
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Scalable Multi-Party Computation Protocols for
Machine Learning in the Honest-Majority Setting

Fengrun Liu, University of Science and Technology of China &
Shanghai Qi Zhi Institute; Xiang Xie, Shanghai Qi Zhi Institute & PADO Labs;
Yu Yu, Shanghai Jiao Tong University & State Key Laboratory of Cryptology

https://www.usenix.org/conference/usenixsecurity24/presentation/liu-fengrun

Scalable Multi-Party Computation Protocols for Machine Learning in the
Honest-Majority Setting

Fengrun Liu
University of Science and Technology of China &

Shanghai Qi Zhi Institute

Xiang Xie
Shanghai Qi Zhi Institute & PADO Labs

Yu Yu
Shanghai Jiao Tong University &

State Key Laboratory of Cryptology, P. O. Box 5159, Beijing, 100878, China

Abstract
In this paper, we present a novel and scalable multi-party
computation (MPC) protocol tailored for privacy-preserving
machine learning (PPML) with semi-honest security in the
honest-majority setting. Our protocol utilizes the Damgård-
Nielsen (Crypto’07) protocol with Mersenne prime fields.
By leveraging the special properties of Mersenne primes,
we are able to design highly efficient protocols for securely
computing operations such as truncation and comparison.
Additionally, we extend the two-layer multiplication protocol
in ATLAS (Crypto’21) to further reduce the round complexity
of operations commonly used in neural networks.

Our protocol is very scalable in terms of the number of
parties involved. For instance, our protocol completes the
online oblivious inference of a 4-layer convolutional neural
network with 63 parties in 0.1 seconds and 4.6 seconds in
the LAN and WAN settings, respectively. To the best of our
knowledge, this is the first fully implemented protocol in the
field of PPML that can successfully run with such a large
number of parties. Notably, even in the three-party case, the
online phase of our protocol is more than 1.4× faster than the
Falcon (PETS’21) protocol.

1 Introduction

In recent years, machine learning (ML) has gained immense
popularity across various domains, including medicine, bank-
ing, recommendation systems, and biometric authentication.
However, the widespread use of ML models has raised sig-
nificant privacy concerns. Moreover, many companies offer
pre-trained ML models, and performing inference operations
on sensitive data introduces additional privacy considerations.
Regulations like HIPAA and GDPR impose significant con-
straints on institutions aggregating personal data from individ-
uals. To enable effective machine learning while preserving
privacy, the ideal approach is for individuals to retain their per-
sonal information locally while collaborating to train models
in a secure multi-party manner.

Secure Multi-Party Computation (MPC) [3, 21, 47] en-
ables a group of n parties to collectively compute a function
on their private inputs while preserving the privacy of the
inputs. MPC offers a promising approach to address these pri-
vacy challenges in ML. It enables privacy-preserving machine
learning (PPML) by performing secure computations on dis-
tributed datasets without exposing the individual data points
or the model itself. This allows multiple parties to collaborate
on training or inference tasks while keeping their data private.
By leveraging cryptographic techniques and secure protocols,
MPC-based PPML ensures that sensitive information remains
protected throughout the computation process.

In the context of PPML, there have been significant re-
search efforts to enhance secure multi-party computation pro-
tocols in different settings. In the dishonest-majority setting,
the majority of PPML protocols concentrate on the two-party
scenario [7, 12, 24, 31, 33, 35, 38, 40, 41, 42]. On the other
hand, in the honest-majority setting, existing PPML proto-
cols only consider the three-party [8, 12, 29, 34, 39, 44, 45]
and four-party cases [4, 9, 13, 28], where the protocols tol-
erate one corrupted party. However, many applications like
federated learning involve large numbers of participants, yet
existing privacy-preserving machine learning protocols focus
on 2-4 parties only, falling short of real-world needs. There is
a pressing need to develop scalable protocols that can accom-
modate machine learning with many distributed data owners.

In theory, there are general-purpose MPC protocols, such
as those mentioned in [10, 17, 18, 26], that can support an
arbitrary number of parties. However, these protocols lack
efficient methods for securely computing non-linear functions
like truncation and comparison. This limitation is the primary
reason why they do not report specific performance results
when applied to a large number of parties in PPML.

Previous protocols often utilize power-of-two rings Z2ℓ and
prime fields Fp. Power-of-two rings, specifically those with
ℓ = 32 or 64, are particularly favored due to their superior
computation efficiency. This efficiency stems from the com-
patibility of the ring operations with native datatypes. Prime
fields offer significant advantages when it comes to leveraging

USENIX Association 33rd USENIX Security Symposium 1939

the fast protocol proposed by Damgård and Nielsen [17], here-
after known as the DN protocol, which is based on Shamir
Secret Sharing.

In PPML, the secure computation of truncation and compar-
ison functions plays a vital role. Practical truncation protocols
are based on the approaches (and their extensions) proposed
in [35] and [6] in the power-of-two rings and prime fields
setting, respectively. However, these methods result in a sig-
nificant gap between the shares and the secret, necessitating
the use of either a large modulus or low precision to mitigate
truncation errors. For the secure computation of the compar-
ison function, protocols (such as [15, 34]) typically rely on
the computation of boolean circuits with bit shares. These
methods also introduce a large gap between the shares and
secrets. Moreover, the online round complexity can be as high
as O(logℓ). Note that [12, 20] show how to reduce the gap of
the truncation protocol in the power-of-two rings setting, but
the round complexity of their comparison protocols is still
high. Additionally, [32] shows how to mitigate the gap in the
comparison protocol in the prime fields setting. But the gap
in the truncation protocol still persists.

1.1 Our Contribution

We design and implement a general framework of scalable
multi-party computation protocols for privacy-preserving in-
ference, where the model is secret-shared among all data own-
ers, with semi-honest security in the honest majority setting.
This establishes a foundation for realizing practical large-
scale privacy-preserving collaborative training in the future.
Our schemes leverage the DN [17] protocol with Mersenne
prime fields. I.e., the prime is in the form p = 2ℓ− 1. It is
worth noting that we are the first to take advantage of the
unique properties of Mersenne primes to optimize trunca-
tion and comparison from a theoretical standpoint. The key
contributions of this paper are as follows.

1. We propose a novel protocol to securely compute the
truncation function in the setting of prime fields with
Mersenne primes. This new protocol reduces the gap
between shares and the secret to just 1 bit. As a result,
It allows us to use a smaller modulus or achieve higher
precision, thereby directly improving both computation
and communication efficiency. We further combine it
with the DN multiplication protocol, resulting in an effi-
cient protocol for fixed-point multiplication with 1 round
online complexity.

2. We propose an efficient protocol to securely compute the
bitwise comparison function in the setting of Mersenne
prime fields. It eliminates the gap between shares and
the secret with 1 round online complexity. To achieve
this, besides utilizing the special properties of Mersenne
primes, we also present an optimized Prefix-OR protocol
with only 1 round online complexity. This new Prefix-OR

protocol works for any prime field, which is of indepen-
dent interest.

3. We simplify and extend the techniques of evaluating two-
layer multiplication in [22], to securely compute ReLU
(Maxpool) operations in neural networks, resulting in
efficient protocols with 3 rounds (3 logm rounds) online
complexity.

4. We implement our framework with C++ and conduct
experiments of oblivious inference for neural networks
with varying numbers of parties, ranging from 3 to 63.
For example, when performing inference on a 4-layer
convolutional neural network with 63 parties, the online
(preprocessing) time is 0.4 s (2.4 s) and 4.3 s (12.3 s)
in the LAN and WAN setting, respectively. To the best
of our knowledge, this is the first fully implemented
protocol in the field of PPML that can successfully run
with such a large number of parties. Even in the three-
party case, our protocol outperforms the Falcon protocol
[45] in terms of online phase speed, being more than
1.4× faster.

An overview of the different protocols considered in this work
is provided in Appendix A

1.2 Overview of Techniques
Let p be a Mersenne prime, which is in the form of p = 2ℓ−1
for some prime ℓ. It is well known that the distribution of
Mersenne primes is quite sparse. However, for practical pur-
poses in privacy-preserving machine learning, it is fortunate
that values of ℓ such as 31, 61, and 127 are often sufficient.
These specific values of ℓ are typically suitable for most use
cases in PPML, allowing for efficient computations within
the domain.

Advantages of Mersenne Primes. A key observation in
this paper is that Mersenne primes are very close to power-
of-two numbers. Mersenne primes exhibit similar properties
to power-of-two numbers, which leads to several advantages
in computations. In particular, modular operations performed
over Mersenne primes involve simple operations such as bit
shifts and additions, making them highly efficient. When
encoding a signed integer a ∈ [−(p−1)/2,(p−1)/2] into a
representation ā within the range of [0, p−1] in Fp, the most
significant bit (MSB) of ā effectively indicates the sign bit
of a. This is due to the fact that (p− 1)/2 = 2ℓ−1− 1. The
plain truncation protocol in Fp is quite simple when p is a
Mersenne prime. Truncating ā ∈ Fp by d bits is just shifting
the bits of ā down by d positions and filling the top d bits
with the MSB of ā.

Probabilistic Truncation with Only 1-Bit Gap. Let
Truncd(x) denote the truncation of x ∈ Fp with d bits.
The starting point is the method presented in ABY3 [34].
In a nutshell, they utilize the property that Truncd(z) =

1940 33rd USENIX Security Symposium USENIX Association

Truncd(x = z+ r)−Truncd(r)+e for small z with high prob-
ability for uniformly random r ∈ Fp, where |e| ≤ 1 is some
rounding error. The constraints on z and the probability men-
tioned in the previous statement are imposed due to certain
cases where the equation does not hold. This deviation from
the equation occurs when there is a “wapping around” event.

The “wapping around” event happens in two cases. 1)
z,r represent two postive integers, but x = z+ r represents a
negative integer. 2) z,r represent two negative integers, but
x = z + r represents a positive integer. This is due to the
implicit modulo operation involved in operations within the
prime field Fp. The constraints on z and r make this bad
case occur only with a small probability. In conclusion, for
z ∈

[
0,2ℓz

]
∪
[
p−2ℓz , p

)
, the equation holds with probability

1− 2ℓz+1

p for some ℓz > 0.

It is easy to see that the gap between z and p should be
large enough to make the equation hold. In this paper, we
fully leverage the properties of Mersenne primes to narrow
the gap between z and p to just 1 bit.

We consider z ∈ [0,(p−1)/2] representing a positive inte-
ger. Under this condition, only one specific case will trigger
the “wrapping around” event. I.e., r represents a positive
integer, but x represents a negative integer. In other words,
rmsb = 0∧ xmsb = 1. In this case, let us look into the result
of Truncd(x = z+ r). As described before, Truncd(x = z+ r)
shifts down x by d bits and fills the first d bits with the MSB
of x, which is bit 1. Surprisingly, the deviation in the equation
is caused by the “misfilled” first d bits, and we simply remove
this term to make the equation hold again in this case!

Removing the first d bits with all 1’s is equivalent to sub-
stract (2d−1) ·2ℓ−d = (2ℓ−2ℓ−d) = p− (2ℓ−d−1). This is
equivalent to adding 2ℓ−d−1 in the field. In the MPC setting,
we remain to compute the share of (1− rmsb) · xmsb to oblivi-
ously indicate whether the “wrapping around” event occurs
or not. Fortunately, x = z+ r will be revealed in the protocol
because r is uniformly random, and xmsb can be computed
locally. Further, in the preprocessing phase, we will prepare
the share of rmsb. Therefore the share of (1− rmsb) · xmsb can
be computed locally!

