
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Defects-in-Depth: Analyzing the Integration
of Effective Defenses against One-Day

Exploits in Android Kernels
Lukas Maar, Graz University of Technology; Florian Draschbacher,

Graz University of Technology and A-SIT Austria, Graz; Lukas Lamster
and Stefan Mangard, Graz University of Technology

https://www.usenix.org/conference/usenixsecurity24/presentation/maar-defects

Defects-in-Depth: Analyzing the Integration of Effective Defenses against One-Day
Exploits in Android Kernels

Lukas Maar
Graz University of Technology

Florian Draschbacher
Graz University of Technology and A-SIT Austria

Lukas Lamster
Graz University of Technology

Stefan Mangard
Graz University of Technology

Abstract
With the mobile phone market exceeding one billion units
sold in 2023, ensuring the security of these devices is critical.
However, recent research has revealed worrying delays in
the deployment of security-critical kernel patches, leaving
devices vulnerable to publicly known one-day exploits. While
the mainline Android kernel has seen an increase in defense
mechanisms, their integration and effectiveness in vendor-
supplied kernels are unknown at a large scale.

In this paper, we systematically analyze publicly available
one-day exploits targeting the Android kernel over the past
three years. We identify multiple exploitation flows repre-
senting vulnerability-agnostic strategies to gain high privi-
leges. We then demonstrate that integrating defense-in-depth
mechanisms from the mainline Android kernel could mitigate
84.6 % of these exploitation flows. In a subsequent analysis of
994 devices, we reveal a widespread absence of effective de-
fenses across vendors. Depending on the vendor, only 28.8 %
to 54.6 % of exploitation flows are mitigated, indicating a
4.62 to 2.951 times worse scenario than the mainline kernel.

Further delving into defense mechanisms, we reveal weak-
nesses in vendor-specific defenses and advanced exploitation
techniques bypassing defense implementations. As these de-
velopments pose additional threats, we discuss potential solu-
tions. Lastly, we discuss factors contributing to the absence
of effective defenses and offer improvement recommenda-
tions. We envision that our findings will guide the inclusion
of effective defenses, ultimately enhancing Android security.

1 Introduction

Over the past decade, the mobile phone market has reached
an all-time high, with more than one billion units sold in 2023.
Given our daily reliance on mobile phones for communication,
financial transactions, and personal data storage, this surge
in device adoption underscores the critical need for robust
security measures protecting these devices.

1Factors of 1−0.288
1−0.846 and 1−0.546

1−0.846 , respectively.

EF:
ET1 ET2 ET2

CVE root privileges

Figure 1: The exploitation flow EF is a vulnerability-agnostic
chain of exploitation techniques ET, with one ET elevating a
primitive to a more powerful form [8]. EF leverages the capa-
bilities of a vulnerability to gain root privileges ultimately.

Despite the importance of mobile security, recent stud-
ies [13, 27, 43, 61, 67] have revealed that Android’s security-
critical kernel patches often lag significantly behind the main-
stream Linux kernel. In over 20 % of cases, delays exceed-
ing one year occur [61], mainly due to the downstream ap-
proach of most Android vendors. This delayed deployment of
security-critical patches creates opportunities for malicious
actors to attack the Android Linux kernel. While these attacks
would be classified as one-day exploits due to the known na-
ture of their vulnerabilities, they effectively function as zero-
day exploits during the extensive unpatched period. The sever-
ity of this situation is underscored by findings from Google
Project Zero [9, 49] and Threat Analysis Group [50], which
highlight a prevalence of exploits in the wild targeting these
unpatched vulnerabilities in the Android kernel.

On the defensive side, the mainline Android kernel has
seen an increase in vulnerability-agnostic defenses preventing
one-day exploits. While these defense-in-depth mechanisms
may be readily available, their integration and effectiveness
in vendor-supplied kernels are unknown. Consider, for exam-
ple, the case of the Pegasus spyware. Using BadBinder, an
exploit [46] known since 2019, malicious actors can infect
target devices with their payload. While an effective defense
has been available for over 10 years [47], its rollout status
in vendor-provided kernels is entirely opaque. The question-
able deployment or absence of such defenses leaves devices
vulnerable to one-day exploitation flows (see Figure 1), thus
creating a significant security gap in the Android ecosystem.
Malicious actors can exploit this and mount attacks against
insufficiently protected devices based on public exploits.

USENIX Association 33rd USENIX Security Symposium 4517

In this paper, we address the inadequate protection of An-
droid devices against one-day exploitation flows through com-
prehensive analysis. We systematically analyze all publicly
available one-day exploits targeting memory safety vulnera-
bilities in the Android Linux kernel over the past three years,
comprising 26 exploits. In doing so, we unveil the diversity
of these one-day exploits and classify 10 distinct exploitation
techniques. In a subsequent analysis, we examine 8 defense-
in-depth mechanisms present in the mainline Android kernel
and find that they effectively prevent 84.6 % of the previously
identified one-day exploitation flows. This percentage serves
as the ground truth for how secure mobile devices could be if
their kernels were up to date with the defenses enabled. Given
the maximum achievable security, we can quantify the level
of security that is actually reached in Android devices.

For this, we conduct the first large-scale analysis on kernel-
level defense-in-depth mechanisms for Android devices via
a mostly automated approach. We demonstrate a widespread
absence across vendors and uncover flaws in vendor-specific
defenses. In our analysis, we cover Android devices from all
top 7 vendors (e.g., Samsung, Xiaomi, and Huawei), along
with three recognized vendors (i.e., Google, OnePlus, and
Fairphone), covering more than 84 % of the global Android
device share [6]. We analyze devices from 2018 to 2023 using
Android versions 9 to 14 and kernels ranging from v3.10 to
v6.1. In total, we analyze 994 device firmwares and 1533
Android kernel source codes. Our results suggest that the
level of security that is actually reached is severely lacking
compared to the mainline Android kernel.

Our work presents four novel findings. First, we provide
in-depth insights into the absence of effective defenses in
vendor-provided kernels. On average, only 41.5 % of our ana-
lyzed one-day exploitation flows can be mitigated. This varies
across vendors, from 28.8 % for the least (i.e., Fairphone) to
54.6 % for the most secure (i.e., Google) vendor, indicating a
4.62 to 2.95 times worse scenario than the ground truth.

Second, we unveil advancements in two exploitation tech-
niques, enabling malicious actors to bypass the defense in-
tended against the base technique. These advancements are
applicable in all one-day exploitation flows that use the base
technique. While these advancements pose additional threats
to Android devices, we discuss potential mitigations.

Third, we uncover 4 and 2 distinct weaknesses in Sam-
sung’s and Huawei’s vendor-specific defenses, respectively.
These issues impact Samsung devices ranging from Galaxy
A04/A14 to Galaxy S23 5G/Ultra, and, thus, the entire range
of low-end to high-end devices, as well as the entire range
of Huawei devices. We demonstrate that these defenses do
not fully prevent the targeted exploitation technique, or we
demonstrate modified exploits that bypass the defense.

Fourth, we discuss factors that may contribute to the lack
of effective defenses. While we observe a correlation between
older kernel versions and higher one-day susceptibility, we
reveal that susceptibility extends beyond mere version cor-

relation. We present factors such as a lack of importance
of security features and vulnerable configurations, as well
as performance costs (confirmed by Google, Samsung, and
Huawei), which are particularly relevant for low-end devices.
We also make recommendations to Google and downstream
vendors to improve Android security.

We open source2 our tools that detect the widespread lack
of included and effective defenses.

Contributions. The main contributions of our work are
(1) One-Day Exploitation Insights: We analyze 26 one-day

exploits and classify 10 different exploitation techniques.
(2) Defense Insights: Based on these insights, we demon-

strate defenses for the identified techniques.
(3) Defense Inclusion and Effectiveness Analysis: We un-

veil a significant gap between the maximum available
security and that reached by vendor-supplied kernels.

(4) Novel Findings: We present in-depth insights into the
absence of effective defenses in vendor-supplied ker-
nels, exploitation advancements, weaknesses, and factors
likely contributing to the absence of defense.

Disclosure. We disclosed our findings to all 10 vendors.
While some did not respond (e.g., Oppo and Xiaomi), others
(i.e., Google, Fairphone, Motorola, Huawei, and Samsung)
acknowledged our findings (fully or partially), and some of
these patched unsecured phones to enhance Android security.

Outline. Section 2 provides background. Section 3 shows
the high-level workflow. Section 4 presents the one-day anal-
ysis and defense identification. Section 5 presents the large-
scale defense analysis. Sections 6 and 7 discuss potential
solutions and related work. Section 8 concludes our work.

2 Background

2.1 Android Ecosystem and Android Kernels

Android is primarily designed for mobile devices and under-
goes active development led by Google. The Android kernel
is based on the Linux kernel. For major platform releases,
Google specifies compatible launch kernels for new devices
and upgrades kernels for existing device updates.

Historically, vendors maintained separate Linux kernel
trees for each product model, hindering upstream bug fixes
due to vendor-specific code and hardware drivers. Despite the
introduction of monthly Android Security Bulletins in 2015,
prior research [24,67] indicates continued delay in patch inte-
gration. In response, Google introduced the Generic Kernel
Image (GKI) project in Android 11 on kernel versions above
or equal to v5.4, aiming to overcome slow patch adoption.
This initiative separates the Android kernel into a hardware-
agnostic core maintained by Google and vendor-specific mod-
ules loaded dynamically. Moreover, it restricts the Android
kernel to some constraints, such as ABI compatibility.

2https://github.com/IAIK/DefectsInDepth.

4518 33rd USENIX Security Symposium USENIX Association

https://github.com/IAIK/DefectsInDepth

2.2 Kernel Exploitation

Fundamental Kernel Defenses. The Linux kernel employs
defense-in-depth mechanisms to make vulnerability exploita-
tion more difficult. These are included via the configuration
file .config. One fundamental defense is the WˆX policy,
which dictates that sections may never be writeable and ex-
ecutable. Consequently, an attacker cannot simply inject in-
structions for privilege escalation. Kernel Address Space
Layout Randomization (KASLR) randomizes the location
of binary sections at boot time. Thus, an exploit typically
breaks KASLR through a read primitive or a side channel [21].
Lastly, Privilege Access Never (PAN) prevents access to
user-accessible memory while in kernel space, mitigating
the control-flow redirection to userspace.

Kernel Exploitation on Android. The exploitation flow
(see Figure 1) of most Android kernel exploits consists of
three stages: First, an adversary breaks KASLR to identify the
locations of critical structures. Second, the adversary obtains
an arbitrary read-and-write primitive that allows them to
perform the third step, which is gaining full root privileges.

To break KASLR, an adversary typically triggers a memory
safety vulnerability, e.g., Use-After-Free (UAF) or Out-Of-
Bounds (OOB) access, to leak a kernel address. By knowing
the Android kernel binary under attack, the adversary then
computes the kernel base address. Depending on how power-
ful the underlying vulnerability is, the adversary either contin-
ues or re-triggers this (or another) vulnerability to obtain an
arbitrary read-and-write primitive. They then typically ma-
nipulate credentials to elevate their privileges. Furthermore,
they tamper with kernel memory to disable SELinux’s Manda-
tory Access Control (MAC), obtaining full root privileges.

Kernel Heap Attacks. Since most memory-safety vulner-
abilities concern heap-allocated memory [65], dynamically
allocated during runtime, it is a popular attack target.

Use-After-Free. UAF vulnerabilities occur when a re-
source that is still referenced is freed. A typical UAF exploit
works as follows: First, an adversary causes the memory slot
of a vulnerable object that is still in use to be freed. Freeing
the memory slot causes the allocator to reuse the slot for future
allocations. Second, they allocate a reallocated object such
that the vulnerable and reallocated objects simultaneously use
the previously freed slot. Third, they use either the vulnerable
or the reallocated object to obtain a read or write primitive for
the slot. Exploiting a Double-Free (DF) or Invalid-Free (IF)
vulnerability (which are special cases of a UAF, where the
slot is either freed twice or with an offset) works similarly.

In practice, several challenges render such attacks more
difficult to execute. Most vulnerabilities grant only weak write
capabilities, such as zeroing out memory at a particular offset.
Additionally, to successfully exploit a UAF, the adversary
requires knowledge of how the kernel’s allocator (i.e., slab
allocator) reuses memory slots.

There are generally two ways to exploit this reuse: With

in-cache reuse, the adversary reuses the freed memory slot
for another object that lives in the same slab cache. This only
works in caches that contain the vulnerable and reallocated
objects, e.g., kmalloc-* caches. Hence, the adversary is lim-
ited to objects that have the same (or similar) size and the
same allocation properties as the vulnerable object.

The other way is to use a cross-cache reuse [33, 38, 60] at-
tack. Here, the adversary frees all slots of a slab page, prompt-
ing the slab allocator to return the slab page that contains the
vulnerable object to the page allocator. The page is then allo-
cated either as a different type of page or to another slab cache.
This allows them to reuse a memory slot between slab caches
of different types, allocation sizes, and allocation properties.

