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Abstract

The integration of microphones into sensors and systems,
serving as input interfaces to intelligent applications and in-
dustrial manufacture, has raised public concerns regarding
their input perception. Studies have uncovered the potential
dangers posed by out-of-band injection attacks on micro-
phones, encompassing ultrasound, laser, and electromagnetic
attacks, injecting commands or interferences for malicious
purposes. Despite existing efforts on defense against ultra-
sound injections, there is a critical gap in addressing the risks
posed by other out-of-band injections. To bridge this gap, this
paper proposes MicGuard, a comprehensive passive detection
system against out-of-band attacks. Without relying on prior
information from attacking and victim devices, MicGuard
leverages carrier traces and spectral chaos observed by in-
jection phenomena across different levels of devices. The
carrier traces are used in a prejudgment to fast reject partial
injected signals, and the following memory-based detection
model to distinguish anomaly based on the quantified chaotic
entropy extracted from publicly available audio datasets. Mic-
Guard is evaluated on a wide range of microphone-based de-
vices including sensors, recorders, smartphones, and tablets,
achieving an average AUC of 98% with high robustness and
universality.

1 Introduction

Microphones capture sound, one of the most important in-
formation mediums, to record auditory aspects of the physi-
cal world and open a door for intelligent machines to com-
prehend’ human sayings. Not to mention telephoning and
music recording, the integration of compact MEMS micro-
phones into wireless and commercial devices have gained
significant prominence in smart home, industrial applications,
and live broadcasting. Microphones serve as vital input inter-
faces in various contexts, exemplified by their use in voice
assistants-enabled smartphones for human-machine interac-
tion [5], anomalous sound detection for fault diagnosis of
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Figure 1: The designed MicGuard detects out-of-band in-
jected signals and protects the microphone-based devices,
promising the security of linked systems and applications

industrial processes [22], and television broadcasting for com-
munication and recreation [12].

On the other side of the coin, the inherent open nature of mi-
crophones also unlocks a door for attackers to inject malicious
out-of-band signals [13,28,30] for deception and sabotage.
Surveying most injection attacks on microphones, out-of-band
signals refer to signals that are outside the normal frequency
range or transmission path of an audible pattern, such as ul-
trasound, laser, and electromagnetic (EM) signals. Given that
these signals own high concealment and intrusiveness, partic-
ularly, attackers can perform ultrasound-based or laser-based
attacks (i.e., dolphinattack [53], lightcommand [39]) to inject
voice commands into voice-controlled devices. Additionally,
they can also emit EM interference [23] to manipulate micro-
phone recordings for further compromising linked broadcast-
ing systems or sensor-fusion networks [38,40].

However, prior works against injection attacks on micro-
phones are limited to mitigating in-band injection (i.e., audible
attacks [26,47]) or further including ultrasound attacks [36],
overlooking risks associated with the out-of-band injection.
To fill this gap, we aim to design a comprehensive counter-
measure against all mainstream out-of-band injection attacks.
Compared with existing detection schemes, the desired detec-
tion facing out-of-band signals needs to meet the following
requirements: 1) No extra hardware: the required sensors or
hardware modification (e.g., speakers, IMU, mic arrays) in
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some detection methods [18,41,52] bring about additional
burdens for users and are unavailable for low-level mic-based
devices [27]. 2) Independent of adversarial samples: most
deep learning-based detecting mechanisms [15, 26] heavily
rely on the quantity of training attacking samples. This is
unfeasible to collect attacking samples that fully cover all pos-
sible attacking outcomes determined by victim conditions and
attacking modes. 3) Low dataset cost: for ease of deployment,
large amounts of positive data from the target microphone
should not be required. 4) High accuracy and robustness:
it should achieve high accuracy regardless of environment
changes and microphone types.

To satisfy the requirements of usability and efficiency, we
propose MicGuard shown in Figure [, the first passive detec-
tion system against mainstream out-of-band injection attacks
involving ultrasound, lasers, and electromagnetism. The key
insight of MicGuard is to capture common traits caused by
these out-of-band injection attacks without relying on prior
knowledge from attackers or target microphones. By investi-
gating the remaining attacking phenomena across ultrasound,
laser, and EM modalities, we uncover two inherent charac-
teristics: carrier traces and spectral chaos. It is found that
carrier traces in recorded audio are possibly triggered by car-
rier waves serving as modulation and transmission of injection
attacks, depending on victims’ low-pass filters and attacking
power. Based on it, we design a prejudgment stage for Mic-
Guard to pre-reject some high-energy injection signals by
identifying the carrier trace, minimizing computing cost and
operation time. The spectral chaos refers to the disorder of
acoustic spectra caused by out-of-band frequency response
and non-speech radiation (e.g., thermal, electromagnetism).
This is because the forced out-of-band injection definitely
causes extra energy emissions in the transformation of non-
speech analog-to-audio digital, given the internal circuits and
parameters of microphones designed for in-band audio. To
quantify these distortions, we propose the spectra-chaotic en-
tropy, enabling MicGuard to memorize the normal entropy
characteristic and then distinguish the abnormal. We design
the memory-based detection network to store chaotic maps
from normal audio in the feature memory bank. Notably,
our designed detection model solely absorbs normal samples
stemming from open-sourced audio datasets and distinguishes
abnormal ones based on the distribution differences queried
from the memory bank, all without requiring any information
from target devices.

The MicGuard effectively bridges the gap between re-
stricted defense and full-scale attacks to a considerable extent.
It should be noted that the out-of-band attacks examined in
this paper primarily focus on ultrasonic, laser, and EM attacks.
These are chosen as they are among the most prevalent in-
jection types and offer a representative cross-section of the
injection attack landscape. In summary, our contributions are
as follows:

* To the best of our knowledge, MicGuard stands as the

most comprehensive detection system designed to com-
bat out-of-band injection attacks against microphones.

We explore the shared attacking patterns across three
out-of-band injection attacks and uncover two key prop-
erties that can serve as benchmarks for detection. Build-
ing upon these findings, we develop MicGuard, a novel
system capable of detecting anomaly-injected signals
without requiring preliminary data from either attacks or
targets.

We evaluate MicGuard on 16 different levels of
microphone-based devices, including smartphones,
tablets, recording microphones, and sensors. Extensive
experiments show that MicGuard can achieve excep-
tional detection ability with 98% AUC, and is resilient
in ambient noise and attacking parameters.

2 Out-of-band Injection Attack Model

In this study, we introduce the out-of-band attacks on mi-
crophones, involving their vulnerabilities of microphones to
ultrasound, laser, and EM modality, as shown in Figure 2, and
consider the threat model that is also implicitly adopted in
previous work.
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Figure 2: The attacking diagram of those three out-of-band
injection attacks includes ultrasound, laser, and EM attacks,
where the attacker modulates the malicious audio on the out-
of-band carrier waves and transmits it into the microphones.

Attackers’ Goal. The ultimate goal of attackers is to intro-
duce malicious signals into microphones, compromising the
associated systems, such as voice-controlled systems, televi-
sion/radio broadcasting, and industrial automation.