Note that our truncation protocol can be simply modified to
support elements that represent negative integers as well. Let
z̄ ∈ [0,2ℓ−2)∩ [p−2ℓ−2, p), set z = z̄+2ℓ−2 ∈ [0,(p−1)/2].
Then, we can easily obtain Truncd(z̄) by applying our protocol
on z. This is because Truncd(z)≈ Truncd(z̄)+2ℓ−d−2.

In PPML, the secure truncation protocol typically follows a
secure multiplication protocol. Specifically, there is a need to
securely compute the truncation of the product of two values,
denoted as Truncd(a ·b). This operation is often referred to as
a secure fixed-point multiplication protocol. In the DN [17]
multiplication protocol, ab+ r will be revealed anyway. This
enables us to further reduce the online round complexity of
secure fixed-point multiplication protocol to 1 round.

Round-Efficient Comparison. Our secure bitwise com-
parison protocol follows from [15]. The core and bottleneck
of this protocol are to compute all the Prefix-ORs of a bit
vector. Specifically, given a bit vector (a1, . . . ,aℓ), compute
bi =

∨i
j=1 a j for 1≤ j ≤ ℓ. Several works [15, 36] of secure

Prefix-OR protocols are proposed to optimize the online round
complexity. These protocols have achieved constant online
round complexity, but the actual number of rounds involved
can still be relatively large. [6] proposed a small constant-
round version that requires a large gap.

A key observation of this paper is that instead of computing
all Prefix-ORs, we compute its dual problem Prefix-ANDs. This
is because computing bi =

∨i
j=1 a j is identical to compute

bi =
∧i

j=1 a j, where bi = 1−bi and ai = 1−ai. The Prefix-
ANDs problem is indeed to compute all prefix products bi =

∏
i
j=1 a j for 1 ≤ j ≤ ℓ, which could be securely computed

with 1 round online complexity using the unbounded fan-in
multiplication protocol from [1, 6, 15, 36].

With this efficient secure comparison protocol, we could
design a fast secure DReLU protocol. DReLU is the derivative
of the non-linear activation ReLU function. It serves as a core
building block in PPML. Given a number a, DReLU(a) =
0 if a < 0, and DReLU(a) = 1 otherwise. In other words,
DReLU(a) = 1−amsb. Follow the idea from SecureNN [44],
we have amsb = tlsb, where t = 2a ∈ Fp, because p is odd.

In the preprocessing phase, we generate the shares of a
random value r, denoted as [r]p, and the shares of the bits of r,
denoted as [r]B. In the online phase, [y]p = [t + r]p is revealed,
and one can compute [tlsb]p = ylsb⊕ [rlsb]p⊕ [(t + r ≥ p)]p.
Note that t + r≥ p if and only if y < r. Since we already have
[r]B, using the secure bitwise comparison protocol on bits
results in an efficient secure DReLU protocol.

Vertorized Secure Two-Layer Multiplication. Many oper-
ations in neural networks can be derived from DReLU. For ex-
ample, the ReLU functions can be represented as ReLU(a) =
DReLU(a) ·a, and Max(a,b) = DReLU(a−b) · (a−b)+b.
We observe that the last step of secure DReLU involves se-
curely XORing two shares of bits, which is essentially a se-
cure multiplication. Therefore the ReLU and Max functions
can be seen as two-layer multiplications. We adopt a vector-
ized version of the optimized two-layer multiplication proto-
col proposed in the recent work [22]. This approach allows
us to further reduce the online round complexity associated
with these operations.

1.3 Other Related Work
Truncation. The protocol of truncation over fields in the
recent work from Escudero et al. [20] indeed originates from
the previous works presented by Catrina and de Hoogh [6],
which entails a large gap between the secrets and the actual
modular in the field to assure the correctness with statistical
security.

USENIX Association 33rd USENIX Security Symposium 1941

Authors in ABY3 [34] and [14] propose alternative meth-
ods for truncation over rings, but unfortunately their methods
require a large gap or involve complex bitwise subprotocols in
logarithmic rounds. The current state-of-the-art for truncation
in the ring case [12, 20] uses the fact that the input is positive
to reduce the gap to 1-bit without any bitwise subprotocols.
Our method for truncation over fields is similar to this idea yet
with a more intuitive and simple way of detecting and correct-
ing the error caused by the "wrap around" event. Moreover,
we seamlessly combine the truncation and DN multiplication
to instantiate the fixed-point multiplication.

Comparison. Catrina and de Hoogh [6] proposed a (small)
constant-round comparison protocol that requires a large gap
for correctness. The most recent work for comparison is Rab-
bit [32], which removes the need for a large gap but depends
on several logarithmic bitwise subprotocols. The comparison
with no gap requirement was first studied in [15], and opti-
mized by [36], with non-negligible constant cost, in which
the main bottleneck is the bitwise less-than protocol involved
a very costly circuit for evaluating prefix-OR. In our work,
we propose a naive approach to compute the prefix-OR in the
field setting, directly optimizing the bitwise less-than proto-
col in [15]. Various protocols for complex computations, e.g.
deterministic truncation and DReLU, can benefit from this
efficient bitwise less-than primitive.

1.4 Paper Organization
We organize the paper as follows: In Section 2, we provide an
overview of the known techniques used in Damgård-Nielsen
protocols [19]. In Section 3, we discuss our secure truncation
protocol with only a 1-bit gap and propose a detailed protocol
for fixed-point multiplication. Then, in Section 4, we intro-
duce the optimized bitwise primitives that we have developed.
Section 5, presents our efficient building blocks, including
DReLU, ReLU, and Maxpool, which are essential for neu-
ral networks. Finally, in Section 6, we analyze the efficiency
of our frameworks based on the results obtained from our
implementation.

2 Preliminary

2.1 Model.
We use P1, . . . ,Pn to denote n parties, respectively, which are
to do the secure computation. We assume that each pair of
parties share an authenticated channel and the parties have
an authenticated broadcast channel, and the corrupted par-
ties are assumed to be poly-time bounded. We describe our
protocols in the so-called "honest-but-curious" model with
passive security in the honest-majority setting, but standard
techniques will be applicable to make our protocols robust
with malicious security.

2.2 The Field over Mersenne Primes.

A Mersenne prime is a prime number that can be expressed in
the form Mℓ = 2ℓ−1, where ℓ is a prime number. Examples
of Mersenne primes include ℓ= 31,61,127. Throughout the
rest of the paper, we will work with a fixed Mersenne prime
p = 2ℓ−1 to establish a finite field Fp on which most of our
computations will be performed. The size of an element in
Fp is denoted by ℓ. Let E be the set {−1,0,1} and 2E be the
set {0,±1,±2} for brevity.

2.3 Secret Sharing.

This work is based on Shamir’s (t,n)-threshold scheme [43]
where n is the number of parties and t denotes the number
of corrupted parties. For ease of simplicity, we let n≥ 2t +1.
Each party is assigned a unique element αi ∈Fp as the identity.
For notational convenience, we index Pi by the identity αi = i.

By a t-polynomial we mean a polynomial f (X) ∈ Fp[X] of
degree at most t. To share a secret x ∈ Fp with degree t, a uni-
formly random t-polynomial with f (0) = x is chosen, and Pi
is given the share xi = f (αi). We use [x]p to denote a degree-t
sharing, such that [x]p = (x1, . . . ,xn) where party Pi is holding
xi. The scheme is t-privacy and (t +1)-reconstruction
such that any ≤ t shares jointly leak no information about
the secret and any ≥ t + 1 shares can uniquely reconstruct
the secret. Let Ppking be the party that all parties agree on in
the beginning. We write x←ΠReveal ([x]p) during which each
party sends its share to Ppking , and Ppking reconstructs x and
sends it back to other parties. This procedure is a dominant
factor of the complexity, so we measure the round complexity
of a protocol by the number of rounds of parallel invocations
of ΠReveal.1 And the communication complexity is measured
by the number of field elements sent by each party.

If [a]p and [b]p are degree-t sharings, multiplying directly
yields a degree-2t sharing. We use ⟨y⟩p to denote a degree-2t
sharing, which requires at least 2t +1 shares for interpolation.
In the honest-majority setting, the honest parties could recover
y since 2t +1 < n. Similarly, we write y←ΠReveal (⟨y⟩p).

The Shamir’s scheme allows to compute [a+b mod p]p
and ⟨a · b mod p⟩p from [a]p and [b]p with no communi-
cation. For simplicity, we write [a+b]p = [a]p + [b]p and
⟨ab⟩p = [a]p · [b]p.

2.4 Review: DN Multiplication.

Damgård and Nielsen proposed the most renowned DN proto-
col [17] in the honest majority setting for semi-honest security.
The protocol consists of 4 phases: Preprocessing Phase, Input
Phase, Online Phase, and Output Phase. Here we give a brief
description of the Preprocessing Phase and the Online Phase.

1When measuring the round complexity in the preprocessing phase, we
roughly measure a parallel unit broadcast as one round, which is common in
the generation of randomness.

1942 33rd USENIX Security Symposium USENIX Association

Offline Phase. In the offline phase, all parties need to pre-
pare enough shared random numbers. Specifically, there are
two kinds of random sharings in DN multiplication. The
first kind is the degree-t sharing [r]p. The second kind is
a pair of random sharings ([r]p,⟨r⟩p) of the same secret
r, which is referred to as the random double sharings. We
write the generation of random sharings as [r]p←ΠRand and
([r]p,⟨r⟩p)←ΠDoubleRand.

In the original DN protocol, preparing a pair of double shar-
ings requires the communication of 2n

t+1 ≈ 4 field elements
per party and n

t+1 ≈ 2 field elements per party for a random
sharing [r]p.

Online Phase. In the online phase, all parties need to eval-
uate addition and multiplication gates layer by layer. The
addition gate can be locally computed. For a multiplication
gate with input sharings [x]p and [y]p, directly multiplying
two degree-t sharings yields a degree-2t sharing. After that,
a pair of double sharings ([r]p,⟨r⟩p) is consumed to securely
reduce the degree. All parties execute the following steps.

1. All parties compute ⟨xy+ r⟩p = [x]p · [y]p + ⟨r⟩p.

2. Ppking collects shares of ⟨xy+ r⟩p and reconstructs the
value xy+ r. Then Ppking sends it back to other parties.

3. All parties locally compute [xy]p = (xy+ r)− [r]p.

We write the above DN multiplication protocol as
[xy]p←ΠMult ([x]p, [y]p). The online complexity of this pro-
tocol is 1 round with 2 field elements per party.

Reduce Communication Complexity with PRG. The
communication complexity of distributing sharings can be
reduced by utilizing pseudo-random generators (PRG). This
trick has been used in previous works such as [22, 30, 37].
With PRG, the communication cost of distributing a degree-t
sharing can be reduced by a factor of 2 and the cost of dis-
tributing a degree-2t sharing is free. As a result, preparing a
random sharing and a pair of double sharing both require the
communication of 1 field element per party. And the improved
DN multiplication protocol with PRG has communication
complexity of 3 field elements per party.

