMI dynamically reconstructs
the comprehensive summarization from these pairwise entries.
This method allows for precise and targeted analysis with-
out incurring the prohibitive costs associated with traditional
summarization techniques
Definition 1. In this work, a discrete memory operation sum-
mary is defined as a tuple: S = {F,Arg,LO}, where F denotes
the function encapsulating the summary, Arg represents the
function’s argument associated with the targeted memory ob-
jects, and LO is a list that chronicles the memory operations
executed within F. More precisely, each element in LO is char-
acterized by a tuple: {Otype,Ovalue}, with Otype specifies the
operation type, which for the scope of this paper, is confined
to either ‘Release’ or ‘Resetting’. For ‘Release’ operations,

4074 33rd USENIX Security Symposium USENIX Association

1./*arch/s390/kernel/debug.c*/
2.static void debug_info_free(debug_info_t *db_info)
3.{
4. ...
5. kfree(db_info->active_pages);
6. kfree(db_info);
7.}
8.

F: debug_close, Arg:file, LO:

9.static int debug_close(struct inode *inode, struct file *file)
10.{
11. file_private_info_t *p_info;
12. p_info = (file_private_info_t *) file->private_data;
13. ...
14. debug_info_free(p_info->debug_info_snap);
15. ...
16. kfree(file->private_data);
17. return 0;
18.}

(Release-debug_info_free, 0), file->private_data->debug_info_snap;
(Release-kfree, 0), file->private_data;

(Release-kfree, 0), db_info->active_pages;
(Release-kfree, 0), db_info;

F: debug_info_free, Arg:db_info, LO:

Discrete Memory Operation Summaries:

S2

S1

F: debug_close, Arg:file, LO:

(Release-debug_info_free, 0), file->private_data->debug_info_snap->active_pages;
(Release-debug_info_free, 0), file->private_data->debug_info_snap;
(Release-kfree, 0), file->private_data;

S3

Complete Memory Operation Summary for debug_close:

Figure 5: Example of demand-driven summarization.

Otype further includes the release API name and the index
corresponding to the resource parameter. The term Ovalue
describes the memory object involved, represented as a string
that articulates the structured relationship between the mem-
ory object and the function’s arguments.

Figure 5 presents an example of memory operation sum-
marization. In this example, IMMI produces two distinct
summaries of memory release operations for the functions
debug_info_free and debug_close, denoted as S1 and S2,
respectively. Within debug_info_free, a pair of release in-
vocations (kfree) are recorded in S1. Given that kfree ac-
cepts a singular parameter, the index number in LO is conse-
quently noted as 0. This function is subsequently invoked by
debug_close at line 14, with its memory release operations
encapsulated in S2. Both S1 and S2 accurately capture the
structure-aware relationships between the released memories
and the function arguments.
Summary generation. IMMI generates release summaries
from a set of official kernel release APIs, as detailed in Table 6.
The goal of IMMI in this process is to identify all function calls
that directly or indirectly release memory objects (i.e., release
wrappers). Algorithm 1 outlines the process for creating these
summaries. Specifically, IMMI examines each function within
the target system and employs SummaryGen to produce individ-
ual release summaries. This component accepts two inputs:
a predefined list of general release APIs (ListRelease) and the
function under analysis (F). The resulting summaries are
stored in RS. The procedure begins by scanning the call in-
structions within F (line 3). Upon identifying a release call,
IMMI performs a recursive analysis using RecurAnalysis (line
6). During this process, IMMI extracts the memory object be-
ing released from the release API (line 14) and determines if it

Algorithm 1: Release summary generation
1 SummaryGen(ListRelease,F);

Input: ListRelease: Release API list;
F : Function to analyze;

2 CSetanalyzed ← RS←∅ (Init once on the first call);
3 foreach Callinst in F do
4 if Callinst ∈ ListRelease then
5 Cindex← GETRELEASEINDEX(Callinst);
6 RECURANALYSIS(F,Callinst ,Cindex);
7 end
8 end
9 Function RecurAnalysis(F,Callinst ,Cindex):

10 if Callinst ∈CSetanalyzed then
11 return;
12 end
13 CSetanalyzed ←{Callinst}∪CSetanalyzed ;
14 MO←Callinst .GET_OPERAND(Cindex) ;
15 if MO is derived from arguments of F then
16 Fargidx← GETINDEX(F,MO) ;
17 Varg← F.GET_ARG_OPERAND(Fargidx) ;
18 SR← GETRELATIONSTRING(Varg,MO) ;
19 Sum← BUILDSUM(F,Fargidx,Callinst ,Cindex,SR) ;
20 RS←{Sum}∪RS ;
21 foreach Callerinst of F do
22 Fcaller← GETHOSTFUNC(Callerinst) ;
23 RECURANALYSIS(Fcaller,Callerinst ,Fargidx);
24 end
25 end

originates from an argument of F . If so, IMMI extracts this ar-
gument (lines 16-17) and examines the derivation relationship
between the argument and the memory object (i.e., Ovalue).
This analysis is conducted via a backward graph traversal on
the alias graph of F (line 18). With all pertinent information
collected, IMMI constructs and records the summary entity
for the current memory object (lines 19-20). At this stage, it
is inferred that the released memory objects are propagated
through the callers of F , prompting a recursive analysis of
these callers to assemble comprehensive release summaries
(line 21-24).

Memory resetting summaries are generated in a manner
akin to release summaries. In this process, IMMI extracts
memory objects from release APIs and conducts a further
analysis of store instructions that reset these memory objects.
To enhance efficiency, IMMImaintains a record of the analyzed
instructions, thereby avoiding redundant analysis (line 10-13).
Reconstructing complete summary on-demand. The mem-
ory operation summaries previously generated are distinct but
not exhaustive, failing to encapsulate all memory operations
within a given function. For instance, summary S2 in Fig-
ure 5 merely indicates that the callee debug_info_free has
released some memories, lacking comprehensive details. To
derive an all-encompassing summary for debug_close, it is
imperative to amalgamate S2 with S1, which delineates the

USENIX Association 33rd USENIX Security Symposium 4075

specific memory operations performed by debug_info_free.
When querying the memory operation summaries of a func-
tion, IMMI first extracts the function’s direct summary (e.g., S2
for debug_close). Subsequently, IMMI examines the memory
operation list (LO) to determine if any listed functions pos-
sess additional summaries. If affirmative, IMMI recursively
aggregates these summaries to formulate a complete sum-
mary, concurrently updating the Ovalue throughout the process.
For example, by combining the db_info->ccactive_pages in
S1 and file->private_data->debug_info_snap in S2, IMMI
could precisely reconstruct the actual release memory object
is file->private_data->debug_info_snap->active_pages.
The fully integrated release summary for debug_close is de-
picted as S3 in Figure 5.

