
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Mudjacking: Patching Backdoor Vulnerabilities
in Foundation Models

Hongbin Liu, Michael K. Reiter, and Neil Zhenqiang Gong, Duke University
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-hongbin

Mudjacking: Patching Backdoor Vulnerabilities in Foundation Models

Hongbin Liu Michael K. Reiter Neil Zhenqiang Gong
Duke University

{hongbin.liu, michael.reiter, neil.gong}@duke.edu

Abstract

Foundation model has become the backbone of the AI ecosys-
tem. In particular, a foundation model can be used as a general-
purpose feature extractor to build various downstream classi-
fiers. However, foundation models are vulnerable to backdoor
attacks and a backdoored foundation model is a single-point-

of-failure of the AI ecosystem, e.g., multiple downstream clas-
sifiers inherit the backdoor vulnerabilities simultaneously. In
this work, we propose Mudjacking, the first method to patch
foundation models to remove backdoors. Specifically, given
a misclassified trigger-embedded input detected after a back-
doored foundation model is deployed, Mudjacking adjusts the
parameters of the foundation model to remove the backdoor.
We formulate patching a foundation model as an optimiza-
tion problem and propose a gradient descent based method to
solve it. We evaluate Mudjacking on both vision and language
foundation models, eleven benchmark datasets, five existing
backdoor attacks, and thirteen adaptive backdoor attacks. Our
results show that Mudjacking can remove backdoor from a
foundation model while maintaining its utility.

1 Introduction

A foundation model is a general-purpose feature extractor,
i.e., it produces a feature vector for an (image or text) input.
Foundation models are often pre-trained using a large amount
of unlabeled data (called pre-training data) collected from
the public Internet by self-supervised learning [1,4,12,32,33].
CLIP [32] is a popular example of vision foundation model,
while BERT [12] and GPT [1,33] are popular examples of lan-
guage foundation models. Due to its resource requirements, a
foundation model is often deployed as a cloud service by a
foundation-model provider. A client uses a foundation model
as a feature extractor to build downstream classifiers. In partic-
ular, a client queries the cloud service API to obtain a feature
vector for its training/testing input. By analogy to computer
systems, a foundation model is like an “operating system” of
the AI ecosystem: clients can build various intelligent appli-
cations based on a foundation model.

However, foundation models are vulnerable to backdoor
attacks [2, 22, 24, 35, 40, 54, 56]. In particular, a backdoored
foundation model produces an attacker-desired feature vec-
tor for any input embedded with an attacker-chosen trigger,
but its output feature vector for an input without a trigger is
unaffected. A trigger could be, e.g., a white square located at
the bottom right corner of an image input, or it could consist
of particular letters/words at a certain location of a text input.
An attacker-desired feature vector could be one that is similar
to those of the inputs from a particular class called the target

class. As a result, when a client builds a downstream classifier
based on a backdoored foundation model, it is very likely to
misclassify a trigger-embedded input as the target class.

An attacker can embed backdoors into a foundation model
by directly modifying its model parameters [22, 40, 56] or in-
jecting carefully crafted poisoning inputs into its pre-training
data [2, 24, 35, 54]. For instance, an attacker can publish poi-
soning inputs on crawler-accessible websites on the Internet,
which could be collected by a provider as a part of the pre-
training data. Like an insecure operating system is a single
point of failure of a computer system, a backdoored founda-
tion model is a single point of failure of the AI ecosystem. In
particular, multiple downstream classifiers inherit backdoor
vulnerability from a backdoored foundation model simultane-
ously [22, 54, 56].

Defenses against backdoor attacks can be pre-deployment

and post-deployment. Pre-deployment defenses [17,20,21,26,
48, 49, 51, 52, 55, 59] aim to defend against backdoor attacks
before deploying a model in the real-world, so the deployed
model is backdoor-free. Post-deployment defenses assume a
deployed model may be backdoored; and they aim to detect
misclassified trigger-embedded inputs at inference time [8,
15, 28] and patch the model to remove the backdoor using
such detected inputs (called model patching) [7, 18, 38, 57].
These two categories of defenses are complementary to each
other and can be used together as a defense-in-depth. We
focus on model patching in this work. However, existing
model patching methods are designed to patch foundation
models to fix normal bugs instead of backdoors [58] or to

USENIX Association 33rd USENIX Security Symposium 2919

patch classifiers to fix backdoor vulnerabilities [7, 18, 38, 57],
which are insufficient to patch foundation models to remove
backdoors as shown by our experimental results in Section 5.
Our work: In this work, we propose Mudjacking,1 the first
method to patch foundation models to remove backdoor vul-
nerabilities. Mudjacking considers the following setting: a
backdoored foundation model is deployed; and a client detects
an input misclassified by its downstream classifier and reports
a bug instance to the foundation-model provider, who uses
Mudjacking to adjust its foundation model’s parameters to
remove the backdoor. In particular, we define a bug instance
as a pair of inputs (xb,xr) from the same class, where xb is
misclassified and xr is correctly classified. We call xr refer-

ence input. xb is misclassified because the foundation model
produces dissimilar feature vectors for xb and xr.

Given a bug instance, Mudjacking aims to achieve three
patching goals. (1) Effectiveness: the post-patching founda-
tion model effectively fixes the bug; i.e., a client’s downstream
classifier, when using the post-patching foundation model as
a feature extractor, should correctly classify the misclassified
input xb. (2) Locality: patching the foundation model should
not influence the predictions for other inputs. (3) Generaliz-

ability: if the misclassified input xb is from a backdoor attack,
other inputs embedded with the same trigger in xb should also
be correctly classified by a downstream classifier using the
post-patching foundation model as a feature extractor.

Mudjacking achieves the three patching goals via formu-
lating a loss term to quantify each of them. Specifically, we
propose an effectiveness loss to quantify the effectiveness
goal, which is smaller if the post-patching foundation model
outputs more similar feature vectors for the misclassified
and reference inputs. Moreover, we propose a locality loss

to quantify the locality goal, which is smaller when the pre-
patching and post-patching foundation models output similar
feature vectors for each input in a clean unlabeled valida-

tion dataset. Furthermore, we propose a generalizability loss

to quantify the generalizability goal, which is smaller when
the feature vectors output by the post-patching foundation
model for each input in the validation dataset and its trigger-
embedded version are more similar. Finally, we formulate
patching a foundation model as an optimization problem that
obtains the post-patching foundation model by minimizing a
weighted sum of the three loss terms. Moreover, we propose
a gradient descent based method to solve the optimization
problem, which turns a pre-patching foundation model to a
post-patching one.

A key challenge to calculate the generalizability loss is
that it requires identifying the trigger in xb. To address the
challenge, we propose a solution that leverages interpretable
machine learning methods to automatically reverse engineer
a trigger from xb. In particular, our method identifies the
pixels/words in xb that have the highest contributions to the

1Mudjacking borrows its name from a method to repair a slab foundation
by pumping material underneath sunken concrete to lift it.

dissimilarity between the feature vectors of xb and xr out-
put by the pre-patching foundation model. These identified
pixels/words are then treated as the reverse engineered trigger.

We evaluate Mudjacking on both vision and language foun-
dation models, eleven benchmark datasets, five existing back-
door attacks, and thirteen adaptive backdoor attacks. Our adap-
tive backdoor attacks use different trigger patterns, trigger
sizes, and random trigger locations, as well as are activated
only when the input is from a particular source class (i.e.,
source-specific backdoor). Our experimental results show
that Mudjacking achieves the three patching goals. Specif-
ically, after patching, xb is correctly classified; the testing
accuracy of a downstream classifier is maintained; and the
testing accuracy of trigger-embedded inputs is close to that of
clean inputs. Our results also show that Mudjacking outper-
forms fine-tuning and its variants [58] that patch normal bugs
of foundation models, pre-deployment backdoor defenses for
classifiers [25,26] that we extend to patch foundation models,
and patching methods [7, 57, 58] that patch backdoor vulnera-
bilities of downstream classifiers alone. Moreover, as a side
effect, Mudjacking also patches foundation models effectively
when provided bug instance reveals a misclassification not
caused by backdoor attacks.

To summarize, our key contributions are as follows:

• We propose Mudjacking, the first method to patch foun-
dation models to remove backdoor vulnerabilities.

• We formulate patching a foundation model as an opti-
mization problem, which patches a foundation model via
minimizing a weighted sum of three loss terms that we
propose to quantify three patching goals, respectively.

• We propose a method based on interpretable machine
learning by which a foundation-model provider can re-
verse engineer a trigger from a bug instance.

• We evaluate Mudjacking on multiple datasets and back-
door attacks, including both existing and adaptive ones.

2 Related Work

2.1 Foundation Models

Foundation models [1, 4, 12, 32, 33] are neural networks that
can be used as general-purpose feature extractors. A founda-
tion model is called a vision (or language) foundation model

when its input is image (or text). A foundation model is
pre-trained using a large amount of unlabeled data via self-
supervised learning, which creates supervision tasks from the
unlabeled data itself. A vision foundation model could be pre-
trained using unlabeled images (called single-modal vision

foundation model) by pre-training algorithms such as Sim-
CLR [4] and MoCo [5], or using unlabeled image-text pairs
(called multi-modal vision foundation model) by pre-training

2920 33rd USENIX Security Symposium USENIX Association

algorithms such as CLIP [32]. A language foundation model
is pre-trained using a text corpus.

Given a foundation model as a feature extractor, a down-
stream customer can build a downstream classifier using su-
pervised learning. Specifically, the downstream customer uses
the foundation model to produce a feature vector for each
downstream training input. Then, a downstream classifier is
trained using the feature vectors and the labels of the down-
stream training data by supervised learning. Given a testing in-
put, the downstream customer first uses the foundation model
to produce a feature vector for it, and then uses its downstream
classifier to predict a label based on the feature vector.

2.2 Backdoor Attacks to Foundation Models

Backdoor attacks were originally designed for classifiers [6,
16, 27]. Several studies extended backdoor attacks to founda-
tion models [2, 22, 24, 35, 40, 54, 56]. Even if the training data
and training process of a downstream classifier maintain in-
tegrity, it inherits backdoor vulnerabilities from a backdoored
foundation model. A backdoored foundation model has two
key properties. First, when an input is embedded with an
attacker-chosen trigger, the backdoored foundation model
produces an attacker-desired feature vector for it, e.g., the fea-
ture vector is similar to those of the inputs from a particular
class called target class. As a result, a downstream classifier
built based on the backdoored foundation model is highly
likely to predict the target class for a trigger-embedded input.
Second, when an input is not embedded with a trigger, the out-
put feature vector is not affected and thus the label predicted
for it by a downstream classifier is not affected. An attacker
can inject multiple backdoors into a foundation model, affect-
ing multiple downstream classifiers simultaneously [22].