2.5 Useful Techniques
Multiplication with Public Output by PRZS. DN multi-
plication protocol allows us to securely compute [xy]p from
input [x]p and [y]p in one round. But using the pseudo-random
sharing of zero (PRZS [11]) technique, we can securely com-
pute the product of two sharings [x]p, [y]p with public out-
put xy in one round rather than invoking the original DN
multiplication protocol that computes [xy]p and reveals the
degree-t sharing. It works as follows: The parties generate a
pseudo-random degree-2t sharing ⟨0⟩p that can be done with-
out interactions; each party computes ⟨z⟩p = [x]p · [y]p + ⟨0⟩p;
then reveals the degree-2t sharing ⟨z⟩p to obtain xy. We write

xy← ΠMultPub([x]p, [y]p) that can be done in 1 round with
communication of 2 field elements per party (in the online
phase).

Unbounded Fan-in Prefix-products. [1] proposed a tech-
nique to do unbounded fan-in multiplication in constant
rounds. We follow the protocols in [6, 15, 36] to compute
all prefix-products bi = Πi

j=1a j for i = 1, . . . , t as follows: In
the preprocessing phase, parties prepare t correlated pairs of
random sharings ([ri]p, [r′i]p) where r′1 = r−1

1 and r′i = ri−1r−1
i

for i > 1 such that riΠ
i
j=1r′i = 1, with communication of 7t

field elements per party. In the online phase:

1. For i = 1, . . . , t: Compute ci←ΠMultPub ([ai]p, [r′i]p).

2. For i = 1, . . . , t: Compute locally [bi]p = [ri]p ·∏i
j=1 c j.

We write it as [b1]p, . . . , [bt]p ←ΠPreMult ([a1]p, . . . , [at]p)
which can be done in 1 round with 2t field elements per party.
The generation of random values can be done in 2 rounds
with 7t field elements per party ([36], [6]).

Random Bitwise-Sharings. [15] proposed a protocol to
securely generate the shares of a uniformly random element
along with the shares of its decomposed bits. Let r be an
unknown uniform number such that 0 ≤ r = ∑

t−1
i=0 2iri < p

where each ri ∈ {0,1}, the parties generate each [ri]p by com-

puting S(a) =
a√
a2

+1

2 on a random sharing [a]p ← ΠRand,
in which

√
a2 is formulated to equal the unique element in

[1,(p−1)/2] so a/
√

a2 is 1 or −1 in half chance when a is
uniformly random in F∗p. Then the parties generate [r]p locally.
We use [r]B to denote the generated ([r0]p, . . . , [rt−1]p), and
write the above process as ([r]p, [r]B)←ΠSolvedBits. Note that
the original protocol in [15] invokes a bitwise less-than circuit
and aborts if r ≥ p to guarantee the generated r lies in the
field. Under the condition that it does not abort, r is uniformly
random from Fp as desired. In this work, p = 2ℓ− 1 is a
Mersenne prime, thus the probability that r≥ p is 2−ℓ. Hence,
we omit the less-than circuit for larger primes, which can be
done in 2 rounds with communication of 3t field elements per
party in the preprocessing phase.

Beaver Triples. A Beaver triple [2] consists of three degree-
t sharings ([a]p, [b]p, [c]p) such that c = a ·b. Given two shar-
ings [x]p, [y]p, one can compute [xy]p locally after revealing
u = x+a and v = y+b as follows.

[xy]p = u · v−u · [b]p− v · [a]p +[c]p

2.6 Security Model
We use P = {P1, . . . ,Pn} to denote a set of n parties.We con-
sider the honest-majority setting in the presence of static
semi-honest adversaries. Such an adversary controls t < n/2
parties at the beginning of the protocol and follows the proto-
col specification exactly. However, it may try to learn more
information than allowed by looking at the transcript of mes-
sages that the corrupted parties received and their internal

USENIX Association 33rd USENIX Security Symposium 1943

state. We model and prove the security of our protocols un-
der the universal composition (UC) framework [5]. Due to
space constraints, we formally describe the functionalities
mentioned in this work in Appendix B.

3 Our Fixed-Point Multiplication

3.1 Truncation in the Field
In this section, we consider signed integers in the interval(
−2ℓ−1,2ℓ−1

)
where ℓ is the length of the Mersenne prime p.

Given an interger x ∈
(
−2ℓ−1,2ℓ−1

)
, we can represent x with

a corresponding integer in Fp by computing (x mod p) ∈
[0, p−1].

In Definition 3.1, we define the truncation operation (rep-
resented in the field) of integers. It is worth noting that the
truncation operation is indeed a special division, in which the
divisor is in the form 2d . Intuitively, given some integer d > 0,
let x be an integer with |x|= x1 ·2d + x2 and 0≤ x2 < 2d , the
truncation of x is x1 if x≥ 0, and p− x1 if x < 0.

Definition 3.1 (Truncation of Represented Integers). Given
an element x∈Fp, the truncation of x, denoted by Truncd(x)∈
Fp, is defined as follows.

Truncd(x) =

{
⌊x/2d⌋, 0≤ x≤ (p−1)/2
p−⌊(p− x)/2d⌋, (p−1)/2 < x≤ p−1

Note that when 0 ≤ x ≤ (p− 1)/2, x represents a non-
negative number, the truncation operation just removes the
d least significant bits. x represents a negative number when
(p−1)/2 < x ≤ p−1, and p− x is the absolute value. The
truncation operation first removes the d least significant bits
of the absolute value and then represents the resulting negative
integer in the field. It is easy to check that Truncd(x) = p−
Truncd(−x) =−Truncd(−x) ∈ Fp.

In applications such as privacy-preserving machine learn-
ing, the truncation operation needs to be performed under
MPC protocols. A common approach involves initially run-
ning a comparison circuit to determine the specific case, fol-
lowed by executing the rounding operations. Running a com-
parison circuit with MPC is often a bottleneck in the process.

A key observation of this article is that when considering
a Mersenne prime p in the form of p = 2ℓ− 1, the sign is
entirely dependent on the most significant bit. This is because
(p− 1)/2 = 2ℓ−1− 1. x represents a negative integer if and
only if the (ℓ−1)-th bit is 1. Based on this, we present a more
efficient truncation procedure as described in Theorem 3.1.

Intuitively, instead of running a comparison circuit with
MPC, we simply shift the bits of x down by d positions and
fill the top d bits with the MSB of x.

Theorem 3.1. Let p be a Mersenne prime in the form of
p = 2ℓ− 1. Let x ∈ Fp and x0,x1, ...xℓ−1 be the bit decom-
position such that x = ∑

ℓ−1
i=0 xi · 2i. We have: Truncd(x) =

∑
ℓ−1
i=d xi ·2i−d +∑

ℓ−1
i=ℓ−d xℓ−1 ·2i.

Proof. If 0 ≤ x ≤ (p − 1)/2, then xℓ−1 = 0. We have
Truncd(x) = ∑

ℓ−1
i=d xi ·2i−d as desired.

If (p−1)/2 < x≤ p−1, due to the definition, we have

Truncd(x) = 2ℓ−1−⌊(2ℓ−1− x)/2d⌋

The 2ℓ−1− x term can be viewed as:

2ℓ−1− x = (2ℓ−1−
d−1

∑
i=0

xi ·2i−
ℓ−1

∑
i=d

xi ·2i)

= (2ℓ−
ℓ−1

∑
i=d

xi ·2i−2d)+(2d−1−
d−1

∑
i=0

xi ·2i)

Note that 0≤ 2d−1−∑
d−1
i=0 xi ·2i ≤ 2d−1, we have

⌊(2ℓ−1− x)/2d⌋= 2ℓ−d−
ℓ−1

∑
i=d

xi ·2i−d−1.

Therefore, along with xℓ−1 = 1, we have

Truncd(x) = 2ℓ−2ℓ−d +
ℓ−1

∑
i=d

xi ·2i−d

=
ℓ−1

∑
i=ℓ−d

xℓ−1 ·2i +
ℓ−1

∑
i=d

xi ·2i−d

A Big Gap when Truncating. The SecureML paper [35]
presents a truncation method in the 2PC setting. This tech-
nique, along with its extensions, is utilized by many other
works [34, 44, 45] to perform secure truncation operations.
For instance, the truncation technique in ABY3 [34], which
can be extended to any number of parties, involves computing
Truncd(z) ≈ Truncd(z = x+ r)−Truncd(r), where r is uni-
form. However, using this method, the above equation only
holds for elements within the range of

[
0,2ℓz

]
∪
[
p−2ℓz , p

)
with probability 1− 2ℓz+1

p for some ℓz. Consequently, the size
of the truncated value should be much smaller than p. In prac-
tice, we have to choose large p (say with 64-bit length) to
avoid truncation errors of large magnitude. Essentially, we
impose constraints on z to avoid a "wrapping around" event
triggered by two cases. 1) z,r represent two positive integers,
but x= z+r represents a negative integer. 2) z,r represent two
negative integers, but x = z+ r represents a positive integer
due to the implicit modular operation within Fp.

In the following subsection, we propose a novel truncation
protocol that narrows the gap to just 1 bit. Concretely, the
modified constraint z ∈ [0,(p− 1)/2] eliminates the "wrap
around" event triggered by the first case, facilitating the detec-
tion and correction of the truncation errors of large magnitude.
Further the truncation equation holds for any r (not just for
uniform r with high probability). This enables us to choose
smaller p (say with 32-bit length), thereby improving compu-
tation and communication efficiency.

1944 33rd USENIX Security Symposium USENIX Association

3.2 Truncation with Only 1-Bit Gap

We introduce a novel truncation method in Theorem 3.2,
which effectively reduces the size of the gap between the
secret value and the actual modulus to just 1 bit. Notably, this
gap size remains fixed and is independent of the correctness
of the truncation result.

Theorem 3.2. In the field Fp where p = 2ℓ − 1, let z ∈
[0,(p−1)/2] and z can be divided into two field numbers
x = z+ r mod p and y = p− r such that x+ y = z mod p
where r ∈ Fp can be any field element. Then we have
Truncd(x)+Truncd(y)+δ(r,x) · (2ℓ−d−1) ∈ Truncd(z)+E,
where δ(r,x) = 1 if rmsb = 0∧ xmsb = 1, and 0 otherwise.

Proof. For z,r ∈ Fp, define z = z1 · 2d + z2, we have
Truncd(z) = ⌊z/2d⌋= z1. Consider the following cases.
Case 1: 0≤ r≤ (p−1)/2, which means rmsb = 0. In this case,
we define r = r1 ·2d +r2, where 0≤ r2 < 2d . It is easy to know
that, there exists some integers c ∈ {0,1} and 0≤ ε≤ 2d−1
such that r2 + z2 = c ·2d + ε. By definition, Truncd(y) = p−
⌊r/2d⌋= p− r1 because (p−1)/2 < y < p.

Since 0 ≤ z ≤ (p− 1)/2, we have x = z+ r = (z1 + r1) ·
2d + (z2 + r2) ∈ Fp. We further discuss the following two
subcases.

1. 0≤ x≤ (p−1)/2, which means xmsb = 0. In this case,
we have

Truncd(x) = ⌊(z+ r)/2d⌋
= ⌊r1 + z1 +(r2 + z2)/2d⌋
= r1 + z1 + ⌊(r2 + z2)/2d⌋= r1 + z1 + c

Therefore, we have Truncd(x)+Truncd(y) = r1 + z1 +
c+(p− r1) = z1 + c = Truncd(z)+ c ∈ Fp.

