
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

PEPSI: Practically Efficient Private Set
Intersection in the Unbalanced Setting

Rasoul Akhavan Mahdavi, Nils Lukas, Faezeh Ebrahimianghazani, and
Thomas Humphries, University of Waterloo; Bailey Kacsmar, University of Alberta;
John Premkumar and Xinda Li, University of Waterloo; Simon Oya, University of

British Columbia; Ehsan Amjadian, University of Waterloo and Royal Bank
of Canada; Florian Kerschbaum, University of Waterloo

https://www.usenix.org/conference/usenixsecurity24/presentation/mahdavi

PEPSI: Practically Efficient Private Set Intersection in the Unbalanced Setting

Rasoul Akhavan Mahdavi1, Nils Lukas1, Faezeh Ebrahimianghazani1, Thomas Humphries1, Bailey
Kacsmar2, John Premkumar1, Xinda Li1, Simon Oya3, Ehsan Amjadian1, 4, and Florian Kerschbaum1

1University of Waterloo
2University of Alberta

3University of British Columbia
4Royal Bank of Canada

{rasoul.akhavan.mahdavi, nlukas, f5ebrahi, thomas.humphries, jpremkumar, xinda.li, ehsan.amjadian,
florian.kerschbaum}@uwaterloo.ca, kacsmar@ualberta.ca, simon.oya@ubc.ca

Abstract
Two parties with private data sets can find shared elements us-
ing a Private Set Intersection (PSI) protocol without revealing
any information beyond the intersection. Circuit PSI protocols
privately compute an arbitrary function of the intersection -
such as its cardinality, and are often employed in an unbal-
anced setting where one party has more data than the other.
Existing protocols are either computationally inefficient or
require extensive server-client communication on the order of
the larger set. We introduce Practically Efficient PSI or PEPSI,
a non-interactive solution where only the client sends its en-
crypted data. PEPSI can process an intersection of 1024 client
items with a million server items in under a second, using less
than 5 MB of communication. Our work is over 4 orders of
magnitude faster than an existing non-interactive circuit PSI
protocol and requires only 10% of the communication. It is
also up to 20 times faster than the work of Ion et al., which
computes a limited set of functions and has communication
costs proportional to the larger set. Our work is the first to
demonstrate that non-interactive circuit PSI can be practically
applied in an unbalanced setting.

1 Introduction

Privacy-preserving data analytics operates on the principles
that (i) data is accessible and can be analyzed while (ii) en-
suring that the user’s privacy remains uncompromised. For
instance, consider the application of secure contact discovery
used in private messengers such as Signal [16, 24]. Users
want to connect with their friends without sharing their entire
contact list with the server, and the server does not want to
disclose the list of all contacts to each user. The revelation
of this information by the client (or server) would defeat the
very essence of these services.

Private Set Intersection (PSI) protocols offer a solution to
this problem. PSI is designed to compute the intersection of
two sets while ensuring that nothing beyond the intersection is
revealed. A specific form of PSI is unbalanced PSI, in which

one party, typically the client, has a substantially smaller set
than the second party, the server. Moreover, the client is often
a resource-constrained device like a mobile phone or an IoT
device with limited network connectivity. Consequently, it
benefits the client by minimizing network communication,
reducing the number of network round trips, and offloading
computational tasks to the server.

In some cases, the goal of the client and server is to com-
pute functions of the intersection, rather than to learn the
intersection itself. For instance, in the case of COVID-19
exposure applications, a user simply wants to know if they
share any randomly generated codes with those stored on the
server, indicating potential exposure [17, 36, 37, 39]; who
those matches are is irrelevant. Similarly, when gauging the
effectiveness of ad campaigns by cross-referencing online
advertisements with offline credit card transactions [22], the
advertiser is interested in knowing the total sales correspond-
ing to a specific set of credit cards used at certain vendors.
Only the total sales amount is of interest, not the individual
transactions. Circuit PSI is the term used when a function of
the intersection is calculated rather than the intersection itself.

In the circuit PSI setting, the work of Kacsmar et al. [23]
(referred to as DiPSI) is best suited for the unbalanced non-
interactive setting. However, DiPSI still suffers from ineffi-
ciency issues. In contrast to DiPSI, the numerous fast state-
of-the-art solutions for PSI [7, 14, 34] are limited in terms of
being extendable to the circuit PSI setting. Specifically, each
state-of-the-art solution is limited in one of the following
ways. The first limitation is for solutions that are restricted
as to the functions they can compute [22, 28]. They are un-
able to execute functions beyond a specific predefined set.
Despite the fact that protocols designed for specific functions
allow targeted optimizations, our evaluation shows that we
outperform the state-of-the-art for many specific functions,
particularly for large server set sizes. Furthermore, targeted
optimizations become obsolete when the function needs to
be changed. Second, adapting some solutions to circuit PSI
levies a computational and communication burden on the
client to compute arbitrary functions, usually in the form of

USENIX Association 33rd USENIX Security Symposium 6453

Table 1: Comparing the properties of different PSI protocols. m and n are the client and server set sizes, respectively. We assume
m≪ n in the analysis of works which support the unbalanced setting. DH: Diffie-Hellman. 2PC: two-party computation. PDTE:
private decision tree evaluation. *PSI using [22, 30, 42] is done in one round and an extra round is required to compute the
sum. Moreover, it can only perform a limited set of functions in only one extra round. **PSI is realized by extending private set
membership.