4.3 Object-based Code Slicing
The goal of code slicing is to refine the analysis scope, thereby
enhancing efficiency and scalability. To this end, IMMI ini-
tially identifies the error handling paths for each function, sub-
sequently extracting the relevant memory objects contained
therein. Ultimately, IMMI confines the analysis to those error
handling paths that are reachable to the identified memory
objects.
Identifying error handling paths. The MM intention analy-
sis in this paper primarily concentrates on error handling mech-
anisms, necessitating the accurate identification of error han-
dling paths. Current methodologies for this task can be broadly
classified into two predominant approaches: the first employs
backward data-flow analysis, commencing from return instruc-
tions that yield error codes [15, 20]; while the second approach
engages in forward data-flow analysis, initiating from func-
tion calls that could potentially propagate errors [34]. Our
assessment reveals that the former approach often overlooks
numerous error handling paths, particularly those associated
with function calls, whereas the latter may erroneously classify
non-error handling paths as such. To address these shortcom-
ings, IMMI synergizes these two strategies, integrating their
strengths to enhance the precision and coverage of error path
detection. Specifically, IMMI initially applies the backward
analysis to enumerate error paths within each function and
to annotate call instructions that affect branching conditions.
It then uses forward analysis to follow these annotated call
instructions, capturing the paths that address their failures and
excluding irrelevant paths. This integrated approach ensures
a more robust and accurate identification of error handling
paths.
Extracting memory objects. OS kernels conventionally man-
age memory resources through established MM application
programming interfaces (APIs) [1]. Within this framework,
memory objects are typically denoted by pointers. Similar to
prior methodologies, our approach extracts memory objects by
capturing the pointers returned from the standard kernel mem-
ory allocation APIs, as detailed in Table 6 in the Appendix.

Additionally, it is commonplace for kernel developers to em-
ploy these APIs as foundational elements for crafting bespoke
MM allocation functions. To accommodate such practices,
our analysis extends to tracking the propagation of memory
objects allocated by standard MM APIs to subsequent callers.
If these objects are passed forward as return values, we in-
corporate them into our analysis targets. This comprehensive
tracking ensures the integrity and completeness of our memory
object analysis scope, thereby enhancing the reliability of our
subsequent analysis.
Code slicing. In the context of MM inconsistent analysis,
which often spans across multiple functions, it is imperative
that the memory objects of interest represent shared resources.
Upon obtaining a memory object, IMMI tracks its subsequent
usage to pinpoint the instruction that permits access to the
object for other functions (e.g., a store instruction that com-
mits it to a function’s argument). IMMI then scrutinizes the
collected error handling paths and eliminates those that are not
reachable by this instruction (e.g., error paths preceding the
memory allocation). This elimination is conducted through a
Control Flow Graph (CFG) reachability analysis.

Additionally, IMMI filters out error paths that reset the mem-
ory object subsequent to its release, by examining the memory
operation summaries collected in §4.2. This step is essential
as it excludes instances of safe inconsistent MM. For example,
setting a memory object to NULL post-deallocation renders
subsequent deallocations by the callers inconsequential and
bug-free, as freeing a NULL pointer is generally benign in
kernel contexts. The code segments that remain after this fil-
tration process constitute the slices that lay the groundwork
for the subsequent inference of MM intentions.

4.4 LLM-assisted MM Intention Inference

Callee MM intention inference. IMMI conducts an object-
oriented analysis to infer the memory management (MM) in-
tentions. Utilizing the analysis scope (i.e., the code slices
derived in §4.3), alongside summaries of memory operations,
IMMI deduces the MM intentions for the object within the
function responsible for its allocation (denoted as Fob j for
brevity). These intentions are categorized into three distinct
types:

• Callee-based management. In scenarios where all error
paths within the code slices ensure the release of the mem-
ory object, the callers of Fob j are not required to manage
the memory object upon failure of Fob j.

• Caller-based management. Conversely, if none of the error
paths within the code slices release the memory object, it is
expected that the callers of Fob j will handle the cleanup of
the memory objects in the event of Fob j’s failure.

• Undetermined management. This category arises when
some error paths within the code slices release the memory

4076 33rd USENIX Security Symposium USENIX Association

1 /* drivers/dax/bus.c */
2 static int devm_register_dax_mapping(struct dev_dax *dev_dax, ...)
3 {
4 ...
5 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
6 if (!mapping)
7 return -ENOMEM;
8 ...
9 mapping->id = ida_alloc(&dev_dax->ida, GFP_KERNEL);

10 if (mapping->id < 0) {
11 kfree(mapping);
12 return -ENOMEM;
13 }
14 ...
15 rc = device_add(dev);
16 if (rc) {
17 put_device(dev); //Reference counting
18 return rc;
19 }
20

21 rc = devm_add_action_or_reset(..., unregister_dax_mapping,
22 dev); //Indirect release call
23 if (rc)
24 return rc;
25 return 0;
26 }

Figure 6: Example of implicit memory management mechanisms in
the Linux kernel.

object, while others do not. Such inconsistency typically
indicates a bug. If the caller attempts to release the memory
again, a double-free error may occur. Conversely, inaction
by the caller can lead to a memory leak along certain paths.
Consequently, IMMI reports this scenario as exhibiting intra-
inconsistent MM intentions and ceases further analysis.

LLM integration. The complexity of kernel memory man-
agement mechanisms poses additional challenges for accu-
rately deducing MM operations. Figure 6 shows such an
example in the Linux kernel. A heap memory allocation for
the variable mapping occurs at line 5, with a corresponding
deallocation on the error path at line 11. However, the error
paths returning at lines 18 and 24 lack explicit deallocation
for this resource. Specifically, the error path at line 18 em-
ploys reference counting to manage the resource, resulting
in an automatic deallocation when put_device is invoked.
Similarly, the function devm_add_action_or_reset at line 21
registers a callback function, unregister_dax_mapping, for
release (an indirect call), which is triggered upon its failure.
Traditional analysis techniques often fail to account for these
implicit resource releases, leading to a substantial number of
false positives. We also observed that code comments often en-
capsulate critical insights regarding memory management, as
exemplified in Figure 7. Specifically, the annotations spanning
lines 15-18 suggest that the responsibility for deallocating the
memory allocated to i->jumpstack falls to the calling func-
tion in the event of a failure signaled at line 20. Discerning
these memory release patterns poses a significant challenge
for purely static analysis methodologies due to the necessity
of tracing complex call hierarchies.

Recent advancements in large language models (LLMs)

1 /* net/netfilter/x_table */
2 static int xt_jumpstack_alloc(struct xt_table_info *i)
3 {
4 ...
5 if (size > PAGE_SIZE)
6 i->jumpstack = kvzalloc(size, GFP_KERNEL);
7 else
8 i->jumpstack = kzalloc(size, GFP_KERNEL);
9 if (i->jumpstack == NULL)

10 return -ENOMEM;
11 ...
12 i->jumpstack[cpu] = kvmalloc_node(size, GFP_KERNEL,
13 cpu_to_node(cpu));
14 if (i->jumpstack[cpu] == NULL)
15 /*
16 * Freeing will be done later on by the callers. The
17 * chain is: xt_replace_table -> __do_replace ->
18 * do_replace -> xt_free_table_info.
19 */
20 return -ENOMEM;
21

22 return 0;
23 }

Figure 7: Example of valuable code comments in the Linux kernel.

have demonstrated their proficiency in various security
tasks [5, 13, 24, 25, 27]. To tackle the challenges previously
mentioned, we utilize the capabilities of LLMs to scrutinize
the implicit MM strategies and extract insightful code anno-
tations within the target systems. For each memory object,
should IMMI detect any sliced path from prior static analysis
that fails to deallocate the object, it crafts a tailored LLM
prompt to investigate the possibility of an implicit memory
release pertaining to that object. To fully leverage the LLM’s
potential, we decompose the analysis into three distinct phases:
targeting the memory object, discerning error handling paths,
and examining the relevant code to determine whether the
memory object is governed by the calling functions or is sub-
ject to automatic deallocation. IMMI incorporates the func-
tion’s source code, where the memory object is instantiated,
into the prompt input. The LLM is then instructed to encapsu-
late its findings in a separate line, from which IMMI extracts the
LLM’s conclusions to augment subsequent analyses. Should
the LLM uncover such information, IMMI will update its anal-
ysis results for the object accordingly. We provide a prompt
message example for the code in Figure 6 in Table 5 in the
Appendix, where the LLM successfully identifies the implicit
memory release mechanisms through reference counting and
an indirect call.