Out-Of-Bounds. Exploiting an OOB vulnerability [12,65]
with write capabilities follows a similar process. An adversary
triggers the OOB write, often in the form of a linear over-
flow, to manipulate sensitive data in an adjacent memory slot
(i.e., victim object). This sensitive data typically references
a vulnerable object, e.g., through a reference counter or data
pointer [38,42]. The adversary then forces the memory slot of
the vulnerable object into a state where it is referenced twice.
This upgrades the OOB write to be exploited analogously to
the UAF three-stage exploitation flow typically.

3 High-Level Workflow

This section presents the high-level workflow of our study,
depicted in Figure 2. It consists of three main components:
the One-Day Exploitation Analysis and Defense Inclusion and
Effectiveness Analysis, both of which yield Novel Findings.

In the One-Day Exploitation Analysis (see Section 4), we
manually analyze all publicly available one-day exploits tar-
geting memory safety vulnerabilities in the Android Linux
kernel from the last three years. Our goal is to identify the ex-
ploitation flows employed in these exploits. In this context, we
refer to an exploitation flow (see Figure 1) as a vulnerability-
agnostic chain of exploitation techniques that exploit a vulner-
ability to gain full root privileges. An exploitation technique
is a reusable and reasonably generic strategy for transforming
an exploit primitive into a more powerful one [8]. In our study,
we analyze 26 one-day exploits and uncover a diverse range
of exploitation flows, with 10 used exploitation techniques. In
a subsequent analysis, we identify 8 defense-in-depth mecha-
nisms present in the mainline Android kernel v6.1, mitigating
most exploitation techniques and, hence, 84.6 % of exploita-
tion flows. This percentage serves as the ground truth for the
maximum achievable security of mobile devices.

In the Defense Inclusion and Effectiveness Analysis (see
Section 5), we collect Android kernels released by all top
mobile phone vendors (i.e., Samsung, Xiaomi, Oppo, Vivo,
Realme, Huawei, Motorola, Google, OnePlus, and Fairphone)
between 2018 and 2023. Our goal is to determine the inclusion
and effectiveness of defense mechanisms in protecting these
mobile devices. For this, we collect 994 device firmwares and

USENIX Association 33rd USENIX Security Symposium 4519

One-Day Exploitation Analysis (see 4)

Defense Inclusion and Effectiveness Analysis (see 5) Novel Findings

One-Day Exploit Collection

Search for
one-day exploits Exploit collector

Exploit Analysis

Identify
exploit flow

Techniques
classification

Defense Identification

Identify defenses preventing
exploitation techniques

Availability for
kernel versions

Android Kernel Collection

Web crawler Kernel collector

Metadata Extraction

Kernel source
code

Firmware image

Metadata
storage

Defense Analysis

Identified
devices

Inclusion and
effectiveness

Widespread absence of
included and effective
defenses (see 5.3.1).

Advancement in two
exploitation techniques
(see 5.2.3 and 5.2.4).

Weaknesses in
custom defenses
(see 5.2.5 and 5.2.6).

Factors potentially
contributing to this
situation (see 6).

Figure 2: The high-level workflow of our study where indicates fully automated and indicates mostly automated.

1533 kernel source codes. Our analysis reveals that a signifi-
cant portion of the analyzed device firmwares lacks multiple
defenses, and some of the defenses are flawed, leaving de-
vices vulnerable to multiple of the one-day exploitation flows
analyzed in our one-day exploitation analysis.

Our analysis reveals four Novel Findings. First, we reveal
the widespread absence (see Section 5.3.1) of included and
effective defenses against one-day exploitation flows across
vendors. Second, we demonstrate advancements in two ex-
ploitation techniques (see Sections 5.2.3 and 5.2.4). While
these advancements enable bypassing the defense intended
against the base techniques, we discuss potential solutions.
Third, we uncover 4 and 2 weaknesses (see Sections 5.2.5
and 5.2.6) in Samsung’s and Huawei’s custom defense, respec-
tively. Lastly, we discuss (see Section 6) factors potentially
contributing to the absence of effective defenses and offer
improvement recommendations.

4 One-Day Exploitation Analysis

In this section, we elaborate on our systematic analysis of all
publicly available one-day exploits targeting memory safety
vulnerabilities in the Android Linux kernel over the past three
years. We identify and examine 26 exploits, demonstrating
that their exploitation flow uses one or more of the 10 exploita-
tion techniques outlined in Section 4.1. These techniques fol-
low a generic strategy for transforming an exploit primitive
into a more powerful one. In Section 4.2, we demonstrate that
defense-in-depth mechanisms present in the Android kernel
v6.1 can mitigate 22 (i.e., 84.6 %) one-day exploitation flows.
Lastly, Section 4.3 demonstrates that the remaining 4 one-day
exploits either exploit substantially powerful vulnerabilities or
can be mitigated by a defense currently in development [44].

One-Day Exploits. We obtained 26 one-day exploits (see
Table 1) from public sources, e.g., Google Project Zero [49],
Blackhat [35], Github [41], or other websites [58]. Our se-

lection consists of one-days exploiting memory safety vul-
nerabilities, as the Android kernel has established defenses
to prevent their exploitation. By including other vulnerabili-
ties, such as logical (e.g., CVE-2022-22706) and GPU (e.g.,
CVE-2023-33107) flaws, we expect that the susceptibility
to one-day exploits increases as the mainline Android ker-
nel does not yet effectively mitigate them. Our study spans
the last 3 years, from 2020 to November 2023. This aligns
with Google Project Zero’s efforts to track zero-day exploits
targeting Android devices. Earlier public exploits are less
documented, so we focus on this more recent timeframe [48].

4.1 Identified Exploitation Techniques

We observe that most one-day exploits have distinct exploita-
tion flows to convert one or more memory safety vulnerabili-
ties into either an arbitrary read-and-write primitive or code
modification (see Table 1). By examining these exploitation
flows, we identify 10 exploitation techniques.

We refer to an exploitation technique as a strategy for turn-
ing one exploitation primitive into a more powerful one, with
examples of primitives being n-byte OOB write, UAF write,
program counter control, or arbitrary read and write. We clas-
sify exploitation techniques based on strategies that recur over
multiple one-days and are reasonably generic [8]. An example
of a technique is control-flow hijacking, which turns program
counter control into code execution and is used by multiple
one-days. Another example is the unlink operation, which
may turn an OOB or UAF write of a double-linked list into a
once-triggerable write or read primitive.

ET1: Unlink Operation. By exploiting a vulnerability,
an adversary ensures that a victim object resides in the same
memory slot as a double-linked list, i.e., list_head with
next and prev (see Listing 1). The adversary then initiates
the unlinking via list_del, resulting in a write to the victim
object. The one-days CVE-2019-2215, CVE-2019-2025, and

4520 33rd USENIX Security Symposium USENIX Association

Table 1: Exploitation flow used by publicly available one-day exploits, where defense-in-depth mechanisms present in the
Android Linux kernel v6.1 can ✓ or cannot ✗ prevent the exploitation flow. The exploitation flow is preventable depending on ✶
Samsung’s RKP [15] variant. Two one-day exploits ✩ exploit the same CVE with different exploitation flows.

CVE Vulnerabilities Exploitation flow Goal Primitive Preventable
CVE-2019-2215 UAF in-cache reuse → unlink operation → KASLR leak, in-cache reuse → unlink operation → addr_limit overwrite arbitrary r/w ✓
CVE-2019-2025 ✩ UAF in-cache reuse → unlink operation → KASLR leak, in-cache reuse → unlink operation → file overwrite arbitrary r/w ✓
CVE-2020-0030 UAF in-cache reuse → unlink operation → KASLR leak, in-cache reuse → unlink operation → addr_limit overwrite arbitrary r/w ✓
CVE-2021-1968,-1969,-1940 UAF leak attacker-controlled data location, KASLR leak, in-cache reuse → CFH → ret2bpf arbitrary r/w ✓
CVE-2021-0920 UAF in-cache reuse → unlink operation → KASLR leak → pipe_buffer overwrite arbitrary r/w ✓
CVE-2021-1905 UAF cross-cache reuse → tamper allocator meta-data → KASLR leak → CFH → ret2bpf arbitrary r/w ✓
CVE-2022-22265 DF in-cache reuse → KASLR leak, cross-cache reuse → pipe_buffer overwrite arbitrary r/w ✓
CVE-2021-25369,-25370 Leak, UAF KASLR leak, in-cache reuse → file overwrite → CFH → addr_limit overwrite arbitrary r/w ✓
CVE-2016-3809,-2021-0399 Leak, UAF KASLR leak, in-cache reuse → seq_file overwrite → CFH → ret2bpf arbitrary r/w ✓
CVE-2022-20409 UAF in-cache reuse → KASLR leak → pipe_buffer overwrite arbitrary r/w ✓
CVE-2023-21400 DF cross-cache reuse → Dirty PageTable arbitrary r/w ✓
CVE-2022-28350 UAF cross-cache reuse → Dirty PageTable arbitrary r/w ✗/✶
CVE-2020-29661 UAF cross-cache reuse → Dirty PageTable arbitrary r/w ✗/✶
CVE-2021-22600 DF in-cache reuse → KASLR leak → pipe_buffer overwrite arbitrary r/w ✓
CVE-2020-0423 UAF in-cache reuse → KASLR leak → unlink operation → KSMA code modification ✓
CVE-2022-22057 UAF in-cache reuse → KASLR leak → slab freelist corruption → KSMA code modification ✓
CVE-2023-26083,-0266 Leak, UAF KASLR leak, in-cache reuse → ctl_file overwrite → CFH arbitrary r/w ✗
CVE-2020-0041 UAF in-cache reuse → KASLR leak, in-cache reuse → unlink operation → tamper sysctl arbitrary r/w ✓
CVE-2019-2205 UAF in-cache reuse → KASLR leak, in-cache reuse → unlink operation → tamper binder_proc arbitrary r/w ✓
CVE-2019-2025 ✩ UAF in-cache reuse → KASLR leak, in-cache reuse → unlink operation → KSMA code modification ✓
CVE-2020-3680 UAF in-cache reuse → KASLR leak → unlink operation → KSMA code modification ✓
CVE-2022-20421 UAF cross-cache overflow → KASLR leak → pipe_buffer overwrite arbitrary r/w ✓
CVE-2022-0847 Uninit Variable uninitialized pipe→ DirtyPipe → overwrite the cached file page arbitrary r/w ✓
CVE-2021-4154 UAF in-cache reuse → DirtyCred → overwrite shared library arbitrary r/w ✗
CVE-2021-38001 OOB R/W OOB write → stack manipulation → KASLR leak → OOB write → stack manipulation → CFH → ret2bpf arbitrary r/w ✓
NO_NUMBER (∼2021) OOB W OOB write → slab freelist corruption → pipe_buffer DF → KASLR leak → pipe_buffer overwrite arbitrary r/w ✓

22/26

1 struct list_head {
2 struct list_head *next;
3 struct list_head *prev;
4 };
5 /* Unlinks element e */
6 void list_del(list_head *e) {
7 e->next->prev = e->prev;
8 e->prev->next = e->next;
9 }

Listing 1: Unlinking operation.

1 struct binder_thread {
2 struct list_head wait;
3 struct task_struct *task;
4 };
5 void remove_wait_queue(

binder_thread *bt) {
6 /* Trigger unlinking */
7 list_del(&bt->wait);
8 }

Listing 2: Trigger unlinking.

① ②

③ ④

wait: wait:
next
prev

next
prev

next: bt2.wait
prev: bt0.wait

next: bt3.wait
prev: bt1.wait

binder_thread_1 binder_thread_2

wait: wait:
next
prev

next
prev

iov_len
iov_base

next: bt2.wait
prev: bt0.wait

iov_len: 0x1000
iov_base: 0x800000

binder_thread_1 binder_thread_2
iovec array

wait:
next
prev

iov_len
iov_base

iov_len: 0x1000
iov_base: bt0.wait

binder_thread_2
iovec array

ssize_t readv(...) {
copy_to_user(iovec->iov_base,f->pdata);
}
ssize_t writev(...) {
copy_from_user(f->pdata,iovec->iov_base);
}

Figure 3: Exploitation example of the unlink operation.

CVE-2020-0030, for example, leverage this unlink operation
to first leak binder_thread->task, whose layout is shown
in Listing 2, and then overwrite task->addr_limit (ET2).

Figure 3 illustrates an exploitation example [46], where ini-
tially, an adversary prepares a double-linked list ①. They then
exploit a vulnerability to ensure that the second wait entry
(binder_thread_2.wait or short bt2.wait) resides in the
same memory slot ② as an iovec object. This iovec stores a
user buffer, with iov_base/len being the user buffer’s point-

1 u64 access_ok(const void __user *addr, u64 size) {
2 return (u64)((u65)addr + (u65)size <= (u65)current->

addr_limit + 1);
3 }
4 u64 copy_from_user(void *to, const void __user *from, u64 n) {
5 u64 res = n;
6 if (access_ok(from, n))
7 res = raw_copy_from_user(to, from, n);
8 return res;
9 }

Listing 3: Userspace data copy function validates with
access_ok whether addr refers to userspace memory.

er/size, commonly used for file reading or writing. Executing
remove_wait_queue on the first wait entry (bt1.wait)
overwrites the iov_base of the second wait entry with
bt1.wait->prev ③ (at Line 7 of list_del). Consequently,
the buffer iovec now points to binder_thread_0.wait
(short bt0.wait). These exploits then use the iovec read-
/write functionality ④ (e.g., readv or writev) to write to
or read from the iovec->iov_base and, hence, bt0.wait.
This approach is used to leak binder_thread->task and
overwrite task->addr_limit. While this example shows
the usage of iovec (which has been fixed for v4.13 [2]),
other security-critical objects can also be misused, e.g.,
msg_msg [42] or pipe_buffer in CVE-2021-0920.