Attackers’ Capability. The victim microphones and
microphones-based devices are commonly seen in daily life,
multimedia, and industrial manufacturing, e.g., smartphones,
recording microphones, and sound sensors. The attacker can-
not gain physical or malware-based access to the target device.
Aiming at successful injection, attackers can employ sophis-
ticated hardware and energy resources to execute one of the
following attacks:

» Ultrasound attack also called dolphinattack [53], is one
of the mainstream out-of-band attacks on microphone sen-
sors. Attackers modulate malicious audio on the ampli-
tude of ultrasound carriers (e.g., > 24kHz) and then trans-
mit the ultrasound to interfere with microphones through
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ultrasonic speaker arrays. Despite ultrasounds operating
at high frequencies beyond the range of human hearing,
the inherent non-linearity of amplifiers inside microphones
inevitably generates multi-order multiplication of signals
upon receiving the modulated ultrasound [35]. The second-
order multiplication consequences render the microphone
to record original audio modulated on carriers inadvertently.
Detailedly, the well-designed ultrasound S, () is formu-
lated as follows [18]:

Sutra(t) = (m(t) + Dcos(2f) (1)
where cos(2mft) denotes an ultrasound carrier with the fre-
quency of f and m(¢) is the modulated audio, e.g., a human
voice command signal saying "Alexa, mute yourself." The
corresponding non-linearity production is m(t) + $m(t)2,
where the second-order production m(t)? is so weak that
it can be ignored. Figure 3(a) depicts the ultrasound at-
tack setup, which consists of three frequency bands (25kHz,
32kHz, 40kHz), high-power ultrasonic speaker arrays, and
two amplifiers. This configuration ensures that the modu-
lated ultrasonic signal is properly fed into the target micro-
phones and remains intact. If necessary, the attack can be
amplified by a high-performance amplifier, and it is effec-
tive within line-of-sight range.

3
25kHz Ultrasonic
Speaker

Amplifier

(a) The setup of ultrasound attack.
Figure 3: The experimental setup of ultrasound attacks is
used and the targeted devices including smartphones, tablets,
recording microphones, and sensors are tested in this paper.

(b) Victim devices.

* Laser attack also known as lightcommands [39], are a
sophisticated means of compromising microphones using
varying laser beams. By precisely modulating the intensity
of lasers to encode audio, attackers can remotely manipu-
late the linked systems, e.g., voice-controlled systems and
live broadcasting. The laser beam is supposed to be fo-
cused on the sound hole as hard as possible, whereby the
laser directly shoots at the diaphragm to cause its vibration
due to photoacoustic effects. The light-induced vibration is
converted to the recorded audio of targeted microphones.
The attacking setup of laser attacks is shown in Figure 4
and can be configured with 450nm laser transmitters at
varying power levels of 100mW, 500mW, and 2500mW,
respectively. The modulation driver of laser attacks are
transistor-transistor-logic (TTL) modulation and amplitude
modulation (AM), respectively.The attacker has remote line-
of-sight access to the target microphone and emits lasers
into its sound hole.

* EM attack targeting microphones in this paper are cate-

Signal
Generator

(a) The setup of laser attack.
Figure 4: The experimental setup of laser attacks and its at-
tacking scenario are tested in this paper.

(b) Attacking scenario.

gorized as low-power intentional EM interference [23, 56],
which manipulates the voltage changes of transducers by
using specifically crafted EM signals. The stealthy injec-
tion of modulated signals on EM carriers into microphones
can be attributed to the following reasons [41,44]: 1) elec-
tronic components such as amplifiers and analog-to-digital
converters (ADCs) in PCB circuits can couple with electro-
magnetic signals to absorb energy, which is also known as
electromagnetic coupling; 2) the connecting wires between
components act as antennas that can receive the invasive
electromagnetic wave. To maximize the coupling effect,
attackers must first determine the resonance frequency of
target microphones using sweep frequency techniques. The
manufactured signals that attackers intend to inject into mi-
crophones are AM-based modulated electromagnetic waves
with a certain resonance frequency. Figure 5 shows the at-
tacking setup for EM attacks, which includes an amplifier
and a USRP. To ensure a high success rate for the EM attack,
position the transmitting antenna as close as possible to the
target or its USB cord, potentially removing the insulation
from the charging wire. The attacking device’s antenna is
positioned close to the victim, potentially making direct
contact with the wires to the charger of the target, and can
also be connected to an amplifier to increase the intensity
of the electromagnetic radiation.

Amplifier

Victim

USRP B210

Device

D
2 Antenna

‘\?-' 0

(a) The setup of EM attack.
Figure 5: The experimental setup of EM attacks and its at-
tacking scenario are tested in this paper.

(b) Attacking scenario.

3 Preliminary Analysis

Before we design a defense mechanism against out-of-band
injections, it is necessary to analyze the consequence aris-
ing from these injection attacks and uncover their common
characteristics. The characteristic is the key to detecting all
injected traces across various microphones.
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Figure 6: The measured spectrum of sampled sound from the microphone under ultrasound, laser, and EM attacks. The victim
devices includes smartphone, recording microphones, and sensors, under ultrasound. TTL: laser attacks under TTL modulation.

AM: laser attacks under amplitude modulation.
3.1 Trait 1 : Carrier trace

We execute the three out-of-band injection attacks on
commonly-used microphones: microphone sensors, record-
ing microphones, and smartphones. The attacking setups em-
ployed for these attacks are described in Section 2, and the
victim microphones are shown in Figure 3(b). The injected
results recorded by microphones are illustrated in Figure 6.
The laser attacks are executed by TTL modulation and AM,
respectively. The attacking results of TTL laser or AM laser
are labeled by TTL or AM in the figure caption. The carrier
frequency of ultrasound attacks and laser attacks under TTL
is 32kHz and 16kHz, respectively. The 16kHz/32kHz in laser
attacks is the frequency of emitted pulse of TTL laser, which
stands as the carrier frequency of modulated audios.

Looking deeply at each spectrum of injected audio, we find
that some frequency traces like straight lines span the entire
timeline, as seen in Figure 6(b)(c)(e)(g)(j). Such frequency
traces only happen in specific frequency points, whatever
the types of victim microphones. Detailedly, a line of 16kHz
frequency trace occurs in ultrasound-injected results of iPhone
Xr and recoding microphones (i.e., Llano, Gtmd). Regarding
the cause of this phenomenon, the observed frequency traces
are the result of frequency shifting a single-frequency signal
during the ADC sampling. Based on the following sampling
formula:

Gl =lr-mil <t omez, @

where a sinusoid of frequency f Hz is sampled at f; sam-
ples/sec, and the sampled sinusoid of frequency f, is folded

in the band 0 to f;/2. By substituting the 48kHz sampling rate
fs and 16kHz frequency traces f, in Eq. 2, we can derive that
the frequency value f of the signal being shifted is 32kHz. In
a similar vein, look backing at the TTL laser injection results,
it can be obtained that the frequency traces on the spectrum
of laser injection results from a 32kHz or 16kHz.