4.5 Inconsistency-based Bug Detection

Caller MM intention inference. In the preceding phase,
a shared memory object was classified according to its man-
agement strategy: either callee-based or caller-based. IMMI
extends this analysis by examining the callers to deduce the
MM intentions for this object. Specifically, IMMI begins by
identifying the error-handling path associated with the caller
instruction and ascertains whether this path deallocates the
memory object. If deallocation occurs, the caller function

USENIX Association 33rd USENIX Security Symposium 4077

is designated as employing caller-based management for the
object. Conversely, if no release is detected, IMMI proceeds to
aggregate all error handling paths that follow the successful
execution of the caller instruction. Should any of these paths
involve the release of the memory object, the caller function
is then categorized under callee-based management. In the
absence of these conditions, IMMI conducts a deeper investi-
gation to determine whether the memory object is propagated
further along the call chain. When such transfer is detected,
IMMI recursively applies the aforementioned analysis until the
MM intentions for the memory object can be conclusively
identified.
Memory bug detection. In the process of inferring the
caller’s MM intentions, should there be inconsistency between
the caller’s and callee’s MM intentions for a given memory ob-
ject, IMMI halts further analysis and flags it as a memory bug.
Specifically, when the callee operates under caller-based man-
agement, while the caller adheres to a callee-based strategy,
IMMI identifies this as a potential memory leak. This occurs
because neither party assumes responsibility for deallocating
memory upon a particular failure scenario. Conversely, when
both the caller and callee attempt to manage the same memory
object, IMMI recognizes this as a double-free bug.

We use the memory leak bug in Figure 3 as an exam-
ple to illustrate the workflow of IMMI. During the callee
MM intention inference phase, IMMI discerns that the mem-
ory object qdev->lrg_buf is allocated at line 5. However,
IMMI observes that subsequent error handling paths fail to
deallocate it. Consequently, IMMI designates the function
ql_alloc_buffer_queues as adhering to caller-based man-
agement for this object. Upon inspecting the caller func-
tion ql_alloc_mem_resources, IMMI evaluates its MM in-
tention by analyzing the error paths following the failure
of ql_alloc_buffer_queues (lines 26-27 and 39-43), noting
the absence of deallocation for the memory object. Further
analysis of the error paths after ql_alloc_buffer_queues has
successfully executed reveals a jump to err_small_buffers,
where the memory is appropriately released at line 38.
IMMI thus determines that ql_alloc_mem_resources employs
callee-based management for the object. This finding is
in direct conflict with the handling method of the callee
ql_alloc_buffer_queues. As a result, IMMI reports a mem-
ory leak bug due to this inconsistency.

5 IMMI Implementation

We have implemented IMMI based on LLVM with 5.3K lines
of C++ code. We choose ChatGPT-4 (accessed through
ChatGPT-4-1106-preview) as our target LLM and implement
the LLM query with 200 lines of python code. We record the
LLM query results and bug reports in a local MySQL database
to facilitate further bug verification.
Pre-processing. To mitigate the risk of path explosion, we un-

roll loops by transforming the control flow of loop constructs
into conditional (if) statements. This technique is a com-
mon practice in static analysis, as evidenced by its application
in various works [20, 32, 33, 43]. We employed multi-layer
type analysis [19] for analyzing indirect calls. Nevertheless,
our findings indicated that numerous indirect calls involving
nested struct types were inaccurately resolved. To address
this, we introduced an additional data-flow analysis specifi-
cally tailored for these indirect calls to extract more precise
nested type information. This refinement led to a reduction of
approximately 23% in superflous indirect call targets.
Code exploration settings. In the current implementation,
we confine the inter-procedural MM intention analysis for
each shared memory object to a maximum of four procedural
transitions. This constraint is informed by empirical evidence
suggesting that extending the call-chain analysis beyond this
threshold yields a negligible increase in bug detection, while
incurring a significant computational overhead. Moreover, we
have instituted an early termination protocol: if a memory ob-
ject is encapsulated within a structure, the analysis is promptly
concluded upon the deallocation of the enclosing structure. In
this case, IMMI deems the memory object as irretrievable and
immediately flags it as a potential memory leak.
LLM settings. The outputs of LLMs exhibit a form of in-
stability commonly referred to as hallucination [40, 45]. To
mitigate this issue, we query each prompt four times, consider-
ing only those responses that maintain consistent conclusions
in at least three instances as valid. To optimize analysis time
and reduce costs, we deploy LLMs exclusively for analyz-
ing the intentions of memory management in cases where
IMMI has identified inconsistencies during the static analysis
phase. We have also observed that constraining LLM out-
puts significantly affects its efficacy in our code analysis task.
Consequently, we permit the LLM to initially present interme-
diate analysis results, subsequently synthesizing these into a
definitive outcome.
Post-processing. IMMI sometimes produces multiple bug
reports that, despite originating from the same root cause, ex-
hibit distinct call chains. This situation often arises when a
callee function responsible for managing a shared memory ob-
ject is invoked by multiple callers. IMMI identifies and reports
a bug for each unique caller that demonstrates inconsistent
memory management intentions relative to the callee. In our
analysis, we have observed that these instances are generally
resolvable with a single patch and, therefore, should be consid-
ered as a single bug. Consequently, for clarity and accuracy in
our statistical analysis, IMMI only retains a single report from
such groups of related bug reports.

6 Evaluation

We conducted an evaluation of IMMI on a Linux server running
Ubuntu 20.04.1, equipped with 126GB of RAM and an Intel

4078 33rd USENIX Security Symposium USENIX Association

Table 1: Scalability of IMMI.

Bitcode
Loading

ICall
Analysis

Summa-
rization

Bug
Analysis

LLM
I/O Total

1m 11s 3m 58s 2m 15s 1m 59s 25m 49s 35m 12s

Table 2: Bug detection statistics of IMMI on the Linux kernel. The SA
indicates the number of bugs reported by pure static analysis, while
the SA+LLM specifies the number identified when static analysis is
combined with the large language model (GPT-4).

Category Reported Bugs Real Bugs Precision
SA SA+LLM

Intro-inconsistency 63 52 35 67.3%
Inter-inconsistency 95 71 45 63.4%
Total 158 123 80 65.0%

Xeon Silver 4316 CPU at 2.30GHz. We evaluated the bug
detection efficiency of IMMI against the Linux kernel 5.18.
To ensure comprehensive module coverage, we compiled the
kernel using the allyesconfig, resulting in a total of 21,438
LLVM bitcode files.

6.1 Analysis Performance
IMMI completed the analysis of the entire Linux kernel within
35 minutes, as shown in Table 1. Specifically, the static analy-
sis component of IMMI required only approximately 9 minutes,
with the remaining time predominantly consumed by I/O la-
tency during queries to the LLM. These results underscore
the efficiency and scalability of IMMI in bug detection. IMMI
reported a total of 123 unique bugs.