ET2: addr_limit Overwrite. This technique turns a
task->addr_limit overwrite into an arbitrary read and
write. AArch64 kernels below v5.11 include addr_limit in
task, which holds the highest address accessible within user-
data copy functions, e.g., copy_*_user. These functions call
access_ok to validate that the user address is lower than

USENIX Association 33rd USENIX Security Symposium 4521

① ②

③ ④

page
offset
len

pipe_buffer

page count
offset
len

pipe_buffer eventfd_ctx

ssize_t eventfd_signal_mask
(eventfd_ctx *ctx, u64 n)

{ ctx->count += n; }

ssize_t pipe_read(...)
{ copy_to_user(pipe_buffer->page,uaddr); }
ssize_t pipe_write(...)
{ copy_from_user(uaddr,pipe_buffer->page); }

Figure 4: Exploiting pipe_buffer to obtain an arbitrary r/w.

addr_limit (see Line 6 of Listing 3), aiming to ensure user
address access. However, by overwriting addr_limit with
KERNEL_DS (i.e., -1), an adversary can deceive the kernel into
legally accessing kernel memory within these copy functions.
Hence, syscalls (e.g., read and write) using these copy func-
tions can be misused as an arbitrary read-and-write primitive.

ET3: pipe_buffer Overwrite. Overwriting the
pipe_buffer yields an arbitrary read and write as follows.
Initially, an adversary requires an arbitrarily triggerable
overwrite capability for a pipe_buffer object that is still in
use. One approach is to exploit a UAF vulnerability so that
a pipe_buffer and a specific object (e.g., eventfd_ctx
or signalfd_ctx) reside in the same memory slot. Since
this specific object is writable from userspace, it enables
manipulating pipe_buffer (e.g., eventfd_ctx for CVE-
2021-22600). Another approach enforces the coexistence
of a pipe_buffer and the backed physical page of another
pipe_buffer in the same slot (cf. CVE-2022-22265).

Figure 4 illustrates the exploitation of CVE-2021-22600.
In ①, the memory layout of a pipe_buffer is shown with
its members page, offset, and len. Step ② exploits the vul-
nerability where afterward pipe_buffer and eventfd_ctx
reside in the same memory slot, and page and count coex-
ist on the same address. Calling eventfd_signal_mask ③
allows to change count and, hence, pipe_buffer->page.
Consequently, pipe_read/write ④ read from or write to
this controlled address, granting an arbitrary read and write.

ET4: Control-Flow Hijacking. Various one-day exploits
perform a Control-Flow Hijacking (CFH) attack, leveraging
an overwrite capability of either a function pointer or a pointer
to a function pointer. Compared to x86_64 exploitation, they
do not resort to Return-Oriented Programming (ROP) [10].
Instead, they identify an execution path resulting in an arbi-
trary read-and-write primitive. For instance, CVE-2023-0266
overwrites the f_ops pointer (referencing a table of function
pointers for file interactions) of ctl_file. As a result, the
syscalls read and write confuse the void *pdata mem-
ber of ctl_file, leading to a misuse of copy_*_user and
yielding an arbitrary read-and-write primitive.

ET5: Ret2bpf. Ret2bpf serves as an alternative to ROP,
offering a similarly potent capability [7, 28]. Its prerequi-
sites [28] involve hijacking the control flow (ET4), partial
control of the first argument register, control over the second

kernel code
D_Table_0

D_Table_1
D_Page

D_Block_M

kernel pgd

writable
user/kernel accessible

Level 0

Level 1

Level 2

4 kiB Page

1 GiB Page

Figure 5: KSMA: Due to a write capability to page table level
0, an adversary maliciously overwrites the D_Block_M entry
to refer to kernel code as writable and user accessible.

argument register, and a controllable data region. In ret2bpf,
a data region is crafted to contain valid eBPF [7] instructions,
performing, for instance, an arbitrary read and write. With
the CFH primitive and the crafted eBPF instructions, ret2bpf
performs a CFH attack to execute ___bpf_prog_run(regs,
inst). This function interprets the crafted eBPF instructions
as if the eBPF verifier had validated them. Here, inst is the
data region holding the crafted eBPF instructions, and regs
represents a writable section used for registers.

ET6: Slab Freelist Corruption. This exploitation tech-
nique turns a once-only OOB or UAF write into a memory
slot overwrite capability. It requires a memory slot that is
currently in the freed state. By exploiting a write capabil-
ity on this free slot (e.g., zeroing memory due to a UAF
or OOB write), an adversary manipulates a freelist pointer
stored within the free slot. Then, by allocating an object, the
adversary illegally reclaims the memory slot referenced by
the corrupted freelist pointer. This allocated object typically
grants overwrite capabilities for the reclaimed memory slot.

ET7: KSMA. Yong et al. [63] introduced the Kernel-
Space Mirroring Attack (KSMA), which transforms a once-
triggerable write primitive into a kernel code manipulation
capability. This transformation is done by manipulating a
page table level 0, called Page Global Directory (PGD) (e.g.,
swapper_pg_dir), representing the kernel address space.

Specifically, KSMA forges an entry within the kernel’s
page table level 0, designating its address range as accessible
from user and kernel space. This forged entry is marked as
a 1 GB huge page and references kernel code. Consequently,
the entire kernel code (including kernel data) is readable and
writable from userspace. The page-table layout after perform-
ing KSMA is shown in Figure 5 with a 3-level page-table
translation (i.e., 39 bit Virtual Address Size (VA_SIZE) and
4 kiB page size, but it works similarly for other configura-
tions). This kernel code modification is then utilized to disable
SELinux and manipulate a syscall to elevate the privileges.

ET8: Dirty PageTable. Dirty PageTable [58] shows how
page-table tampering results in an arbitrary read and write on
Android (where Maar et al. [38] show generic page-table ma-
nipulation). It exploits a UAF (cf. CVE-2022-28350 and CVE-
2020-29661) or DF (cf. CVE-2023-21400) for a cross-cache
attack [60]. This causes an object with arbitrary overwrite

4522 33rd USENIX Security Symposium USENIX Association

arbitrary
physical page

D_Table_0

D_Table_1

D_Page

D_Page_M

user pgd

writable
user accessible

Level 0

Level 1

Level 2

4 kiB Page

4 kiB Page

Figure 6: Dirty PageTable: With an arbitrary page table level
2 write capability, an attacker tampers the D_Page_M entry to
refer to an arbitrary page as writable and user accessible.

capabilities (e.g., signalfd_ctx for CVE-2023-21400) to
reside in the same memory slot as a page table used for user
address translation. Figure 6 shows this, where an adversary
has an arbitrary overwrite to the page-table entry D_Page_M
due to the cross-cache attack. By triggering the overwrite,
they gain control over the page frame number of this entry.
Reading or writing to the user address using this page-table
entry gives them arbitrary physical memory access.

ET9: DirtyPipe. The DirtyPipe attack [30] exploits an
uninitialized variable to escalate privileges. The CVE-2022-
0847 vulnerability allows to use the pipe_buffer.flags
variable uninitialized. Consequently, this vulnerability allows
overwriting of any file contents in the page cache, also in the
case of read-only files, which results in privilege escalation.

ET10: DirtyCred. The DirtyCred exploit [34] allows an
attacker to escalate privileges. It exploits a file UAF to free
a writable file currently in use. Prior to this invalid free, it
performs a write operation to the file and stalls this write
operation. After the free, it reclaims the file object for a read-
only high-privilege file. Continuing the stalled write operation
now writes to the read-only high-privilege file. With this file
manipulation, DirtyCred can, e.g., overwrite a kernel module
with malicious code to construct an arbitrary read and write.

4.2 Defenses to Prevent Exploitation Flows
We identify 10 defense-in-depth mechanisms present in the
Android kernel v6.1 or provided by vendors. They prevent
exploitation techniques and, hence, exploitation flows, with
the findings shown in Table 1 and detailed in Table 2.

DM1: CONFIG_DEBUG_LIST. This defense includes
checks in del_list whether e->next->prev == e and
e->prev->next == e. If these checks fail, the entry will
not be unlinked. Thus, it mitigates the unlink operation (ET1).
In Figure 3, for instance, overwriting from step ② to ③ is
prevented as iovec->iov_base is not equal to bt1.wait.

DM2: CONFIG_ARM64_UAO. User-Access Over-
ride (UAO) [9] is a hardware-enforced defense that aims
to mitigate addr_limit overwrite (ET2). It introduces
new unprivileged load and store instructions that behave
like privileged ones when the UAO bit is set. This restricts
user-data copy functions, e.g., copy_*_user, from being
misused to read from or write to kernel addresses directly.

Table 2: Mitigation of one-day exploits, using ✓ to indicate de-
fenses that prevent used exploitation techniques. Conversely,
✗ indicates ineffective defenses (see Sections 5.2.3, 5.2.4
and 5.2.6). Samsungs’s defenses ✗/✶ are either ineffective or
only effective in certain variants (see Section 5.2.5).

CVE ² � ⋔ / ® Ó �

CVE-2019-2215 ✓ ✗ ✓ ✓
CVE-2019-2025 ✓ ✓
CVE-2020-0030 ✓ ✗ ✓ ✓
CVE-2021-1968,-1969,-1940 ✓ ✓ ✗
CVE-2021-0920 ✓ ✓
CVE-2021-1905 ✓ ✓ ✗
CVE-2022-22265 ✓
CVE-2021-25369,-25370 ✗ ✓ ✗ ✗ ✓
CVE-2016-3809,-2021-0399 ✓ ✓ ✓ ✗
CVE-2022-20409 ✓
CVE-2023-21400 ✓ ✶ ✗
CVE-2022-28350 ✶ ✗
CVE-2020-29661 ✶ ✗
CVE-2021-22600 ✓
CVE-2020-0423 ✓ ✗ ✓ ✓
CVE-2022-22057 ✓ ✗ ✓ ✓
CVE-2023-26083,-0266 ✗ ✗
CVE-2020-0041 ✓ ✓
CVE-2019-2205 ✓ ✓
CVE-2019-2025 ✓ ✓ ✗ ✓ ✓
CVE-2020-3680 ✓ ✓ ✗ ✓ ✓
CVE-2022-20421 ✓
CVE-2022-0847 ✓
CVE-2021-4154
CVE-2021-38001 ✓ ✓ ✗
NO_NUMBER (∼2021) ✓ ✓

² DM1: CONFIG_DEBUG_LIST � DM2: CONFIG_ARM64_UAO DM3: kmalloc-cg-*
⋔ DM4: CONFIG_CFI_CLANG / DM5: CONFIG_BPF_JIT_ALWAYS_ON

® DM6: CONFIG_SLAB_FREELIST_HARDENED DM7: CONFIG_INIT_ON_ALLOC_DEFAULT_ON
 DM8: KSMA protection Ó DM9: Samsung RKP � DM10: Huawei HKIP

DM3: kmalloc-cg-*. Linux kernels above v5.13 sup-
port heap segregation at the allocator cache level. It separates
caches to provide a designated cache for security-critical data
marked as accounted, such as for msg_msg, pipe_buffer,
file, and task_struct. For generic caches, a cache for
non-security-critical data (i.e., kmalloc-*) and a cache for
security-critical data (i.e., kmalloc-cg-*) are created. Free
and available cached objects will never share the same mem-
ory slots within these caches. Hence, this mitigates the
pipe_buffer overwrite (ET3) and unlink operation (ET1
with security-critical objects), as these techniques rely on
security-critical and non-security-critical data sharing the
same memory slot. While adversaries might consider cross-
cache attacks, three challenges arise with this approach, mak-
ing the transition infeasible. First, for generic caches, the
success rate significantly decreases to 40 % [60], with failure
scenarios potentially resulting in a crash. The small success
rate makes this approach impractical since the cross-cache
reuse only pertains to a small part of the exploit and may need
multiple repetitions. Second, exploits that engage in cross-
cache attacks typically rely on prior in-cache reuse attacks
to stabilize the exploit. For instance, CVE-2022-22265 sta-
bilizes by in-cache reallocating the double-freed slot of the
pipe_buffer as an iovec multiple times. Separating the
pipe_buffer from objects intended for stabilizing, such as
iovec, makes the exploit unstable, mostly resulting in a crash,

USENIX Association 33rd USENIX Security Symposium 4523

successfully preventing exploitation. A similar applies to
CVE-2023-21400, where seq_operations (accounted) are
prevented from being in-cache reallocated as signalfd_ctx
(not accounted). Third, various UAF exploits (e.g., CVE-2021-
0399) offer a tight time window in which an in-cache attack is
exploitable. In contrast, cross-cache attacks require more time
due to the recycling/reclaiming of the slab page to/from the
page allocator [60], making small windows not exploitable.