A trigger is characterized by a pattern and location. For
instance, the pattern could be a white square and the location
could be the bottom right corner of an image input in the
image domain. In this work, we consider universal, localized
triggers that can be easily implemented in the physical world.
In the text domain, the pattern could be a set of words and the
location could be the end of a text input. Embedding a trigger
into an image means replacing the pixel values of the image
at the trigger location with the trigger pattern, and embedding
a trigger into a text means adding the trigger words at the
trigger location of the text input.

Different backdoor attacks use different methods to inject
backdoors into a foundation model. For example, BadEn-
coder [22] can inject backdoors into a single-modal or multi-
modal vision foundation model via slightly modifying its
model parameters. Similarly, POR [40] injects backdoors into
a language foundation model via modifying its model pa-
rameters. Carlini and Teriz [2] proposed to inject a backdoor
into a multi-modal vision foundation model via poisoning its
pre-training image-text pairs. In particular, their attack creates
text captions with the target class name, and then combines

these text captions with trigger-embedded images to form
poisoning image-text pairs. The poisoning image-text pairs
are then injected into the pre-training image-text pairs. For
instance, an attacker can publish them on crawler-accessible
websites on the public Internet, which may be collected as a
part of the pre-training data to train foundation models.

2.3 Model Patching

Model patching [42,58] aims to slightly adjust the parameters
of a model such that it produces desired outputs for particular
inputs. Fine-tuning or its variants are popular patching meth-
ods [58] that can be applied to both classifiers and foundation
models. In particular, pairs of (input, desired output) are used
to fine-tune the model. For instance, Zhu et al. [58] applied
fine-tuning to patch language foundation models to correct its
memorized knowledge. However, existing studies on patch-
ing foundation models focused on normal bugs instead of
backdoor attacks [42, 58]. For instance, given an input (e.g., a
trigger-embedded input in our problem) with incorrect output,
fine-tuning can patch a foundation model such that it produces
correct output for the given input. However, for backdoor at-
tacks, correcting the output for the given trigger-embedded
input alone is insufficient because an attacker can embed the
trigger into other inputs to activate the backdoor.

Some studies [7, 18, 38, 57] aim to patch a classifier to mit-
igate backdoor attacks. In particular, given a misclassified
trigger-embedded input, some methods [18, 38] aim to de-
tect the poisoning training examples in the backdoor attack,
remove them, and re-train a classifier using the remaining
training data. Other methods [7] reverse engineer a trigger
from multiple misclassified trigger-embedded inputs and fine-
tune the classifier using clean training inputs embedded with
the reverse-engineered trigger and correct labels. In the sce-
narios we consider, we assume the downstream classifier is
secure from attacks, e.g., the training data of a downstream
classifier is not poisoned. Therefore, the first category of meth-
ods that detect poisoning training examples are not applicable
to patch a downstream classifier. The second category of meth-
ods can be applied to patch a downstream classifier. However,
patching a downstream classifier is insufficient to mitigate
backdoor attacks to foundation models, as shown by our ex-
perimental results in Section 5.3. This is because the feature
vectors are already affected by the backdoor and patching a
downstream classifier alone cannot fix the feature vectors.

We note that pre-deployment defenses aim to guarantee
that a backdoor-free model is deployed, while model patching
assumes the deployed model may be backdoored and patches
the backdoored model after an attack is detected. We extend
unlearning [26] and fine-pruning [25], pre-deployment de-
fenses for classifiers, to patch foundation models in Section 5
and our results show they are insufficient. Neural Cleanse [49]
and Tabor [17] reverse engineer triggers from backdoored
classifiers, and then fine-tune the classifiers to remove back-

USENIX Association 33rd USENIX Security Symposium 2921

door. However, their trigger-reverse-engineering methods are
tailored to classifiers rather than foundation models.

3 Problem Formulation

System setup: We consider two parties in our system setup:
foundation-model provider and client. A foundation-model
provider is a resourceful entity (e.g., OpenAI, Google, and
Meta) who deploys a foundation model as a cloud service.
Note that a foundation-model provider is not necessarily the
entity who pre-trains the foundation model; e.g., a provider
can deploy a public foundation model as a cloud service. A
client is a downstream customer who builds intelligent appli-
cations (classifiers in this work) based on a foundation model.
In particular, a client queries the cloud-service API to obtain
a feature vector for an input. We denote by h a foundation
model and h(x) the feature vector for an input x. Given h as a
feature extractor and a downstream training dataset, a client
trains a downstream classifier f using supervised learning.
We denote by f

J
h(x) the label predicted for x, where

J

means composition of h and f .
We assume the foundation model h is backdoored. Al-

though the training dataset and training process of the down-
stream classifier f maintain integrity, it inherits the backdoor
vulnerability from the foundation model [2, 22, 40, 54, 56].
After deploying the downstream classifier f , the client detects
misclassification bugs (i.e., misclassified inputs) via auto-
matic detection [8, 15, 28] or manual analysis; and the client
reports them to the foundation-model provider, who patches
its foundation model to fix the bugs. As we will show in
our experiments in Section 5.3, it is insufficient for a client
to patch its downstream classifier f to fix misclassification
bugs. Although we assume a misclassified input has already
been detected by a client, patching a foundation model is still
challenging, especially at achieving the generalizability goal
discussed below. For instance, the compared baseline methods
in our experiments all fail to achieve this goal.

We assume a misclassification bug is sent from a benign
client. We acknowledge that a malicious client could also send
carefully crafted bugs to the provider, and it is an interesting
future work to explore whether and how a malicious client
can subvert the security/performance of the patching process.
Bug instance: When a client detects a misclassification bug,
a key question is how to report it to the foundation-model
provider. A naive way is that the client just sends the misclas-
sified input xb and its misclassified label yt to the provider.
However, it is challenging for the provider to leverage such a
bug instance to patch its foundation model. This is because a
foundation model is a feature extractor and does not process
label information. Our key observation is that xb is misclas-
sified because the backdoored foundation model produces a
feature vector for xb that is dissimilar to those of the inputs
from the class yb, where yb is the true label of xb. Based on
this observation, we define a bug instance as a pair of inputs

(xb,xr) from the class yb, where xb is misclassified as yt and xr

is correctly classified as yb by the downstream classifier. We
call xr the reference input. Formally, we have the following
definition of bug instance.

Definition 1 (Bug Instance). Given a foundation model h and

a downstream classifier f , a bug instance (xb,xr) consists of

a misclassified input xb and a correctly classified reference

input xr that satisfy the following conditions: (i) xb and xr

have the same true label yb, (ii) f
J

h(xb) 6= yb, and (iii)

f
J

h(xr) = yb.

Goals for patching: After receiving a bug instance (xb,xr),
the foundation-model provider patches its foundation model.
For convenience, we denote by h and h

0 the pre-patching and
post-patching foundation model, respectively. The provider
aims to achieve the following three patching goals.

Effectiveness. The effectiveness goal means that the post-
patching foundation model h

0 effectively fixes the bug. In
particular, the post-patching foundation model h

0 should pro-
duce similar feature vectors for xb and xr, i.e., h

0(xb)⇡ h
0(xr).

Therefore, when the client builds a patched downstream clas-

sifier f
0 using h

0 as a feature extractor, xb is correctly classi-
fied as yb, i.e., f

0J
h
0(xb) = f

0J
h
0(xr) = yb. We note that

to fix the bug, a client may need to update/re-train its down-
stream classifier based on the post-patching foundation model.
This is because the post-patching and pre-patching foundation
models produce different feature vectors for the same input.

Locality. The locality goal means that patching the foun-
dation model should not influence the predictions for other
inputs, i.e., the patching is local to the misclassified input xb.
Formally, the locality goal aims to achieve h

0(x) ⇡ h(x) for
any clean input x 6= xb. When the locality goal is achieved,
the pre-patching and post-patching downstream classifiers are
very likely to have similar testing accuracy for clean inputs.

Generalizability. The generalizability goal means that
when the misclassified input xb is a trigger-embedded input
from a backdoor attack, the post-patching foundation model
h
0 should also fix the bug for other trigger-embedded inputs.

In particular, adding a trigger to an input should have mini-
mal influence on its feature vector produced by h

0. Formally,
the generalizability goal aims to achieve h

0(x� t)⇡ h
0(x) for

any clean input x, where t is the backdoor trigger in xb and
x� t means embedding the trigger t into an input x. When
the generalizability goal is achieved, embedding the trigger t

into an input is unlikely to change its label predicted by the
patched downstream classifier.

Backdoor vs. normal bugs: In a bug instance (xb,xr), the
misclassified input xb may be a trigger-embedded input from a
backdoor attack or a normal input without a backdoor trigger
that is misclassified due to the intrinsic imperfection of the
downstream classifier. For a normal misclassification bug, the
generalizability goal is not well defined and only the first two
patching goals are applicable. As detailed in the next section,

2922 33rd USENIX Security Symposium USENIX Association

our patching method aims to achieve the three patching goals
by assuming xb is a trigger-embedded input from a backdoor
attack without distinguishing between backdoor and normal
bugs. However, as our evaluation results in Section 5 show,
when xb is a normal misclassified input, our patching method
still achieves the first two patching goals. Other than back-
door and normal bugs, a misclassified input could also be an
adversarial example [3, 46], which we discuss in Section 6.