6.2 Bug Findings
We manually analyzed all bug reports generated by IMMI and
finally confirmed 80 new bugs, including 57 memory leak
bugs, 16 double-free bugs, 6 UAF bugs, and 1 null-pointer-
dereference bug. We have reported all the bugs to the Linux
community. Until the submission of this paper, 72 bugs have
been confirmed or fixed. The detailed bug list is available in
the Appendix.

An intriguing observation from our bug analysis is that the
majority of inconsistent memory management intentions can
be deduced through a relatively constrained scope of analy-
sis. Specifically, among all identified bugs, 35 (43.8%) were
detected without necessitating inter-procedural analysis, as
highlighted by the unresolved handling cases in §4.4. For the
remaining bugs uncovered during inter-procedural analysis,
22 (48.9%) were identified when shared memory objects were
propagated across a single procedural boundary. The mem-
ory leak bug exemplified in Figure 3 typifies such a scenario.
Furthermore, 14 (31.1%) of the bugs were associated with
two procedural boundaries, while 9 (20.0%) involved three or

more. These findings underscore the efficacy of employing
inconsistent MM intention analysis as a strategy for memory
bug detection.

6.3 False Positives

The false discovery rate of IMMI stands at 35%, which is ac-
tually promising for a static bug analysis tool, outperform-
ing several comparable tools in detecting kernel memory
bugs [9, 15, 34]. Leveraging capabilities of LLM for code
and comment interpretation, IMMI effectively mitigates false
positives arising from complex kernel memory management
mechanisms and developer tactics. Upon examining the false
positives, we have identified the primary contributing factors
as follows:

Infeasible paths. Kernel developers frequently impose con-
straints to govern the executability of certain program paths.
For instance, developers may employ temporary variables to
determine the executability of object release sequences. While
memory resetting summaries can mitigate some instances of
infeasibility, they are not universally effective. These unad-
dressed cases account for 44% of the false positives in our
analysis. To resolve this challenge, IMMI needs to integrate
with symbolic execution to discern and exclude infeasible
paths. We defer the implementation of this enhancement to
future work.

Imprecise error handling path analysis. Error handling
mechanisms within operating system kernels are inherently
intricate, frequently encompassing numerous layers of verifi-
cation and a multitude of conditional statements. Despite the
incorporation of both forward and backward analyses into our
methodology, certain paths elude the scope of our model. This
limitation leads to the occasional omission of error handling
paths in our identification process, which contributes 26% of
the false positives.

Imprecise alias analysis. Despite IMMI’s implementation
of a field-sensitive alias analysis, the approach falls short in
accurately distinguishing between individual array elements
when they are accessed via indeterminate indices within loops.
Consequently, IMMI erroneously identifies distinct array ele-
ments as aliases, contributing to aliasing imprecision. This
particular limitation is responsible for approximately 12% of
the false positives reported by IMMI.

Other causes. Several less common factors also contribute
to the false positives. These encompass limitations in the han-
dling of specialized program logics that exceed the capabilities
of our static analysis framework, even when augmented with
large language models. Additionally, the complexity of kernel
macros and deficiencies in the implementation of the static
analysis component of IMMI are also responsible for false pos-
itives. Collectively, these issues account for 18% of the false
positives observed.

USENIX Association 33rd USENIX Security Symposium 4079

6.4 False Negatives

Since there is no benchmark for false negative analysis, we
have devised a test set by deliberately injecting MM inten-
tion inconsistencies into the Linux kernel. Specifically, we
randomly selected 20 shared memory objects initially man-
aged with caller-based management and altered them to adopt
callee-based management. Conversely, we selected additional
20 memory objects that were originally callee-based and trans-
formed their management to caller-based. This intentional
perturbation resulted in the introduction of 20 double-free
bugs and 20 memory leak bugs. IMMI successfully identified
all 20 double-free bugs and 17 of the memory leaks. The
three undetected memory leaks can be attributed to instances
where the call chains surpassed our predefined threshold, thus
evading our analysis.

It is important to note that the efficacy of IMMI’s bug de-
tection mechanism is contingent upon the manifestation of
inconsistent MM intentions across different functions pertain-
ing to the same memory object. In scenarios where bugs
are confined to local resources within a single function, the
detection capabilities of IMMI would diminish.

6.5 Performance of LLM

Overall performance. In the process of detecting bugs, IMMI
constructed 158 unique query tasks aimed at inferring MM
intentions through LLM. Each query was executed four times,
consistent with the methodology outlined in §5. Out of these
queries, IMMI garnered 128 (81.0%) valid responses. The av-
erage I/O latency for each LLM prompt was approximately
2 seconds. Throughout our analysis, the LLM demonstrated
commendable stability in processing the tasks presented, con-
sidering the complexity of the analysis.

To evaluate the contribution of the LLM to the bug detec-
tion capabilities of IMMI, we deactivated the LLM component
and reassessed the outcomes using only static analysis. Sub-
sequently, the number of bug reports surged to 158. Upon
manual inspection of these reports, we identified three addi-
tional true bugs and 32 extra false positives in comparison to
the previous results. These findings suggest that the LLM is
responsible for approximately 4% of false negatives in bug de-
tection, yet it effectively reduces the false positives produced
by IMMI by 43%. Without the LLM’s assistance, the overall
false discovery rate of IMMI escalates to 47.5%. The majority
of these additional false positives stem from the Linux kernel’s
implicit memory management mechanisms, such as reference
counting and release callback functions. Furthermore, LLM
mitigates some false positives that arise from inaccurate er-
ror path identification. The results underscore the efficacy of
IMMI in resolving intricate scenarios that pose challenges to
traditional static analysis, demonstrating its value in enhancing
system security.
False negatives. We checked the false negatives intro-

1 static int qedf_alloc_global_queues(struct qedf_ctx *qedf)
2 {
3 ...
4 qedf->global_queues = kzalloc(...);
5 if (!qedf->global_queues) {
6 QEDF_ERR(&(qedf->dbg_ctx), "Unable to allocate global "
7 "queues array ptr memory\n");
8 return -ENOMEM;
9 }

10 ...
11 status = qedf_alloc_bdq(qedf);
12 if (status) {
13 QEDF_ERR(&qedf->dbg_ctx, "Unable to allocate bdq.\n");
14 goto mem_alloc_failure;
15 }
16 ...
17 return 0;
18

19 mem_alloc_failure:
20 qedf_free_global_queues(qedf);
21 return status;
22 }

Figure 8: Example of false negative introduced by LLM.

duced by LLM, where we found all of them were caused
by erroneous assumption in inferring code functionalities.
Figure 8 illustrates a representative case, where a memory
object qedf->global_queues is instantiated at line 4. All
subsequent error handling paths in this function lead to
the mem_alloc_failure label, triggering the invocation of
qedf_free_global_queues for resource deallocation. Con-
trary to the LLM’s assumption that this release function
would adequately dispose of all allocated resources within
qedf_alloc_global_queues, it fails to release the afore-
mentioned object. Notably, such function naming conventions
could also mislead human developers, potentially leading to a
similar misjudgment with the LLM. This is a pitfall for many
methods that rely on keyword-based function pairing as well.
To address this issue, one approach could involve enriching
the LLM queries with additional context, such as the release
summaries produced by IMMI, and adopting a recursive query
strategy. We identify this as an avenue for future work.