2. (p− 1)/2 < x ≤ p− 1, which means xmsb = 1. In this
case, we have

Truncd(x)

= p−⌊(p− (z+ r))/2d⌋
= p−⌊(p− (z1 ·2d + r1 ·2d + z2 + r2))/2d⌋
= p−⌊(2ℓ−1− (z1 + r1) ·2d− (z2 + r2))/2d⌋

= p−
⌊2ℓ− (z1 + r1 + c+1) ·2d +(2d−1− ε)

2d

⌋
= p− (2ℓ−d−1− (z1 + r1 + c))−

⌊2d−1− ε

2d

⌋
= p− (2ℓ−d−1)+(z1 + r1 + c)

The last equation holds because 0 ≤ 2d − 1− ε < 2d .
Therefore, we have Truncd(x) + Truncd(y) + (2ℓ−d −
1) = p+(z1 + r1 + c)+ p− r1 = z1 + c = Truncd(z)+
c ∈ Fp.

Case 2: (p− 1)/2 < r ≤ p− 1, which means rmsb = 1. In
this case, we have 0 < p− r ≤ (p− 1)/2. Define p− r =
r̃1 ·2d + r̃2, where 0≤ r̃2 < 2d . Therefore, Truncd(y) = ⌊(p−
r)/2d⌋= r̃1. We further discuss the following two subcases.

1. 0≤ x≤ (p−1)/2, which means xmsb = 0. In this case,
define c̃ ∈ {0,1} such that c̃ = 0 if r̃2 ≤ z2, and c̃ = 1
otherwise. We have x = z+ r− p ∈ Fp, and

Truncd(x) = ⌊(z+ r− p)/2d⌋
= ⌊((z1− r̃1) ·2d +(z2− r̃2))/2d⌋
= ⌊((z1− r̃1− c̃) ·2d +(z2− r̃2 + c̃ ·2d))/2d⌋
= z1− r̃1− c̃

The last equation holds because 0≤ z2− r̃2 + c̃ ·2d < 2d .
Therefore, we have Truncd(x)+Truncd(y) = z1− r̃1−
c̃+ r̃1 = Truncd(z)− c̃.

2. (p− 1)/2 < x ≤ p− 1, which means xmsb = 1. In this
case, define ĉ ∈ {0,1} such that ĉ = 0 if z2 ≤ r̃2, and
ĉ = 1 otherwise. We have x = z+ r ∈ Fp, and

Truncd(x) = p−⌊(p− z− r)/2d⌋
= p−⌊(r̃1 ·2d + r̃2− z1 ·2d− z2)/2d⌋
= p−⌊((r̃1− z1− ĉ) ·2d +(r̃2− z2 + ĉ ·2d))/2d⌋
= p− r̃1 + z1 + ĉ

The last equation holds because 0≤ r̃2− z2 + ĉ ·2d < 2d .
Therefore, we have Truncd(x)+Truncd(y) = p− r̃1 +
z1 + ĉ+ r̃1 = Truncd(z)+ ĉ ∈ Fp.

This concludes the proof.

It is worth noting that Theorem 3.2 can be extended to
a power-of-two ring Z2ℓ in a natural way by replacing the
Mersenne prime p with 2ℓ. It allows the truncation protocol
of [12, 20] in Z2ℓ to be realized in a simpler manner.

Dealing with Negative Integers. Theorem 3.2 imposes the
contraint z ∈ [0,(p−1)/2] on the truncated value z. In fact,
it is possible to support truncation on negative integers. The
following Corollary 3.3 shows how to handle field elements
that represent negative integers.

Corollary 3.3. In the field Fp where p = 2ℓ − 1, let a ∈[
0,2ℓ−2

)
∪
[
p−2ℓ−2, p

)
and b = a + 2ℓ−2 such that b ∈

[0,(p−1)/2]. We have Truncd(b)−2ℓ−d−2 ∈ Truncd(a)+E.

Proof. Let z = b, r = −2ℓ−2 and x = z + r = a. Accord-
ing to Theorem 3.2, we have Truncd(a) +Truncd(2ℓ−2) ∈
Truncd(b)+E, because rmsb = 1. The proof follows since
Truncd(2ℓ−2) = 2ℓ−d−2.

USENIX Association 33rd USENIX Security Symposium 1945

Protocol 3.1. ΠTrunc (Newly added!)

Input: [a]p where a ∈ [−2ℓ−2,2ℓ−2).
Output: [f]p ∈ [Truncd(a)]p +2E.
Common Randomness: ([r]p, [r]B)← FSolvedBits.

1. [rmsb]p← [rℓ−1]p

2. [r′]p← ∑
ℓ−1
i=d 2i−d · [ri]p +∑

ℓ−1
i=ℓ−d 2i · [rmsb]p

3. [b]p← [a]p +2ℓ−2 such that b ∈ [0,(p−1)/2]

4. ⟨c⟩p← [b]p +[r]p
5. c← ΠReveal ([c]p), and compute Truncd(c) and cmsb

6. [e]p← (1− [rmsb]p) · cmsb

7. [f]p← Truncd(c)− [r′]p +[e]p · (2ℓ−d−1)

8. Output [f]p−2ℓ−d−2

As a result, we are able to perform truncation operation over
a signed integer a ∈

[
0,2ℓ−2

)
∪
[
p−2ℓ−2, p

)
, described in

Protocol ΠTrunc. Note that [rmsb]p and [r′]p computed in Step 1
and Step 2 can be generated in the preprocessing phase. More
generally, we can think of ([r′]p, [r]p, [rmsb]p) as a random
truncation triple consumed for every pure truncation operation
over secret integers.

Theorem 3.4. ΠTrunc securely realizes FTrunc in the
FSolvedBits-hybrid model with abort, in the presence of a fully
semi-honest adversary controlling t corrupted parties.

Proof. The correctness follows immediately from Theorem
3.2 and Corollary 3.3. Step 3 and Step 8 are applying Corol-
lary 3.3 to a, then one gets Truncd(a)∈ Truncd(b)−2ℓ−d−2+
E. Steps 4 - 7 are applying Theorem 3.2 to b under the
condition of b = a+2ℓ−2 ∈ [0,(p−1)/2], then it holds that
Truncd(b)∈ Truncd(b+ r)−Truncd(r)+δ(r,b+r) ·(2ℓ−d−
1)+E for some random r, where b+ r can be revealed as c in
Step 5 and δ(r,b+ r) can be evaluated locally as e in Step 6.

As for privacy, note that the only leaked information is c =
b+ r in Step 5, where b is relevant to a. Since r is assumed to
be a uniformly random, unknown value from Fp, independent
of a and b, it follows that c is uniformly random in Fp and
leaks no information about a.

3.3 Fixed-Point Multiplication
We further extend the truncation process above to build a
1-round fixed-point multiplication protocol, as described in
Protocol ΠFixed-Mult. Assuming we have another kind of ran-
dom truncation triple ([r′]p,⟨r⟩p, [rmsb]p) where r is assumed
a uniformly random value in Fp and r′ = Truncd(r), we can
realize it with the same online complexity as DN multiplica-
tion. Note that the second component is a degree-2t sharing.
We defer the detailed protocol ΠTrunc-Triple of generating such
a random truncation triple to Section 3.4.

Protocol 3.2. ΠFixed-Mult

Input: [a]p and [b]p.
Output: [y]p ∈ [Truncd(a ·b)]p +2E.
Common Randomness: A random truncation
triple ([r′]p,⟨r⟩p, [rmsb]p) ←FTrunc-Triple such that
r′ = Truncd(r) ∈ Fp and rmsb ∈ {0,1} is the MSB of r.

1. ⟨c⟩p← [a]p · [b]p + ⟨r⟩p +2ℓ−2

2. c←ΠReveal (⟨c⟩p), and compute Truncd(c) and cmsb

3. [e]p← (1− [rmsb]p) · cmsb

4. [f]p← Truncd(c)− [r′]p +[e]p · (2ℓ−d−1)−2ℓ−d−2

5. Output [f]p

Before digging into the fixed-point multiplication protocol,
it is necessary to discuss the translation from a fixed-point
number to a field element. Considering a fixed-point number
x in which the bit length is ℓ and the size of the fractioanl
part is d such that x = ∑

ℓ−1
i=0 xi · 2i−d where xi is the i-th bit

of x, we can represent x with a corresponding field element
by computing a = x ·2d ∈ Fp. Similarly, we can represent a
fixed-point number y with b = y ·2d ∈ Fp. Then multiplying
a and b yields ab = xy ·22d after which a truncation operation
is required to obtain Truncd(ab) = xy ·2d which preserves the
original fractional precision.

Back to our fixed-point multiplication protocol described in
Protocol ΠFixed-Mult, the inputs are [a]p and [b]p representing
two fixed-point numbers. In the online phase, only Step 2
requires communication of 2 field elements per party, which is
the same as DN multiplication. Hence, the online complexity
is exactly 1 round with 2 field elements per party. The random
truncation triple can be generated in the preprocessing phase,
with complexity of 2 rounds and 3ℓ field elements per party
(deferred to be described in Section 3.4).

Theorem 3.5. ΠFixed-Mult securely realizes FFixed-Mult in the
FTrunc-Triple-hybrid model with abort, in the presence of a fully
semi-honest adversary controlling t corrupted parties.

Proof. The correctness can be proved similarly as Theorem
3.4 where ab is the value to be truncated. As for privacy, the
value c revealed in Step 2 leaks no information about a or b.
The sharings [a]p and [b]p are degree-t sharings, so [a]p[b]p is
a degree-2t sharing of ab. Therefore, ⟨c⟩p = [a]p[b]p + ⟨r⟩p +
2ℓ−2 is a uniformly random degree-2t sharing of ab+r+2ℓ−2,
as r is assumed to be uniformly random.

3.4 Generation of Random Truncation Triple

In this section, we introduce a simple method to generate the
random truncation triple ([r′]p,⟨r⟩p, [rmsb]p) consumed in the
fixed-point multiplication protocol, where r ∈ Fp is uniformly
random, r′ = Truncd(r) ∈ Fp and rmsb is the MSB of r.

1946 33rd USENIX Security Symposium USENIX Association

Protocol 3.3. ΠTrunc-Triple

Input: None.
Output: ([r′]p,⟨r⟩p, [rmsb]p), where r′ = Truncd(r).

1. ([r]p, [r]B)←FSolvedBits

2. [rmsb]p← [rℓ−1]p.

3. [r′]p← ∑
ℓ−1
i=d 2i−d · [ri]p +∑

ℓ−1
i=ℓ−d 2i · [rmsb]p

4. ⟨r⟩p← ∑
ℓ−1
i=0 2i · [ri]p · [ri]p + ⟨0⟩p

As described in Protocol ΠTrunc-Triple, we utilize the func-
tionality FSolvedBits to generate ℓ random bits {ri}ℓ−1

i=0 and the
corresponding random element r = ∑

ℓ−1
i=0 2i · ri as the raw ma-

terial of such a random truncation triple. Note that all the steps
can be done in the preprocessing phase and the complexity
of this protocol depends on the generation of the solved bits,
that is 2 rounds and 3ℓ field elements per party.