4 Mudjacking

4.1 Overview

Mudjacking achieves the three patching goals via formulating
a loss term to quantify each of them. Specifically, given a bug
instance (xb,xr), we propose an effectiveness loss to quantify
the effectiveness goal. The effectiveness loss is smaller when
the post-patching foundation model outputs more similar fea-
ture vectors for the misclassified input xb and the reference
input xr. Moreover, we propose a locality loss to quantify the
locality goal. The locality loss is smaller if the post-patching
foundation model and pre-patching one output more similar
feature vectors for each input in a clean, unlabeled validation

dataset that the provider collects. We propose a generalizabil-

ity loss to quantify the generalizability goal. Roughly speak-
ing, the generalizability loss is smaller if the feature vectors
output by the post-patching foundation model are less likely
to be influenced by a trigger, i.e., if the post-patching founda-
tion model outputs more similar feature vectors for each clean
input in the validation dataset and its trigger-embedded ver-
sion. Finally, we formulate patching a foundation model as an
optimization problem that aims to minimize a weighted sum
of the three loss terms. Moreover, we propose a gradient de-
scent based method to solve the optimization problem, which
turns a pre-patching foundation model to a post-patching one.

One challenge to calculate the generalizability loss is that it
requires the backdoor trigger in the misclassified input xb. To
address this challenge, we propose an approach that leverages
interpretatable machine learning methods to automatically
reverse engineer a trigger from xb. Roughly speaking, our
approach finds the pixels/words in xb that contribute the most
to the dissimilarity between the feature vectors of xb and xr

output by the pre-patching foundation model, and we treat
such pixels/words as the reverse-engineered trigger.

Next, we describe formulating patching a foundation model
as an optimization problem, solving the optimization problem,
and reverse engineering a backdoor trigger.

4.2 Formulating an Optimization Problem

We first define our three loss terms that quantify the three
patching goals, respectively. Then, we formulate an optimiza-
tion problem based on the loss terms.

Effectiveness loss: Recall that the effectiveness goal means
that the post-patching foundation model h

0 outputs similar
feature vectors for the misclassified input xb and reference
input xr. Therefore, our effectiveness loss Le quantifies the
similarity between the two feature vectors h

0(xb) and h
0(xr)

output by h
0. Formally, we have the following:

Le =�sim(h0(xb),h
0(xr)), (1)

where sim is a similarity metric, e.g., we use cosine similarity
in our experiments since the feature vectors are normalized
to have `2-norm of 1. A smaller Le indicates that the post-
patching foundation model h

0 produces more similar feature
vectors for xb and xr.
Locality loss: Recall that the locality goal means that the
patching does not influence the feature vectors for clean in-
puts. In particular, we assume the provider has a clean un-
labeled validation dataset Dval . For each input in Dval , the
post-patching foundation model and pre-patching one should
output similar feature vectors. Therefore, our locality loss Ll

is the average similarity between the feature vectors output
by h

0 and h for the inputs in the validation dataset and the
reference input. Formally, we have the following:

Ll =�
1

|Dval |+1 Â
x2{Dval [{xr}}

sim
�
h(x),h0(x)

�
, (2)

where |Dval | denotes the number of inputs in the validation
dataset. We consider the reference input xr in defining the
locality loss to guarantee that the feature vector of xr does
not change much and it is still correctly classified by the
downstream classifier. A smaller Ll indicates that h and h

0

produce more similar feature vectors for a clean input.
Generalizability loss: Suppose we have reverse engineered
a backdoor trigger tb from the bug instance (xb, xr) as de-
scribed in Section 4.4. The generalizability goal means that
embedding the trigger into an input has minimal impact on its
feature vector output by the post-patching foundation model.
Therefore, our generalizability loss Lg is the average simi-
larity between the feature vectors of an input and its trigger-
embedded version for the reference input and inputs in the
validation dataset. Formally, we have the following:

Lg =�
1

|Dval |+1 Â
x2{Dval [{xr}}

sim
�
h
0(x� tb),h

0(x)
�
. (3)

A smaller Lg indicates that h
0 outputs more similar feature

vectors for an input x embedded with the reverse engineered
trigger tb and its clean counterpart.
Optimization problem: After defining the three loss terms,
we can now present our optimization problem, which aims
to obtain a post-patching foundation model h

0 from a pre-
patching one via minimizing a weighted sum of the three loss
terms. Formally, we have the following optimization problem:

min
h0

L= Le +llLl +lgLg, (4)

USENIX Association 33rd USENIX Security Symposium 2923

Algorithm 1 Our Mudjacking

Input: Bug instance (xb,xr), pre-patching foundation model
h, validation dataset Dval, learning rate a, mini-batch size
m, number of epochs T , and reverse engineered trigger tb

Output: Post-patching foundation model h
0

1: Initialize h
0 h

2: I = d |Dval[{xr}|
m

e . Number of iterations per epoch
3: for t = 1,2, . . . ,T do

4: for i = 1,2, . . . , I do

5: Sample a mini-batch B ⇢Dval [{xr} s.t. |B|= m

6: Compute gradient —h0L
7: h

0 h
0 �a—h0L

8: return h
0

where ll and lg are two hyperparameters that balance the
three loss terms. By minimizing this combined loss function
L, our Mudjacking finds a post-patching foundation model h

0

that achieves the three patching goals simultaneously.

4.3 Solving the Optimization Problem

Patching a foundation model h is to solve the optimization
problem in Equation 4, which turns h into a post-patching
foundation model h

0. We propose a Stochastic Gradient De-
scent based algorithm to solve the optimization problem, as
shown in Algorithm 1. Specifically, we initialize h

0 to be
h. Then, we iteratively update h

0 using the gradient of the
loss function L with respect to a mini-batch of the validation
dataset. The iterative process is repeated for T epochs.

4.4 Reverse Engineering a Trigger

The generalizability loss requires the backdoor trigger in the
misclassified input xb. However, a bug instance only consists
of a pair of inputs. To address the challenge, we propose a
method to automatically reverse engineer the backdoor trigger
tb from a bug instance, where the trigger is a set of pixels in
an image input or a set of words at particular locations in a
text input. Our key observation is that the backdoor trigger
is the major cause for the dissimilarity between the feature
vectors of xb and xr and thus the misclassification of xb. Based
on this observation, we leverage an interpretable machine
learning method to calculate an attribution score for each
pixel in an image input or each word in a text input, where an
attribution score aims to quantify the influence of a pixel/word
on the dissimilarity between the feature vectors of xb and
xr. Intuitively, the trigger pixels/words have large attribution
scores. Therefore, we further use a clustering algorithm to
identify the pixels/words with large attribution scores and
treat them as a trigger. Next, we describe how to calculate
attribution scores and identify a trigger based on them.
Step I: calculating attribution scores: Suppose we are
given a pre-patching foundation model h and a bug instance

Algorithm 2 Reverse Engineering a Trigger
Input: Bug instance (xb, xr), pre-patching foundation model

h, objective function `, and interpretation method A
Output: Trigger tb.
1: Step I: Calculate Attribution Scores

2: `b `(h,xb,xr) . As defined in Equation 5
3: A A(h,`b,xb) . Attribution scores
4: Step II: Identify Trigger

5: K 2 . Number of clusters
6: C1, C2 K-means(A,K)
7: M1, M2 Mean attribution score of each cluster
8: i argmax j M j . Find the higher mean score
9: tb Ci . Reverse engineered trigger

10: return tb

Misclassified input !!

Reference input !"

Attribution score
visualization

Non-trigger pixels

Trigger pixels

Interpretation

method

K-Means

(K=2)

Figure 1: Illustration of reverse engineering a trigger.

(xb,xr). xb is misclassified by the downstream classifier be-
cause of the trigger in it. Specifically, the trigger pixels/words
in xb contribute substantially to the dissimilarity between the
feature vectors h(xb) and h(xr), and thus the misclassification
of xb. This observation inspires us to leverage an interpretable
machine learning method [37, 41, 44, 53] to quantify the influ-
ence of a pixel/word in xb. Given a machine learning model,
an input xb, and an objective function about the input, an inter-
pretation method can calculate an attribution score for each
pixel/word in the input, where the attribution score quantifies
the contribution of a pixel/word on the objective function. For
instance, the occlusion method [53] systematically occludes
portions of the input, such as rectangular regions of an image
input or text sequences in a text input. By doing so and calcu-
lating the difference in the objective function, the occlusion
method can calculate an attribution score for each pixel/word.

A key challenge of applying interpretation methods to re-
verse engineer a trigger is how to design the objective function.
One straightforward objective function is the loss function of
the label f

J
h(xb) predicted by the downstream classifier for

the input xb. However, the foundation-model provider does
not have access to the downstream classifier f . As a result,
the provider cannot evaluate the loss function of f

J
h(xb)

nor apply an interpretation method to calculate the attribu-
tion scores. To address the challenge, we define the objective
function using the foundation model and bug instance without
involving the downstream classifier. In particular, our objec-
tive function is directly related to the dissimilarity between

2924 33rd USENIX Security Symposium USENIX Association

the feature vectors h(xb) and h(xr). Formally, we define the
objective function `(h,xb,xr) as follows:

`(h,xb,xr) = 1� sim(h(xb),h(xr)), (5)

where sim is the cosine similarity in our experiments. Given
such objective function, we leverage an interpretation method
to calculate an attribution score for each pixel/word in xb.
A higher attribution score is likely to indicate that the cor-
responding pixel/word has a larger impact on the objective
function, i.e., the dissimilarity between h(xb) and h(xr).

We note that several previous studies (e.g., [8, 13]) also
leverage interpretable machine learning methods to identify
the backdoor trigger in an input. However, they focus on clas-
sifiers (i.e., f

J
h in our problem) and use the straightforward

loss function of the predicted label as the objective function.
Our work focuses on foundation models and designs a new
objective function tailored to them.
Step II: identifying trigger: After we have obtained the
attribution score for each input pixel/word, we identify the
trigger pixels/words based on them. Intuitively, the input pix-
els/words with larger attribution scores may form the trigger.
Based on this intuition, we use a clustering method to divide
the pixels/words into two clusters: one cluster containing the
pixels/words with high attribution scores, and one cluster con-
taining those with low attribution scores. For instance, we can
leverage the K-means algorithm [29] with K = 2 to perform
the clustering. We then treat the cluster with the higher mean
attribution score as the trigger. We summarize our method to
reverse engineer a trigger in Algorithm 2.