Comparison with different LLMs. In this section, we pro-
vide a comparison of different LLMs for bug detection within
IMMI framework, including GPT-4, GPT-3.5, and Llama-3-
70B, as shown in Table 3. Smaller models, such as Llama-3-
8B, exhibited difficulties in comprehending the analysis task
and produced unpredictable outputs in our preliminary testing,
and therefore are not included in the comparison. The prompts
for all LLM evaluations are consistent with those used in our
previous assessment of GPT-4.

Although GPT-3.5 and Llama-3 demonstrate an understand-
ing of the analysis task, they do not consistently meet every
detailed requirement. For instance, Llama-3 often overlooks
the criterion that only error paths following the object allo-
cation should be considered. GPT-3.5 struggles to maintain
focus on a specific memory object when the error handling
paths include memory releases for multiple objects. Moreover,
their accuracy significantly diminishes in the context of ex-

4080 33rd USENIX Security Symposium USENIX Association

Table 3: Comparison with different LLMs. The TP, FP, TN, and FN
indicate true positive, false positive, true negative, and false negative,
respectively.

LLM Valid Reports TP FP TN FN

GPT-4 128 (81.0%) 67 26 32 3
GPT-3.5 140 (88.6%) 41 33 36 30
Llama-3 144 (91.1%) 58 47 19 20

tensive functions and indirect calls. As a result, their utility
in aiding bug detection for this paper is suboptimal. Notably,
GPT-3.5 and Llama-3 generate nearly as many false negatives
as the false positives they reduced. The IMMI framework ne-
cessitates an LLM with a more robust reasoning capacity for
the static analysis tasks. Models such as GPT-3.5 would ne-
cessitate further fine-tuning or prompt engineering to achieve
the level of precision necessary for our analysis, a process that
may exceed the scope of the current paper.

6.6 Comparison with Existing Tools
This section compares IMMI with four established tools:
IPPO [15], HERO [34], MLEE [31], and Goshawk [22]. Each
demonstrates proficiency in detecting kernel memory bugs and
targets distinct facets of bug detection methodology. We have
gathered data on analysis time and precision from the corre-
sponding papers for each tool’s evaluation of the Linux kernel
and presented a high-level comparison in Table 4. Given that
the kernel versions and experimental environments vary across
these studies, the metrics provided should be considered in-
dicative of their general capabilities. Overall, IMMI exhibits
an effective balance between performance, precision, and the
capacity to uncover bugs, with a minimal overlap in bug detec-
tion compared to the existing tools, indicating that IMMI could
serve as a beneficial complement to them. Below, a detailed
analysis of each comparison tool is presented.
Comparison with similarity analysis. IPPO [15] aims to
identify bugs stemming from omitted security operations by
examining discrepancies within semantically similar path pairs.
Among the memory bugs detected by IMMI, IPPO could pin-
point 28 of them, and all of which were memory leak bugs
arising during the intra-inconsistency analysis phase of IMMI.
Owing to its design, IPPO is confined to the analysis of intra-
procedural similar paths, which accounts for its failure to de-
tect the majority of bugs uncovered by IMMI. Furthermore,
IPPO is plagued by a low precision of 36.5%, a consequence
of intricate code logic and its inability to analyze implicit
kernel memory management mechanisms. In contrast, IMMI
effectively mitigates these issues by leveraging LLM in under-
standing code semantics.
Comparison with function pairing. In this subsection, we
compare IMMI with HERO [34], the state-of-the-art pairing-
based bug detection tool. HERO excels in identifying function

pairs through their co-usage patterns and could pinpoint bugs
arising from redundant, missing, or disordered paired func-
tions. It is capable of detecting both memory leaks and mem-
ory corruption issues. HERO was only able to identify 24 bugs
uncovered by IMMI, including 23 memory leak bugs and one
double-free bug. The majority of bugs uncovered by IMMI did
not involve commonly used function pairs. In fact, aside from
standard kernel memory management APIs such as kmalloc
and kfree, the function pairs implicated in the bugs detected
by IMMI are typically utilized only once or twice throughout
the entire kernel. Consequently, the paucity of usage instances
prevents HERO from inferring them as function pairs.
Comparison with memory leak detection tool. Given that
a substantial proportion of the memory bugs identified by
IMMI pertain to memory leaks, we compare IMMI against
MLEE [31], which utilizes four weighted rules to detect ker-
nel memory leaks bugs. The combined weight of these rules
is 1, and each rule contributes either a score of 1 or 0 to the
assessment. If the total weighted score reaches 0.5, MLEE
classifies the case as a memory leak. Due to the lack of access
to MLEE’s source code and the undisclosed rule weights in
its research publication, we initially chose to allocate equal
weights, assigning 0.25 to each rule on the presumption that
MLEE would report a leak upon the concurrent satisfaction of
at least two rules. However, we determined that two particular
rules are excessively broad1. Even bug-free kernel code often
meets both criteria, leading to numerous false positives. Given
that MLEE’s false discovery rate is reported as only 18%, we
fine-tuned the weight of these two generic rules to 0.24 and
elevated the others to 0.26 to better reflect MLEE’s actual
performance. Furthermore, our evaluation conservatively pre-
sumes MLEE’s flawless execution of inter-procedural analysis
for memory deallocation and an errorless approach in its alias
and liveness analyses.

In our evaluation, MLEE was able to identify 26 memory
leak bugs found by IMMI, with 25 exhibiting intra-procedural
inconsistencies. The empirical rules demonstrated limited ef-
fectiveness in detecting memory leaks that occur across func-
tion boundaries, highlighting a weakness in inter-procedural
context analysis. Additionally, MLEE recognizes caller-based
memory management as a bug pattern, which can lead to mis-
classification of legitimate memory management strategies as
leaks.
Comparison with memory corruption detection tool. We
also compare IMMI with a kernel memory corruption detec-
tion tool, where we choose Goshawk [22] as our comparison
target. It employs a memory operation synopsis technique to
streamline the tracking of data flows, thereby facilitating the
detection of memory corruptions such as UAF. Upon deploy-

1One rule stipulates that if a memory object is allocated within a kernel
function, it typically necessitates deallocation along the following error paths
of that function. Another rule asserts that when multiple memory objects are
allocated within a kernel function, all objects allocated prior to an allocation
failure must be deallocated.

USENIX Association 33rd USENIX Security Symposium 4081

Table 4: Comparison with existing tools.

Tool Methodology Supported Bug Types Analysis
Time Precision Overlap

with IMMI

IPPO Similarity analysis
Memleak, memory corruption, ref-
count leak, deadlock, missing check

2h 37% 28

HERO Function pairing
Memleak, memory corruption, ref-
count leak, deadlock

11h 52% 24

MLEE Rules checking Memleak 30 min 82% 26
Goshawk Memory operation synopsis Memory corruption 7h 63% 0

IMMI MM intention analysis Memleak, memory corruption 34 min 65% 80

ing Goshawk on the Linux kernel, we observed that there is
no overlap between the bugs detected by Goshawk and those
identified by IMMI. A meticulous manual examination of the
double-free bugs reported by Goshawk revealed a high inci-
dence of false positives, with all 34 cases being incorrectly
flagged. Similar to IPPO, Goshawk’s memory operation syn-
opsis fails to account for implicit kernel memory management
mechanisms like reference counting, which contributes to this
high rate of false positives.