Remarkably, the frequency value is exactly equal to carrier
Jfrequency. 1) Laser-injected trace attributed to the carrier: In
laser attacks, the laser frequency range comprises the carrier
wave (i.e., 16kHz) and modulated audio band, which does
not extend beyond 16kHz significantly. Moreover, only TTL
laser attacks can cause a straight trace in a spectrum. Whereby
TTL-modulated lasers require a carrier while AM-modulated
lasers do not, the trace effect is attributed to the carrier wave.
2) Ultrasound-injected trace attributed to the carrier: However,
it is generally seen that the carrier wave should be filtered
out after the microphone low-pass filtering (f > the cut-off
frequency of the low-pass filter) and cannot be downsam-
pled through ADC sampling. Practically, the gain-magnitude
frequency response will gradually decay beyond the cut-off
frequency of the low-pass filter (e.g., the cut-off frequency
at 24kHz), rather than abruptly dropping to zero. Thus, the
carrier with high power can bypass the low-pass filter. Par-
ticularly for professional recording microphones, the cut-off
frequency of the low-pass filter is looser, which loosely allows
carriers to pass through.

However, why does the phenomenon of carrier traces not
exist in the injection results of EM attacks? To answer it, we
should first understand the role of carrier signals among these
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three injection attacks and analyze whether it can cause car-
rier traces in recordings of victim microphones. 1) Ultrasound
attacks rely on ultrasonic carrier signals to modulate audio
signals that adversaries want to inject and transmit into targets.
The ultrasonic probe will inevitably emit ultrasonic waves
that will be downsampled by the ADC, given that the internal
low-pass filter does not entirely attenuate them. 2) Laser at-
tacks choose a laser beam driven by TTL modulation wherein
the carrier signal is a PWM optical signal. The carrier signal
will vibrate the microphone’s diaphragm consistent with its
frequency so that the victim can record the carrier. Note that
if the laser driver is amplitude modulation (at a much higher
cost than TTL) and no carrier signal is required, then there
will be no carrier trace in the laser injection results. 3) While
EM attacks also need carrier signals for injection, the elec-
tromagnetic carrier is used to the electrostatic couple and is
neither the actual sound nor sound source inside microphones.
Thus, EM attacks cannot bring about carrier traces.
Insight 1: Considering the potential occurrence of car-
rier traces in the results of ultrasound-induced and laser-
induced attacks, we can leverage the characteristic of car-
rier traces to quickly pre-determine whether an out-of-band
attack exists.

3.2 Trait 2 : Spectral chaos

While we have uncovered a trait to identify the attacking
trace, its limited applicability drives us to explore additional
detection trait that fulfills the following conditions: 1) Dis-
criminability: this trait relies heavily on the distinctive char-
acteristics of out-of-band injection attacks rather than normal
sound; 2) Stability: This trait consistently exhibits strong
reliability across all microphones.

Before we traverse all invented statistical or acoustic fea-
tures, we first analyze the analog-to-digital process of micro-
phones when facing out-of-band signals or sound, respectively.
A MEMS microphone is an acoustic-electrical transducer that
translates air pressure into an electrical quantity. The out-
put voltage Vp of MEMS microphone can be modeled as a
variable capacitor formed by a flexible membrane subject to
incident pressure Pg [42]:

KCoVpPs

Vo = oA (3)
where A is the area of capacitor plate, €y is the vacuum di-
electric permittivity, Vp is the biased voltage, Cj is the initial
capacitance in the absence of sound and x is the deforma-
tion sensitivity. For a linear microphone, the corresponding
Fourier transformation is Vo (®) = Hyic(0)Ps(®) and H ()
is the frequency response function. When high-frequency
signals, e.g., ultrasound and electromagnetic signals, flow
through analog circuits of microphones, they will induce par-
asitic capacitance C or inductance L and thereby enhance the
nonlinearity, simply formalized as: Hypc(©®) = Hypic (W) m% or
Hyjie(©) = Hypie(®) joL. Obviously, the out-of-band signals

can cause deviations from the intended frequency response,
resulting in distorted acoustic recordings. Moreover, since
the hardware component of microphones is designed for in-
band signals, the components cannot fully handle unwanted
out-of-band signals, thus creating by-products, i.e., multiple
harmonics and, in severe cases, crosstalk. According to the
distortion measurement of the acknowledged formula [20]:

Y , Power(m,) @

Power(®y)
the level of distortion is defined by the ratio of harmonic
power to fundamental power. The harmonics originating from
out-of-band sources substantially introduce distortions and
chaos in sampled voltage.

Building upon the above analysis, we consider the distor-
tion of recorded audio as an additional trait to identify the
out-of-band injection occurrence. We leverage the concept
of entropy, a well-established measure in information theory,
to quantify the level of spectral chaos in audio and assess
its resilience. Following the entropy principle introduced by
Richman et al. [33], we utilize sample entropy to quantita-
tively assess the chaos of audio samples recorded from diverse
victim devices exposed to various out-of-band injection sce-
narios. It is noted that audio samples contain distinct semantic
content like open the door,” and each sample has a dura-
tion of 0.8-3 seconds with a 48kHz sampling rate. In Figure
8, the entropy evaluation demonstrates /) high distinctive-
ness: the original audio (avg: 0.0798) exhibits lower entropy
compared to adversarial audio (avg: 0.3617, 0.6111, 0.3736),
indicating that the injected audio has intense chaos; and 2)
stability: the high entropy of adversarial audios is consistent
across different attacks, injected content and devices settings.
These findings encourage us to design a detection method
that leverages entropy information from the chaotic nature of
microphone-recorded audios for out-of-band attack detection.

THD =

Insight 2: Out-of-band signal injection brings about dis-
tinct chaos across various types of victim devices, which
can be employed as a key trait to detect attacking audio.

4 System Design

4.1 Prejudgment

As discussed in Section 4.1, the presence of carrier traces
in recorded audio can serve as a prejudgment criterion to
proactively reject signals arising from partial out-of-band
attacks. This prejudgment module aims at fast detection with
minimal computational overhead and operational time.
Notably, carrier traces in spectrums exhibit a horizontal
line across the whole time domain. Based on it, we only need
to detect the existence of horizontal lines in audio spectrum
received by microphones to determine the abnormal out-of-
band signals. In terms of straight-line detection, especially
in image processing, there are several classical algorithms,
such as Hough line detection [2] and line segment detector
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Figure 8: The calculated entropy results of received audio
across different devices under different out-of-band attacks

(LSD) [14]. However, these methods require complex iterative
computations and parameter adjustment, and they are more
adept at handling high-quality images rather than chaotic
images, making them unsuitable for the system prejudgment.
In MicGuard, we design fast carrier trace detection, as detailed
in Algorithm 1.