5 Evaluation

5.1 Experimental Setup

Datasets: We use eleven benchmark datasets, including
six image datasets, two image-text datasets, and three text
datasets. We show the details of these datasets in Table 16 in
Appendix. These benchmark datasets were also used in prior
studies [2, 22, 40, 54, 56] on backdoor attacks to foundation
models. In addition to the numbers shown in Table 16 in Ap-
pendix, the STL10 dataset also contains 100,000 unlabeled
images. We use these unlabeled images for pre-training when
STL10 is used as the pre-training dataset. We follow Zhang
et al. [54] to construct ImageNet100-A and ImageNet100-B,
two subsets of ImageNet. Each of these subsets contains ran-
domly sampled 100 classes from the ImageNet dataset with
no overlapping classes. The CLIP-400M dataset was used for
pre-training the OpenAI’s CLIP foundation model, which con-
tains 400M image-text pairs but is not publicly available. The
CC3M-Sub and Wiki103-Sub denote randomly subsampled
subsets of the CC3M [39] and Wiki103 [30], respectively.
Backdoor attacks to foundation models: We consider the
following five state-of-the-art backdoor attacks to foundation
models.

BadEncoder [22]. BadEncoder injects backdoors into a
vision foundation model by directly modifying its model pa-
rameters. A backdoored vision foundation model outputs
attacker-desired feature vectors for any inputs embedded with
a trigger. These feature vectors then cause a downstream clas-
sifier to produce attacker-desired predictions. BadEncoder
is applicable to both single-modal and multi-modal vision
foundation models.

CorruptEncoder [54]. CorruptEncoder injects backdoors
into a vision foundation model by poisoning its pre-training
data. In particular, CorruptEncoder injects a small fraction
of poisoning inputs into the pre-training dataset such that
the learnt vision foundation model outputs attacker-desired
feature vectors for any inputs embedded with a trigger. Like
BadEncoder, CorruptEncoder is also applicable to both single-
modal and multi-modal vision foundation models.

Carlini & Terzis [2]. Carlini and Terzis proposed a back-
door attack to multi-modal vision foundation models. Their
attack first creates a collection of text captions that include
the target class name chosen by the attacker. Then their attack
associates these text captions with a set of images embedded
with the trigger to construct poisoning image-text pairs, which
are then injected into the pre-training dataset.

POR [40] and NeuBA [56]. These are two backdoor attacks
to language foundation models. POR modifies a language
foundation model’s parameters to output a specific feature
vector for any input containing a trigger, while NeuBA intro-
duces a new backdoor pre-training objective in addition to the
original pre-training objective to achieve the same goal.

Pre-training (backdoored) foundation models: We pre-
train (backdoored) foundation models following the default
experimental settings of the aforementioned backdoor attacks
in the original papers, or use the publicly available ones from
their codebase. For POR and NeuBA, we adopt a unified
implementation [10]. Table 17a in Appendix summarizes the
pre-training settings and backdoor triggers.

Training downstream classifiers: We use a foundation
model as a feature extractor to train downstream classifiers on
downstream datasets. For each downstream dataset, we use
the training examples to train the downstream classifier and
use the testing examples to evaluate its performance. These
downstream classifiers are fully-connected neural networks
trained with cross-entropy loss and the Adam optimizer. We
follow the default parameter settings as those in the original
papers on backdoor attacks when training the downstream
classifiers. Table 17b in Appendix summarizes the training
settings of downstream classifiers.

Compared patching methods: We compare Mudjack-
ing with the following patching methods.

Fine-tuning (FT). FT is a widely used method for slightly
modifying a model. When patching a foundation model, FT
can achieve the effectiveness goal by optimizing the founda-
tion model’s parameters to produce similar feature vectors for

USENIX Association 33rd USENIX Security Symposium 2925

xb and xr. Specifically, FT obtains the post-patching founda-
tion model h

0 by solving the optimization problem: minh0 Le,
where Le is our effectiveness loss defined in Equation 1. h

0 is
initialized as h and solved iteratively by gradient descent. We
use the same parameter setting for FT as our Mudjacking.

Fine-tuning with `2-norm or `•-norm constraint (FT+`2
or FT+`•). Zhu et al. [58] use FT with an `2-norm or `•-
norm constraint to address overfitting and catastrophic for-
getting. We apply this method to patch foundation models.
In particular, when patching a foundation model h, FT+`p

obtains h
0 by solving the following optimization problem:

minh0 Le subject to `p(h0,h)  d, where p = 2 or • and d is
the threshold for the `2 or `• constraint. We use projected gra-
dient descent to solve the optimization problem. Specifically,
during each iteration, we first compute the gradient of the loss
function with respect to the model parameters; after updating
the model parameters, we project them onto the feasible set
defined by the `p constraint if needed. FT+`2 and FT+`• use
the same parameter settings as FT. We set a small threshold
d = 0.01 to bound the model parameters’ change.

Unlearning. Liu et al. [26] propose a machine unlearning
based pre-deployment defense to erase backdoors from clas-
sifiers. They fine-tune a backdoored classifier to maximize
the cross-entropy loss on trigger-embedded inputs with the
attacker’s target label. Furthermore, they bound the changes
in model parameters using an `1 norm constraint. We extend
their method to patch foundation models by replacing the
cross-entropy loss as a cosine similarity loss between the
reference input xr and misclassified input xb.

Fine-Pruning. Liu et al. [25] combine pruning and fine-
tuning as a pre-deployment defense to eliminate backdoors
from classifiers. This defense first prunes the channels in the
convolutional layers that are dormant, i.e., that have negative
average activation on clean data; and then it fine-tunes the
pruned model to regain utility lost from pruning. We extend
fine-pruning to patch foundation models as follows: we first
prune 50% of the channels that are dormant on the reference
input xr and then fine-tune the pruned foundation model using
the pre-training data for 50 epochs.
Evaluation metrics: We use four evaluation metrics, i.e.,
Correct Prediction of xb (CP), Accuracy (Acc), Attack Success
Rate (ASR), and Accuracy with Backdoor trigger (AccB). CP
evaluates the effectiveness goal, Acc evaluates the locality
goal, ASR and AccB evaluate the generalizability goal. We
define the four evaluation metrics as follows:

Correct Prediction of xb (CP). CP measures whether a
downstream classifier correctly classifies xb. CP can be either
⇥ or X, denoting incorrect or correct classification of xb.

Accuracy (Acc). Acc denotes the testing accuracy of
a downstream classifier f

J
h (or f

0J
h
0 after patching).

Specifically, Acc is the fraction of clean downstream testing
examples that are correctly classified. If post-patching Acc
is close to or higher than pre-patching Acc, then the locality
goal is achieved.

Attack Success Rate (ASR). We generate backdoored test-

ing inputs by embedding a trigger into all clean downstream
testing inputs that are not from the target class. ASR is the
fraction of such backdoored testing inputs that are classified
as the target class by the downstream classifier.

Accuracy with backdoor trigger (AccB). AccB is the test-
ing accuracy of a downstream classifier f

J
h (or f

0J
h
0 after

patching) for backdoored testing inputs. In particular, AccB
is the fraction of backdoored testing inputs that are correctly
classified by a downstream classifier. The generalizability
goal is achieved if the post-patching ASR is small and AccB
is close to Acc.
Parameter settings of Mudjacking: We randomly sample
a bug instance (xb,xr), where xb is a trigger-embedded mis-
classified testing input and xr is a correctly classified testing
input from the downstream testing dataset. By default, we use
BadEncoder as the backdoor attack, CIFAR10 for pre-training,
and STL10 for downstream classifier training.

The default parameter settings for our Mudjacking are as
follows: ll = lg = 1; the number of epochs T = 200 in Algo-
rithm 1; and the learning rates used for patching are shown in
Table 18 in Appendix. The validation dataset size and batch
size are determined based on our computation resources. Ta-
ble 18 in Appendix summarizes these parameters. Unless
otherwise mentioned, we sample the validation dataset from
the pre-training dataset, except for CLIP-400M. Since CLIP-
400M is not publicly available, we sample the training inputs
in ImageNet as our validation dataset. By default, we use the
Occlusion interpretation method [53] when reverse engineer-
ing a trigger. We performed experiments using 18 NVIDIA
RTX 6000 GPUs, with each GPU having 24GB memory.

5.2 Experimental Results

Mudjacking achieves the three patching goals: Table 1 and
Table 2 show the results of patching vision and language foun-
dation models, respectively. We have multiple observations.
First, Mudjacking consistently achieves the effectiveness goal
in all settings, indicated by CP = X. This is because the post-
patching foundation model produces similar feature vectors
for the misclassified input xb and reference input xr.

Second, Mudjacking also achieves the locality goal by
maintaining Acc after patching. This is because, for a clean
input, the post-patching and pre-patching foundation models
output similar feature vectors. In particular, even when the
validation dataset is a small fraction of the clean pre-training
dataset, it is sufficient for our Mudjacking to achieve the lo-
cality goal. For example, as shown in Table 1b, when the
pre-training dataset is CLIP-400M and the foundation model
is attacked by BadEncoder, using only 50,000 images (only
0.0125% of 400 million) from ImageNet as the validation
dataset is sufficient to achieve the locality goal.

Third, our Mudjacking successfully achieves the generaliz-
ability goal since ASR is low (close to 0) except for patching

2926 33rd USENIX Security Symposium USENIX Association

Table 1: Results for patching vision foundation models.
(a) Single-modal

Attack method
Pre-training

dataset
Downstream

dataset

Before patching After patching

CP Acc ASR AccB CP Acc ASR AccB

BadEncoder
CIFAR10

STL10 ⇥ 76.46 99.82 0.10 X 76.59 2.39 73.38
SVHN ⇥ 69.07 98.92 0.53 X 78.49 5.97 65.39

STL10
CIFAR10 ⇥ 86.64 97.07 1.24 X 86.39 2.59 81.20

SVHN ⇥ 65.21 97.44 0.36 X 76.21 7.94 61.04

CorruptEncoder ImageNet100-A
ImageNet100-B ⇥ 61.68 94.32 2.57 X 61.76 1.57 57.64
Oxford-IIIT Pets ⇥ 56.71 71.90 4.96 X 55.69 2.18 51.23

(b) Multi-modal

Attack method
Pre-training

dataset
Downstream

dataset

Before patching After patching

CP Acc ASR AccB CP Acc ASR AccB

BadEncoder CLIP-400M
STL10 ⇥ 96.70 99.92 0.04 X 95.65 0.42 95.06
SVHN ⇥ 69.93 100.00 0.00 X 73.35 3.48 69.13

Carlini & Terzis CC3M-Sub ImageNet100-B ⇥ 51.47 98.22 1.09 X 49.26 5.03 41.53

CorruptEncoder CC3M-Sub ImageNet100-B ⇥ 48.44 94.40 0.81 X 45.92 3.46 40.27

Table 2: Results for patching langugae foundation models.