7 Related Work

Memory bug detection. As we evaluated in §6, vari-
ous previous works try to detect memory bugs in different
ways. IPPO [15] detects inconsistencies between similar path-
pairs, positing that a memory bug is present if two similar
paths exhibit divergent error-handling behaviors. MLEE [31]
formulates four rules derived from empirical observations,
specifically targeting memory leaks within early-exit paths.
HERO [34] identifies function pairs and checks for disordered
follower functions including redundant and inadequate ones.
FREEWILL [10] detects UAF bugs by identifying inaccu-
racies in reference counting. These methodologies rely on
predefined rules or the extraction of patterns (e.g., function
pairs), which, while effective to a degree, may not encompass
the full spectrum of memory bug manifestations. Our work
aims to bridge this gap by analyzing the high-level memory
management intentions.
LLM-assisted program analysis. The advent of Large Lan-
guage Models (LLMs) has marked a significant milestone in
the domain of program analysis, offering novel methodologies
for understanding and manipulating code. GPTScan [28] har-
nesses the capabilities of GPT as a multifaceted code compre-
hension instrument, adept at identifying critical variables and
deconstructing complex bug-finding rules into more tractable
properties. ChatRepair [36] employs LLMs to iteratively gen-
erate patches based on test failure data, thereby advancing
the frontier of automated program repair. FuzzGPT [8] in-
tegrates LLMs with a repository of historical bug-inducing
programs and anomalous edge cases to cultivate the capac-

ity for autonomously generating fuzzing inputs. LLMs have
demonstrated proficiency in assimilating high-level semantic
patterns and interfacing effectively with the inputs and outputs
of conventional analysis tools. Despite these advancements,
the independent deployment of LLMs for bug detection in
complex programs remains an elusive goal. Our work ex-
plores the potential of LLMs to augment the intricate task
of kernel bug detection, suggesting a promising avenue for
leveraging these models to enhance the security of critical
systems.

8 Conclusion

In this paper, we present IMMI, a novel system designed to
identify memory bugs by analyzing the inconsistencies in
memory management intentions. IMMI employs advanced
techniques such as code slicing and demand-driven memory
operation summaries to optimize both efficiency and effective-
ness in bug detection. Furthermore, we integrate IMMI with a
LLM to augment its code interpretation capabilities. When ap-
plied to the Linux kernel, IMMI successfully uncovered 80 new
memory bugs, comprising 57 memory leaks and 23 memory
corruptions, while maintaining a false discovery rate of only
35%. Our evaluation demonstrates that IMMI is both scalable
and proficient at detecting Linux kernel memory bugs.

9 Acknowledgment

We sincerely appreciate our shepherd and all the anonymous
reviewers for their insightful comments on our work. This
work was partly supported by the Key R&D Program of Zhe-
jiang Province (2022C01086). This work was also partly
supported by the Alibaba Cloud Computing. Kangjie Lu was
supported in part by the NSF awards CNS2045478, CNS-
2106771, CNS-2154989, and CNS-2247434. Any opinions,
findings, conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect
the views of NSF.

4082 33rd USENIX Security Symposium USENIX Association

References

[1] 2024. Linux memory management APIs.
https://www.kernel.org/doc/html/latest/
core-api/mm-api.html

[2] Jia-Ju Bai, Yu-Ping Wang, Hu-Qiu Liu, and Shi-Min Hu.
2016. Mining and checking paired functions in device
drivers using characteristic fault injection. Information
and Software Technology 73 (2016), 122–133.

[3] Pan Bian, Bin Liang, Jianjun Huang, Wenchang Shi,
Xidong Wang, and Jian Zhang. 2020. SinkFinder: har-
vesting hundreds of unknown interesting function pairs
with just one seed. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering. 1101–1113.

[4] Juan Caballero, Gustavo Grieco, Mark Marron, and Anto-
nio Nappa. 2012. Undangle: early detection of dangling
pointers in use-after-free and double-free vulnerabilities.
In Proceedings of the 2012 International Symposium on
Software Testing and Analysis. 133–143.

[5] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunx-
iang Wang, Yidong Wang, et al. 2023. A survey on
evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology (2023).

[6] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,
Nickolai Zeldovich, and M Frans Kaashoek. 2011.
Linux kernel vulnerabilities: State-of-the-art defenses
and open problems. In Proceedings of the Second Asia-
Pacific Workshop on Systems. 1–5.

[7] Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew Kalbarczyk,
and Ravishankar K Iyer. 2005. Defeating memory
corruption attacks via pointer taintedness detection. In
2005 International Conference on Dependable Systems
and Networks (DSN’05). IEEE, 378–387.

[8] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang,
Shizhuo Dylan Zhang, Shujing Yang, and Lingming
Zhang. 2023. Large Language Models are Edge-Case
Fuzzers: Testing Deep Learning Libraries via FuzzGPT.
arXiv:2304.02014 [cs.SE]

[9] Navid Emamdoost, Qiushi Wu, Kangjie Lu, and Stephen
McCamant. 2021. Detecting kernel memory leaks in
specialized modules with ownership reasoning. In The
2021 Annual Network and Distributed System Security
Symposium (NDSS’21).

[10] Liang He, Hong Hu, Purui Su, Yan Cai, and Zhenkai
Liang. 2022. FREEWILL: Automatically Diagnosing

Use-after-free Bugs via Reference Miscounting Detec-
tion on Binaries. In Proceedings of the 31st USENIX
Security Symposium, Security 2022 (Proceedings of
the 31st USENIX Security Symposium, Security 2022).
USENIX Association, 2497–2512. Publisher Copyright:
© USENIX Security Symposium, Security 2022.All
rights reserved.; 31st USENIX Security Symposium, Se-
curity 2022 ; Conference date: 10-08-2022 Through
12-08-2022.

[11] Suman Jana, Yuan Jochen Kang, Samuel Roth, and
Baishakhi Ray. 2016. Automatically detecting error han-
dling bugs using error specifications. In 25th USENIX
Security Symposium (USENIX Security 16). 345–362.

[12] Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao,
Ji Wang, Xiaodong Liu, and Yunhuai Liu. 2019. De-
tecting error-handling bugs without error specification
input. In 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). IEEE,
213–225.

[13] Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-
Breslin, Rajeev Alur, and Mayur Naik. 2023. Under-
standing the Effectiveness of Large Language Models
in Detecting Security Vulnerabilities. arXiv preprint
arXiv:2311.16169 (2023).

[14] Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. 2022.
Path-sensitive and alias-aware typestate analysis for de-
tecting OS bugs. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. 859–872.

[15] Dinghao Liu, Qiushi Wu, Shouling Ji, Kangjie Lu, Zhen-
guang Liu, Jianhai Chen, and Qinming He. 2021. De-
tecting Missed Security Operations Through Differential
Checking of Object-based Similar Paths. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. 1627–1644.

[16] Huqiu Liu, Yuping Wang, Lingbo Jiang, and Shimin Hu.
2014. PF-Miner: A new paired functions mining method
for Android kernel in error paths. In 2014 IEEE 38th
Annual Computer Software and Applications Conference.
IEEE, 33–42.

[17] Hu-Qiu Liu, Jia-Ju Bai, Yu-Ping Wang, Zhe Bian, and
Shi-Min Hu. 2015. Pairminer: mining for paired func-
tions in Kernel extensions. In 2015 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 93–101.