DM4: CONFIG_CFI_CLANG. Control-Flow In-
tegrity (CFI) [1,3] restricts the control flow to an approximate
Control-Flow Graph (CFG), limiting the targets for CFH
attacks (ET4). The Android kernel uses Clang’s implementa-
tion [3], providing function-signature-grained CFI. It prevents
CFH attacks that overwrite function pointers with arbitrary
functions, e.g., CVE-2021-1905 and CVE-2021-0399.

DM5: CONFIG_BPF_JIT_ALWAYS_ON. To mitigate
ret2bpf (ET5), this defense mechanism forces BPF to always
use the JIT engine instead of the interpreter. Consequently, the
___bpf_prog_run function used by ret2bpf is not compiled
and, therefore, cannot be called, preventing ret2bpf.

DM6: CONFIG_SLAB_FREELIST_HARDENED. To
mitigate the manipulation of slab allocator metadata, this de-
fense hardens the slab allocator by adding sanity checks. This
includes XORing the freelist pointer with a pseudo-random
number, preventing slab freelist corruption (ET6).

DM7: CONFIG_INIT_ON_ALLOC_DEFAULT_ON. It
zeroes out the memory slot for both allocations by the page
and slab allocator. Consequently, it greatly minimizes the ex-
ploitability of uninitialized values. It prevents the exploitation
of DirtyPipe (ET7) as the uninitialized pipe_buffer.flags
cannot be misused to overwrite file content in the page cache.

DM8: KSMA Protection. In response to KSMA (ET8),
researchers proposed to move all kernel level 0 global page
tables (e.g., swapper_pg_dir and tramp_pg_dir) to a read-
only section [62]. As a result, these page tables cannot be
manipulated for a huge kernel memory mapping (e.g., 1 GiB)
that is writable from userspace, thus preventing KSMA.

DM9: Samsung RKP. Samsung’s Real-time Kernel Pro-
tection (RKP) [15] employs hypervisor-based protection de-
signed to mitigate code modification, data modification, and
control-flow hijacking in the kernel. To address kernel code
modification, RKP ensures the integrity of page tables (ET8
and ET9) and code by mapping them as read-only, protected
by the hypervisor. Hypervisor calls permit legitimate writes to
these protected pages. RKP also limits CFH attacks (ET4) by
including checks before indirect branches that restrict control-
flow transfers to a function-grained CFG.

DM10: Huawei HKIP. Huawei Kernel Integrity Protec-
tion (HKIP) [25] employs hypervisor-based protection that
protects kernel code and critical kernel data. It also limits priv-
ilege escalation and protects additional control-flow-related
data. To achieve this, HKIP ensures the integrity of certain
page tables (ET8 and ET9), addr_limit (ET2), CFI meta-
data, and eBPF interpreted code by protecting them via the

hypervisor. Hypervisor calls or exceptions to the hypervisor
permit legitimate writes to these protected pages. Protecting
CFI metadata only provides additional protection for modules
and not against the CFH technique. Similarly, protecting the
eBPF-interpreted code does not prevent against ret2bpf, as it
only safeguards the already interpreted instructions.

Further defenses. The ongoing research in improv-
ing kernel security yielded results with various kernel de-
fenses. For instance, CONFIG_HARDENED_USERCOPY restricts
copy_*_user from reading and writing out of bounds [59].
Other examples include CONFIG_INIT_STACK_ALL_ZERO
mitigating uninitialized stack variable exploitation [37] and
CONFIG_STACKPROTECTOR_STRONG providing stack protec-
tion [45]. While these defenses cover a broad range of vulner-
ability mitigation, our focus is specifically on defenses against
one-day exploitation flows on the Android kernel (DM1-10).

4.3 Unpreventable Exploitation Flows
We identify 4 one-day exploitation flows targeting the An-
droid kernel that remains unpreventable by mainline defenses.
Among these, DirtyCred (cf. CVE-2021-4154) presents a pow-
erful technique that falls beyond the defense prevention scope.
A similar applies to the CFH one-day (cf. CVE-2023-26083,-
0266), redirecting the control flow to perform an arbitrary
read and write without violating signature-based CFI.

While our identified defenses do not effectively prevent two
other one-days (Dirty PageTable, cf. CVE-2022-28350 and
CVE-2020-29661), researchers are actively developing a new
defense mechanism specifically designed to counter cross-
cache reuse attacks [44]. This mitigation strategy involves
switching the allocation of memory slots cached by the slab
allocator from physical to virtual pages, thereby preventing
the reuse of slab pages returned by the page allocator.

5 Defense Inclusion & Effectiveness Analysis

In this section, we outline our systematic analysis demonstrat-
ing a widespread deficiency of included defense mechanisms
across vendors as well as shortcomings of certain defenses.
Our approach (see Figure 2) consists of three mostly auto-
mated stages: Initially, we collect kernel source codes and
firmwares (see Section 5.1) for Android devices from 10 ven-
dors. We then analyze kernel codes (see Section 5.2) to assess
the effectiveness of defenses provided by the mainline kernel
or vendors. Lastly, we analyze firmwares (see Section 5.3) to
detect included effective defenses in devices.

Android Devices. For our analysis (done in November
2023), we cover Android devices from vendors that constitute
more than 84 % [6] of the global market. These include the
top 7 vendors [6], i.e., Samsung, Xiaomi, Oppo, Vivo, Huawei,
Realme, and Motorola, along with Google, OnePlus, and Fair-
phone. We assess devices released between 2018 and 2023,
utilizing Android versions 9 through 14 and kernels ranging

4524 33rd USENIX Security Symposium USENIX Association

from v3.10 to v6.1. These Android versions account for a
share of more than 86 % [5], with specific percentages for
Android 13, 12, 11, 10 and 9, being 25.7 %, 21.3 %, 17.3 %,
13.9 %, and 8.7 %, respectively. Android 14, while at a negli-
gible market share at the moment, is also considered.

We decided to start with phones released in November
2018 (5 years from the start of this work), as the lifespan of
Android phones is 4-6 years (4y for Huawei, 5y for Google,
and 6y for Samsung) [17, 54]. Hence, our selection ensures a
comprehensive overview of the current device landscape.

5.1 Collection of Firmwares and Kernel Codes
This step automatically collects firmwares (not protected by
captchas) and kernel code. To achieve this, we implement a
Python script using Selenium that crawls web pages to collect
firmwares and kernel source code from our 10 vendors. We
manually collected firmware protected by captchas or other
automation detections (i.e., ≈ 45.3 %).

Firmwares. Our 10 vendors produced 1698 devices be-
tween November 2018 and November 2023 (see Table 4). For
1109 of them, firmwares were provided, where we only con-
sidered the most recent release either officially (e.g., Google)
or via an intermediate supplier (e.g., Oppo).

Kernel Codes. We collected 1533 kernel codes (see Ta-
ble 4) with different releases for the same device (e.g., Sam-
sung and Huawei) where available. Other vendors (e.g.,
Google and Vivo) use the same kernel code for multiple de-
vices, resulting in less collected code than firmwares.

5.2 Analysis of Kernel Source Codes
We examine kernel source codes for efficacy against exploita-
tion techniques. Initially, we provide evidence that our iden-
tified defenses (see Sections 5.2.1 and 5.2.2) reflect the real
world of mitigating exploitation techniques. However, we
also identify shortcomings in these defenses. We show that
they can be bypassed, indicating that their efficacy is less
than intended due to advanced techniques (see Sections 5.2.3
and 5.2.4) or weaknesses (see Sections 5.2.5 and 5.2.6).

5.2.1 Mainline Defenses in Downstreamed Kernels

7 of the 8 mainline defense mechanisms are intrinsically tied
to the core functionality of the Android kernel:

• Associating specific defenses with versions (i.e., DM3).
• Not compiling dangerous functions (i.e., DM5).
• Replacing non-hardened with hardened functions (i.e.,

DM1/4/6/7/8).
For example, CONFIG_DEBUG_LIST (DM1) uses the hard-
ened function __list_add_valid to validate metadata
in double-linked lists. Another example is kmalloc-cg-*
(DM3), which utilizes a segregated set of allocator caches
for kernel versions 5.13 and above. The exception is

①

D_Table_0

D_Table_1

D_Table_2
D_Page

kernel pgd

Level 0
Level 1

Level 2
Level 3

4 kiB Page

read-only

②

kernel code
D_Table_M ❷

D_Table_1

D_Table_2
D_Page

D_Block_M

❸

kernel pgd

writable
user/kernel accessible

Level 0
Level 1

Level 2
Level 3

4 kiB Page

1 GiB Page

writable❶

Figure 7: Advanced KSMA: ① Initial 4-level page table
translation with the level 0 table mapped as read-only. ② Mod-
ifies the level 0 mapping to mark it as writable ❶, overwrites
D_Table_M ❷, and appends D_Block_M ❸, to have a 1 GiB
mapping accessible from userspace.

CONFIG_ARM64_UAO (DM2), which is hardware-dependent.
Although our analysis might identify this defense as present,
this defense can be bypassed, as we demonstrate in Sec-
tion 5.2.4. Hence, regardless of whether it is enabled, it does
not protect addr_limit overwrite (ET2).

5.2.2 Identified Downstream Defenses

Some vendors provide custom defenses to improve kernel
security. We semi-automatically analyze the 1533 collected
kernels and provide evidence of 3 vendor-specific downstream
defenses against the identified exploitation techniques. The
analysis works as follows: First, we automatically collect the
configuration flags in the ./security subdirectory and in the
files that require changes to mitigate exploitation techniques,
e.g., vmlinux.ld.S and mmu.c to prevent KSMA (ET8).
Second, we manually analyze those flags collected from down-
stream kernels that are not present in the mainline kernel
(i.e., Google). Our analysis results in Samsung RKP (DM9),
Huawei HKIP (DM10), and CONFIG_PG_DIR_RO from Vivo
(which we consider in the firmware analysis as DM8). We
also received confirmation from Fairphone and Motorola that
they do not include vendor-specific defenses.

5.2.3 Advanced Kernel-Space Mirroring Attack

Despite the KSMA mitigation patch, we present an advance-
ment in reenabling KSMA. Its prerequisite is the same con-
straint write capability as the base KSMA (ET8), but it uses
it twice: First, it changes the mapping of the level 0 PGD
to writable, and second, it maliciously inserts the page-table
entry into the PGD. For a 48 bit VA_SIZE system with 4-level
translation, our technique triggers the write three times, as
depicted before ① and after ② the attack in Figure 7. The
first write changes the PGD mapping to writable ❶, while the
second changes the PGD entry to user accessible ❷. The third
write inserts then the entry ❸ in the page-table level 1.

USENIX Association 33rd USENIX Security Symposium 4525

For this technique, the locations of three page-table
pages (level 0, level 1, and level 3’ corresponding to
the mapping level 0 as read-only) are crucial. Depend-
ing on whether CONFIG_UNMAP_KERNEL_AT_EL0 is active,
swapper_pg_dir or tramp_pg_dir is used as a level 0 page.
A KASLR code leak, combined with knowledge of the ker-
nel binary under attack, is sufficient to obtain these locations
since both locations are mapped to a fixed offset to the kernel
base address. This step is also needed for the base KSMA.

Both level 1 and level 3’ are allocated via the page allo-
cator during the early initialization stages and accessed via
the Direct-Physical Mapping (DPM) [39], which is a virtual
memory mapping to the entire physical memory. Since the
page allocator returns the same physical page during differ-
ent boots, their locations can be determined. The DPM may
be randomized on newer Android kernels (e.g., v6.1). To
overcome randomization, a heap address leak is typically suf-
ficient to derandomize the DPM, as the kernel heap uses the
DPM directly. Typically, leaking a heap address requires no
additional effort beyond leaking the kernel base address.

Armed with the three page-table locations, our advanced
KSMA uses the write capability three times to obtain kernel
code modification, which no mainline defense can prevent.
The level of difficulty of our advancement is similar to the
base KSMA, but the write capability is triggered three times,
and for recent Android versions, a heap leak is required.

Experiments. Our setup involves a buildroot filesystem
with an Android kernel (aarch64 with a 48 bit VA_SIZE),
specifically v5.15 and v6.1. We run it inside a virtual machine
with 4 cores and 4 GB RAM via QEMU 6.2.0. We introduce
a write primitive and run our exploits as an unprivileged user,
giving them the same capabilities as the base KSMA version.
As a result, we successfully execute our advanced KSMA and
obtained an arbitrary code modification primitive.

Mitigation. Our advanced KSMA requires the locations
of all mapping page tables that are not randomized during the
early initialization process. Hence, an adversary can still de-
duce their location by knowing the kernel binary under attack
(and a heap leak for v6.1). To counteract the advanced KSMA,
we propose randomizing the locations of the page tables dur-
ing this early initialization stage, ensuring that adversaries
cannot obtain information about the page’s location.