Algorithm 1 Fast Carrier Trace Detection
Require: A sample of recorded audio A
Ensure: The detected carrier trace C

1. [S,f,t] =STFT(A);
S = Normalize(S);
CarrierTemplate = ones(1,length(r));
/*Calculate the correlation between each frequency line
and carrier template*/
5: for each frequency point f; in S do
6:  Coeff(i) = corr(CarrierTemplate,S(f;,:));
7: end for
8
9

Bl

o [Corrpax, fuaxindex) = max(Coef f);

. Calculate the slope Ls of S(fuyaxindex,:)s
10: if Ly — 0 and Corrpygay > Threshold then
11:  Find the carrier trace C = S(fyaxindex,:);
12: else
13:  No carrier trace in A;
14: end if

Once the microphone receives an audio sample A, the pre-
judgment module first performs short-time Fourier transform
(STFT) on A to obtain the STFT matrix S where time frames
span the columns and frequency frames span the rows. Con-
sidering that the carrier trace in the time-frequency diagram is
the same as a straight line in shape, we construct a horizontal
line template to match all frequency lines and locate the car-

rier trace by searching for the maximal correlation coefficient
between each frequency line and template, as line (3)~(8) in-
dicate. Higher correlation coefficients indicate that the energy
distribution at the specific frequency point is closer to the hor-
izontal line. After finding the frequency line with the maximal
correlation coefficient, we calculate the slope of the selected
frequency line to further judge whether the energy distribu-
tion is uniform. If the slope is approximately zero and its
corresponding frequency line is highly relevant to templates,
the system detects the carrier trace from out-of-band injection
and rejects the audio sample at a fast response. Figure 9 shows
the detection result of our algorithm and provides a compar-
ison with other line detection algorithms (i.e., Hough line
detection and LSD). While computer vision methods struggle
to detect the horizontal carrier trace except for multiple thin
broken line segments in a disordered spectrum, our approach
can accurately locate the adversarial carrier required for cer-
tain out-of-band attacks. Considering the extreme recording
scenario where users record single-tone signals, it is feasible
for users to optionally store these pre-rejected signals after
detectlon or turn off the prejudgment just this once.

(a) Hough.
Figure 9: The comparison of our proposed algorithm with
Hough line detection and LSD.

(b) LSD. (c) Our.

4.2 Spectra-chaotic entropy extraction

Although we have built up a prejudgment stage to protect
against some of the high-energy malicious signals speedily,
there is an urgent need to set up a subsequent detection mech-
anism to re-detect signals that pass through the prejudgment.
The goal of this section is to extract the chaotic feature of cap-
tured sound that is discussed in Section 4.2, as the criterion
of the following detection model.

The mismatch between out-of-band signals and micro-
phone hardware settings will give rise to chaos in the final
digitized audio. It is necessary for MicGuard to investigate
how to extract intricate chaos comprehensively. The entropy
measurement always functions on an entire time sequence,
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equivalent to downsampling the one-dimensional acoustic
signal to a single value. Such high compression measurement
overlooks multi-leveled disorders in injected audio and is un-
suitable for out-of-band anomaly detection. To cope with it,
MicGuard designs spectra-chaotic entropy extraction to avoid
compression of informative entropy. Firstly, we use STFT on
the audio sample to acquire a two-dimensional spectral matrix
S where the frequency energy distribution changes over time.
The STFT utilizes a Blackman window with a size of 512
points and an overlapping of 375 points. We adopt the local
aggression on S by dividing S and composing each patch-level
entropy representation without losing the time-frequency res-
olution and usability of the chaos feature. Mathematically, the
patch window N with the patch size of p slides in spectrum S
and locally aggregates information at position (x,y):

Np(ey) = {8l =2 xt Bl e =L v+ 21 )
Then, we apply the entropy function on N, (x,y) to yield the

spectra-chaotic map E,, as follows:

Eﬂ(xay) = fentr()ﬁ)'(NP(xvy))' (6)
Several optional entropy measurements, including power spec-
trum entropy [51], sample entropy, and local entropy [4], can
substitute for the entropy function feropy. To determine the
entropy function, we utilize t-distributed stochastic neigh-
bor embedding (t-SNE) to assess the distinctiveness of the
spectra-chaotic map across original audio and out-of-band in-
jected audio. The visualization results of dimension-reduced
entropy maps are shown in Figure 10. It is noted that the
experimental data for analysis is sourced from Section 3.2.
The corresponding inter-class distances are 65.50, 30.50, and
40.56, wherein the power spectrum entropy owns the largest
distance between in-band and out-of-band classes. To sum up,
the power spectrum entropy is chosen as feurro py-

Original audio Ultrasound attack Laser attack @ EM attack

x5

30 20 A0 0 io 30 5 05 BT 0 510
(a) Power spectrum en- (b) Sample entropy. (c) Local entropy.
tropy.
Figure 10: The visualized comparison of different entropy

function on original samples and injected samples.

4.3 MicGuard Memory-based Detection

Following the extraction of spectra-chaotic maps, this sec-
tion aims to identify anomalous instances resulting from out-
of-band attacks, which exhibit notable deviations from the
normal audio samples. In realistic detection applications, the
characteristics of anomalies can not be observed during the
model training phase due to the unexpectedness of ultrasound,
laser, and EM signals. Additionally, for practical ease of use,

it is advisable to minimize the acquisition of normal data from
the microphone to be protected. To address these issues, this
paper designs the MicGuard memory-based detection model,
as shown in Figure 11, which memorizes the distribution of
the normal-only from open-source audio datasets and detects
the outlying features across different attacking modalities.

4.3.1 Memory bank construction

Feature encoding. The first stage is the encoding of spectra-
chaotic entropy maps that will be stored to construct a memory
bank [9,34]. The memory bank is a substantial feature dataset
that models the normal distributions at various hierarchies of
chaotic maps. Upon receiving an input feature map, MicGuard
memory bank will be queried to retrieve the most relevant
items to identify whether it is similar to the memory storage.
After producing an input chaotic map x; from a training
dataset X = {x|,x2,...,x, } consisting only of n normal sam-
ples from open-source audio online, the system utilizes the
convolutional neural network (CNN) to extract the hierar-
chical embedded representations. Inspired by unsupervised
classification tasks in ImageNet [10], the pre-trained CNN
not only has sufficient downsampling and distinguishing in
feature space but also incurs less training cost. We employ
the frozen WideResNet50 [50] fully pretrained on ImageNet
database as the feature encoder, composed of three bottle-
necks {FL, Fag, Fr} and the last average pooling layer
Favg- Unlike classic residual neural networks (ResNets), the
bottleneck of WideResNet50 has the core idea of widening the
network by increasing the number of filters. Each bottleneck
block has three convolution layers with twice the number of
channels as ResNet and uses dropout for regularization. Aug-
menting the quantity of feature channels allows the network
to refine a broader range of patterns, making it more adept at
understanding intricate features and variations. Empirically,
we make use of the intermediate feature maps from these four
layers (i.e., three bottlenecks and an average pooling layers).
These four feature maps are uniformly upsampled and then
concatenated along the channel axis to form the multi-scale
feature maps z; = { F L (x7), F2,(xi), Frog (xi), Favg (xi) }. No-
tably, these feature maps are no longer original chaotic maps
but rather their high-level compressed representation that con-
tributes to the data distribution in the network memory.
Feature adaption. The following step is to fine-tune these
feature maps on normal audio-oriented feature space rather
than universally oriented domains, facilitating anomaly detec-
tion. This is because pre-trained encoder is not specifically
designed for chaotic feature extraction. We propose using the
deep support vector data description (DSVDD) [37] to learn
a hypersphere that extracts common characteristics across
normal data while eliminating non-informative interferences.
The hypersphere encloses the input maps and clusters them
densely within a feature space oriented toward normal au-
dio. With the input features datasets Z = {z;,22,...,2,}, We
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Figure 11: Illustration of MicGuard. Phase 1: The MicGuard
encodes the spectral-chaotic maps extracted from open-source
audio datasets to construct a memory-based feature bank.
Phase 2: Once the input spectral-chaotic map is processed by
encoding and adaption, MicGuard searches the memory bank
to calculate the Mahalanobis distance between the input and
stored normal characteristic distribution to reject the anomaly.