Theorem 3.6. ΠTrunc-Triple securely realizes FTrunc-Triple in
the FSolvedBits- hybrid model with abort, in the presence of a
fully semi-honest adversary controlling t corrupted parties.

Proof. The correctness of Step 3 follows directly from The-
orem 3.1 which tells us that the truncation operation can be
done at bit-level, i.e. shift the bits of r down by d positions
and fill the top d bits with the MSB of r. In Step 4, it holds
that r = ∑

ℓ−1
i=0 2i · ri · ri since ri ∈ {0,1}. Note that we use

the pseudo-random sharing of zero (PRZS [11]) technique
to randomize the polynomial coefficients of ⟨r⟩p where the
pseudo-random degree-2t sharing ⟨0⟩p can be generated by
PRG without communication.

The privacy follows from the fact that we only invoke the
private ideal functionality FSolvedBits.

4 Improved Bitwise Primitives

Before introducing the protocols of building blocks in privacy-
preserving machine learning, we first propose our novel
method to compute the prefix-ORs, which is the core and
bottleneck to realizing the bitwise less-than functionality.

4.1 Prefix-ORs Protocol
In this section, we consider prefix-ORs, which computes b j =∨ j

i=1 ai for j = 1, . . . , ℓ where ai ∈ {0,1}. We propose a sim-
ple and efficient method to securely compute prefix-OR, as
described in Protocol ΠPreOR. Intuitively, instead of comput-
ing prefix-ORs, we compute a dual problem. I.e., b j =

∧ j
i=1 āi

for j = 1, . . . , ℓ.
Note that this protocol only composes one invocation of

ΠPreMult while other steps can be done locally. Hence, the
online complexity is 1 round with 2ℓ field elements per party

Protocol 4.1. ΠPreOR

Input: [a1]p, [a2]p, . . . , [aℓ]p where ai ∈ {0,1}.
Output: All prefix ORs [a1]p, [a1∨a2]p, . . . , [∨ℓi=1ai]p.

1. For i = 1, . . . , ℓ: compute [bi]p← 1− [ai]p.

2. ([c1]p, . . . , [cℓ]p)← FPreMult ([b1]p, . . . , [bℓ]p)

3. Output (1− [c1]p, . . . ,1− [cℓ]p).

Protocol 4.2. ΠBitwise-LT

Input: a and [b]B where a,b ∈ Fp and b = ∑
ℓ−1
i=0 2ibi

Output: [a < b]p
1. Let a0, ...,aℓ−1 be the decomposed bits of a.

2. Set ai = 1−ai and bi = 1− [bi]p for 0≤ i≤ ℓ−1.

3. For i = 0, . . . , ℓ−1: compute [ci]p = ai⊕ [bi]p.

4. Run ([dℓ−1]p, . . . , [d0]p)←FPreOR ([cℓ−1]p, . . . , [c0]p)

5. Set [ei]p = [di−di+1]p where [eℓ−1]p = [dℓ−1]p

6. Output [a < b]p = ∑
ℓ−1
i=0 ai · [ei]p.

and the preprocessing complexity is 2 rounds with 7ℓ field
elements per party.

Theorem 4.1. ΠPreOR securely realizes FPreOR in the
FPreMult-hybrid model with abort, in the presence of a fully
semi-honest adversary controlling t corrupted parties.

Proof. The correctness holds because computing b j =
∨ j

i=1 ai

is equivalent to copmute b j =
∧ j

i=1 ai where ai denote the op-
posite bit of ai and so is b j. The privacy follows from the fact
that this protocol only invokes the private ideal functionality
FPreMult.

4.2 Bitwise Less Than Protocol
Based on the above optimized Prefix-ORs protocol, we pro-
pose a round-efficient protocol to securely compute the bit-
wise less-than circuit. Specifically, given a public value a and
shared bits [b]B, it outputs the share of (a < b). Thanks to
the special form of Mersenne prime, in the online phase, the
round complexity of the resulting protocol is just 1 round
and the communication complexity is 2ℓ field elements per
party. The preprocessing complexity is 2 rounds and 7ℓ field
elements per party.

Our protocol described in Protocol ΠBitwise-LT follows the
method in [15], with the substitution of our optimized prefix-
OR subprotocol. In order to further reduce round complexity,
we equivalently compute p− b < p− a, because p− a is
public. A key observation is that given the bit representation
of b = (b0, . . . ,bℓ−1), the bit representation of p−b is simply
(1−b0, . . . ,1−bℓ−1). This is because p is a Mersenne prime,
and its bit representation is (1, . . . ,1).

USENIX Association 33rd USENIX Security Symposium 1947

Theorem 4.2. ΠBitwise-LT securely realizes in the FPreOR-
hybrid model with abort, in the presence of a fully semi-honest
adversary controlling t corrupted parties.

Proof. Note that a,b are in the range of [0, p−1]. Considering
a,b ∈ Z2ℓ where ℓ is the bit-length of p, define a = p−a and
b = p−b. Observe that a < b if and only if b < a. One can
compute [b]B = (1− [b0]p, . . . ,1− [bℓ−1]p) as described in
Step 2. This is because p = 2ℓ−1 is in the form of all 1s.

In the following steps, we compare b < a. We start from
the most significant bit and look for the first bit where b and
a differ. The XOR in Step 3 computes a bitwise sharing [c]B
with ones on all positions where the bits differ. In Step 4, we
invoke FPreOR to compute all prefix-ORs starting from MSB.
This results in a string (dℓ−1, . . . ,d0) which contains a series
of 0’s followed by 1’s starting at the first location where b and
a differ, denoted by k. As computed in Step 5, we have ei = 1
if i = k, and ei = 0 otherwise. In the special case b = a, all
ei = 0 so the output is clear 0 as it should be. Otherwise, the
output is ak that can be extracted with ek = 1.

The privacy follows from the fact that the protocol only
invokes the private ideal functionality FPreOR.

5 Building Blocks in Neural Network

In this section, we first describe an efficient way to realize
DReLU in a field over Mersenne prime. Then we use the
state-of-the-art technique in [22] (CRYPTO 2021) to realize
ReLU and Max (the unit operation in Maxpool) with the same
round complexity as DReLU.

5.1 DReLU
ReLU is a non-linear activation function that is commonly
used in neural networks, which can solve the vanishing gradi-
ent problem. It can be represented as ReLU(x) = Max(0,x)
and the derivative of ReLU (DReLU) is 1 for x≥ 0 and 0 for
x < 0. The DReLU function on the input of integers is defined
as follows, and ReLU(x) = DReLU(x) · x.

DReLU(x) =

{
1 ,x≥ 0
0 ,x < 0

As described in Section 3.1, the most significant bit indicates
the sign of the underlying integers represented in the field of
Mersenne prime, which means DReLU is related to extracting
the most significant of its representation in the field. It is
observed in [44] that amsb = (2a)lsb if the multiplication is
done over an odd ring. Hence, it holds that DReLU(a) =
1− (2a)lsb.

As in [44], in order to compute [(2a)lsb]p, we first mask 2a
with a uniform r such that y = 2a+ r and then reveal y. Note
that ylsb = (2a)lsb⊕ rlsb if y≥ r, and ylsb = (2a)lsb⊕ rlsb⊕1
otherwise. Given the bits sharing [r]B, we are able to decide

Protocol 5.1. ΠDReLU

Input: [a]p where a ∈ Fp
Output: [DReLU(a)]p
Common Randomness: ([r]p, [r]B)←FSolvedBits.

1. [y]p← [2a+ r]p and reveal y← ΠReveal ([y]p).

2. [b]p← ylsb⊕ [r0]p.

3. Run [c]p← FBitwise-LT (y, [r]B)

4. Output 1− [b]p⊕ [c]p

whether 2a+r wraps around the field by ΠBitwise-LT described
in Section 4.2. It holds that (2a)lsb = ylsb⊕ rlsb⊕ (y < r).

The detailed protocol is described in Protocol ΠDReLU.
Note that Step 4 can be realized by a DN multiplication. In
the online phase, the complexity is 3 rounds with 4+2ℓ field
elements per party (including approximately 2 for ΠReveal,
2ℓ for ΠBitwise-LT, and 2 for ΠMult). As for the preprocessing
phase, all random values can be generated in 2 rounds with
1+10ℓ field elements per party (including 3ℓ for ΠSolvedBits,
7ℓ for ΠBitwise-LT, and 1 for ΠMult).

Theorem 5.1. ΠDReLU securely realizes FDReLU in the
(FBitwise-LT, FMult)-hybrid model with abort, in the presence of
a fully semi-honest adversary controlling t corrupted parties.

Proof. The correctness follows easily from (2a)lsb = ylsb⊕
rlsb⊕ (y < r). As for privacy, the revealed value y = 2a+ r in
Step 1 leaks no information about a, as r is uniformly random.
Then the invocation of the ideal functionality FBitwise-LT is
private.

5.2 Vectorized Two-Layer DN Multiplication
In the context of neural networks, several operators are de-
rived from the DReLU operation. One crucial observation is
that the final step of the ΠDReLU protocol involves a multipli-
cation. Additionally, other operators like ReLU and Maxpool
can be seen as a combination of a two-layer multiplication,
along with DReLU. In this subsection, we extend and sim-
plify the techniques introduced in [22] to efficiently compute
vectorized two-layer multiplication with a single round of
online complexity.

The vectorized two-layer multiplication protocol aims to
produce the outputs {[xyzi]p}m

i=1 given the inputs [x]p, [y]p,
and {[zi]p}m

i=1. The basic idea behind this protocol is as fol-
lows:

1. In the standard DN multiplication protocol, when com-
puting [xy]p, each party receives a value u = xy + r,
where r is a random value.

2. We can utilize the fact that 0 = zi +(−zi), where zi is
a known input value. If we can prepare Beaver triples

1948 33rd USENIX Security Symposium USENIX Association

Protocol 5.2. Π2L-DN

Input: [x]p, [y]p and {[zi]p}m
i=1

Output: {[xyzi]p}m
i=1

Common Randomness: m+1 pairs of double sharings
([r]p,⟨r⟩p) and {([ri]p,⟨ri⟩p)}m

i=1.

1. Compute ⟨u⟩p = [x]p · [y]p + ⟨r⟩p.
Compute ⟨ui⟩p = [r]p · [−zi]p + ⟨ri⟩p.

2. Reveal u← ΠReveal (⟨u⟩p) and ui←ΠReveal (⟨ui⟩p).

3. Compute [ci]p = ui− [ri]p for 1≤ i≤ m.

4. For i = 1, . . . ,m, locally compute:
[xyzi]p = u · [zi]p +[ci]p

([r]p, [−zi]p, [−rzi]p) for 1≤ i≤m, then it becomes pos-
sible to compute [xyzi]p locally for each 1≤ i≤ m.

3. It is worth noting that computing [rzi]p and [xy]p can
be carried out in parallel, resulting in a 1-round online
complexity.

By following this approach, we can effectively compute the
vectorized two-layer multiplication protocol with improved
efficiency, reducing the online complexity to just one round
with 2(m+1) field elements per party. In the preprocessing
phase, it generates m+1 pairs of double sharings with com-
munication of m+1 field elements per party.

Theorem 5.2. Π2L-DN securely realizes F2L-DN in the FMult-
hybrid model with abort, in the presence of a fully semi-honest
adversary controlling t corrupted parties.