5.2.4 Shortcoming of User Access Override

The UAO feature is believed to prevent the addr_limit
overwrite (ET2) [36] effectively. This technique manipu-
lates addr_limit with KERNEL_DS to facilitate, for example,
pipes for arbitrary kernel reads and writes. Specifically, it
first writes the pointer to a userspace buffer to one pipe end.
It then performs a read syscall with a kernel address as an
argument, prompting the userspace copy function to write the
userspace buffer’s content to this kernel address. With UAO
enabled, setting addr_limit to KERNEL_DS prevents the first

write operation. Moreover, setting addr_limit to USER_DS
prevents the second write to kernel memory.

However, since addr_limit operates at thread granularity,
we spawn two threads, T1 and T2, where we only illegally
overwrite the addr_limit of T2 with KERNEL_DS. We lever-
age T1 to perform the first write and T2 for the second write.
As a result, we can bypass UAO without further restrictions.
Prior work [9] has presented similar bypasses.

Mitigation. A mitigation would be to remove the
addr_limit functionality or use kernels above v5.11, which
do not support addr_limit anymore.

5.2.5 Samsung RKP Weaknesses

We inspect Samsung RKP [15], designed to prevent page-table
manipulation and limit CFH attacks. However, we demon-
strate that various RKP variants only protect certain page ta-
bles and, thus, do not mitigate page-table manipulation. They
also provide less CFH protection than the mainline defense.

Analysis. For each of these findings, we provide statistical
data on their occurrence, collected using the following ap-
proach. We first perform automated source code analysis, fol-
lowed by manual verification. We then conduct experiments
to demonstrate the severity of these identified problems.

Findings. First, some kernels have RKP disabled and
do not map tramp/swapper_pg_dir or tramp_pg_dir as
read-only. Compared to the mainline defense, this results in
less security as an adversary can directly perform KSMA. We
found this weakness mostly in low-end devices such as Galaxy
A04/A14 (i.e., released 2022/2023), missing both pages and
Galaxy M10 (i.e., released 2019), missing tramp_pg_dir,
representing 25.4 % and 1.7 % of kernels, respectively.

Second, while some variants protect page tables used for
userspace address translation, we observe a strong tendency
to exclude this protection towards new high-end devices such
as Galaxy S23 5G. Specifically, we observe that less than
53 % of devices include this protection, indicating that more
than 47 % are vulnerable to Dirty PageTable [58].

Third, CONFIG_FASTUH_RKP is a performance-optimized
RKP variant included in over 60 % of all v5.4 kernels, pro-
viding a maximum number of read-only pages protected by
the hypervisor. If the system demands more, RKP resorts to
allocating unprotected pages. An adversary can exhaust these
read-only protected pages and, subsequently, perform Dirty
PageTable. This performance-optimized RKP variant is avail-
able for lower-end devices, e.g., Samsung Galaxy J6, and for
high-end devices, e.g., Samsung Galaxy S20 FE and S21+ 5G.
Similarly, CONFIG_TIMA_RKP provides similar weak protec-
tion for page tables, mainly used by older devices.

Fourth, CONFIG_RKP_CFP_JOPP/_ROPP aim to mitigate
CFH attacks [15] by providing function-granular CFI (JOPP)
and return address protection (ROPP). However, our analysis
of exploitation flows reveals that all 6 CFH attacks redirect
the control flow with at least function granularity. Hence, both

4526 33rd USENIX Security Symposium USENIX Association

defenses are ineffective in mitigating any of the CFH attacks.
Experiments. For the first weakness, we use the same

setup as for our advanced KSMA technique and overwrite
unprotected page-table pages to perform KSMA. We then
implement POCs for the other weaknesses on a Samsung
Galaxy S20 FE, where we modify the kernel code to obtain
the corresponding primitive. For the second weakness, we
use the introduced write primitive for a page table used for a
userspace address translation to successfully perform Dirty
PageTable. For the third weakness, we demonstrate that we
can drain the protected pages with memory exhaustion. We
then prompt the kernel to allocate a page that should be pro-
tected, but this is not due to memory exhaustion. For the fourth
weakness, we demonstrate that RKP does not mitigate control-
flow hijacking to arbitrary functions. As a result, control-flow
protection does not prevent the 6 CFH attacks we analyzed.

5.2.6 Huawei HKIP Weaknesses

We examine Huawei’s HKIP [25], particularly regarding the
protection against KSMA and Dirty PageTable.

Analysis. We observe that HKIP is only included in cer-
tain devices and enabled in about 62 %. In the following, we
analyze HKIP and experimentally demonstrate the absence
of protection for crucial page-table pages.

Findings. First, HKIP protects page-table pages that
are allocated for kernel address translations (e.g., via
pte_alloc_one) in a specific virtual address range. As a re-
sult, HKIP does not protect page tables for userspace address
translations, leaving devices vulnerable to Dirty PageTable.

Second, while HKIP protects the ttbr (hardware register
that stores the current PGD for address translation) switch,
it may not be compatible with frequent ttbr switching de-
fenses, i.e., software PAN (CONFIG_ARM64_SW_TTBR0_PAN)
switches the ttbr for each copy_*_user and Meltdown pro-
tection (CONFIG_UNMAP_KERNEL_AT_EL0) for each user ker-
nel switch. No device has HKIP with either one of these two
enabled, leaving these devices vulnerable to KSMA.

Experiments. We could not run experiments with the
Huawei kernel source codes as they either had compilation
errors, no defconfig (e.g., ranchu64) viable for virtual en-
vironments or failed to boot in QEMU. Therefore, we adapted
a Google kernel v4.14 to tag pages that HKIP would have
protected. For our page-table manipulation attacks, we ex-
perimentally observed that HKIP does not protect page-table
pages that KSMA and Dirty PageTable manipulate.

5.3 Analysis of Firmwares
This work refers to the firmware as the stock ROM, the origi-
nal software loaded onto the device by the vendor. It consists
of multiple images [4], such as the system and boot image.
Figure 8 shows the automated workflow of our implemented
Python script, extracting the necessary metadata for defense

①

Boot Image
Extraction

②

Kernel Binary
Extraction

③
Kernel ELF &

Symbols
Conversion

Fi
rm

w
ar

e

bo
ot
.i
mg

ke
rn
el
.b
in

ke
rn
el
.e
lf

ka
ll
sy
ms

Figure 8: Workflow of extracting kernel.elf and kallsyms
from the firmware, required for the defense detection.

detection. It first extracts the boot image ① using open-source
tools, which requires different tools [22, 31, 32, 51, 55] as ven-
dors encode the boot image differently. It then extracts the
kernel binary ② using unpack_bootimg [35]. Lastly, it uses
kallsyms_finder and vmlinux_to_elf to reconstruct the
symbols (i.e., kallsyms) and convert the kernel binary to an
analyzable ELF (i.e., kernel.elf) ③ [40].

The kallsyms and kernel.elf components form the ba-
sis of defense detection. Our Python script uses kallsyms to
identify global functions within the kernel binary, allowing
us to deduce the active defense mechanisms. The presence of
__list_add_valid in kallsyms, for instance, indicates the
status of CONFIG_DEBUG_LIST (DM1). Our script does simi-
lar assessments for other defenses (see Table 3). It uses the
kernel.elf to determine the status of KSMA protection
(DM8) and CONFIG_SLAB_FREELIST_HARDENED (DM6).
For KSMA protection, all PGDs (e.g., swapper_pg_dir)
must be mapped in a read-only section. The presence of
calling get_random_long within __kmem_cache_create
indicates the status of CONFIG_SLAB_FREELIST_HARDENED.

Our evaluation also includes five features for system
security; KASLR (CONFIG_RANDOMIZE_BASE), code write
protection (CONFIG_STRICT_KERNEL_RWX), freelist random-
ization (CONFIG_SLAB_FREELIST_RANDOM), restricting user
access in kernel (CONFIG_ARM64_(SW_TTBR0_)PAN), and
Meltdown protection (CONFIG_UNMAP_KERNEL_AT_EL0).

Evaluated Firmwares. Out of the 1698 released and 1109
collected devices, our analysis extracted 994 firmwares, re-
sulting in a collection rate of 58.5 %, which aligns with prior
work on reverse engineering firmwares [11, 14, 64].

Due to the unavailability of certain firmwares, our analysis
could not cover all released devices. However, we observed
that the missing firmwares are distributed either normally
regarding device age, such as those from Huawei and Vivo,
or tailored to older devices, as seen with Xiaomi and Realme.
Given our finding that older devices tend to include fewer
defenses, our analysis provides conservative results. Thus, we
anticipate the real-world scenario to be even more concerning.

5.3.1 Analysis Results

We fully automate the detection of included defenses. Table 5
presents the defenses included for each vendor’s firmwares.
Our results indicate a lack of basic defenses (e.g., PAN and
KASLR) and a significant lack of defenses against one-day ex-

USENIX Association 33rd USENIX Security Symposium 4527

①

②

❶

Figure 9: Susceptible one-day exploitation flows of all device
images. While ① indicates that 281 images are susceptible
to 21 or more one-day exploitation flows and ② indicates
913 images to 10 or more, the ❶ line represents the average
susceptibility of 15.2 exploitation flows of all 994 images.

ploit flows. In particular, significant portions of the firmwares
do not include defenses such as CONFIG_DEBUG_LIST, which
is critical to mitigate BadBinder [46].

Susceptibility. Using data from Section 5.2 and Table 2,
we evaluate the effectiveness and assess the susceptibility
of firmwares to one-day exploitation flows. We consider a
firmware to be susceptible to a one-day exploitation flow if it
does not include a defense that can prevent the vulnerability-
agnostic exploitation flow. Figure 9 illustrates the overall
susceptible one-day exploitation flows per firmware with two
curves. The dashed line depicts the impact of the widespread
defense lack, while the outer line incorporates both the lack
and efficacy shortcomings (see Section 5.2), providing a more
comprehensive view. Without these shortcomings, on aver-
age, nearly two one-day exploitation flows could have been
prevented. Both findings highlight the worrying situation and
lack of effective defenses to prevent exploitation flows.

Takeaway 1
Even though effective defenses (see Table 2) for a large
share of the one-day exploitation flows are available, they
are rarely activated in vendor-provided kernels.

Susceptibility per Vendor. We further organize the re-
sults by vendor, presenting each in Figure 10. Figure 10a de-
picts the ground truth, showcasing the maximum achievable
security with all available mainline defenses. Figure 10c-10l
show each vendor’s susceptible one-day exploitation flows,
including the lack of defenses and efficacy shortcomings. We
specifically highlight Google, Fairphone, and Samsung, repre-
senting the most and least secure, and with the highest market
share. Their susceptibility is 11.8, 18.5, and 16.1, respectively,
while the ground truth has 4. We compute the factor by which
they are worse than the ground truth, resulting in 2.95 (≊ 11.8

4),
4.62, and 4. Figure 10b presents the ranking of vendors ac-
cording to this deterioration factor.

(a) Ground truth

Vendor

1 Google
2 Realme
3 OnePlus
4 Xiaomi
5 Vivo

Vendor

6 Samsung
7 Motorola
8 Huawei
9 Oppo

10 Fairphone

(b) Ranking

(c) Samsung (d) Xiaomi

(e) Oppo (f) Vivo

(g) Realme (h) Huawei

(i) Motorola (j) Google

(k) OnePlus (l) Fairphone

Figure 10: Analysis results per devices for each vendors.

Takeaway 2
Protection against one-day exploitation flows is highly
vendor dependent, varying between a 4.62 to 2.95 worse
scenario than applying all available mainline defenses.

4528 33rd USENIX Security Symposium USENIX Association

v3.
10

v3.
18 v4.

4
v4.

9
v4.

14
v4.

19 v5.
4

v5.
10

v5.
15 v6.

1

Fairphone
Oneplus
Google

Motorola
Huawei
Realme

Vivo
Oppo

Xiaomi
Samsung

nan% nan% nan% 33.3% nan% 33.3% 33.3% nan% nan% nan%

nan% nan% nan% 4.8% 16.7% 23.8% 21.4% 23.8% 7.1% 2.4%

nan% nan% nan% 11.5% 11.5% 11.5% nan% 57.7% 7.7% nan%

nan% 2.9% 9.6% 10.6% 21.2% 26.9% 14.4% 13.5% 1.0% nan%

1.7% 1.7% 7.6% 13.4% 55.5% 5.9% 8.4% 5.9% nan% nan%

nan% nan% nan% 5.9% 44.4% 27.4% 14.1% 5.9% 2.2% nan%

3.5% 1.4% 3.5% 14.6% 29.9% 26.4% 7.6% 8.3% 2.1% 2.8%

nan% 5.3% 6.1% 21.1% 25.4% 28.9% 10.5% 2.6% nan% nan%

nan% nan% 0.7% 4.9% 88.1% 5.6% 0.7% nan% nan% nan%

nan% 3.7% 8.5% 6.7% 28.7% 26.8% 9.1% 8.5% 7.9% nan%

0%

20%

40%

60%

80%

100%

Figure 11: Applied Android kernel versions for each vendor.