Attack method
Pre-training

dataset
Downstream

dataset

Before patching After patching

CP Acc ASR AccB CP Acc ASR AccB

NeuBA Wiki-103
SST-2 ⇥ 80.28 100.00 0.00 X 79.68 24.34 75.65
HSOL ⇥ 80.16 100.00 0.00 X 81.28 18.28 81.72

POR Wiki-103
SST-2 ⇥ 82.59 67.66 12.34 X 81.82 17.49 82.51
HSOL ⇥ 82.90 99.92 0.08 X 82.78 17.07 82.93

language models and AccB is close to Acc after patching
across all settings. We note that ASR is not close to 0 for
patching language foundation models in Table 2. This is be-
cause the downstream datasets have two classes. Given a
downstream classifier built based on a clean language foun-
dation model, ASR would be close to the misclassification
rate of testing inputs. We observe that ASR in Table 2 is
indeed close to the misclassification rate of testing inputs,
roughly 20%. Therefore, the post-patching language founda-
tion models are similar to clean language foundation models.
Our results suggest that our method effectively mitigates the
backdoor vulnerabilities in a backdoored foundation model.

Mudjacking outperforms existing methods: Table 3 com-
pares Mudjacking with existing patching methods for patch-
ing the vision foundation model in our default setting. We
observe that Mudjacking outperforms these methods at achiev-
ing the three patching goals. Specifically, FT, FT+`2, FT+`•,
and unlearning can achieve the effectiveness goal. This is
because they all fine-tune the foundation model to minimize
the effectiveness loss Le. They achieve the locality goal to
some extent, i.e., Acc is close to that before patching, but
they cannot achieve the generalizability goal. Fine-Pruning
achieves the locality and generalizability goals to some extent,
but it cannot achieve the effectiveness goal.

Table 3: Comparing Mudjacking with existing methods.

Patching method CP Acc ASR AccB

Before patching ⇥ 76.46 99.82 0.10
FT X 69.61 40.57 32.50

FT+`2 X 72.05 55.90 24.31
FT+`• X 70.04 41.79 30.61

Unlearning X 70.02 34.57 32.12
Fine-Pruning ⇥ 71.92 6.65 61.97
Mudjacking X 76.59 2.39 73.38

Impact of different interpretation methods: Our Mudjack-
ing uses an interpretation method to reverse engineer a trigger
from a bug instance. We compare four widely used interpreta-
tion methods, i.e., Occlusion [53], GradCam [37], Saliency
Map [41], Guided Backprobagation (GuidedBack) [44]. Ta-
ble 4 shows the results, from which we have the following two
main observations. First, we observe that different interpre-
tation methods lead to different reverse-engineered triggers.
Specifically, Occlusion and GradCam can reverse-engineer
triggers that contain majority of the true backdoor trigger
(the white square at the bottom right corner). On the other
hand, the triggers reverse-engineered by Saliency Map and
GuidedBack contain only a part of the true backdoor trigger.

USENIX Association 33rd USENIX Security Symposium 2927

Table 4: Impact of different interpretation methods.

Interpretation
method

Reverse engineered
trigger

CP Acc ASR AccB

Occlusion X 76.59 2.39 73.38

GradCam X 76.47 3.42 71.44

Saliency Map X 76.58 11.88 61.72

GuidedBack X 76.29 13.56 61.67

Table 5: Impact of the three loss terms.

Removed loss term CP Acc ASR AccB

None X 76.59 2.39 73.38
Effectiveness loss ⇥ 76.70 2.65 72.97

Locality loss X 48.50 7.10 45.61
Generalizability loss X 76.70 26.49 50.57

Therefore, Occlusion and GradCam outperform the other two
in terms of the generalizability goal, i.e., ASRs are lower
and AccBs are higher. Second, we find that Mudjacking suc-
cessfully achieves the effectiveness and locality goals, regard-
less of the interpretation method used. The reason is that the
reverse-engineered trigger is used only in the generalizability
loss and does not impact the effectiveness and locality losses.
Impact of the three loss terms: Our formulated optimization
problem in Equation 4 consists of three loss terms. We study
the impact of removing each of them and show the results
in Table 5. We have the following three key observations.
First, the removal of the effectiveness loss hinders the patched
foundation model’s ability to correctly classify the misclas-
sified input xb. Second, removing the locality loss leads to a
substantial drop in Acc, falling from 76.59% (with no loss
term removed) to 48.50%. This highlights the critical role
of the locality loss in preserving the utility of the patched
foundation models. Third, the removal of the generalizability
loss results in a significant increase in ASR to 26.49% and
a decrease in AccB to 50.57%. This indicates the significant
role of the generalizability loss in mitigating backdoor vul-
nerabilities. To summarize, these observations emphasize the
importance of integrating all the three loss terms to achieve
the three patching goals.
Impact of validation dataset size: Mudjacking relies on
a validation dataset Dval to calculate both the locality loss
(Equation 2) and the generalizability loss (Equation 3). We
investigate how varying the size of the validation dataset
influences our method’s performance on three downstream
datasets, namely STL10 and SVHN. We show the results in
Figure 2. We find that both CP and Acc converge when the
size of the validation dataset exceeds 10% of the pre-training
dataset size across the tested downstream datasets. This sug-
gests that our method is efficient in achieving its effective-

� � �� 	�
� ��
� ���
������ ������ ��� ���"�����

�

	�

�

��

�

���

��
��

��
 �

��
���

�

���
���
����
��

!

)

��

(a) STL10

� � �� 	�
� ��
� ���
������ ������ ��� ���"�����

�

	�

�

��

�

���

��
��

��
 �

��
���

�

���
���
����
��

!

)

��

(b) SVHN

Figure 2: Impact of the validation dataset size on different
downstream datasets. The validation dataset is a subset of the
pre-training dataset CIFAR10.

Table 6: Impact of the validation dataset distribution. The
pre-training dataset is CIFAR10.

Validation dataset distribution CP Acc ASR AccB

CIFAR10 X 76.59 2.39 73.38
STL10 X 76.60 2.71 72.82

ImageNet X 75.88 2.44 72.24

ness and locality goals, even when the validation dataset is
a small fraction of the pre-training dataset. Interestingly, in
terms of ASR and AccB, we notice some variations. For the
STL10 dataset, both metrics begin to stabilize when the val-
idation dataset size exceeds 10% of the pre-training dataset
size. However, for the SVHN dataset, ASR stabilizes when
the validation dataset is only 1% of the pre-training dataset,
while AccB continues to improve as the validation dataset
size increases. This is probably because STL10’s data distri-
bution is more similar to the pre-training dataset CIFAR10,
compared to SVHN.

Impact of validation dataset distribution: We further in-
vestigate the impact of different distributions of the validation
dataset on our method’s performance. We show the results
in Table 6. We observe that Mudjacking achieves all three
patching goals regardless of the validation dataset distribu-
tion. The reason is that all these validation datasets contain
diverse images, which help our method achieve the locality
and generalizability goals that rely on Dval .

Patching multiple bugs: A client may detect and report bugs
to the foundation-model provider at different times. Therefore,
the foundation-model provider may apply our method to patch
the foundation model multiple times. We illustrate this sce-
nario in Figure 3. In our experiments, the foundation-model
provider receives three bug instances sequentially and patches
the pre-patching foundation model h three times, which re-
sults in three post-patching foundation models h

0
1, h
0
2, and h

0
3.

Table 7 shows our method’s performance in this case. We
have two main observations. First, Mudjacking can achieve
the effectiveness and locality goals in every patching attempt.
Second, patching multiple bugs can better achieve the gener-
alizability goal as ASR decreases when patching more times.

2928 33rd USENIX Security Symposium USENIX Association

Patch

Reverse-engineered
triggers

Time

Patch Patch

Bug instances

Figure 3: Patching multiple bugs.

Table 7: Patching multiple bugs.

Foundation model CP Acc ASR AccB

h ⇥ 76.46 99.82 0.10
h
0
1 X 76.51 3.43 71.43

h
0
2 X 75.31 2.25 71.93

h
0
3 X 74.88 2.00 71.10

Table 8: Normal vs. backdoor bug.

Bug instance
Reverse engineered

trigger
CP Acc ASR AccB

Backdoor bug X 76.59 2.39 73.38

Normal bug X 76.29 - -

This is because as the foundation model is patched more times,
the trigger is better reverse-engineered (as shown in Figure 3),
which improves the generalizability of Mudjacking.
Patching normal bugs: The misclassified input xb can also
be a normal input without a backdoor trigger. Mudjacking can
be directly applied to patch such bugs. We show the results
of patching a normal bug in Table 8. When xb is a normal
misclassified input, our method still achieves the first two
patching goals, while the generalizability goal is not well
defined for normal bugs. This is because Mudjacking achieves
the three patching goals by assuming xb is a trigger-embedded
input from a backdoor attack without distinguishing between
backdoor and normal bugs.
Impact of reference inputs: A bug instance (xb,xr) includes
a reference input xr. By default, we assume xr is a real image
from the client. We study whether xr could be a random input
that has a similar feature vector with a real one. Generating
such a random input would be easier for the foundation-model
provider than the client, who only has black-box access to the
foundation model. Therefore, we consider the following sce-
nario: the client sends a misclassified input xb together with
the feature vector of a real reference input, i.e., h(xr), to the
foundation-model provider. The foundation-model provider
generates a reference input x

0
r

whose feature vector has a high
cosine similarity with h(xr). Specifically, we iteratively up-
date an initial random input x

0
r

for 100 iterations to maximize
the cosine similarity between h(x0

r
) and h(xr) using the Adam

optimizer with a learning rate of 1⇥ 10�2. Figure 8 in Ap-

Table 9: Impact of reference input.