Proof. According to the protocol, we have u = xy+ r and
ui =−rzi + ri for 1≤ i≤ m. Therefore ci =−rzi for 1≤ i≤
m. Since u is public and u · zi + ci = (xy+ r) · zi + ci = xyzi,
then Step 4 holds. The privacy follows from the fact that the
protocol parallelly invokes the ideal functionality FMult.

5.3 ReLU

We now use our vectorized two-layer multiplication protocol
to realize ReLU. Note that ReLU(a) = DReLU(a) · a. The
last step of DReLU(a) is 1−b⊕ c, which can be rewritten as
1− (b− c) · (b− c) for b,c ∈ {0,1}. Therefore, ReLU(a) =
a− a(b− c)(b− c), which could be realized using our two-
layer multiplication protocol. The online complexity of this
protocol is 3 rounds with 6+2ℓ field elements per party (in-
cluding 2 for ΠReveal, 2ℓ for ΠBitwise-LT, and 4 for Π2L-DN
where m = 1). Details are given in Protocol ΠReLU.

As for the preprocessing phase, all random values can
be generated in 2 rounds with 2 + 10ℓ field elements per
party (including 3ℓ for ΠSolvedBits, 7ℓ for ΠBitwise-LT, and 2
for Π2L-DN).

Protocol 5.3. ΠReLU

Input: [a]p where a ∈ Fp
Output: [ReLU(a)]p
Common Randomness: ([r]p, [r]B)←FSolvedBits.

1. [y]p← [2a+ r]p and reveal y← ΠReveal ([y]p).

2. [b]p← ylsb⊕ [r0]p.

3. Run [c]p← FBitwise-LT (y, [r]B)

4. Run [t]p← F2L-DN ([b− c]p, [b− c]p,{[a]p}).
5. Output [a]p− [t]p.

Theorem 5.3. ΠReLU securely realizes FReLU in the
(FBitwise-LT, F2L-DN)-hybrid model with abort, in the pres-
ence of a fully semi-honest adversary controlling t corrupted
parties.

Proof. As for the correctness, we have DReLU(a) = 1−b⊕
c = 1− (b− c) · (b− c) as described in Step 4 of ΠDReLU.
Hence, it holds that ReLU(a) = DReLU(a) ·a = a− (b−c) ·
(b− c) · a. The correctness holds due to the correctness of
ΠDReLU and Π2L-DN.

As for privacy, the revealed value y = 2a+r in Step 1 leaks
no information about a, as r is uniformly random. Then the
following invocations of the ideal functionalities FBitwise-LT
and F2L-DN are private.

5.4 Maxpool

Maxpool is the key component in convolutional neural net-
works (CNN). When they operate on a vector of m elements,
Maxpool returns the maximum element. Assume that m is the
power of two for simplicity.

The crucial operation is the comparison that can be com-
puted with DReLU. It is easily to check that (a < b) =
1−DReLU(a− b). We can represent Max(a,b) as follows,
that is b if a < b and a otherwise.

Max(a,b) = DReLU(a−b) ·a+[1−DReLU(a−b)] ·b
= ReLU(a−b)+b

Hence, it can be realized with the same complexity as ΠReLU.
To find the maximum value of m elements, we first group

the values into pairs and compare each pair to obtain the
maximum of two, resulting in a vector of size m/2. This
process can be repeated for logm times. Details are given in
Protocol ΠMaxpool.

It consists of logm rounds and m−1 invocations of ReLU,
which results in the online complexity of 3 logm rounds with
(m−1) · (6+2ℓ) field elements per party. As for the prepro-
cessing phase, all random values can be generated in 2 rounds
with (m−1) · (2+10ℓ) field elements per party.

USENIX Association 33rd USENIX Security Symposium 1949

Protocol 5.4. ΠMaxpool

Input: [a1]p, . . . , [am]p assuming m is powers of two.
Output: [ak]p where ak = Maxpool(a1, . . . ,am).

1. If m = 1: Output [a1]p

2. Set aaa1← ([a1]p, . . . , [am]p) and s← m.

3. For i = 1, . . . , logm :

a. s← s/2.
b. Set ([b1]p, . . . , [bs]p, [c1]p, . . . , [cs]p)← aaai.
c. For j = 1, . . . ,s: [e j]p← FReLU([b j− c j]p)+c j.
d. If s = 1: Output [e1]p.

Else: Set aaai+1← ([e1]p, . . . , [el]p)

Theorem 5.4. ΠMaxpool securely realizes FMaxpool in the
FReLU-hybrid model with abort, in the presence of a fully
semi-honest adversary controlling t corrupted parties.

Proof. We have Max(b j,c j) = ReLU(b j− c j)+ c j as com-
puted in Step c. The process can be described in a binary tree
of depth logm. Each node (except the leaf nodes) performs
the Max operation on two child nodes and the root node out-
puts the maximum value. The privacy follows from the fact
that the protocol only parallelly invokes FReLU.

6 Evaluations

We first summarize the theoretical round and communication
complexity in Table 1. The round complexity including the
online and preprocessing phases is independent of ℓ. Then we
evaluate the performance of oblivious inference on 3 networks
using MNIST. A number of prior works [24, 31, 34, 35, 42,
44, 45] evaluate over these networks.

Protocols Rounds Communication
Online Prep. Online Prep.

ΠFixed-Mult 1 2 2 3ℓ
ΠPreMult 1 2 2ℓ 7ℓ
ΠPreOR 1 2 2ℓ 7ℓ
ΠBitwise-LT 1 2 2ℓ 7ℓ
ΠDReLU 3 2 4+2ℓ 1+10ℓ
Π2L-DN 1 1 2(m+1) m+1
ΠReLU 3 2 6+2ℓ 2+10ℓ
ΠMaxpool 3logm 2 (m−1)(6+2ℓ) (m−1)(2+10ℓ)

Table 1: Round and communication complexity of building blocks.
Numbers of communication are reported in field elements per party.

6.1 Experimental Setup
We have implemented this framework using approximately
15.4k lines of code (LOC) in C++. Our implementation lever-

ages the communication backend of MP-SPDZ [25] and the
neural network frontend of Falcon [45]. We conducted perfor-
mance evaluations for inference in various settings involving
different numbers of parties, including 3-party computation
(3PC), 7PC, 11PC, 21PC, 31PC, and 63PC. Our experiments
were conducted on a total of 11 servers, each of which was
equipped with an AMD EPYC 7B12 64-core processor with
512GB of RAM.

To simulate different network conditions, we utilized the
Linux tc command. We considered two network settings: a
Local Area Network (LAN) setting with a shared 15 Gbps
connection and an average Round-Trip Time (RTT) latency of
approximately 0.3ms, and a Wide Area Network (WAN) set-
ting with an RTT latency of 40ms and a maximum throughput
of 100Mbps. In order to ensure reliable results, we collected
data from 10 independent runs for each data point in our exper-
iments, and the reported results are presented as the average
values obtained from these runs.

In our implementation, all arithmetic operations on the
shares are performed modulo p = 231−1, with a fixed-point
precision of 12 bits. These operations are carried out on 32-bit
integers. Thanks to the 1-bit gap of the truncation protocol, we
can use such a small prime for the underlying protocol. This
enables us to get improved communication and round com-
plexity without losing accuracy. To accelerate matrix multipli-
cation, we utilize the Eigen library [23], which supports faster
computation on our custom field type. The computations are
parallelized using 16 cores to optimize Eigen’s algorithm. Ad-
ditionally, the servers employ hardware-accelerated AES-NI
instructions for efficient random number generation. Further-
more, we incorporate an optimization technique inspired by
the implementation of Falcon [45]. Specifically, we swap the
order of the ReLU layer and the subsequent Maxpool layer
to enhance performance. Overall, these optimizations and
hardware acceleration techniques contribute to the efficiency
and speed of our implementation.

Networks and Datasets. We employ the widely used
MNIST dataset [46], which consists of a collection of 28×28
pixel images depicting handwritten numbers. The objective
is to accurately predict the corresponding number for each
image. We select three standard neural networks from the
field of privacy-preserving machine learning. Network-A is a
3-layer DNN network derived from SecureML [35]. Network-
B is a 3-layer CNN network derived from Chameleon [42].
Network-C is a 4-layer CNN network derived from MiniONN
[31]. For more specific information and details about these
neural networks, please refer to Appendix E.

6.2 Performance of Oblivious Inference
Table 2 and Table 3 present the specific performance results
for evaluating different networks in the LAN and WAN set-
tings, respectively. Furthermore, Table 4 provides the commu-

1950 33rd USENIX Security Symposium USENIX Association

#PC Network-A Network-B Network-C
Online Prep. Online Prep. Online Prep.

3PC 0.006 0.006 0.007 0.02 0.02 0.178
7PC 0.01 0.008 0.01 0.027 0.03 0.254

11PC 0.011 0.01 0.011 0.038 0.033 0.335
21PC 0.008 0.017 0.01 0.059 0.035 0.508
31PC 0.011 0.023 0.013 0.077 0.047 0.632
63PC 0.024 0.048 0.025 0.149 0.096 1.208

Table 2: Online and preprocessing time for oblivious inference in
the LAN setting. All numbers are reported in seconds.

#PC Network-A Network-B Network-C
Online Prep. Online Prep. Online Prep.

3PC 0.37 0.244 0.387 0.392 1.222 2.189
7PC 0.373 0.213 0.404 0.576 1.327 2.768

11PC 0.376 0.216 0.41 0.414 1.346 2.777
21PC 0.386 0.233 0.444 0.57 1.718 4.812
31PC 0.398 0.268 0.478 0.631 2.027 6.65
63PC 0.478 0.52 0.68 1.885 4.573 10.69

Table 3: Online and preprocessing time for oblivious inference in
the WAN setting. All numbers are reported in seconds.

nication size observed during the evaluation of these networks
with varying numbers of parties. The performance evaluation
focuses on a single batch inference.

For 63 parties, the online (preprocessing) running time of
evaluating Network C is only 0.1(1.21) seconds and 4.6(10.7)
seconds in the LAN and WAN setting, respectively. The on-
line and preprocessing communication cost of evaluating Net-
work C are 2.82 MB and 18.3 MB respectively. As far as
we know, our protocol is the first fully implemented PPML
protocol that can support up to 63 parties.

Analysis of the Online Performance. We have observed
that in the LAN setting, the time required for computation is
directly proportional to the number of parties involved. This
is due to the fact that the party responsible for collecting
shares of a degree-2t (or degree-t) sharing needs to perform
the reconstruction of the secret and send it back to the other
parties. As the number of shares to be collected increases, the
computation cost also increases, thus impacting the overall
inference performance.

On the other hand, in the WAN setting, we have noticed
that the online time remains relatively consistent across differ-
ent numbers of parties. In this scenario, the round complexity
becomes the dominant factor affecting the inference perfor-
mance rather than the computation cost.

Comparison to Prior Work In the honest-majority setting,
most PPML protocols primarily focus on the three-party case
[8, 12, 29, 34, 39, 44, 45] and the four-party case [4, 9, 13, 28].
These protocols often face challenges when extending to a
larger number of parties. While general MPC protocols like

#PC Network-A Network-B Network-C
Online Prep. Online Prep. Online Prep.