[18] Hu-Qiu Liu, Jia-Ju Bai, Yu-Ping Wang, and Shi-Min
Hu. 2014. BP-Miner: mining paired functions from the
binary code of drivers for error handling. In 2014 21st
Asia-Pacific Software Engineering Conference, Vol. 1.
IEEE, 415–422.

USENIX Association 33rd USENIX Security Symposium 4083

https://www.kernel.org/doc/html/latest/core-api/mm-api.html
https://www.kernel.org/doc/html/latest/core-api/mm-api.html

[19] Kangjie Lu and Hong Hu. 2019. Where does it go? re-
fining indirect-call targets with multi-layer type analysis.
In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 1867–1881.

[20] Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. De-
tecting Missing-Check Bugs via Semantic- and Context-
Aware Criticalness and Constraints Inferences. In Pro-
ceedings of the 28th USENIX Security Symposium (Se-
curity). Santa Clara, CA.

[21] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan
Nümberger, Wenke Lee, and Michael Backes. 2017.
Unleashing Use-Before-Initialization Vulnerabilities in
the Linux Kernel Using Targeted Stack Spraying.. In
NDSS.

[22] Yunlong Lyu, Yi Fang, Yiwei Zhang, Qibin Sun, Siqi
Ma, Elisa Bertino, Kangjie Lu, and Juanru Li. 2022.
Goshawk: Hunting memory corruptions via structure-
aware and object-centric memory operation synopsis. In
2022 IEEE Symposium on Security and Privacy (SP).
IEEE, 2096–2113.

[23] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi.
2016. RID: finding reference count bugs with inconsis-
tent path pair checking. In Proceedings of the Twenty-
First International Conference on Architectural Support
for Programming Languages and Operating Systems.
New York, NY, USA, 531–544.

[24] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik
Roychoudhury. 2024. Large language model guided
protocol fuzzing. In Proceedings of the 31st Annual
Network and Distributed System Security Symposium
(NDSS).

[25] Hammond Pearce, Benjamin Tan, Baleegh Ahmad,
Ramesh Karri, and Brendan Dolan-Gavitt. 2023. Exam-
ining zero-shot vulnerability repair with large language
models. In 2023 IEEE Symposium on Security and Pri-
vacy (SP). IEEE, 2339–2356.

[26] Suman Saha, Jean-Pierre Lozi, Gaël Thomas, Julia L
Lawall, and Gilles Muller. 2013. Hector: Detecting
resource-release omission faults in error-handling code
for systems software. In 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN). IEEE, 1–12.

[27] Tanmay Singla, Dharun Anandayuvaraj, Kelechi G Kalu,
Taylor R Schorlemmer, and James C Davis. 2023. An
empirical study on using large language models to ana-
lyze software supply chain security failures. In Proceed-
ings of the 2023 Workshop on Software Supply Chain
Offensive Research and Ecosystem Defenses. 5–15.

[28] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Hai-
jun Wang, Zhengzi Xu, Xiaofei Xie, and Yang Liu.
2023. GPTScan: Detecting Logic Vulnerabilities in
Smart Contracts by Combining GPT with Program Anal-
ysis. arXiv:2308.03314 [cs.CR]

[29] Yuchi Tian and Baishakhi Ray. 2017. Automatically
diagnosing and repairing error handling bugs in c. In Pro-
ceedings of the 2017 11th joint meeting on foundations
of software engineering. 752–762.

[30] Jianqiang Wang, Siqi Ma, Yuanyuan Zhang, Juanru Li,
Zheyu Ma, Long Mai, Tiancheng Chen, and Dawu Gu.
2019. NLP-EYE: Detecting Memory Corruptions via
Semantic-Aware Memory Operation Function Identifi-
cation. In 22nd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2019). 309–
321.

[31] Wenwen Wang. 2021. MLEE: Effective Detection of
Memory Leaks on Early-Exit Paths in OS Kernels. In
2021 USENIX Annual Technical Conference (USENIX
ATC 21). 31–45.

[32] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. 2018.
Check it Again: Detecting Lacking-Recheck Bugs in OS
Kernels. In Proceedings of the 25th ACM Conference on
Computer and Communications Security (CCS). Toronto,
Canada.

[33] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie
Lu. 2020. Precisely Characterizing Security Impact in
a Flood of Patches via Symbolic Rule Comparison. In
Proceedings of the 27th Annual Network and Distributed
System Security Symposium (NDSS’20).

[34] Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen
McCamant, and Kangjie Lu. 2021. Understanding and
detecting disordered error handling with precise function
pairing. In 30th USENIX Security Symposium (USENIX
Security 21). 2041–2058.

[35] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. 2018. FUZE: Towards Facilitating
Exploit Generation for Kernel Use-After-Free Vulnera-
bilities. In 27th USENIX Security Symposium (USENIX
Security 18). 781–797.

[36] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep
the Conversation Going: Fixing 162 out of 337 bugs for
$0.42 each using ChatGPT. arXiv:2304.00385 [cs.SE]

[37] Jidong Xiao, Hai Huang, and Haining Wang. 2015. Ker-
nel data attack is a realistic security threat. In Security
and Privacy in Communication Networks: 11th EAI In-
ternational Conference, SecureComm 2015, Dallas, TX,
USA, October 26-29, 2015, Proceedings 11. Springer,
135–154.

4084 33rd USENIX Security Symposium USENIX Association

[38] Yichen Xie and Alex Aiken. 2005. Context-and path-
sensitive memory leak detection. In Proceedings of the
10th European software engineering conference held
jointly with 13th ACM SIGSOFT international sympo-
sium on Foundations of software engineering. 115–125.

[39] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi
Xie, Yuanyuan Zhang, and Dawu Gu. 2015. From
collision to exploitation: Unleashing use-after-free vul-
nerabilities in linux kernel. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communi-
cations Security. 414–425.

[40] Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli.
2024. Hallucination is Inevitable: An Innate Lim-
itation of Large Language Models. arXiv preprint
arXiv:2401.11817 (2024).

[41] Zhenbo Xu, Jian Zhang, and Zhongxing Xu. 2011.
Memory leak detection based on memory state transition
graph. In 2011 18th Asia-Pacific Software Engineering
Conference. IEEE, 33–40.

[42] Zhenbo Xu, Jian Zhang, and Zhongxing Xu. 2015.
Melton: a practical and precise memory leak detection
tool for C programs. Frontiers of Computer Science 9
(2015), 34–54.

[43] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Tae-
soo Kim, and Mayur Naik. 2016. APISan: Sanitiz-
ing API Usages through Semantic Cross-Checking. In
25th USENIX Security Symposium (USENIX Security
16). USENIX Association, Austin, TX, 363–378.

[44] Dongyang Zhan, Xiangzhan Yu, Hongli Zhang, and Lin
Ye. 2022. ErrHunter: Detecting Error-Handling Bugs
in the Linux Kernel Through Systematic Static Analy-
sis. IEEE Transactions on Software Engineering 49, 2
(2022), 684–698.

[45] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023. Siren’s song in the ai ocean: A
survey on hallucination in large language models. arXiv
preprint arXiv:2309.01219 (2023).

[46] Qingyang Zhou, Qiushi Wu, Dinghao Liu, Shouling Ji,
and Kangjie Lu. 2022. Non-Distinguishable Inconsis-
tencies as a Deterministic Oracle for Detecting Secu-
rity Bugs. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security.
3253–3267.