Reference input
Reverse engineered

trigger
CP Acc ASR AccB

Real X 76.59 2.39 73.38

Random X 76.66 2.60 72.11

� ��� 	 � 	�
��

�

�

��

�

��

	��

��
��
��

��
��

���
�

���
���
����
��

�

#

��

(a) ll

� ��� 	 � 	�
��

�

�

��

�

��

	��

��
��
��

��
��

���
�

���
���
����
��

�

#

��

(b) lg

Figure 4: Impact of ll and lg.

pendix shows xr and x
0
r
, while Table 9 shows the results of

using xr or x
0
r

for patching. We have two main observations.
First, Mudjacking can successfully reverse engineer the trig-
ger using x

0
r
. This is because x

0
r

has a dissimilar feature vector
with xb. Second, Mudjacking achieves similar performance
when using either a real or random reference input. This is
because of the highly similar feature vectors between the
real reference input and the random one, and the successfully
reverse-engineered trigger.
Impact of other parameters: We study the performance
of our Mudjacking when patching the foundation model and
training the downstream classifier using different learning
rates, batch sizes, or epochs. We show the results in Table 19
in Appendix. We observe that Mudjacking achieves the three
patching goals across all parameter settings. Our formulated
optimization problem in Equation 4 is a weighted sum of
the three loss terms. We further study the impact of the two
weights ll and lg. We show the results in Figure 4. We have
two key observations. First, Mudjacking achieves the three
goals once the optimization problem incorporates the three
loss terms, i.e., ll 6= 0 and lg 6= 0. Second, too large ll (or lg)
may slightly impact the generalizability (or locality) goal. For
example, when ll � 3 (or lg � 3), the AccB (or Acc) slightly
decreases. This is because too large ll (or lg) makes Mud-
jacking minimize more on the locality (or generalizability)
loss term than the other two.

5.3 Patching Downstream Classifiers Alone

Given a misclassified input xb, a client could try patching
its downstream classifier directly. We consider the following
methods to patch a downstream classifier while keeping the
foundation model h unchanged.
FT: FT uses (xb,yb) to fine-tune the downstream classifier,
where yb is the true label of xb. In particular, FT obtains a

USENIX Association 33rd USENIX Security Symposium 2929

Table 10: Comparing Mudjacking with patching downstream
classifier alone.

Patching method CP Acc ASR AccB

Before patching ⇥ 76.46 99.82 0.10

FT X 34.86 0.00 11.11
FT with Dtrain X 76.54 0.44 11.14
AI-Lancet [57] X 74.54 0.82 11.31

BEAGLE [7] + reversed trigger X 76.34 5.22 54.33
BEAGLE [7] + exact trigger X 76.31 3.47 58.91

Mudjacking X 76.59 2.39 73.38

post-patching downstream classifier f
0 by solving the opti-

mization problem: min f 0 `CE(xb,yb; f
0J

h), where `CE is the
cross-entropy loss and h is not changed.
FT with Dtrain: Since the client has a downstream training
dataset Dtrain, the client can fine-tune the downstream classi-
fier using Dtrain together with the misclassified input xb. In
particular, the client uses Dtrain[{(xb,yb)} to fine-tune the
downstream classifier.
AI-Lancet [57]: AI-Lancet is a patching method for clas-
sifiers. Given a misclassified input (i.e., xb in our case) and
a correctly classified input (i.e., xr in our case), AI-Lancet
locates the backdoor neurons and adjusts them to remove the
backdoor. We apply AI-Lancet to patch downstream classifier.
We use their neuron-flip variant that achieves better results.
BEAGLE [7]: BEAGLE reverse engineers a trigger from
multiple misclassified trigger-embedded inputs and fine-tunes
a classifier using clean training inputs embedded with the
reverse engineered trigger and correct labels. However, in
our problem setup, we consider a client who detects a single
misclassified trigger-embedded input. Therefore, their method
of reverse engineering a trigger is not applicable. Instead, we
use the trigger reverse engineered by the foundation-model
provider using our method or the exact trigger when applying
BEAGLE to patch a downstream classifier. We use ‘BEAGLE
+ reversed trigger’ and ‘BEAGLE + exact trigger’ to denote
these two cases, respectively. Note that BEAGLE + exact
trigger gives an advantage to BEAGLE.

For all these methods except AI-Lancet, which does not re-
quire fine-tuning, we fine-tune a downstream classifier for 50
epochs with a learning rate of 0.001 using Adam optimizer. Ta-
ble 10 compares Mudjacking with patching downstream clas-
sifiers alone. We observe that all patching methods achieve the
effectiveness goal. However, FT does not achieve the locality
nor generalizability goal; FT with Dtrain and AI-Lancet do
not achieve the generalizability goal since ASRs are low but
AccBs are also low, i.e., trigger-embedded inputs are still mis-
classified as non-target classes; and BEAGLE better achieves
the generalizability goal than the other baselines, but it still
has higher ASR and much lower AccB than Mudjacking. We
note that BEAGLE + reversed trigger achieves comparable
performance with BEAGLE + exact trigger, which further

Table 11: Patching results of Mudjacking when a backdoor
attack uses different trigger patterns.

Trigger pattern Patching CP Acc ASR AccB

Before ⇥ 76.46 99.82 0.10
After X 76.59 2.39 73.38

Before ⇥ 76.49 100.00 0.00
After X 76.14 3.58 71.57

Before ⇥ 76.25 98.62 0.76
After X 76.62 2.40 73.46

Before ⇥ 74.90 97.29 1.43
After X 76.61 2.42 73.69

Before ⇥ 75.11 99.44 0.14
After X 75.88 3.66 73.21

+ Before ⇥ 76.62 100.00 0.00
After X 76.49 3.78 67.58

indicates that our method can reverse engineer a high-quality
trigger from a single bug instance.

5.4 Adaptive Backdoor Attacks

A key component of Mudjacking is to reverse engineer the
trigger from a bug instance. Therefore, we consider adaptive
attacks that aim to enhance the complexity and stealthiness of
the trigger, making it more difficult for Mudjacking to reverse
engineer it. A trigger consists of two dimensions: pattern and
location. A pattern can be further characterized by its shape,
value, and size. For instance, a pattern could be a square
(shape) of 10 ⇥ 10 pixels (size), where each pixel has a value
of 1 (value). Location could be a fixed location at the bottom
right corner or a random location for each input.
Adapting shapes and values of the trigger pattern: Ta-
ble 11 shows the patching results of our method when a back-
door attack uses trigger patterns with different shapes and
values: a 10⇥10 square with white pixels, a 10⇥10 square
with random pixel values, a 10⇥ 10 triangle with random
pixel values, an apple logo, an emoji, and a spread-out trigger.
The spread-out trigger comprises two 10⇥10 squares with
random pixel values placed diagonally, with the first located at
the upper left corner and the second located at the lower right
corner. The apple logo and emoji could represent physical
objects [50] in physical backdoor attacks.

Our results indicate that, regardless of the shapes and val-
ues, the backdoor attacks are effective at achieving high ASRs
before patching. However, Mudjacking can still achieve the
three patching goals. For instance, we observe substantial de-
creases in ASRs across all trigger patterns; and AccB remains
close to Acc. Note that AccB is 10% lower than Acc for the
spread-out trigger. This may be due to the spread-out trigger
occupying a larger portion of the image, potentially obscuring
key objects and leading to misclassification.
Adapting trigger sizes: Figure 6 in Appendix shows the
patching results of our Mudjacking when a backdoor attack
uses different trigger sizes, where the trigger pattern is a white

2930 33rd USENIX Security Symposium USENIX Association

Table 12: Patching results of our Mudjacking and vari-
ant Mudjacking-RL when a backdoor attack uses a fixed or
random trigger location.

Trigger
location Patching CP Acc ASR AccB

Fixed
Before ⇥ 76.46 99.82 0.10

Mudjacking X 76.59 2.39 73.38
Mudjacking-RL X 75.85 3.19 71.92

Random
Before ⇥ 76.51 100.00 0.00

Mudjacking X 76.60 41.43 28.42
Mudjacking-RL X 76.36 3.50 65.26

square located at the bottom right corner. As the trigger size
increases, pre-patching ASR also increases, which indicates
that a backdoor attack with a larger trigger is more effective.
However, after patching, ASR substantially drops and AccB
remains close to Acc, which shows that our Mudjacking con-
sistently achieves the generalizability goal. Moreover, our
Mudjacking also consistently achieves the effectiveness and
utility goals across all trigger sizes studied.
Random trigger location: In our Mudjacking, the gener-
alizability loss (Equation 3) embeds the reverse-engineered
trigger into each input in the validation dataset at the same
location. This is because a backdoor attack embeds the trigger
at the same, fixed location of inputs. Therefore, an adaptive
backdoor attack is to embed the trigger at a random location
of an input. To patch such backdoor bugs, we define a vari-
ant of Mudjacking, denoted as Mudjacking-RL, as follows:
we embed the reverse-engineered trigger at a random loca-
tion of each input in the validation dataset when defining
the generalizability loss. Table 12 shows the patching results
for backdoor attacks with a fixed or random trigger location.
Our results show that both Mudjacking and Mudjacking-RL
achieve the three patching goals when the trigger location is
fixed. For random trigger location, both achieve the effective-
ness and locality goals, but Mudjacking-RL better achieves
the generalizability goal.
Source-specific backdoor attacks: Our generalizability loss
assumes that any input embedded with the trigger would acti-
vate the backdoor. Therefore, one adaptive backdoor attack is
the so-called source-specific backdoor [15, 47, 49], in which
the backdoor is activated only when the trigger-embedded
input is from a particular class called source class. Existing
source-specific backdoor attacks were designed for classifiers.
We extend BadEncoder as a source-specific backdoor attack
to foundation models. Due to limited space, we show the tech-
nical details about this extension in Appendix A. Table 13
shows the patching results, where ASR-source (or ASR-other)
is the fraction of trigger-embedded inputs from the source
class (or non-source classes) that are classified as the target
class by the downstream classifier. Our results show that ASR-
source is much higher than ASR-other before patching (i.e.,
source-specific backdoor is effective), but Mudjacking still
successfully achieves the three patching goals.

Table 13: Patching results for source-specific backdoor attack.

Patching CP Acc ASR-source ASR-other AccB

Before ⇥ 75.33 64.38 37.33 10.78
After X 75.19 3.79 3.22 70.94

Table 14: Patching results of Mudjacking-RL against dynamic
backdoor attacks.