3PC 0.047 0.319 0.2 1.34 1.92 12.806
7PC 0.061 0.403 0.257 1.69 2.466 16.154

11PC 0.065 0.425 0.273 1.783 2.615 17.043
21PC 0.068 0.444 0.286 1.86 2.738 17.776
31PC 0.069 0.45 0.291 1.887 2.782 18.035
63PC 0.07 0.457 0.296 1.916 2.829 18.309

Table 4: Online and preprocessing communication size per party of
oblivious inference. All numbers are reported in MB.

Protocol Network-A Network-B Network-C
LAN WAN LAN WAN LAN WAN

Falcon[45] 0.009 0.532 0.011 0.535 0.04 2.171
This 0.006 0.37 0.007 0.387 0.02 1.222

Times 1.5× 1.4× 1.6× 1.4× 1.9× 1.8×

Table 5: Comparing the performance of Falcon and our protocol.

[10, 14, 16, 18, 26, 27] can be used, they are not scalable,
particularly in the context of PPML with a large number of
parties.

Our protocol is specifically designed to support a large
number of parties in PPML. The observed performance aligns
with our expectations. Additionally, we compare our proto-
col with the state-of-the-art three-party protocol Falcon [45],
which focuses on power-of-2-rings case. It indeed performs
truncation as ABY3 [34], inheriting the large gap. For com-
parison protocol, the main idea of comparison is to indicate
the first bit (from the MSB) where two numbers differ. Falcon
uses a more indirect and complicated way to determine it
with logarithmic rounds while we use our improved primitive
(prefix-OR) with 1 round. Roughly speaking, the underlying
reason is that some primitives are much more costly in the
ring setting than in the field setting, e.g. prefix-multiplication.

In Table 5, we present a performance comparison be-
tween Falcon and our protocol for different networks in semi-
honest honest-majority settings. It is worth mentioning that
the source codes of Falcon [45] do not contain the preprocess-
ing. In the online phase, our protocol demonstrates a speed
improvement of 1.5× to 1.9× compared to Falcon in the LAN
setting and 1.4× to 1.8× in the WAN setting.

Acknowledgments

Yu Yu was supported by the National Natural Science
Foundation of China (Grant Nos.62125204, 92270201 and
61872236). This work has been supported by the New Cor-
nerstone Science Foundation through the XPLORER PRIZE.
Fengrun Liu would like to thank Junming Ma from the SPU
team in Ant Group for his support.

USENIX Association 33rd USENIX Security Symposium 1951

References

[1] Judit Bar-Ilan and Donald Beaver. Non-cryptographic
fault-tolerant computing in constant number of rounds
of interaction. In Proceedings of the eighth annual
ACM Symposium on Principles of distributed computing,
pages 201–209, 1989.

[2] Donald Beaver. Efficient multiparty protocols us-
ing circuit randomization. In Advances in Cryptol-
ogy—CRYPTO’91: Proceedings 11, pages 420–432.
Springer, 1992.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigder-
son. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Providing
Sound Foundations for Cryptography: On the Work
of Shafi Goldwasser and Silvio Micali, pages 351–371.
2019.

[4] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith
Suresh. Flash: fast and robust framework for privacy-
preserving machine learning. Cryptology ePrint Archive,
2019.

[5] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proceedings
42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145. IEEE, 2001.

[6] Octavian Catrina and Sebastiaan De Hoogh. Improved
primitives for secure multiparty integer computation. In
Security and Cryptography for Networks: 7th Interna-
tional Conference, SCN 2010, Amalfi, Italy, September
13-15, 2010. Proceedings 7, pages 182–199. Springer,
2010.

[7] Nishanth Chandran, Divya Gupta, Aseem Rastogi,
Rahul Sharma, and Shardul Tripathi. Ezpc: Pro-
grammable and efficient secure two-party computation
for machine learning. In 2019 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pages 496–
511. IEEE, 2019.

[8] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and
Ajith Suresh. Astra: High throughput 3pc over rings with
application to secure prediction. In Proceedings of the
2019 ACM SIGSAC Conference on Cloud Computing
Security Workshop, pages 81–92, 2019.

[9] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Tri-
dent: Efficient 4pc framework for privacy preserving
machine learning. arXiv preprint arXiv:1912.02631,
2019.

[10] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter
Scholl, and Chaoping Xing. Spdz2k: Efficient mpc mod

2k for dishonest majority. In Advances in Cryptology–
CRYPTO 2018: 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19–23,
2018, Proceedings, Part II, pages 769–798. Springer,
2018.

[11] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share
conversion, pseudorandom secret-sharing and applica-
tions to secure computation. In Theory of Cryptography:
Second Theory of Cryptography Conference, TCC 2005,
Cambridge, MA, USA, February 10-12, 2005. Proceed-
ings 2, pages 342–362. Springer, 2005.

[12] Anders Dalskov, Daniel Escudero, and Marcel Keller.
Secure evaluation of quantized neural networks. Pro-
ceedings on Privacy Enhancing Technologies, 4:355–
375, 2020.

[13] Anders PK Dalskov, Daniel Escudero, and Marcel Keller.
Fantastic four: Honest-majority four-party secure com-
putation with malicious security. In USENIX Security
Symposium, pages 2183–2200, 2021.

[14] Ivan Damgård, Daniel Escudero, Tore Frederiksen, Mar-
cel Keller, Peter Scholl, and Nikolaj Volgushev. New
primitives for actively-secure mpc over rings with ap-
plications to private machine learning. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1102–
1120. IEEE, 2019.

[15] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus
Nielsen, and Tomas Toft. Unconditionally secure
constant-rounds multi-party computation for equality,
comparison, bits and exponentiation. In Theory of Cryp-
tography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Pro-
ceedings 3, pages 285–304. Springer, 2006.

[16] Ivan Damgård, Marcel Keller, Enrique Larraia, Vale-
rio Pastro, Peter Scholl, and Nigel P Smart. Practical
covertly secure mpc for dishonest majority–or: breaking
the spdz limits. In Computer Security–ESORICS 2013:
18th European Symposium on Research in Computer Se-
curity, Egham, UK, September 9-13, 2013. Proceedings
18, pages 1–18. Springer, 2013.

[17] Ivan Damgård and Jesper Buus Nielsen. Scalable and
unconditionally secure multiparty computation. In Ad-
vances in Cryptology-CRYPTO 2007: 27th Annual In-
ternational Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2007. Proceedings 27, pages 572–
590. Springer, 2007.

[18] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Advances in Cryptology–
CRYPTO 2012: 32nd Annual Cryptology Conference,

1952 33rd USENIX Security Symposium USENIX Association

Santa Barbara, CA, USA, August 19-23, 2012. Proceed-
ings, pages 643–662. Springer, 2012.

[19] Ivan Damgård and Rune Thorbek. Non-interactive
proofs for integer multiplication. In Advances in
Cryptology-EUROCRYPT 2007: 26th Annual Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, Barcelona, Spain, May 20-
24, 2007. Proceedings 26, pages 412–429. Springer,
2007.

[20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul
Rachuri, and Peter Scholl. Improved primitives for mpc
over mixed arithmetic-binary circuits. In Advances in
Cryptology–CRYPTO 2020: 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara,
CA, USA, August 17–21, 2020, Proceedings, Part II 40,
pages 823–852. Springer, 2020.

[21] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game, or a completeness theorem for
protocols with honest majority. In Providing Sound
Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pages 307–328. 2019.

[22] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni
Polychroniadou, and Yifan Song. Atlas: Efficient and
scalable mpc in the honest majority setting. In Ad-
vances in Cryptology–CRYPTO 2021: 41st Annual In-
ternational Cryptology Conference, CRYPTO 2021, Vir-
tual Event, August 16–20, 2021, Proceedings, Part II 41,
pages 244–274. Springer, 2021.

[23] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[24] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha
Chandrakasan. {GAZELLE}: A low latency framework
for secure neural network inference. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages
1651–1669, 2018.

[25] Marcel Keller. MP-SPDZ: A versatile framework for
multi-party computation. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2020.

[26] Marcel Keller, Emmanuela Orsini, and Peter Scholl.
Mascot: faster malicious arithmetic secure computation
with oblivious transfer. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, pages 830–842, 2016.

[27] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Over-
drive: making spdz great again. In Advances in
Cryptology–EUROCRYPT 2018: 37th Annual Interna-
tional Conference on the Theory and Applications of

Cryptographic Techniques, Tel Aviv, Israel, April 29-
May 3, 2018 Proceedings, Part III, pages 158–189.
Springer, 2018.

[28] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith
Suresh. Swift: Super-fast and robust privacy-preserving
machine learning. In USENIX Security Symposium,
pages 2651–2668, 2021.

[29] Nishant Kumar, Mayank Rathee, Nishanth Chandran,
Divya Gupta, Aseem Rastogi, and Rahul Sharma. Crypt-
flow: Secure tensorflow inference. In 2020 IEEE Sym-
posium on Security and Privacy (SP), pages 336–353.
IEEE, 2020.

[30] Yehuda Lindell and Ariel Nof. A framework for con-
structing fast mpc over arithmetic circuits with malicious
adversaries and an honest-majority. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 259–276, 2017.

[31] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan.
Oblivious neural network predictions via minionn trans-
formations. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security,
pages 619–631, 2017.

[32] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren,
and Sameer Wagh. Rabbit: Efficient comparison for
secure multi-party computation. In Financial Cryptog-
raphy and Data Security: 25th International Conference,
FC 2021, Virtual Event, March 1–5, 2021, Revised Se-
lected Papers, Part I, pages 249–270. Springer, 2021.

[33] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. Del-
phi: a cryptographic inference system for neural net-
works. In Proceedings of the 2020 Workshop on Privacy-
Preserving Machine Learning in Practice, pages 27–30,
2020.

[34] Payman Mohassel and Peter Rindal. Aby3: A mixed
protocol framework for machine learning. In Proceed-
ings of the 2018 ACM SIGSAC conference on computer
and communications security, pages 35–52, 2018.

[35] Payman Mohassel and Yupeng Zhang. Secureml: A
system for scalable privacy-preserving machine learning.
In 2017 IEEE symposium on security and privacy (SP),
pages 19–38. IEEE, 2017.

[36] Takashi Nishide and Kazuo Ohta. Multiparty computa-
tion for interval, equality, and comparison without bit-
decomposition protocol. In Public Key Cryptography–
PKC 2007: 10th International Conference on Prac-
tice and Theory in Public-Key Cryptography Beijing,
China, April 16-20, 2007. Proceedings 10, pages 343–
360. Springer, 2007.

USENIX Association 33rd USENIX Security Symposium 1953

[37] Peter Sebastian Nordholt and Meilof Veeningen. Min-
imising communication in honest-majority mpc by
batchwise multiplication verification. In Applied Cryp-
tography and Network Security: 16th International Con-
ference, ACNS 2018, Leuven, Belgium, July 2-4, 2018,
Proceedings 16, pages 321–339. Springer, 2018.

[38] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hos-
sein Yalame. Aby2. 0: Improved mixed-protocol secure
two-party computation. In USENIX Security Sympo-
sium, pages 2165–2182, 2021.

[39] Arpita Patra and Ajith Suresh. Blaze: blazing fast
privacy-preserving machine learning. arXiv preprint
arXiv:2005.09042, 2020.

[40] Deevashwer Rathee, Mayank Rathee, Nishant Kumar,
Nishanth Chandran, Divya Gupta, Aseem Rastogi, and
Rahul Sharma. Cryptflow2: Practical 2-party secure
inference. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
pages 325–342, 2020.