Susceptibility per Kernel Version. To illustrate a version
dependency, we initially obtain the used kernel versions. Fig-
ure 11 shows the results covering v3.10 to v6.1. For context,
v4.19 was released in 2018, while v3.10 was released in 2014.
We then analyze the susceptibility to one-day exploitation
flows, organized by kernel version and vendor (see Figure 12).
The figure includes a ground truth, representing how many ex-
ploitation flows remain susceptible for a given kernel version
with all available defenses integrated (see Table 6).

Three findings emerge from this analysis: First, almost
no device kernel prior to v4.14 includes any defenses. Since
ret2bpf (ET5) is not exploitable on v3.10, it may be less
susceptible than v3.18. Second, newer kernels tend to have
more active protection against exploitation flows, observed
across almost all vendors. This is particularly true for those
obeying the GKI constraints (≥v5.4 for GKI-1.0 or ≥v5.10
for GKI-2.0). Third, although newer kernels provide more
defenses, a v3.10 kernel with all available defenses enabled
would protect more flows than 38.1 % of our analyzed kernels.

Takeaway 3
While newer kernels provide more defenses, a v3.10 kernel
with all available defenses enabled would mitigate more
exploitation flows than 38.1 % of vendor-supplied kernels.

Susceptibility per Low/High-End Device. We differen-
tiate the susceptibility according to whether it is a low-end
or a high-end device: We initially compute the average one-
day susceptibility of the latest low-end and high-end devices
from vendors offering both classes, i.e., all except Google and
Fairphone (see Table 7). We then compute the susceptibil-
ity reduction of high-end compared to low-end devices. For
instance, with a susceptibility score of 4.5 and 5.5 for high-
end and low-end Samsung devices, respectively, the reduction
is 18.2 %. Overall, the reduction is between 0 % to 63.6 %,
with an average value of 23.8 %, which indicates a significant
reduction of high-end to low-end devices.

v3.
10

v3.
18 v4.

4
v4.

9
v4.

14
v4.

19 v5.
4

v5.
10

v5.
15 v6.

1

Fairphone
Oneplus
Google

Motorola
Huawei
Realme

Vivo
Oppo

Xiaomi
Samsung

Ground truth

nan nan nan 26.0 nan 10.0 12.0 nan nan nan

nan nan nan 26.0 14.3 14.4 12.0 10.0 4.0 4.0

nan nan nan 22.0 12.0 12.0 nan 10.0 4.0 nan

nan 26.0 26.0 26.0 18.2 13.1 11.9 10.0 4.0 nan

22.0 26.0 24.4 21.1 15.7 12.0 21.0 10.0 nan nan

nan nan nan 26.0 12.6 11.2 10.9 10.0 4.0 nan

22.0 26.0 26.0 25.1 15.2 12.8 12.0 10.0 4.0 4.0

nan 26.0 26.0 26.0 18.2 13.0 12.0 10.0 nan nan

nan nan 26.0 26.0 12.1 16.1 12.0 nan nan nan

nan 26.0 25.5 23.3 19.8 15.2 7.9 7.2 2.3 nan

13.0 12.0 12.0 12.0 9.0 9.0 9.0 9.0 4.0 4.0

0

5

10

15

20

25

Figure 12: Susceptible exploitation flows per version/vendor.

Takeaway 4
There is a significant gap of 23.8 % between the one-day
susceptibility of high-end and low-end devices.

6 Discussion

Factors Potentially Contributing to the Absence of Ef-
fective Defenses. Our analysis, highlighted in Takeaway 1,
reveals a concerning reality: vendors lack the inclusion and
effectiveness of defenses against one-day exploitation flows.
Here we discuss potential factors contributing to this situation.

First, as indicated by Takeaway 2, there is variability in
susceptibility to one-day exploitation flows across vendors.
While Google and OnePlus demonstrate lower susceptibility,
others like Huawei show higher ones. As these vendors utilize
different kernel versions, we observe a correlation between
higher susceptibility and the use of older versions. Hence, a
potential contributing factor is the use of older kernel versions.

Second, as emphasized in Takeaway 3, susceptibility ex-
tends beyond mere kernel version correlation. Even the dep-
recated kernel v3.10 (released about ten years ago) would
mitigate more one-day exploitation flows, if properly config-
ured, than 38.1 % of vendor firmwares. Huawei underscores
this statement with their v5.4.86 kernels, nearly twice as bad
as the properly configured v3.10. This lack of proper configu-
ration appears prevalent across multiple vendors. Hence, the
second potential contributor is a lack of importance regarding
security-relevant features for the Android kernel.

Third, as shown in Takeaway 4, we observe that low-end are
more susceptible to one-day exploitation flows than high-end
devices, as observed by most vendors. On the one hand, low-
end devices tend to be less powerful than high-end devices,
and on the other hand, enabling defenses increases the perfor-
mance overhead. To compensate for this performance cost,
vendors may deliberately not enable defenses for performance

USENIX Association 33rd USENIX Security Symposium 4529

gains. Therefore, the third potential factor is performance cost,
especially for less powerful low-end devices.

Recommendation to Improve Android Security. With
these insights, we propose that Google updates the Android
Compatibility Definition Document (CDD), which outlines
the requirements for devices to be compatible with An-
droid. While for Android 14 some fundamental defenses are
recommended (e.g., CONFIG_CFI_CLANG) or required (e.g.,
CONFIG_STRICT_KERNEL_RWX), other critical ones are ab-
sent (e.g., CONFIG_DEBUG_LIST). By including our findings,
we anticipate a substantial improvement in Android security.

Responses. Google responded that they are aware of this
problem and are gradually enforcing kernel defenses that
will be integrated. However, as defenses can come at a per-
formance cost, enforcing them across all vendors is diffi-
cult, especially for low-end devices. They pointed out that
CONFIG_DEBUG_LIST has been enforced in the past, but ven-
dors complained about the performance hit. This resulted in
critical defenses not being integrated. Samsung and Huawei
responded similarly, as integration comes at a performance
cost, i.e., Samsung for not activating RKP on all (especially
low-end) devices and Huawei for not protecting all page tables.
These responses highlight our third potential contribution fac-
tor. Fairphone and Motorola acknowledged our findings and
integrated defenses, while the others did not respond.

Automation and Standardization. Fully automating the
analysis process would enhance the demonstration of the ef-
fectiveness of defenses. We have already automated several
steps, such as parts of the firmware and kernel code acquisi-
tion, metadata extraction, and defense analysis, all of which
are scalable. Challenges remain in the acquisition and anal-
ysis of zero-days and the acquisition of all firmware. Our
work addresses these challenges manually and encourages
standardization, drastically reducing manual effort. Therefore,
our work addresses current technical challenges and encour-
ages progress for future identification of effectively integrated
defenses, ultimately improving Android security.

False Negatives/Positives. A false negative occurs when
we interpret a device as being susceptible to an exploitation
flow when it is not. This could have happened if we have over-
looked defenses. To ensure we identified all mainline defenses,
we executed each exploitation technique (ET1-10) with se-
curity measures enabled, resulting in the defenses (DM1-8)
preventing these exploits. To ensure that we have identified
all downstream defenses, we performed a semi-automated
analysis of the 1533 downstream kernels in Section 5.2.2,
which yielded 3 vendor-specific defenses. While misinter-
preted firmware analysis could also lead to false negatives,
most defenses are intrinsically tied to the kernel’s core func-
tionalities. As described in Section 5.2.1, those defenses that
are not intrinsically tied can only lead to false positives, i.e.,
we interpret a device as mitigating an exploitation flow when
it does not. This means our results can be interpreted as con-
servative, and the real world may be even more worrying.

7 Related Work

Large-scale Firmware Analysis. Possemato et al. [43] in-
vestigated compliance with Android’s compatibility guide-
lines and found customizations as security drawbacks. Sub-
sequent work [24] has highlighted delays in adopting critical
patches. Other studies scanned ROMs for insecure access
policies [16, 23] or privacy-intruding apps [20, 24, 52]. For
embedded systems, researchers have uncovered vulnerabil-
ities at a large scale [14, 19] and revealed a reluctance to
activate attack mitigations in Linux-based IoT devices [64].

Android Security Patch Ecosystem. Prior works stud-
ied the deployment of security updates to Android sys-
tems. Wu et al. [57] noted that most Android Security Bul-
letin (ASB) issues stem from native code. Farhang et al. [18]
found that CVEs in the kernel took the longest to propagate to
vendor ASBs, while other researchers [29,67] reported weeks
to months of delay in deploying Android security updates.

Patch Detection. Researchers proposed strategies to de-
tect patches in kernel binaries. Zhang et al. [66] presented
a detection approach by deriving a signature from the main-
stream version, which is then compared with target kernels.
PDiff [27] statically extracts the semantics of source-level
patches and uses a similarity-based measure to detect patches
in compiled kernels. Dynamic approaches [26, 68] automati-
cally adapt existing PoC exploits to different kernel variants.

Vulnerability Patching. Researchers have proposed solu-
tions to address the long delays in kernel patch deployment.
Wang et al. [56] prevented bugs discovered by a sanitizer from
being triggered and, hence, exploited till a patch is available.
Talebi et al. [53] instrumented vulnerable syscall implementa-
tions to undo harmful side-effects. Other researchers focused
on downstream Android kernels. Chen et al. [13] proposed
hot-patching with Lua code to filter vulnerable function argu-
ments. Xu et al. [61] extended this by suggesting automated
binary hot patches from source-level upstream fixes.

Zero-Day Analysis. Google Project Zero [9, 45, 49] and
Threat Analysis Group [50] hunt for zero-days in the wild.
They release public findings covering various entities, e.g.,
Android phones, significantly enhancing system security.

8 Conclusion

This work conducted a one-day analysis of Android devices,
combined with an analysis of defense inclusion and effec-
tiveness. Our findings unveiled a significant gap between the
current state of Android security and its maximum potential.
We discussed potential contributing factors and offered rec-
ommendations for improvement, enhancing Android security.

Acknowledgements

We thank Mathias Oberhuber, Andreas Kogler, the anony-
mous reviewers, and our shepherd for their valuable feedback.

4530 33rd USENIX Security Symposium USENIX Association

This project has received funding from the Austrian Research
Promotion Agency (FFG) via the SEIZE project (FFG grant
number 888087). Any opinions, findings, conclusions, or rec-
ommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding parties.

References

[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay
Ligatti. Control-Flow Integrity. In CCS, 2005.

[2] Al Viro. iov_iter: saner checks on copyin/copyout, 2017.
URL: https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
09fc68dc66f7597bdc8898c991609a48f061bed5.

[3] Android. Kernel Control Flow Integrity, 2022. URL:
https://source.android.com/docs/security/
test/kcfi.

[4] Android. Overview, 2024. URL: https://
source.android.com/docs/core/architecture/
partitions.

[5] AppBrain. Top Android OS versions, 2023. accessed:
28.11.2023. URL: https://web.archive.org/web/
20231128122419/https://www.appbrain.com/
stats/top-android-sdk-versions.

[6] AppBrain. Top manufacturers, 2023. accessed:
14.09.2023. URL: https://web.archive.org/web/
20230915054021/https://www.appbrain.com/
stats/top-manufacturers.

[7] Brandon Azad. An iOS hacker tries
Android, 2020. URL: https://
googleprojectzero.blogspot.com/2020/12/
an-ios-hacker-tries-android.html.

[8] Brandon Azad. A survey of recent ios
kernel exploits, 2020. URL: https://
googleprojectzero.blogspot.com/2020/06/a-
survey-of-recent-ios-kernel-exploits.html.

[9] Ian Beer. Mind the Gap, 2022. URL: https://
googleprojectzero.blogspot.com/2022/11/.

[10] Erik Buchanan, Ryan Roemer, Hovav Shacham, and
Stefan Savage. When Good Instructions Go Bad: Gener-
alizing Return-Oriented Programming to RISC. In ACM
Conference on Computer and Communications Security
(CCS), 2008.

[11] Daming D Chen, Maverick Woo, David Brumley, and
Manuel Egele. Towards automated dynamic analysis
for linux-based embedded firmware. In NDSS, 2016.

[12] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun
Qian. KOOBE: Towards Facilitating Exploit Genera-
tion of Kernel Out-Of-Bounds Write Vulnerabilities. In
USENIX Security, 2020.

[13] Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia,
Chenfu Bao, and Tao Wei. Adaptive Android Kernel
Live Patching. In USENIX Security, 2017.

[14] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and
Davide Balzarotti. A large-scale analysis of the security
of embedded firmwares. In USENIX Security, 2014.

[15] Samsung Knox Documentation. Real-time Ker-
nel Protection (RKP), 2023. URL: https:
//docs.samsungknox.com/admin/fundamentals/
whitepaper/core-platform-security/real-
time-kernel-protection/.

[16] Zeinab El-Rewini and Yousra Aafer. Dissecting residual
apis in custom android roms. In CCS, 2021.

[17] Everphone. What is the average smartphone lifespan?,
2023. URL: https://web.archive.org/web/
20231123081219/https://everphone.com/en/
blog/smartphone-lifespan/.

[18] Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka,
and Jens Grossklags. An empirical study of android
security bulletins in different vendors. In WWW, 2020.