initialize the mapped results as @ (Z;®), where ® is the map-
ping function with adaptable parameters ®. The DSVDD em-
ploys deep neural networks as & to obtain high-dimensional
representation and process massive data. The objective opti-
mization is to learn the network parameters with minimizing
the volume of a data-enclosing hypersphere, formulated as
follows:

. 1 ¢ 2 7L 2
min, 1 #(2:0) ~cl} + 5 [0l )

The first item of optimizing objective Eq.7 is the quadratic
loss of the distance between the every mapped representation
@ (z;;®) and the center of the hypersphere c. The second item
is a network weight decay regularizer with hyperparameter A
to prevent over-fitting. The ||-||» denotes the Frobenius norm.
The DSVDD contracts the hypersphere by progressively ag-
gregating the normal inputs closer to the center of the sphere.
As aresult, we obtain the adapted feature bank M = & (Z;0)
that can be used for subsequent anomaly inference.

4.3.2 Anomaly Inference

For each test input ¢; from the above processing (i.e., encoding
and adaption), the inference phase measures its similarity to
the registered feature bank M = {m; = ® (z;;0),i € [1,n]} to
identify whether it is out of the normal distribution. However,
owing to environmental fluctuations and unstable acquisition
equipment, noisy data is inevitably in the audio datasets or
the received test input. Most unsupervised detection algo-
rithms are susceptible to noise factors because they treat all
information equally. To alleviate this noise impact, with the
assumption that the amount and intensity of noise are less
than the norm, we set multivariate Gaussian to model the joint
probability density of multiple characteristic dimensions. The
key advantage of using a multivariate Gaussian distribution
is that it only fits the ordered principal feature distributions

while disregarding out-of-order fluctuations such as noise.
The multivariate Gaussian distribution model on memory
bank M is defined as:

I S B YTV SV
pMln D) = e -3 (M2 M) | 8

where u is the mean of M and X is the variance-covariance

matrix by using maximum likelihood estimation. Under the
Guassian distribution with mean u and convariance X, a Ma-
halanobis distance D between a test input point #; and the
modeled distribution is measured as:

D= \/(fi—#)Tzfl(ti—ﬂ)- ©)
The Mahalanobis distance D is interpreted as the anomaly
score, with a higher Mahalanobis distance indicating a greater
outlier score. The #; with an anomaly score beyond the thresh-
old boundary is judged as the out-of-band injection.

5 Evaluation

To evaluate our designed system, we pre-train MicGuard only
based on audio datasets available online and collect out-of-
band spoofing data. We employ diverse microphones and
microphone-equipped devices to record the injected sound
for evaluation in different conditions.

5.1 Evaluation Setup

Hardware Setup. The out-of-injected attacking setups have
been described in Section 2. For victim devices, we employ
smartphones, tablets, recording microphones, and microphone
sensors. All subsequent experiments, including overall perfor-
mance (Section 5.2) and robust analysis (Section 5.3), employ
the identical attacking setup as delineated in our threat model
(Section 2).

Dataset. Since MicGuard does not rely on any prior knowl-
edge from the device to be protected, we only need to collect
spoofing audio from diverse microphones and genuine audio
for testing. (1) Spoofing dataset: In this phase, we utilize those
three types of spoofing devices to inject audio samples into 16
devices, whose content includes voice commands, speeches,
and artificial noises. After removing incorrectly recognized
samples, we get 333,655 spoofing samples with 16kHz sam-
pling rate. (2) Genuine dataset: In this phase, we recruit 20
participants to speak voice commands, which will be recorded
by the same 16 microphone devices as in the spoofing audio
collection. The experiments are under the approval of the IRB
of our institutions. During the experiments, all participants
are informed and approved of the purpose of our experiments.
After splitting the audio and removing invalid samples, we col-
lect 31,844 samples with 16kHz sampling rate. (3) Training
dataset: In the training phase, we choose open-sourced Lib-
riSpeech [31], a corpus of English speech, to fully pre-train
the MicGuard memory-based detection model. We divide
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Table 1: Experiment devices, category, and AUC results. We evaluate the detection ability of MicGuard among diverse devices
and differnt powers of injection attacks in an office environment with a background noise with 30dB SPL.

Num Catesor Devices Ultra Attack(%) Laser Attack(%) EM Attack(%)
' oy 3W  6W  15W 0.IW 05W 25W 20dBm 30dBm
1 Smartphone iPhone 6s 99.63 99.25 98.53 98.47 9827 98.89 98.95 99.63
2 Smartphone iPhone 14 98.10 99.21 99.25 9891 99.57 9795 98.30 97.81
3 Smartphone Huawei P10 99.64 98.54 99.31 98.23 98.46 9790 99.04 98.08
4 Smartphone MI 5s Plus 99.62 98.54 99.31 98.23 98.17 98.81 99.11 99.42
5 Smartphone Nubia 08.28 98.72 98.12 98.73 98.28 99.28  99.22 98.98
6 Smartphone Redmi K50 99.32 99.14 98.65 98.76 9897 99.57 98.66 98.47
7 Tablet iPad 98.07 97.86 99.03 99.13 98.70 98.05 97.96 98.56
8 Tablet iPad Pro 98.60 9833 99.15 99.49 9847 98.88 98.24 98.29
9 Recorder Llano 99.54 97.89 99.23 99.62 99.38 98.69 99.54 99.32
10 Recorder HP 99.31 9798 98.32 98.84 9891 97.82 98.09 98.62
11 Recorder Philips 99.62 9936 99.09 98.06 98.84 98.44 99.37 99.53
12 Recorder SONY ECM-P50 99.05 99.12 99.04 98.08 99.54 98.11 98.82 98.15
13 Sensor ADMP401 97.87 9840 98.11 98.29 9834 9731 97.69 98.30
14 Sensor MCP6022 99.41 99.61 98.03 99.40 99.24 9839 9795 98.08
15 Sensor SPH0645 99.57 97.87 98.75 98.28 99.23 98.80 98.64 98.06
16 Sensor INMP441 99.09 98.63 99.62 9935 9852 98.11 98.00 99.45
l Ultrasound attack Laser attack EM attack ‘ 0 — T T T — ~100 -
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Figure 12: The Robustness analysis: the performance of MicGuard under ambient noise, injected content, and training size

impact.