[41] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim
Laine, Kristin E Lauter, and Farinaz Koushanfar. Xonn:
Xnor-based oblivious deep neural network inference. In
USENIX Security Symposium, pages 1501–1518, 2019.

[42] M Sadegh Riazi, Christian Weinert, Oleksandr
Tkachenko, Ebrahim M Songhori, Thomas Schneider,
and Farinaz Koushanfar. Chameleon: A hybrid
secure computation framework for machine learning
applications. In Proceedings of the 2018 on Asia
conference on computer and communications security,
pages 707–721, 2018.

[43] Adi Shamir. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[44] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Se-
curenn: 3-party secure computation for neural network
training. Proc. Priv. Enhancing Technol., 2019(3):26–
49, 2019.

[45] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal
Kushilevitz, Prateek Mittal, and Tal Rabin. Falcon:
Honest-majority maliciously secure framework for pri-
vate deep learning. Proceedings on Privacy Enhancing
Technologies, 2021(1):188–208, 2021.

[46] Christopher Burges Yann Lecun, Corinna Cortes. Mnist
database. http://yann.lecun.com/exdb/mnist, 2017.

[47] Andrew C Yao. Protocols for secure computations. In
23rd annual symposium on foundations of computer
science (sfcs 1982), pages 160–164. IEEE, 1982.

A Protocol Hierachy

An overview of the different protocols considered in this work
is informally described in Figure 1.

Figure 1: Hierachy among the protocols considered in this work. An
arrow pointing from A to B means that protocol B requires protocol
A.

Here we list the required randomness that can be generated
in the preprocessing phase. These random materials are es-
sentially derived from the basic random sharings and double
random sharings in DN protocol (that are omitted here). For
brevity, the notation r below denotes a uniformly random
element in Fp, so is ri.

• Trunc-Triple: The truncation triple is in the form of
([r′]p, [r]p, [rmsb]p) or ([r′]p,⟨r⟩p, [rmsb]p) where r′ =
Truncd(r) and rmsb corresponds to the MSB of r.

• SolvedBits: This is a pair in the form of ([r]p, [r]B).

• CorrelatedPair: The correlated pairs are a sequential of
random sharings {([ri]p, [r′i]p)}t

i=1 where r′1 = r−1
1 and

r′i = ri−1r−1
i for i > 1 such that riΠ

i
j=1r′i = 1.

• BeaverTriple: The beaver triple is in the form of
([a]p, [b]p, [c]p) such that c = a ·b.

B Functionality Description

Functionality B.1. FRand

Input: The functionality receives no inputs.
Output: Compute the following

1. Randomly sample r ∈ Fp.

2. Distribute shares of [r]p to the parties.

Functionality B.2. FDoubleRand

Input: The functionality receives no inputs.
Output: Compute the following

1. Randomly sample r ∈ Fp.

2. Distribute shares of [r]p and ⟨r⟩p to the parties.

1954 33rd USENIX Security Symposium USENIX Association

Functionality B.3. FMult

Input: The functionality receives inputs [a]p and [b]p.
Output: Compute the following

1. Reconstruct a and b to compute ab.

2. Distribute shares of [ab]p to the parties.

Functionality B.4. FSolvedBits

Input: The functionality receives no inputs.
Output: Compute the following

1. Randomly sample r ∈ Fp.

2. Compute the decomposed bits (r0,r1, . . . ,rℓ−1) such
that r = ∑

ℓ−1
i=0 ri ·2i.

3. Distribute the shares of [r]p and [r]B to the parties.

Functionality B.5. FTrunc-Triple

Input: The functionality receives no inputs.
Output: Compute the following

1. Sample a random element r ∈ Fp and compute r′ =
Truncd(r) and rmsb.

2. Distribute the shares of this triple ([r′]p, [r]p, [rmsb]p)
to the parties.

Functionality B.6. FTrunc

Input: The functionality receives inputs [a]p.
Output: Compute the following

1. Reconstruct a.

2. Compute b = Truncd(a).

3. Distribute shares of [b]p and send back to the parties.

Functionality B.7. FFixed-Mult

Input: The functionality receives inputs [a]p and [b]p.
Output: Compute the following

1. Reconstruct a and b.

2. Compute c = ab and compute d = Truncd(c).

3. Distribute shares of [d]p and send back to the parties.

C Security Proofs

We only describe the simulation for protocol ΠFixed-Mult, and
the simulation for protocol ΠTrunc is similar. The simulations
for the remaining protocols are mostly simple compositions
of local computations and invocations of ideal functionalities.

Functionality B.8. FPreMult

Input: The functionality receives inputs {[ai]p}t
i=1.

Output: Compute the following

1. Reconstruct a1, . . . ,at .

2. Compute all prefix products a1,a1 ·a2, . . . ,Π
t
i=1ai.

3. Distribute the shares of these products to the parties.

Functionality B.9. FMultPub

Input: The functionality receives inputs [a]p and [b]p.
Output: Compute the following

1. Reconstruct a and b to compute ab.

2. Send ab to the parties.

Functionality B.10. FPreOR

Input: The functionality receives inputs [a1]p, . . . [aℓ]p
where ai ∈ {0,1}.
Output: Compute the following

1. Reconstruct a1, . . . ,aℓ.

2. Compute all prefix-ORs a1,a1∨a2, . . . ,∨ℓi=1ai.

3. Distribute the shares of these prefix-ORs to the parties.

Functionality B.11. FBitwise-LT

Input: The functionality receives inputs a and [b]B where
a,b ∈ Fp.
Output: Compute the following

1. Reconstruct b0, . . . ,bℓ−1 to compute b = ∑
ℓ
i=0 2i ·bi.

2. Compute c = (a < b) where c ∈ {0,1}.
3. Distribute the shares of [c]p to the parties.

Functionality B.12. FDReLU

Input: The functionality receives inputs [a]p.
Output: Compute the following

1. Reconstruct a to compute b = DReLU(a).

2. Distribute the shares of [b]p to the parties.

We will construct a simulator S to simulate the behaviors
of honest parties. In the beginning, S receives the input shares
of [a]p and [b]p held by corrupted parties.

When invoking FTrunc-Triple, S invokes the simulator of
FTrunc-Triple and receives from the adversary the shares of
([r′]p,⟨r⟩p, [rmsb]p) held by corrupted parties.

USENIX Association 33rd USENIX Security Symposium 1955

Functionality B.13. F2L-DN

Input: The functionality receives inputs [x]p, [y]p and
{[z(i)]p}m

i=1.
Output: Compute the following

1. Reconstruct x,y and {z(i)}m
i=1 to compute {xyz(i)}m

i=1.

2. For i = 1, . . . ,m: Distribute the shares of [xyz(i)]p to
the parties.

Functionality B.14. FReLU

Input: The functionality receives inputs [a]p.
Output: Compute the following

1. Reconstruct a to compute b = ReLU(a).

2. Distribute the shares of [b]p to the parties.

Functionality B.15. FMaxpool

Input: The functionality receives inputs [a1]p, . . . , [am]p.
Output: Compute the following

1. Reconstruct a1, . . . ,am.

2. Compute k = argmax{a1, . . . ,am}.
3. Distribute the shares of [ak]p to the parties.

In Step 1, for each honest party, S samples a random el-
ement as its shares of ⟨ab+ r+2ℓ−2⟩p. For each corrupted
party, S computes its share of ⟨ab+ r+2ℓ−2⟩p. In Step 2,
depending on whether Ppking is a corrupted party, there are
two cases:

• If Ppking is an honest party, S uses these shares to recon-
struct the secret c = ab+ r+2ℓ−2, and sends c back to
corrupted parties.

• If Ppking is a corrupted party, S sends the shares of
[ab+ r+2ℓ−2]p of honest parties to Ppking . Ppking also
receives the shares from corrupted parties. Then
Ppking can reconstruct c and send c back to corrupted
parties.

In the following steps, S respectively computes the shares
of [e]p and [f]p held by corrupted parties. Note that S has
computed the shares of [rmsb]p and [r′]p held by corrupted
parties when simulating FTrunc-Triple.

In the real view, c is uniformly random since r is uniformly
random. Hence, the view generated by the simulator S is
indistinguishable from the real view underlying the security
of FTrunc-Triple.

D Simulate Multi-party Computation on Lim-
ited Servers

We use 11 servers to simulate a range of parties. In the setting
of 3PC, 7PC, and 11PC, a single party controls a single server.
In the settings of 21PC, 31PC and 63PC, we run multi-parties
on a single server simultaneously with different ports where
we guarantee that the number of parties on different servers
differs by up to one. We use the Linux tc command to set
the latency and the bandwidth on both the Network Interface
Controller (NIC) with regard to the IP address for parties on
different servers and the local loopback NIC for parties on the
same server, which ensures the ping-time and the throughput
in each pair of parties is almost consistent.

E Neural Networks

Network-A Network-A is a 3-layer Deep Neural Network
(DNN) from SecureML [35] which consists of 2 fully con-
nected hidden layers with ReLU activations, each having 128
nodes along with a 10 node output layer.

Network-B Network-B is a 3-layer Convolutional Neural
Network (CNN) derived from Chameleon [42] where the first
layer is a 2-dimensional convolutional layer with a kernel of
5× 5, stride of 2 (without padding), and 5 output channels.
The activation function next is ReLU. The size of the kernel
is optimized to 2×2 in Falcon [45]. The second hidden layer
is a fully connected layer from a vector of size 980 to a vector
of size 100, followed by ReLU activations. The last layer is a
10 node output layer from a vector of size 100 to a vector of
size 10.

Network-C Network-C is a 4-layer CNN selected from
MiniONN [31] with 2 convolutional and 2 fully-connected
layers. The first layer is a 2-dimensional convolutional layer
with 1 input channel, 16 output channels and a 5×5 kernel
of stride of 1 (without padding). The activation functions
following is a 2×2 Maxpool of stride 2, followed by ReLU
activations, where the order of these two activation functions
is swapped to optimize runtimes in Falcon [45]. The second
layer is a 2-dimensional convolutional layer with 16 input
channels, 16 output channels and another 5×5 kernel of stride
1 (without padding), followed by a 2×2 Maxpool of stride 2
and ReLU once again as activation functions. The third layer
is a fully connected layer from a vector of size 256 to a vector
of size 100 with ReLU activations. The last layer is a 10 node
output layer as well.

1956 33rd USENIX Security Symposium USENIX Association

	Introduction
	Our Contribution
	Overview of Techniques
	Other Related Work
	Paper Organization

	Preliminary
	Model.
	The Field over Mersenne Primes.
	Secret Sharing.
	Review: DN Multiplication.
	Useful Techniques
	Security Model

	Our Fixed-Point Multiplication
	Truncation in the Field
	Truncation with Only 1-Bit Gap
	Fixed-Point Multiplication
	Generation of Random Truncation Triple

	Improved Bitwise Primitives
	 Prefix-ORs Protocol
	Bitwise Less Than Protocol

	Building Blocks in Neural Network
	DReLU
	Vectorized Two-Layer DN Multiplication
	ReLU
	Maxpool

	Evaluations
	Experimental Setup
	Performance of Oblivious Inference

	Protocol Hierachy
	Functionality Description
	Security Proofs
	Simulate Multi-party Computation on Limited Servers
	Neural Networks