Foundation model CP Acc ASR AccB

Before patching ⇥ 76.46 97.31 0.21
After patching first bug instance X 76.07 38.42 35.23

After patching second bug instance X 75.16 2.32 70.48

Dynamic backdoor attacks: A dynamic backdoor at-
tack [36] uses multiple triggers and random locations. These
attacks were designed for classifiers, and we extend them to
foundation models using BadEncoder. Specifically, we use
two 10⇥10 triggers, where trigger t1 is blue and trigger t2 is
red. When embedding a trigger into an image, the attacker
randomly selects one of these triggers and embeds it into
the image at a random location. Suppose a client detects
a bug instance containing trigger t1; the foundation-model
provider patches the foundation model based on the bug in-
stance; then a client detects another bug instance containing
trigger t2; and the foundation-model provider further patches
the foundation model. Table 14 shows the patching results
using Mudjacking-RL. Before patching, the dynamic back-
door attack is very successful. After patching the first bug
instance, Mudjacking-RL achieves the first two goals, but not
the generalizability goal. This is because the backdoor at-
tack is still successful when trigger t2 is used. After patching
the second bug instance, Mudjacking-RL achieves the three
goals. In general, when a dynamic backdoor attack uses n

different triggers, Mudjacking-RL requires n bug instances
corresponding to the n triggers to fully remove the backdoor.

6 Discussion and Limitations

Patching latent-space backdoor attacks: Mudjacking con-
siders standard backdoor attacks with localized, universal
triggers that can be easily implemented in the physical world.
Latent-space backdoor attacks [14] use a whole-image imper-
ceptible perturbation as a trigger. We extend such backdoor
attacks to foundation models as follows: we craft a whole-
image perturbation whose `•-norm = 0.01 as a trigger, and
then we use BadEncoder to inject this trigger into a foundation
model. Table 15 shows the patching results, where Mudjack-
ing + exact trigger means that Mudjacking uses the exact
trigger instead of the reverse-engineered one for patching.

We have several observations. First, the attack is highly
effective with a high ASR before patching. Second, Mud-
jacking achieves the first two goals, but not the generalizabil-

USENIX Association 33rd USENIX Security Symposium 2931

Table 15: Patching latent-space backdoor attacks.

Patching method CP Acc ASR AccB

Before patching ⇥ 75.17 83.14 4.10

Mudjacking X 75.40 59.82 18.43
Mudjacking + exact trigger X 76.25 7.35 71.71

Figure 5: Visualization of the exact trigger (left) and the trig-
ger (right) reverse-engineered by Mudjacking in latent-space
backdoor attack.

ity goal. This is because the interpretation machine learn-
ing method cannot reverse engineer the whole-image trigger,
as shown in Figure 5. Third, Mudjacking + exact trigger
achieves the three goals, which further confirms that the in-
effectiveness of Mudjacking at achieving the generalizabil-
ity goal is because the trigger cannot be accurately reverse-
engineered. However, when the whole-image trigger can be
reverse-engineered (e.g., by a method designed in the future),
our Mudjacking can be used to patch the backdoor.

Patching adversarial-example bugs: Mudjacking focuses
on patching backdoor bugs and, as a side effect, can also patch
normal misclassification bugs. Adversarial examples [3, 46]
are another category of bugs for classifiers. Specifically, an
attacker can craft a small perturbation d such that x+ d is
misclassified, i.e., f

J
h(x) 6= f

J
h(x+d). Suppose the mis-

classified input xb in a bug instance is an adversarial example.
If only the effectiveness and locality goals are desired, the bug
instance can be treated as a normal misclassification bug, and
thus our Mudjacking can patch the foundation model to fix it.
It is an interesting future work to explore how to define the
generalizability goal for adversarial-example bugs and adapt
Mudjacking to achieve it. For instance, one way to define the
generalizability goal is that all adversarial examples gener-
ated by the same attack that generated xb should be correctly
classified after patching. Another way is that all adversarial
examples whose perturbation sizes are bounded by that in xb

should be correctly classified after patching.

Malicious client: We assume a bug instance is sent from a
benign client. We acknowledge that a malicious client may
send carefully crafted bug instances to a foundation-model
provider with a goal to disrupt the patching process. We be-
lieve it is an important future work to study whether and
how a malicious client can subvert the patching process via
malicious bug instances.

7 Conclusion and Future Work

We find that, given a bug instance from a client, a foundation-
model provider can patch its foundation model to remove
backdoor vulnerabilities without sacrificing its utility. In par-
ticular, the provider can patch its foundation model to achieve
three goals. Each goal can be quantified by a loss term, and a
foundation model can be patched via minimizing a weighted
sum of the three loss terms using a method based on gradi-
ent descent. As a side effect, a foundation model can also
be effectively patched when a bug instance is for a normal
misclassification error. Interesting future works include patch-
ing foundation models to fix adversarial-example bugs and
latent-space backdoors, as well as exploring the implications
of malicious clients on patching.

Acknowledgements

We thank the anonymous shepherd and reviewers for their con-
structive comments. This work was supported by NSF under
Grant No. 2131859, 2125977, 2112562, 1937786, 1937787,
the Army Research Office under Grant No. W911NF2110182,
as well as Ant Group.

References

[1] Tom Brown, Benjamin Mann, Nick Ryder, et al. Lan-
guage models are few-shot learners. In NeurIPS, 2020.

[2] Nicholas Carlini and Andreas Terzis. Poisoning and
backdooring contrastive learning. In ICLR, 2022.

[3] Nicholas Carlini and David Wagner. Towards evaluating
the robustness of neural networks. In S&P, 2017.

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In ICML, 2020.

[5] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming
He. Improved baselines with momentum contrastive
learning. arXiv, 2020.

[6] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learning
systems using data poisoning. arXiv, 2017.

[7] Siyuan Cheng, Guanhong Tao, Yingqi Liu, Shengwei
An, Xiangzhe Xu, Shiwei Feng, Guangyu Shen, Kaiyuan
Zhang, Qiuling Xu, Shiqing Ma, et al. Beagle: Forensics
of deep learning backdoor attack for better defense. In
NDSS, 2023.

[8] Edward Chou, Florian Tramer, and Giancarlo Pellegrino.
Sentinet: Detecting localized universal attacks against
deep learning systems. In S&P Workshops, 2020.

2932 33rd USENIX Security Symposium USENIX Association

[9] Adam Coates, Andrew Ng, and Honglak Lee. An anal-
ysis of single-layer networks in unsupervised feature
learning. In AISTATS, 2011.

[10] Ganqu Cui, Lifan Yuan, Bingxiang He, Yangyi Chen,
Zhiyuan Liu, and Maosong Sun. A unified evaluation of
textual backdoor learning: Frameworks and benchmarks.
In NeurIPS: Datasets and Benchmarks, 2022.

[11] Thomas Davidson, Dana Warmsley, Michael Macy, and
Ingmar Weber. Automated hate speech detection and
the problem of offensive language. In ICWSM, 2017.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
NAACL, 2019.

[13] Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranas-
inghe. Februus: Input purification defense against trojan
attacks on deep neural network systems. In ACSAC,
2020.

[14] Khoa Doan, Yingjie Lao, and Ping Li. Backdoor at-
tack with imperceptible input and latent modification.
NeurIPS, 2021.

[15] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. Strip: A de-
fence against trojan attacks on deep neural networks. In
ACSAC, 2019.

[16] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
Badnets: Identifying vulnerabilities in the machine
learning model supply chain. In IEEE Access, 2017.

[17] Wenbo Guo, Lun Wang, Yan Xu, Xinyu Xing, Min Du,
and Dawn Song. Towards inspecting and eliminating
trojan backdoors in deep neural networks. In ICDM,
2020.

[18] Zayd Hammoudeh and Daniel Lowd. Identifying a
training-set attack’s target using renormalized influence
estimation. In CCS, 2022.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[20] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong.
Intrinsic certified robustness of bagging against data
poisoning attacks. In AAAI, 2021.

[21] Jinyuan Jia, Yupei Liu, Xiaoyu Cao, and Neil Zhenqiang
Gong. Certified robustness of nearest neighbors against
data poisoning and backdoor attacks. In AAAI, 2022.

[22] Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong.
Badencoder: Backdoor attacks to pre-trained encoders
in self-supervised learning. In S&P, 2022.

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

[24] Hongbin Liu, Jinyuan Jia, and Neil Zhenqiang Gong.
Poisonedencoder: Poisoning the unlabeled pre-training
data in contrastive learning. In USENIX Security, 2022.

[25] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-pruning: Defending against backdooring attacks
on deep neural networks. In RAID, 2018.

[26] Yang Liu, Mingyuan Fan, Cen Chen, Ximeng Liu, Zhuo
Ma, Li Wang, and Jianfeng Ma. Backdoor defense with
machine unlearning. In INFOCOM, 2022.

[27] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojan-
ing attack on neural networks. In NDSS, 2018.

[28] Wanlun Ma, Derui Wang, Ruoxi Sun, Minhui Xue,
Sheng Wen, and Yang Xiang. The “beatrix” resurrec-
tions: Robust backdoor detection via gram matrices. In
NDSS, 2023.

[29] J MacQueen. Classification and analysis of multivari-
ate observations. In 5th Berkeley Symp. Math. Statist.

Probability, 1967.

[30] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. arXiv,
2016.

[31] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman,
and CV Jawahar. Cats and dogs. In CVPR, 2012.

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In ICML, 2021.

[33] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 2019.

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Ima-
genet large scale visual recognition challenge. In IJCV,
2015.

[35] Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi
Koohpayegani, and Hamed Pirsiavash. Backdoor at-
tacks on self-supervised learning. In CVPR, 2022.

USENIX Association 33rd USENIX Security Symposium 2933

[36] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma,
and Yang Zhang. Dynamic backdoor attacks against
machine learning models. In EuroS&P, 2022.

[37] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv
Batra. Grad-cam: Visual explanations from deep net-
works via gradient-based localization. In ICCV, 2017.

[38] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and
Ben Y Zhao. Poison forensics: Traceback of data poi-
soning attacks in neural networks. In USENIX Security,
2022.

[39] Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. Conceptual captions: A cleaned, hyper-
nymed, image alt-text dataset for automatic image cap-
tioning. In ACL, 2018.

[40] Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing
Chen, Jie Shi, Chengfang Fang, Jianwei Yin, and Ting
Wang. Backdoor pre-trained models can transfer to all.
In CCS, 2021.

[41] Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv,
2013.

[42] Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin,
Sergei Popov, and Artem Babenko. Editable neural
networks. In ICLR, 2020.