2,438 pieces of samples with a 16kHz sampling rate from
LibriSpeech as our training dataset to construct a feature bank.

Metrics. We adopt the following metrics to evaluate the per-
formance of MicGuard: False positive rate (FPR): it is the
probability that the system fallaciously accepts the spoofer.
False rejection rate (FRR): it is the probability where the sys-
tem refuses access to the genuine. True positive rate (TPR):
it is the probability that the system correctly accepts the nor-
mal audio, which is also called Recall. The receiver operating
characteristic area under the curve (AUC): it is defined as the
area under the ROC curve. When the number of positive and
negative instance is imbalanced, AUC can provide a more
robust evaluation of the model’s performance Accuracy: it is
the measurement of overall correctness in classification. Note
that the unit of these metrics is percentage(%)

5.2 Overall Performance

We use the attacking setup as shown in Section 2 to per-
form those three out-of-band attacks and evaluate the overall
performance of MicGuard in four categories of microphone-
equipped products listed in Figure 3(b), including smart-
phones, tablets, recorders, and sensors. These products serve
as voice interaction, social communication, industrial percep-
tion, and more. For each microphone device in evaluation, we
set the attacking setup close to the target at a distance of 15cm.
The default experimental environment is an office with back-
ground noise with a 30dB sound pressure level (SPL). We
repeat the three out-of-band injection attacks on each device
and also collect genuine audio from each device to measure
the anomaly inference of MicGuard. In order to comprehen-
sively assess the attacker’s injection capability, we variably
adjust the transmitted power of injection setups. The overall
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Figure 13: The Robustness analysis: the detection distribution (FPR%) of MicGuard facing out-of-band injection attacks across

various positions.

experimental results of MicGuard are shown in Table 1. Mic-
Guard demonstrates remarkable effectiveness in countering
out-of-band injected audio while accurately processing au-
thentic samples across a wide range of devices. Specifically,
MicGuard achieves an average AUC of 98.8%. We observe
that there is a slight decrease in the AUC of the ADMP401
sensor. Presumably, unlike commercial microphones, such
sensors have relatively poor audio sensing capabilities and oc-
casionally produce loud noises or even garbled audio. Despite
increasing the power of injection attacks, MicGuard maintains
a high AUC above 97%. This is attributed to the fact that no
matter how much power is injected, they invariably induce
disruptions in the recorded audio.

5.3 Robustness Analysis

Noise. To investigate the impact of noise, we collect spoofing
audio from three injection attacks and genuine audio under
different types and strength levels of noise, respectively. Two
commercial loudspeaker boxes play white noise and speech
noise at the SPL of 50dB, 60dB, and 70dB. After collecting
these audio, we feed them into the pre-trained model to cal-
culate the AUC. Figure 12(a) shows the AUC of detection
results, from which we can find that the averaging AUCs of
all injection attacks are 98.61%, 98.20%, 96.79% under white
noises and 97.66%, 96.88%, 95.90% under speech noises.
The AUC decreases by up to 3%, and the higher the ambient
noise, and the extent of the reduction is positively associated
with the increase in ambient noise level, especially high-level
noise. This is because the benign audio is falsely rejected
since the added noise, similar to chaos, potentially disturbs
the judgment of the model. The AUCs under speech noise are
lower than those under white noise. It is speculated that the
added speech noise may mask the original injected malicious
signals, potentially causing a slight increase in the FPR.
Injected Content. Though we have obtained overall detec-
tion results on spoofing audio signals containing voice com-
mands and speeches, it is unclear to what extent the semantic
content modulated on out-of-band signals affects MicGuard
detection outcomes. In this case, we divide and select the pre-
viously collected dataset into the commands, speeching, and
dialogue datasets. Moreover, considering the limited language
(i.e., English), we add two new spoofing datasets where the

modulated content is Chinese commands and noise signals
like pulse, Gaussian, and thermoelectric. The added noise
data can furthermore confirm the anti-interference property
of MicGuard. Figure 12(b) demonstrates the averaging AUC
of 98.94%, indicating the robustness to the injected content.
When the injected language is Chinese, there appears to be a
slight decrease in AUC. This can be attributed to the fact that
the pre-training dataset exclusively comprises English data,
thereby leading to a more robust feature representation in the
model for English inputs. Additionally, we attempt to inject
noise to assess whether these artificial noises can bypass the
decision boundary of models by accident. The high AUC sur-
passing 99% under noise injections demonstrates the robust
performance of our system.

Training Size. It is well-known that the amount of training
data is crucial in deep learning methods in terms of feature
learning and generalizing. In this case, we split the train-
ing datasets into different proportions, namely, from 10% to
100%. Figure 12(c) shows the accuracy, recall, and FPR of
our system with different training set sizes. As expected, the
evaluation results substantiate that increased data for train-
ing achieves higher accuracy and recall. When the training
proportion exceeds 70%, we observe a mere modest increase
in system accuracy. This underscores the notion that merely
augmenting the volume of training data may not enhance the
generalization capacities of models.

Position. It is flexible for adversaries to launch out-of-band
signals at varying distances and orientations from the victim
devices. In this case, we investigate the attacking position on
the effectiveness of MicGuard. Those three types of out-of-
band injection signal launchers are positioned at distances
ranging from Ocm to 60cm and off-axis angles spanning 0 to
45 degrees. In EM attacks, the attacking distance is restricted
by the significant attenuation of electromagnetic radiation
over distance. In realistic experiments, the EM attacking dis-
tance is Ocm to 12cm. For all attacking testing, we only collect
efficient injected signals of victims. To ensure the success of
injection attacks, we increase transmission power or the num-
ber of speaker arrays in ultrasound attacks. In laser attacks,
the laser is aimed at microphones from different orientations.
Note that Ocm means the transmitting probe is tightly attached
to the target device. The visualized FPR of three injection at-
tacks at different positions is illustrated in Figure 13. Overall,
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our system can fully resist malicious signals from various an-
gles and distances, achieving an impressively low FPR of just
0.113%. In fact, with the distance increasing, the energy of in-
jected signals dissipates, even missing partial high-frequency
spectrums, unlike typical audio. As a result, despite the re-
duction in causal-produced chaos, the excessively attenuated
spectrum also exposes its out-of-band characteristics. Further-
more, there is no apparent correlation between orientation
and FPR. It demonstrates that orientation variations have a
minimal impact on the performance of MicGuard.