[19] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng,
Brian Testa, and Heng Yin. Scalable Graph-based Bug
Search for Firmware Images. In CCS, 2016.

[20] Julien Gamba, Mohammed Rashed, Abbas Razagh-
panah, Juan Tapiador, and Narseo Vallina-Rodriguez.
An analysis of pre-installed android software. In S&P,
2020.

[21] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard.
KASLR is Dead: Long Live KASLR. In ESSoS, 2017.

[22] Hemanth. Extractor of SpreadTrum firmware files with
extension pac, 2023. URL: https://github.com/
HemanthJabalpuri/pacextractor.

[23] Grant Hernandez, Dave Jing Tian, Anurag Swarnim Ya-
dav, Byron J. Williams, and Kevin R. B. Butler. Bigmac:
fine-grained policy analysis of android firmware. In
USENIX Security, 2020.

[24] Qinsheng Hou, Wenrui Diao, Yanhao Wang, Xiaofeng
Liu, Song Liu, Lingyun Ying, Shanqing Guo, Yuanzhi
Li, Meining Nie, and Haixin Duan. Large-scale secu-
rity measurements on the android firmware ecosystem.
In International Conference on Software Engineering
(ICSE), 2022.

USENIX Association 33rd USENIX Security Symposium 4531

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=09fc68dc66f7597bdc8898c991609a48f061bed5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=09fc68dc66f7597bdc8898c991609a48f061bed5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=09fc68dc66f7597bdc8898c991609a48f061bed5
https://source.android.com/docs/security/test/kcfi
https://source.android.com/docs/security/test/kcfi
https://source.android.com/docs/core/architecture/partitions
https://source.android.com/docs/core/architecture/partitions
https://source.android.com/docs/core/architecture/partitions
https://web.archive.org/web/20231128122419/https://www.appbrain.com/stats/top-android-sdk-versions
https://web.archive.org/web/20231128122419/https://www.appbrain.com/stats/top-android-sdk-versions
https://web.archive.org/web/20231128122419/https://www.appbrain.com/stats/top-android-sdk-versions
https://web.archive.org/web/20230915054021/https://www.appbrain.com/stats/top-manufacturers
https://web.archive.org/web/20230915054021/https://www.appbrain.com/stats/top-manufacturers
https://web.archive.org/web/20230915054021/https://www.appbrain.com/stats/top-manufacturers
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/06/a-survey-of-recent-ios-kernel-exploits.html
https://googleprojectzero.blogspot.com/2020/06/a-survey-of-recent-ios-kernel-exploits.html
https://googleprojectzero.blogspot.com/2020/06/a-survey-of-recent-ios-kernel-exploits.html
https://googleprojectzero.blogspot.com/2022/11/
https://googleprojectzero.blogspot.com/2022/11/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/core-platform-security/real-time-kernel-protection/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/core-platform-security/real-time-kernel-protection/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/core-platform-security/real-time-kernel-protection/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/core-platform-security/real-time-kernel-protection/
https://web.archive.org/web/20231123081219/https://everphone.com/en/blog/smartphone-lifespan/
https://web.archive.org/web/20231123081219/https://everphone.com/en/blog/smartphone-lifespan/
https://web.archive.org/web/20231123081219/https://everphone.com/en/blog/smartphone-lifespan/
https://github.com/HemanthJabalpuri/pacextractor
https://github.com/HemanthJabalpuri/pacextractor

[25] Huawei. Emui 11.0 security technical white paper, 2020.
URL: https://consumer.huawei.com/content/
dam/huawei-cbg-site/common/campaign/
privacy/whitepaper/emui_11.0_security_
technical_white_paper_v1.0.pdf.

[26] Zheyue Jiang, Yuan Zhang, Jun Xu, Xinqian Sun,
Zhuang Liu, and Min Yang. Aem: Facilitating cross-
version exploitability assessment of linux kernel vulner-
abilities. In S&P, 2023.

[27] Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe
Wang, Xiaohan Zhang, Xinyu Xing, Min Yang, and
Zhemin Yang. PDiff: Semantic-Based Patch Presence
Testing for Downstream Kernels. In CCS, 2020.

[28] Xingyu Jin and Richard Neal. The Art of Exploiting
UAF by Ret2bpf in Android Kernel, 2021. URL:
https://i.blackhat.com/EU-21/Wednesday/
EU-21-Jin-The-Art-of-Exploiting-UAF-by-
Ret2bpf-in-Android-Kernel-wp.pdf.

[29] Kailani R. Jones, Ting-Fang Yen, Sathya Chandran Sun-
daramurthy, and Alexandru G. Bardas. Deploying an-
droid security updates: an extensive study involving
manufacturers, carriers, and end users. In CCS, 2020.

[30] Max Kellermann. The Dirty Pipe Vulnerability, 2022.
URL: https://dirtypipe.cm4all.com/.

[31] Bjoern Kerler. oppo_decrypt_ozip, 2022. URL: https:
//github.com/bkerler/oppo_ozip_decrypt.

[32] Bjoern Kerler. oppo_decrypt, 2023. URL: https://
github.com/bkerler/oppo_decrypt.

[33] Zhenpeng Lin. How AUTOSLAB Changes
the Memory Unsafety Game, 2021. URL:
https://grsecurity.net/how_autoslab_
changes_the_memory_unsafety_game.

[34] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. DirtyCred:
Escalating Privilege in Linux Kernel. In ACM, 2022.

[35] Zhenpeng Lin, Xinyu Xing, Zhaofeng Chen, and Kang
Li. Bad io_uring: A New Era of Rooting for Android,
2023. URL: https://i.blackhat.com/BH-US-23/
Presentations/US-23-Lin-bad_io_uring.pdf.

[36] Linux Kernel Driver DataBase. CON-
FIG_ARM64_UAO: Enable support for User Access
Override (UAO), 2024. URL: https://cateee.net/
lkddb/web-lkddb/ARM64_UAO.html.

[37] Kangjie Lu, Marie-Therese Walter, David Pfaff, Ste-
fan Nümberger, Wenke Lee, and Michael Backes. Un-
leashing Use-Before-Initialization Vulnerabilities in the
Linux Kernel Using Targeted Stack Spraying. In NDSS,
2017.

[38] Lukas Maar, Stefan Gast, Martin Unterguggenberger,
Mathias Oberhuber, and Stefan Mangard. SLUBStick:
Arbitrary Memory Writes through Practical Software
Cross-Cache Attacks within the Linux Kernel. In
USENIX Security, 2024.

[39] Lukas Maar, Martin Schwarzl, Fabian Rauscher, Daniel
Gruss, and Stefan Mangard. DOPE: DOmain Protection
Enforcement with PKS. In ACSAC, 2023.

[40] Marin. vmlinux-to-elf, 2023. URL: https://
github.com/marin-m/vmlinux-to-elf.

[41] Man Yue Mo. One day short of a full chain: Part 1 -
Android Kernel arbitrary code execution, 2021. URL:
https://securitylab.github.com/research/
one_day_short_of_a_fullchain_android/.

[42] Alexander Popov. Four Bytes of Power: Ex-
ploiting CVE-2021-26708 in the Linux kernel,
2021. URL: https://a13xp0p0v.github.io/2021/
02/09/CVE-2021-26708.html.

[43] Andrea Possemato, Simone Aonzo, Davide Balzarotti,
and Yanick Fratantonio. Trust, but verify: A longitudinal
analysis of android oem compliance and customization.
In S&P, 2021.

[44] Matteo Rizzo and Jann Horn. Prevent cross-
cache attacks in the SLUB allocator, 2023.
URL: https://lore.kernel.org/linux-mm/
202309151425.2BE59091@keescook/T/.

[45] Seth Jenkins. Exploiting CVE-2022-42703 -
Bringing back the stack attack, 2022. URL:
https://googleprojectzero.blogspot.com/
2022/12/exploiting-CVE-2022-42703-
bringing-back-the-stack-attack.html.

[46] Maddie Stone. Bad Binder: Android In-
The-Wild Exploit, 2019. URL: https:
//googleprojectzero.blogspot.com/2019/11/
bad-binder-android-in-wild-exploit.html.

[47] Maddie Stone. CONFIG_DEBUG_LIST=y, 2020.
URL: https://twitter.com/maddiestone/
status/1245834936629616640?lang=de.

[48] Maddie Stone. Detection Deficit: A Year in Review
of 0-days Used In-The-Wild in 2019, 2020. URL:
https://googleprojectzero.blogspot.com/
2020/07/detection-deficit-year-in-review-
of-0.html.

[49] Maddie Stone. 2022 0-day In-the-Wild
Exploitation...so far, 2023. URL: https:
//googleprojectzero.blogspot.com/2022/
06/2022-0-day-in-wild-exploitationso-
far.html.

4532 33rd USENIX Security Symposium USENIX Association

https://consumer.huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/whitepaper/emui_11.0_security_technical_white_paper_v1.0.pdf
https://consumer.huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/whitepaper/emui_11.0_security_technical_white_paper_v1.0.pdf
https://consumer.huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/whitepaper/emui_11.0_security_technical_white_paper_v1.0.pdf
https://consumer.huawei.com/content/dam/huawei-cbg-site/common/campaign/privacy/whitepaper/emui_11.0_security_technical_white_paper_v1.0.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://dirtypipe.cm4all.com/
https://github.com/bkerler/oppo_ozip_decrypt
https://github.com/bkerler/oppo_ozip_decrypt
https://github.com/bkerler/oppo_decrypt
https://github.com/bkerler/oppo_decrypt
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://i.blackhat.com/BH-US-23/Presentations/US-23-Lin-bad_io_uring.pdf
https://i.blackhat.com/BH-US-23/Presentations/US-23-Lin-bad_io_uring.pdf
https://cateee.net/lkddb/web-lkddb/ARM64_UAO.html
https://cateee.net/lkddb/web-lkddb/ARM64_UAO.html
https://github.com/marin-m/vmlinux-to-elf
https://github.com/marin-m/vmlinux-to-elf
https://securitylab.github.com/research/one_day_short_of_a_fullchain_android/
https://securitylab.github.com/research/one_day_short_of_a_fullchain_android/
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
https://lore.kernel.org/linux-mm/202309151425.2BE59091@keescook/T/
https://lore.kernel.org/linux-mm/202309151425.2BE59091@keescook/T/
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://twitter.com/maddiestone/status/1245834936629616640?lang=de
https://twitter.com/maddiestone/status/1245834936629616640?lang=de
https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://googleprojectzero.blogspot.com/2022/06/2022-0-day-in-wild-exploitationso-far.html
https://googleprojectzero.blogspot.com/2022/06/2022-0-day-in-wild-exploitationso-far.html
https://googleprojectzero.blogspot.com/2022/06/2022-0-day-in-wild-exploitationso-far.html
https://googleprojectzero.blogspot.com/2022/06/2022-0-day-in-wild-exploitationso-far.html

[50] Maddie Stone. The Ups and Downs of
0-days: A Year in Review of 0-days Ex-
ploited In-the-Wild in 2022, 2023. URL:
https://security.googleblog.com/2023/07/
the-ups-and-downs-of-0-days-year-in.html.

[51] Superr. splituapp, 2019. URL: https://github.com/
superr/splituapp.

[52] Thomas Sutter and Bernhard Tellenbach. Firmware-
droid: Towards automated static analysis of pre-installed
android apps. In MOBILESoft, 2023.

[53] Seyed Mohammadjavad Seyed Talebi, Zhihao Yao,
Ardalan Amiri Sani, Zhiyun Qian, and Daniel Austin.
Undo workarounds for kernel bugs. In USENIX Security,
2021.

[54] USA Today. How long before a phone is
outdated? Here’s how to find your smart-
phone’s expiration date, 2023. URL: https:
//web.archive.org/web/20231022153016/
https://eu.usatoday.com/story/tech/
columnist/komando/2023/10/22/how-to-find-
smartphone-expiration-date/71255625007/.

[55] Vasya. payload dumper, 2023. URL: https://
github.com/vm03/payload_dumper.

[56] Zicheng Wang, Yueqi Chen, and Qingkai Zeng. PET:
Prevent Discovered Errors from Being Triggered in the
Linux Kernel. In USENIX Security, 2023.

[57] Daoyuan Wu, Debin Gao, Eric K. T. Cheng, Yichen
Cao, Jintao Jiang, and Robert H. Deng. Towards under-
standing android system vulnerabilities: Techniques and
insights. In AsiaCCS, 2019.

[58] Nicolas Wu. Dirty Pagetable: A Novel Exploitation
Technique To Rule Linux Kernel, 2023. URL:
https://yanglingxi1993.github.io/dirty_
pagetable/dirty_pagetable.html.

[59] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. KE-
PLER: Facilitating Control-flow Hijacking Primitive
Evaluation for Linux Kernel Vulnerabilities. In USENIX
Security, 2019.

[60] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi
Xie, Yuanyuan Zhang, and Dawu Gu. From collision to
exploitation: Unleashing use-after-free vulnerabilities
in linux kernel. In CCS, 2015.