A Appendix

Table 5: LLM prompt example. The red-highlighted words within
the prompt message are generated by the static analysis of IMMI.

Description Prompt messgaes
You are now a program static analysis expert. Your
following analysis is based on the following function:
[code of devm_register_dax_mapping]

Prompt
message

We define "error path" in a function as follows: A
sequence of basic blocks that finally returns a non-
zero number or null pointer. Note that if a call returns
error but the path finally does not return a negative
number or null pointer, this path is not an error path.
A heap memory "mapping" is allocated through "map-
ping = kzalloc(sizeof(*mapping), GFP_KERNEL);"
Please identify all of the LATER error paths after the
allocation. Then, please analyze whether all of these
paths have freed the heap memory. Pay attention to the
implicit kernel memory release operations. Your final
conclusion should be a seperate line like: [Conclusion:
Answer], "Answer" should only be "yes" or "no".

Reply
from
LLM

Analyzing the function "devm_register_dax_map-
ping", we can identify the error paths that occur after
the allocation of heap memory for "mapping" with
"kzalloc". We need to check if the allocated memory
is properly freed on each error path.
1. The first error path is when "ida_alloc" fails (returns
a negative number). In this case, the allocated memory
for "mapping" is freed with "kfree(mapping)" before
returning "-ENOMEM".
2. The second error path is when "device_add" fails
(returns a non-zero number). In this case, "put_de-
vice(dev)" is called, which will eventually lead to the
release of the device and the associated memory. Since
"dev" points to "mapping->dev", and "mapping" is
embedded within the "struct device", the memory for
"mapping" will be freed when the device is put.
3. The third error path is when "devm_add_action_-
or_reset" fails (returns a non-zero number). In this
case, the function returns "rc" directly. However,
"devm_add_action_or_reset" is designed to automat-
ically clean up resources by executing the provided
action ("unregister_dax_mapping") if the device man-
aged by "devm" is removed or if the driver is unloaded.
This means that if "devm_add_action_or_reset" fails,
it will not add the cleanup action, but since "device_-
add" has already succeeded at this point, the device’s
release function will be called when the device is re-
moved, which should take care of freeing the "map-
ping" memory.
Based on the above analysis, all error paths after the
allocation of "mapping" have mechanisms to free the
allocated heap memory, either explicitly with "kfree"
or implicitly through the device management func-
tions.
[Conclusion: yes]

USENIX Association 33rd USENIX Security Symposium 4085

Table 6: Memory management APIs.

API description API list

Memory allocation

kcalloc, kzalloc, kmalloc
malloc, vmalloc, vzalloc
kmallo_array, kvmalloc_array
kzalloc_node, kmemdup, calloc

Memory deallocation
free, kfree, kvfree
vfree, kmem_cache_free

Table 7: List of bugs (1-39) detected by IMMI in Linux kernel. The
S, C, A, and F in the Status column indicate submitted, confirmed,
accepted, and fixed by other developers in the latest version, respec-
tively.

Buggy function Type Status
niu_alloc_channels Memleak F
kfd_mem_dmamap_userptr Memleak F
cpufreq_dbs_governor_init Memleak F
aldebaran_tables_init Memleak A
smu7_hwmgr_backend_init Memleak A
amdgpu_parse_extended_-
power_table

Double-free A

arfs_create_groups Double-free A
gssx_dec_option_array Memleak A
mlx5e_fs_tt_redirect_any_create Memleak F
fs_udp_create_groups Memleak A
fs_any_create_groups Memleak A
accel_fs_tcp_create_groups Memleak F
sumo_parse_power_table Memleak A
trinity_parse_power_table Memleak A
rvu_npa_register_reporters UAF A
rvu_nix_register_reporters UAF A
budget_av_attach Memleak A
_r8712_init_xmit_priv Memleak F
submit_urbs Memleak F

load_video_binaries
Null-pointer-
dereference

C

cx231xx_init_isoc Memleak A
irtoy_tx Memleak A
dvb_create_media_entity Double-free F
megasas_init_fw Memleak S
qla2x00_mem_alloc Memleak S
efct_hw_setup_io Memleak S
__drm_universal_plane_init Memleak F
vmw_gmrid_man_get_node Memleak A
lima_heap_alloc Memleak A
nv50_wndw_new_ Memleak S
btrfs_get_dev_args_from_path Memleak F
selinux_add_opt Double-free F
alloc_wbufs Memleak F
btt_freelist_init Memleak C
btt_rtt_init Memleak C
btt_maplocks_init Memleak C
ccp_init_dm_workarea Memleak A
fjes_hw_setup Memleak A
go7007_load_encoder Memleak A

Table 8: List of bugs (40-80) detected by IMMI in Linux kernel.
The S, C, A, and F in the Status column indicate submitted, con-
firmed, accepted, and fixed by other developers in the latest version,
respectively.

Buggy function Type Status
hfs_find_init Memleak C
i40e_init_recovery_mode Memleak C
iio_device_register_eventset Memleak F
iio_device_register_sysfs Memleak A
init_credit_return Memleak A
intel_gvt_init_vgpu_types Memleak F
ip_setup_cork Memleak A
lpfc_nvmet_setup_io_context Memleak S
open_card_ubr0 Memleak A
otx2_sq_init Memleak A
psm_init_power_state_table Memleak F
ql_alloc_buffer_queues Memleak A
radeon_vm_init Memleak A
rsi_coex_attach Memleak F
rtl8188eu_init_recv_priv Memleak F
sja1105_setup_devlink_regions Memleak F
vimc_sen_add Memleak C
vivid_create_instance Memleak C
v4l2_m2m_register_entity Memleak A
wm_adsp_buffer_populate Memleak A
beiscsi_init_wrb_handle Memleak A
atl1e_setup_ring_resources Memleak A
r8712_init_drv_sw Memleak F
_r8712_init_xmit_priv Memleak F
lbs_allocate_cmd_buffer Memleak A
megasas_alloc_cmdlist_fusion UAF S
qed_ilt_shadow_alloc UAF A
qla2x00_mem_alloc Double-free S
r600_parse_extended_power_ta-
ble

Double-free F

kfd_gtt_sa_allocate Double-free F
nitrox_mbox_init Double-free F
si_parse_power_table Double-free A
si_dpm_init Double-free F
kv_parse_power_table UAF A
efx_probe_filters Double-free A
mdp4_plane_init Double-free C
dvb_register_device UAF A
nand_scan_tail Double-free A
uncore_type_init Double-free A
base_alloc_rdpq_dma_pool Double-free S
bnxt_init_tc Double-free A

4086 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background and Study
	MM Strategies of OS Kernels
	Impact of Inconsisitent MM Intentions
	Causes of Inconsisitent MM Intentions
	Motivation of IMMI

	Overview
	Challenges in MM Intention Inference
	The IMMI Framework

	System Design
	Alias Analysis
	Memory Operation Summarization
	Object-based Code Slicing
	LLM-assisted MM Intention Inference
	Inconsistency-based Bug Detection

	IMMI Implementation
	Evaluation
	Analysis Performance
	Bug Findings
	False Positives
	False Negatives
	Performance of LLM
	Comparison with Existing Tools

	Related Work
	Conclusion
	Acknowledgment
	Appendix