5.4 Ablation Study

Impact of Prejudgment. To assess the influence of the pre-
judgment module, we devise two models: one without the
prejudgment module (i.e., W/O Pre ) and the other retaining
it intact. Both of them have the same testing data from three
injection attacks and training data. Regarding overhead time,
the comparison experiments run on an Nvidia GeForce RTX
2080Ti with a batch size of 24 and are repeated for 800 trials
to measure the average overhead time. As shown in Table
2, W/ Pre has a small 0.4% improvement in accuracy over
the spoofing injection datasets. Please note, that a reduction
from an average time of 91.2ms (W/O Pre) to 55.0ms for W/
Pre means 1.7 times in running time efficiency. In personal
use and industrial inspection, this is a relevant and significant
runtime reduction. Compared to the W/O Pre method, the
designed prejudgment fleetly detects the carrier if injected sig-
nals are AM modulated on ultrasound and TTL modulation on
laser with no need for arbitrary follow-ups, which will largely
reduce the time complexity. Furthermore, we test the latency
of MicGuard on smartphones. We transfer the pre-trained
MicGuard model into the mobile model for Android and use
the standard Android Studio and Pytorch [32] to deploy it on
the HUAWEI P40 smartphone. The average overhead on the
smartphone is 231.4ms.

Table 2: Ablation studies of the prejudgment. W/O Pre means
the MicGuard system is stripped of prejudgment. W/ Pre
means the MicGuard system with the prejudgment

Method Accuracy Overhead Time
Ultra+Laser | Ultra+EM | Ultra+Laser | Ultra+EM

W/O Pre| 98.87% 98.76% 93.22ms | 89.26ms

W/ Pre 99.32% 99.11% 49.28ms | 60.70ms

Impact of Spectral Chaotic Maps. To investigate the ef-
fectiveness of the proposed spectral chaotic maps, we conduct
several ablation experiments where the input is changed into
phase spectrum, magnitude spectrum, and raw signal with-
out processing. Furthermore, we measure the combination
benefits of spectral chaotic maps and each component of our
method. The detailed experimental settings are as follows:

* Phase+W/ Adaption, where the input to the memory-based
detection model is phase spectrums of received audio of

microphones and the detection model still maintains the
feature adaption module (W/ Adaption).

* Magnitude+W/ Adaption, where the input is magnitude
spectrums.

e Raw+W/ Adaption, where the input is raw time-domain
signals.

¢ Chaotic+W/O Adaption, where the input is spectral chaotic
spectrums to the detection model that does not include
feature adaption.

* Chaotic+Resnet50, where the input is chaotic maps but the
feature encoding network is ResNet50 instead of WideRes-
Net50 in detection designs.

 Chaotic+EfficientNet, where the input is chaotic maps and
the feature encoding network is EfficientNet network.

* Ours, where the input is chaotic maps and the original sys-
tem design retains integrity.

These above models are fully pretrained on the LibriSpeech
database and equally evaluated on the same dataset. Table 3
presents the distinct results of model settings on out-of-band
injection detection. Firstly, take a look at the case of changing
the input feature to the detection model. Only the chaotic map
has high performance, while conversely, all of the other re-
maining features exhibit unsatisfactory. This is because those
conventional features cannot capture the inherent commonali-
ties belonging to the consequences of out-of-band injection.
At this time, when feature adaption is not used, the system
experiences a reduction in accuracy and FRR, in compari-
son to the Chaotic+ResNet50 and Ours. By inducing normal
features to be clustered more discriminatively, the memory
feature library stores characteristic distributions that closely
resemble acoustic disorders, which considerably enhances the
ability to distinguish abnormalities. Lastly, there remains a
question as to whether WideResNet50, when used as a feature
encoding network, excels in transfer learning compared to
other networks. According to the results of ResNet50, Effi-
cientNet, and ours, it can be seen that the network with low
model complexities performs worse in transfer learning of
injection detection. The WideResNet50 has more convolution
filters to produce wider feature maps that broaden feature
spaces, allowing fine-tuning of the model on a new dataset
with different characteristics.

Table 3: Ablation studies of the spectral chaotic maps, feature
adaption and feature encoding.

Method Accuracy(%) | FPR(%) | FRR(%)
Phase+W/ Adaption 74.71 24770 | 31.47
Magnitude+W/ Adaption 76.22 23.03 | 31.60
Raw+W/ Adaption 73.58 25.89 | 31.92
Chaotic+W/O Adaption 9291 7.11 6.87
Chaotic+Resnet50 93.98 5.89 7.43
Chaotic+EfficientNet 9241 7.53 8.19
Ours 99.37 0.60 0.90
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Table 4: Comparison of defense systems against out-of-band injection attacks on microphones.

System Sensing Defenge Hardware No Attac.k No Targe.:t Defense Scope
Type Mechanism Independent Data Required Data Required Ultrasound Laser EM
TransShield [41] passive Extra similar circuits No Yes No X X Vv
Zhang et al. [56] passive Bias voltage in sampling No Yes Yes X X v
Audio-visual [15] passive Sensor fusion No No No v X X
AIC [18] active  Ultrasonic demodulation No Yes Yes v X X
Liei al. [26] passive Multichannel microphone No No No v X X
EarArray [52]  passive Microphone arrays No No No v X X
NormDetect [25] passive Patterns in spectrum Yes Yes No v X X
MicGuard passive Prejudge and detect chaos Yes Yes Yes v v o/

6 Discussion

6.1 Defense Scope

MicGuard focuses on the out-of-band injection attacks target-
ing microphones, expanding the existing defenses against
more attacks and ensuring broader application coverage.
Nonetheless, taking into account the various attack method-
ologies and target devices, certain limitations and potential
improvements require further discussion.

Attacking methodology. There also exist some attacks
aimed at microphones: 1) In-band attack: The easy-to-operate
replay attack and mimicry attack have the possibility to bypass
speaker recognition. Whereas the defense scope of MicGuard
excludes in-band audio, replaying audio and mimicking pro-
nunciation can be effective in evading detection. In order
to extend the defense scope, an alternative approach is to
concatenate an existing in-band detection model [26] sub-
sequent to MicGuard. Those existing detections primarily
identify whether the sound source is from a human being or
not. However, in some cases, the sound source is more than
just the human voice, such as industrial production lines and
live outdoor broadcasts. Thus, researchers are encouraged to
design a more comprehensive detection mechanism for vari-
ous application scenarios. 2) Adversarial attack: We envision
that the adversary has full knowledge of MicGuard system
designs. Grounded on data-driven approaches, the adversary
utilizes adversarial training to craft adversarial samples that
will be modulated on ultrasound, laser, and EM waves. How-
ever, launching such an adversarial attack would still fail in
practice due to the out-of-band effects that inevitably leave
disorganized patterns in the injected audio.

Targeted devices. Inspired by other passive sensors sim-
ilar to microphones, the design ideas of MicGuard can be
transferred into temperature sensors, humidity sensors, and
infrared sensors that also encounter out-of-band threats. The
application scenario of MicGuard is not limited to anomaly de-
tection on microphones and has the potential to be expanded

into equipment failure prediction and production process mon-
itoring.