[61] Zhengzi Xu, Yulong Zhang, Longri Zheng, Liangzhao
Xia, Chenfu Bao, Zhi Wang, and Yang Liu. Automatic
Hot Patch Generation for Android Kernels. In USENIX
Security, 2020.

[62] Jun Yao. arm64/mm: move
{idmap_pg_dir,tramp_pg_dir,swapper_pg_dir}
to .rodata section, 2018. URL: https:
//patchwork.kernel.org/project/linux-
hardening/patch/20180620085755.20045-2-
yaojun8558363@gmail.com/.

[63] Wang Yong. KSMA: Breaking Android kernel
isolation and Rooting with ARM MMU features, 2018.
URL: https://i.blackhat.com/briefings/asia/
2018/asia-18-WANG-KSMA-Breaking-Android-
kernel-isolation-and-Rooting-with-ARM-
MMU-features.pdf.

[64] Ruotong Yu, Francesca Del Nin, Yuchen Zhang, Shan
Huang, Pallavi Kaliyar, Sarah Zakto, Mauro Conti, Geor-
gios Portokalidis, and Jun Xu. Building embedded sys-
tems like it’s 1996. In NDSS, 2022.

[65] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing,
Adam Doupé, Yan Shoshitaishvili, and Tiffany Bao.
Playing for K(H)eaps: Understanding and Improving
Linux Kernel Exploit Reliability. In USENIX Security,
2022.

[66] Hang Zhang and Zhiyun Qian. Precise and Accurate
Patch Presence Test for Binaries. In USENIX Security,
2018.

[67] Zheng Zhang, Hang Zhang, Zhiyun Qian, and Billy Lau.
An investigation of the android kernel patch ecosystem.
In USENIX Security, 2021.

[68] Xiaochen Zou, Yu Hao, Zheng Zhang, Juefei Pu, Weit-
eng Chen, and Zhiyun Qian. Syzbridge: Bridging the
gap in exploitability assessment of linux kernel bugs in
the linux ecosystem. In NDSS, 2024.

A Detailed Statistics

A.1 Detailed Defense Detection of Kernels
Table 3 illustrates the comprehensive list of how we assess
the state of our identified defense mechanisms. We follow
the procedure to identify symbols of globally reachable func-
tions within the kallsyms file. This file contains all globally
reachable functions and variable symbols used in the kernel
binary, e.g., marked with EXPORT_SYMBOL. For instance, the
presence of __list_add_valid in kallsyms indicates the
status of the CONFIG_DEBUG_LIST. As another example, the
symbol cache_random_seq_create indicates the presence
of CONFIG_SLAB_FREELIST_RANDOM. A similar assessment
stands true for detecting the other defenses. Additionally, to
identifying symbols kallsyms, our approach also detects de-
fense mechanisms which do not contain globally reachable

USENIX Association 33rd USENIX Security Symposium 4533

https://security.googleblog.com/2023/07/the-ups-and-downs-of-0-days-year-in.html
https://security.googleblog.com/2023/07/the-ups-and-downs-of-0-days-year-in.html
https://github.com/superr/splituapp
https://github.com/superr/splituapp
https://web.archive.org/web/20231022153016/https://eu.usatoday.com/story/tech/columnist/komando/2023/10/22/how-to-find-smartphone-expiration-date/71255625007/
https://web.archive.org/web/20231022153016/https://eu.usatoday.com/story/tech/columnist/komando/2023/10/22/how-to-find-smartphone-expiration-date/71255625007/
https://web.archive.org/web/20231022153016/https://eu.usatoday.com/story/tech/columnist/komando/2023/10/22/how-to-find-smartphone-expiration-date/71255625007/
https://web.archive.org/web/20231022153016/https://eu.usatoday.com/story/tech/columnist/komando/2023/10/22/how-to-find-smartphone-expiration-date/71255625007/
https://web.archive.org/web/20231022153016/https://eu.usatoday.com/story/tech/columnist/komando/2023/10/22/how-to-find-smartphone-expiration-date/71255625007/
https://github.com/vm03/payload_dumper
https://github.com/vm03/payload_dumper
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://patchwork.kernel.org/project/linux-hardening/patch/20180620085755.20045-2-yaojun8558363@gmail.com/
https://patchwork.kernel.org/project/linux-hardening/patch/20180620085755.20045-2-yaojun8558363@gmail.com/
https://patchwork.kernel.org/project/linux-hardening/patch/20180620085755.20045-2-yaojun8558363@gmail.com/
https://patchwork.kernel.org/project/linux-hardening/patch/20180620085755.20045-2-yaojun8558363@gmail.com/
https://i.blackhat.com/briefings/asia/2018/asia-18-WANG-KSMA-Breaking-Android-kernel-isolation-and-Rooting-with-ARM-MMU-features.pdf
https://i.blackhat.com/briefings/asia/2018/asia-18-WANG-KSMA-Breaking-Android-kernel-isolation-and-Rooting-with-ARM-MMU-features.pdf
https://i.blackhat.com/briefings/asia/2018/asia-18-WANG-KSMA-Breaking-Android-kernel-isolation-and-Rooting-with-ARM-MMU-features.pdf
https://i.blackhat.com/briefings/asia/2018/asia-18-WANG-KSMA-Breaking-Android-kernel-isolation-and-Rooting-with-ARM-MMU-features.pdf

Table 3: Symbols and used additional information for our defense detection approach. The defense feature ✩ is enabled if this
symbol (e.g., globally visible function or variable) is present within the kallsyms containing all kernel symbols.

Defense Feature Kernel Executable Present within kallsyms✩ Information

CONFIG_DEBUG_LIST
__list_add_valid, __list_del_entry_valid ≥v3.18
__list_add, __list_del_entry <v3.18

CONFIG_CFI_CLANG cfi_module_add, cfi_module_remove

CONFIG_BPF_JIT_ALWAYS_ON
___bpf_prog_run ≥v4.14
__bpf_prog_run <v4.14

kmalloc-cg-* available for ≥v5.13
CONFIG_INIT_ON_ALLOC_DEFAULT_ON init_on_alloc
CONFIG_ARM64_UAO uao_thread_switch, cpu_enable_uao no addr_limit for ≥v5.11
CONFIG_SLAB_FREELIST_HARDENED get_random_long called within __kmem_cache_create
KSMA Protection swapper_pg_dir, tramp_pg_dir swapper_pgdir_lock, swapper_pg_dir, tramp_pg_dir *_pg_dir mapped as read-only
Samsung RKP rkp_init only for Samsung devices
CONFIG_RANDOMIZE_BASE module_alloc_base, kaslr_early_init

CONFIG_STRICT_KERNEL_RWX set_debug_rodata, mark_readonly, mark_rodata_ro named as CONFIG_DEBUG_RODATA for <v4.14;
on v3.10 only for 32 bit systems

CONFIG_ARM64_PAN cpu_enable_uao

CONFIG_ARM64_SW_TTBR0_PAN
reserved_ttbr0 <v5.4; available for ≥v4.10

"emulated: Privileged Access Never (PAN) \ ≥v4.19
using TTBR0_EL1 switching"

CONFIG_SLAB_FREELIST_RANDOM cache_random_seq_create, cache_random_seq_destroy
CONFIG_UNMAP_KERNEL_AT_EL0 tramp_pg_dir

Table 4: Statistical results of firmware extraction and kernel
code collection.

Vendors Firmware Extraction Kernel Code
#devices #available #extracted #collected

Samsung 197 190 164 654
Xiaomi 278 151 143 188
Oppo 229 145 114 29
Vivo 307 178 144 30
Realme 307 137 135 135
Huawei 182 121 119 218
Motorola 115 112 104 246
Google 26 26 26 9
OnePlus 54 46 42 21
Fairphone 3 3 3 3
Total 1698 1109 994 1533

symbols. For instance, CONFIG_SLAB_FREELIST_HARDENED
only includes inline functions and member variables. To de-
tect the presence of this defense, our approach analyzes the
kernel binary, more specifically, the function where these in-
line calls are executed, e.g., get_random_long within func-
tion kmem_cache_open. Executing the call indicates the pres-
ence of this defense. To detect the presence of the KSMA pro-
tection, swapper_pg_dir and tramp_pg_dir must also be
mapped read-only. For instance, these pages might be mapped
between __start_rodata and __init_begin.

A.2 Statistical Results of Firmware Extraction
Table 4 illustrates the extractable firmwares. Our success rate
of 58.5 % (with a collection and extraction rate of 65.3 %
and 89.6 %) from produced devices to extractable firmwares
aligns with prior work [11, 14, 64]. The two main reasons for
extraction failure were that our approach did not recognize
the correct format or that part of the firmware was corrupted.

Table 5: Included defenses averaged over all firmwares for
each vendor. ✶ inidcates that it is ineffective while ✩ indicates
that it is ineffective for kernels <v5.11.

Vendor ² / ⋔ �✩ ® ✶ ¥ © ç Ó �

Samsung 60 49 26 8 63 96 25 5 84 100 91 27 16 39
Xiaomi 89 94 74 0 93 98 10 1 97 100 97 10 83
Oppo 50 49 19 0 44 95 37 13 91 100 95 49 14
Vivo 69 65 27 5 67 96 44 22 95 98 88 73 22
Realme 91 91 34 2 89 100 36 22 100 100 99 47 44
Huawei 15 18 67 0 20 92 12 13 97 100 79 87 14 62
Motorola 62 58 34 1 59 90 44 29 89 100 79 58 31
Google 88 88 100 8 88 100 65 65 100 100 100 77 65
Oneplus 83 83 52 10 83 100 69 55 100 100 100 90 55
Fairphone 67 67 33 0 67 100 33 33 100 100 100 67 33
² CONFIG_DEBUG_LIST / CONFIG_BPF_JIT_ALWAYS_ON ⋔ CONFIG_CFI_CLANG kmalloc-cg-*

 CONFIG_INIT_ON_ALLOC_DEFAULT_ON � CONFIG_ARM64_UAO ® CONFIG_SLAB_FREELIST_HARDENED
 KSMA protection CONFIG_RANDOMIZE_BASE ¥ CONFIG_STRICT_KERNEL_RWX

© CONFIG_ARM64_(SW_TTBR0_)PAN ç CONFIG_SLAB_FREELIST_RANDOM CONFIG_UNMAP_KERNEL_AT_EL0
Ó Samsung RKP � Huawei HKIP

Table 6: ✓ indicates defenses available for mainline Android
kernel from v3.10 to v6.1, while ✗ indicates that the defense
is not required for the specific version.

Kernel ² / ⋔ � ® ¥ © ç

v3.10 ✓ ✗ ✓
v3.18 ✓ ✓ ✓ ✓ ✓ ✓
v4.4 ✓ ✓ ✓ ✓ ✓ ✓ ✓
v4.9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
v4.14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
v4.19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
v5.4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
v5.10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
v5.15 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
v6.1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

² CONFIG_DEBUG_LIST / CONFIG_BPF_JIT_ALWAYS_ON ⋔ CONFIG_CFI_CLANG kmalloc-cg-*
 CONFIG_INIT_ON_ALLOC_DEFAULT_ON � CONFIG_ARM64_UAO ® CONFIG_SLAB_FREELIST_HARDENED

 KSMA protection CONFIG_RANDOMIZE_BASE ¥ CONFIG_STRICT_KERNEL_RWX
© CONFIG_ARM64_(SW_TTBR0_)PAN ç CONFIG_SLAB_FREELIST_RANDOM CONFIG_UNMAP_KERNEL_AT_EL0

Table 7: The susceptibility reduction (i.e., Susc Reduc)
against one-days of high-end to low-end devices.

Vendor Low-End High-End Susc Reduc
Devices Susc Devices Susc in %

Samsung Galaxy A(1,2,3,5)4 5.5 Galaxy S23.* 4.5 18.2
Xiaomi Redmi 12.* 12.0 13T.* 12.0 0.0
Oppo A(3,9)8 12.0 Find X2.* 10.0 16.7
Vivo Y(100,27) 11.0 X100.* 4.0 63.6
Realme C(33,53,55) 10.7 Neo 5.* 10.0 6.2
Huawei Nova 11.* 15.5 P60.* 10.0 35.5
Motorola G(1,5,8)4.* 10.7 Edge 40.* 8.5 20.3
OnePlus Nord 3.* 10.0 11.* 7.0 30.0
Mean 23.8

4534 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Android Ecosystem and Android Kernels
	Kernel Exploitation

	High-Level Workflow
	One-Day Exploitation Analysis
	Identified Exploitation Techniques
	Defenses to Prevent Exploitation Flows
	Unpreventable Exploitation Flows

	Defense Inclusion & Effectiveness Analysis
	Collection of Firmwares and Kernel Codes
	Analysis of Kernel Source Codes
	Mainline Defenses in Downstreamed Kernels
	Identified Downstream Defenses
	Advanced Kernel-Space Mirroring Attack
	Shortcoming of User Access Override
	Samsung RKP Weaknesses
	Huawei HKIP Weaknesses

	Analysis of Firmwares
	Analysis Results

	Discussion
	Related Work
	Conclusion
	Detailed Statistics
	Detailed Defense Detection of Kernels
	Statistical Results of Firmware Extraction