[43] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D Manning, Andrew Y Ng, and Christopher
Potts. Recursive deep models for semantic composition-
ality over a sentiment treebank. In EMNLP, 2013.

[44] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Brox, and Martin Riedmiller. Striving for simplicity:
The all convolutional net. In ICLR workshop, 2015.

[45] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
Christian Igel. Man vs. computer: Benchmarking ma-
chine learning algorithms for traffic sign recognition. In
Neural networks, 2012.

[46] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. In
ICLR, 2014.

[47] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan
Zhang. Demon in the variant: Statistical analysis of
dnns for robust backdoor contamination detection. In
USENIX Security, 2021.

[48] Binghui Wang, Xiaoyu Cao, Neil Zhenqiang Gong, et al.
On certifying robustness against backdoor attacks via
randomized smoothing. arXiv, 2020.

[49] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. Neu-
ral cleanse: Identifying and mitigating backdoor attacks
in neural networks. In S&P, 2019.

[50] Emily Wenger, Josephine Passananti, Arjun Nitin
Bhagoji, Yuanshun Yao, Haitao Zheng, and Ben Y Zhao.
Backdoor attacks against deep learning systems in the
physical world. In CVPR, 2021.

[51] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and
Prateek Mittal. Patchguard: A provably robust defense
against adversarial patches via small receptive fields and
masking. In USENIX Security, 2021.

[52] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov,
Carl A Gunter, and Bo Li. Detecting ai trojans using
meta neural analysis. In S&P, 2021.

[53] Matthew D Zeiler and Rob Fergus. Visualizing and
understanding convolutional networks. In ECCV, 2014.

[54] Jinghuai Zhang, Hongbin Liu, Jinyuan Jia, and
Neil Zhenqiang Gong. Corruptencoder: Data poisoning
based backdoor attacks to contrastive learning. arXiv,
2022.

[55] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhen-
qiang Gong. Backdoor attacks to graph neural networks.
In SACMAT, 2021.

[56] Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian
Lv, Fanchao Qi, Zhiyuan Liu, Yasheng Wang, Xin Jiang,
and Maosong Sun. Red alarm for pre-trained models:
Universal vulnerability to neuron-level backdoor attacks.
In Machine Intelligence Research, 2023.

[57] Yue Zhao, Hong Zhu, Kai Chen, and Shengzhi Zhang.
Ai-lancet: Locating error-inducing neurons to optimize
neural networks. In CCS, 2021.

[58] Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
Modifying memories in transformer models. arXiv,
2020.

[59] Rui Zhu, Di Tang, Siyuan Tang, XiaoFeng Wang, and
Haixu Tang. Selective amnesia: On efficient, high-
fidelity and blind suppression of backdoor effects in
trojaned machine learning models. In S&P, 2023.

2934 33rd USENIX Security Symposium USENIX Association

Table 16: Dataset statistics.

Domain Dataset # Training # Testing # Classes Usage

Single-modal Vision

CIFAR10 [23] 50,000 10,000 10 Pre-training & Downstream
STL10 [9] 5,000 8,000 10 Pre-training & Downstream

ImageNet100-A [34] 128,420 - 100 Pre-training
SVHN [45] 73,257 26,032 10 Downstream

ImageNet100-B [34] 126,689 5,000 100 Downstream
Oxford-IIIT Pets [31] 3,680 3,669 37 Downstream

Multi-modal Vision CLIP-400M [32] ⇡ 400 Million - - Pre-training
CC3M-Sub [39] 500,000 - - Pre-training

Language
Wiki103-Sub [30] 250,000 - 103 Pre-training

SST-2 [43] 7,792 1,821 2 Downstream
HOSL [11] 8,308 2,485 2 Downstream

Table 17: Pre-training settings of foundation models and training settings of downstream classifiers.
(a) Pre-training settings and backdoor triggers

Attack

method
Domain

Backdoor

trigger

Pre-training

algorithm
Model

Learning

rate

BadEncoder

Single-modal

Vision
SimCLR [4] ResNet18 [19] 0.001

Multi-modal

Vision
CLIP [32] ResNet50 0.0001

CorruptEncoder

Single-modal

Vision
MoCo v2 [5] ResNet18 0.001

Multi-modal

Vision
CLIP ResNet50 0.001

Carlini & Terzis
Multi-modal

Vision
CLIP ResNet50 0.001

POR Language bb BERT [12] BERT-base 0.0001

NeuBA Language ⌘ BERT BERT-base 0.0001

(b) Training settings of downstream classifiers

Attack

method
Domain

Fully connected

layers
Epochs

Learning

rate

BadEncoder

Single-modal

Vision
2 500 0.0001

Multi-modal

Vision
2 500 0.0001

CorruptEncoder

Single-modal

Vision
1 50 0.01

Multi-modal

Vision
1 50 0.01

Carlini & Terzis
Multi-modal

Vision
1 50 0.01

POR Language 1 10 0.001

NeuBA Language 1 10 0.001

�!�
!
 �!� 	�!	� 	
!	

����������"�

�

�

��

��

��

	��

��
��

��
�

������ �����
��� ��� �����

(a) Impact of trigger size on Acc

�"�
"
 �"� 	�"	� 	
"	

����������#�

�

�

��

��

��

	��

��
��
��

�

������!�����
�� !���!�����

(b) Impact of trigger size on ASR

�"�
"
 �"� 	�"	� 	
"	

����������#�

�

�

��

��

��

	��

��
��

���
�

������!�����
�� !���!�����

(c) Impact of trigger size on AccB

Figure 6: Patching results of our Mudjacking when a backdoor attack uses different trigger sizes.

A Source-specific Backdoor Attacks

Extending BadEncoder as a source-specific backdoor at-

tack: BadEncoder [22] formulates the attacker’s effective-
ness goal as an effectiveness loss. The effectiveness loss quan-
tifies the similarity between the feature vectors of inputs em-
bedded with the trigger and the feature vector of a reference

input. It can be defined as follows:

L0 =�
1

|Ds| Â
x2Ds

sim(h(x� t),h(xr)), (6)

where Ds denotes a shadow dataset used by the attacker, h de-
notes the backdoored foundation model, t denotes the trigger,
and xr denotes the reference input. When the effectiveness
loss L0 is optimized, the backdoored foundation model h is

USENIX Association 33rd USENIX Security Symposium 2935

Table 18: Parameter settings for patching.

Attack
method

Domain
Validation
dataset size

Batch size
Learning

rate

BadEncoder
Single-modal vision 50,000 256 0.001
Multi-modal vision 50,000 32 0.00001

CorruptEncoder
Single-modal vision 50,000 32 0.001
Multi-modal vision 50,000 32 0.00001

Carlini & Terzis Multi-modal vision 50,000 32 0.00001
POR Language 100,000 32 0.00001

NeuBA Language 100,000 32 0.00001

Table 19: Results of our Mudjacking when patching the foun-
dation model and training the downstream classifier using
different learning rates, batch sizes, or epochs.

Phase Parameter Value CP Acc ASR AccB

Patching

Learning
Rate

5⇥10�3 X 76.36 4.15 71.11

1⇥10�3 X 76.59 2.39 73.38

5⇥10�4 X 76.06 2.69 72.25

Batch Size
128 X 76.73 3.21 73.66

256 X 76.59 2.39 73.38

512 X 76.04 3.72 72.44

Epochs
50 X 76.89 3.46 71.29

100 X 76.91 2.78 71.71

200 X 76.59 2.39 73.38

Training
Downstream

Classifier

Learning
Rate

1⇥10�3 X 76.71 2.56 72.31

1⇥10�4 X 76.59 2.39 73.38

5⇥10�5 X 77.04 2.71 72.88

Batch Size
32 X 77.14 2.43 73.14

64 X 76.59 2.39 73.38

128 X 76.56 2.40 72.56

Epochs
100 X 77.44 2.49 73.40

300 X 76.94 2.49 72.72

500 X 76.59 2.39 73.38

	�
 	�� 	�� 	�� 	��
�	
�

	

�	

�	

�	

�	

��
��

��
 �

��
���

�

���
������!���
����� ���
����

Figure 7: Impact of a1 on the source-specific backdoor attack.

likely to output similar feature vectors h(x� t) and h(xr) for
any input x.

To achieve the source-specific goal, we introduce the fol-
lowing two main modifications to BadEncoder. First, we give
advantage to the attacker by assuming that the attacker has

(a) Real reference input xr (b) Random reference input x
0
r

Figure 8: Visualization of a real reference input and a random
reference input.

access to the downstream training dataset, which includes
labeled data. And the attacker uses this dataset as shadow
dataset Ds. Second, we split the effectiveness loss L0 into
two losses that are formulated as follows:

Lsource =�
1

|Dsource| Â
x2Dsource

sim(h(x� t),h(xr)), (7)

Lother =�
1

|Dother| Â
x2Dother

sim(h(x� t),h(x)), (8)

where Dsource represents the data from the source class in Ds,
while Dother represents the data from the other classes. The
updated effectiveness loss L00 = a1Lsource +a2Lother, where
a1 and a2 balance the weights between the two losses. In-
tuitively, Lsource measures the similarity between the feature
vector of any input from the source class embedded with the
trigger, and the feature vector of a reference input. However,
Lother quantifies the similarity between the feature vector of
an input from the other classes embedded with the trigger,
and the feature vector of its clean version. Therefore, by op-
timizing these losses, the backdoored foundation model h

is more likely to output attacker-desired (or benign) feature
vectors when inputs from the source class (or other classes)
embedded with the trigger. In other words, the backdoor is
more likely to be activated when inputs from the source class
are embedded with the backdoor trigger.
Parameter settings: We use the default parameter settings
of BadEncoder but search for the optimal combination of
weights a1 and a2 for the attacker. In particular, we explore
various values of a1 and a2 within the range of [0, 1], while
ensuring a1+a2 = 1. Figure 7 shows the results of varying a1
values. Note that ASR-source (or ASR-other) is the fraction
of trigger-embedded inputs from the source class (or non-
source classes) that are classified as the target class by the
downstream classifier. Therefore, the attacker’s goal is to
maximize the gap between ASR-source and ASR-other. We
give advantages to the attacker by using the optimal a1 =
0.8 and a2 = 0.2, under the assumption that the attacker has
access to the downstream testing dataset.

2936 33rd USENIX Security Symposium USENIX Association