6.2 Comparative Analysis of Existing Defenses

Compared with out-of-band defenses. In comparison to
existing defenses, as listed in Table 4, MicGuard stands out
as a remarkable solution in the field of out-of-band injection
mitigation from the following perspectives. 1) Hardware inde-
pendent: MicGuard operates independently of extra hardware
components and microphone conditions, unlike hardware-
based defenses and microphone-array methods. This ver-
satility makes it suitable for various levels of microphone-
equipped devices, ranging from low-end sensors and live
recorders to smart home devices. 2) No prior attack data re-
quired: Our system needs no prior attacking data, in contrast
to some detection methods that rely on pre-collected attack-
ing data to train learning models. Due to the labor-intensive
process of gathering malicious data and its unpredictability,
our system is more adaptable to real-world scenarios. 3) No
target data required: Our system also does not require prior
acquisition data of target devices. Instead, it relies on a pre-
trained feature dataset sourced from an open-access audio
database. This approach not only reduces deployment costs
but also enhances user-friendliness. 4) Defense scope: Taking
into account that the majority of prior defense research is re-
strictively focused on a single injection attack type, MicGuard
exhibits a significantly more comprehensive defense capacity,
encompassing a wide array of out-of-band injection attacks.
Compared with liveness detection. Liveness detection is
another well-known defense against in-band injection attacks
on microphones and ultrasound attacks [54]. This technique
resiliently counters voice replay attacks [8] and speech adver-
sarial attempts [1] by leveraging the inherent vitality distinc-
tion between human voices and the audio speaker required
to play spoofing voices. The key difference between liveness
detection and MicGuard is application scope. 1) Limited to
in-band ranges: Due to its reliance on "living traits," liveness
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detection is tailored for human voice recording scenarios such
as voice interaction [43,55]. Though MicGuard is adept at
safeguarding both human and non-human audio recording,
it is not designed to defend against in-band spoofing signals.
Moreover, most liveness detections overlook out-of-band in-
jections like laser and EM waves or, at most, take into account
ultrasonic injections. 2) Requirement of hardware setup: some
liveness detection methods rely on the extra hardware setup,
such as microphone arrays [29], radars [24], IMU [17], and
magnetometer [7], rendering them unsuitable for low-level
microphone-based devices due to either impracticality or high
costs. MicGuard offers a versatile solution applicable across
sensors to high-level tablet computers without requiring ad-
ditional specialized hardware. 3) Need for prior data: Mic-
Guard operates without the necessity of collecting preceding
original and attacking data from victim devices. In contrast,
traditional liveness detection methodologies [3, 6,48] still re-
quire gathering such prior data to delve into biometric features
through deep learning-based training and effectively distin-
guish anomalies. Delving into the strengths and weaknesses
of both MicGuard and liveness detection, there is an anticipa-
tion of their combined application to mitigate both in-band
and out-of-band attacks. The straightforward way is to add the
liveness detection after MicGuard, but this incurs additional
costs in terms of overhead, data, and hardware setup. A more
comprehensive fusion of the two systems requires identifying
the correlation features that underlie in-band and out-of-band
detection, and we will leave it to future work.

7 Related work

Given the increasing risk of out-of-band signals compromis-
ing microphones, ongoing research is dedicated to uncovering
the vulnerabilities of microphones susceptible to out-of-band
injection attacks and introducing mitigation strategies to en-
sure the resilience of microphones.

Out-of-band injection attacks on microphones. Regard-
ing the medium of injected signals, out-of-band injection at-
tacks on microphones can be categorized as /) Ultrasound
attacks, 2) Laser attacks, and 3) EM attacks. 1) Ultrasound at-
tacks first arose from the nonlinearity of microphones [35,53],
whereby microphones can interpret voice commands modu-
lated in the high-frequency band of ultrasound. By optimizing
the arrangement of ultrasonic speakers to transmit disparate
frequency-band spectra of signals, Roy et al. can achieve a
remote attacking distance of up to 25ft [36]. 2) Laser attacks
can directly cause microphones’ diaphragms to vibrate in
response to the amplitude change of the injected laser, first
proposed by Sugawara et al [39]. Some attackers replicate the
laser attack through windows to target in-vehicle VCSs [46]
by virtue of the long-range propagation and penetration of
laser nature, like 110m. 3) EM attacks can induce electrical
currents or voltages inside circuits of microphones due to cou-
pling effects, leading to unwanted sampled data in the pipeline

of the analog-to-digital converter [21,23]. Previous EM at-
tacks need to be in close proximity to microphones owing
to their rapid attenuation. One straightforward way to extend
attacking ranges is to employ power amplifiers [45]. Rather
than resorting to direct injection techniques on microphones,
attackers exploit EM interference to infiltrate televisions [49]
or power chargers to inject commands [11] into VCSs without
physical access.

Mitigating out-of-band injection attacks on microphones
is crucial for maintaining the integrity and security of sens-
ing systems. One line of defense strategies relies on micro-
phone arrays [26, 52] to differentiate the forged ultrasonic
signals by analyzing the variations in multichannel acous-
tic signals. Spectrum features are also regarded as a vital
criterion for distinguishing between sound and abnormal ul-
trasonic signals [25]. Another avenue for mitigating ultrasonic
interference is sensor fusion techniques [15, 16]. By assem-
bling different information from multiple diverse sensors, the
intelligent integrated system rectifies conflicts to avoid erro-
neous judgment. Moreover, He et al. turn to utilize ultrasonic
speakers to actively nullify the pernicious effects of invad-
ing aggressive ultrasounds [18]. In the domain of defense
against EM interferences, researchers tend to modify the orig-
inal hardware [19,41,56] to detect aberrant analog signals
caused by out-of-band EM interference. Most systems are
only concerned with mitigating one type of injection attack,
i.e., either ultrasonic or electromagnetic attack. Regrettably,
the defense against laser attacks has been largely overlooked
despite their potential risks and emerging prevalence. It high-
lights a critical gap in security measures and prompts the
need for heightened attention and proactive countermeasures
to deal with all possible out-of-band injection attacks. This
paper designs MicGuard as an attempt to fill the gap, first
detecting the aberration on microphones induced by all out-
of-band injection attacks.

8 Conclusion

This study tries its best to fill the blank of defense against
out-of-band injection attacks, including ultrasound, laser, and
EM interferences. We unveil the common characteristics un-
derlying these out-of-band injection phenomena and design a
prejudgment and detection system to distinguish the anomaly.
Without the dependency on prior data from targets and at-
tacks, the carrier trace is set as the first criterion, and the
quantified chaos derived from open-source datasets is incor-
porated into the memory-based model for ultimate detection.
MicGuard is comprehensively evaluated on low-level to high-
level microphone-based devices such as sensors, recording
microphones, tablets, and smartphones. It demonstrates ex-
ceptional detection capabilities, achieving over 98% accuracy
against out-of-band attacks even under aggressive conditions.
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