Work Tools Unbalanced Rounds Comm. Comp. PSI Labelled PSI Circuit PSI

[35] B-OPPRF + 2PC × 1+ log2 λ O(n) O(n logn) ✓ ✓ 2PC
[7] RB-OPPRF + 2PC × 1+ log2 λ O(n) O(n) ✓ ✓ 2PC

[22, 42] DH × 1+1 ∗ O(n) O(n) ✓ × ✓∗

[13, 30] OT + PDTE × 1+1 O(n) O(n) ✓ ✓∗∗ ✓∗∗

[11] HE ✓ 1 O(m logn) O(n logn) ✓ ✓ ×
[10, 14] OPRF + HE ✓ 2 O(m) O(n logn) ✓ ✓ ×

DiPSI [23] HE ✓ 1 O(m) O(n) ✓ ✓ ✓
PEPSI HE ✓ 1 O(m) O(n) ✓ ✓ ✓

two-party computation [7, 33]. This communication burden
is usually proportional to the larger set [7, 22, 33] or depends
on the complexity of the task. Such a burden is not acceptable
when designing a non-interactive protocol.

Summary of Contributions. In this work, we propose
PEPSI, an efficient, non-interactive circuit PSI protocol using
homomorphic encryption. Homomorphic Encryption (HE) is
a form of encryption that permits computation on the data
while in encrypted form. In PEPSI, the client encrypts its
elements using an HE scheme and sends them to the server,
which compares the elements homomorphically. The output
of each comparison is binary and is used to compute func-
tions. Our approach removes the limitations that are present
in existing work. PEPSI does not restrict the function that
can be evaluated, there is no communication or computation
burden on the client to compute the function, and it only has
communication complexity proportional to the smaller client
set size.

Our approach also overcomes the impractical runtimes as-
sociated with the DiPSI protocol from the literature [23]. We
address the slow comparisons by comparing items using the
efficient constant-weight equality operator [19], permutation-
based hashing, and cuckoo hashing. Altogether this reduces
the size of the elements that need to be compared such that
PEPSI is over four orders of magnitude faster than DiPSI
and requires 90% less communication. For example, PEPSI
can compute the intersection of 1024 and one million 32-bit
elements in under one second with less than 5 MB of commu-
nication.

PEPSI has a runtime and communication cost comparable
to other PSI protocols based on HE [10, 14], which cannot
extend to circuit PSI. Moreover, the client is required to do
much less computational work in PEPSI, making it compati-
ble with use cases where the client does not have much com-

putational power, i.e., the unbalanced setting. We empirically
compare PEPSI with state-of-the-art protocols in our exper-
iments, showing that PEPSI is even competitive with PSI
protocols which cannot extend to circuit PSI. Our work is the
first to show that non-interactive circuit PSI can be efficient
up to the point it is practical for use in applications.

2 Related Work

The term private set intersection (PSI) was coined by Freed-
man et al. [21]. In a PSI protocol, two parties compute the
intersection of their respective private sets such that no infor-
mation is revealed except the intersection itself. If the inter-
section is only revealed to one of the parties, this is known
as one-sided PSI. However, one-sided PSI can be extended
to two-sided PSI by running the protocol a second time and
switching the roles of the client and server.

2.1 PSI with Leakage

In some applications and real-world use cases, such as check-
ing for compromised credentials, the overhead of PSI is high
if the client element is compared to all elements. For example,
comparing the client credentials to billions of leaked cre-
dentials is expensive. To alleviate the overhead, some works
propose to only compare the client elements to a subset of
the server elements [29, 38]. For example, elements are dis-
tributed into buckets by their prefix. To query for a specific
element, the client only queries the bucket corresponding to
that element instead of the entire set. The server will know
that the client’s query falls into that specific bucket so such
an approach partially leaks information about the client at the
cost of better performance. This leakage degrades the secu-
rity guarantees but may be acceptable in some applications.
Thomas et al. [38] predict that the prefix of a user’s creden-

6454 33rd USENIX Security Symposium USENIX Association

tials is common with about 350k-470k other users, assuming
each client has one credential in the database.

Our work does not follow this approach and instead offers
PSI without leakage. While such an approach requires more
computational effort, it offers better security. We note that our
protocol could also be combined with bucketization, offering
a tunable trade-off between security and performance from
the leakage of current protocols [29, 38] to no leakage.

2.2 Unbalanced PSI

Unbalanced PSI is a special case of PSI where one party,
which we call the client, has a much smaller set compared to
the other party, i.e., the server [1, 2, 10, 11, 14, 17, 24, 29].
This is a common assumption in many applications of PSI. For
example, in compromised credentials checking (C3) [24, 29],
the client wishes to access a large database containing creden-
tials that are leaked on the web. While the set of client cre-
dentials is small, e.g., a few hundred credentials, the database
of leaked credentials is in the billions and growing [24, 29].
Moreover, the client is usually bandwidth-constrained and has
limited computational power. Hence, protocols with limited
network round trips and little client-side computation are pre-
ferred. A narrower variant of unbalanced PSI exists, dubbed
laconic PSI, with the additional constraint that only the server
learns the output of the protocol [1, 2].

While there are many efficient state-of-the-art PSI proto-
cols [7, 30, 32, 34, 35], the communication complexity of
these solutions scales with the larger set, making them un-
suitable for unbalanced PSI. For example, Pinkas et al. and
Chandran et al. propose PSI protocols that compute an obliv-
ious PRF for each element of the server set [7, 35]. Ma and
Chow propose to construct a private decision tree from the
server set, which is encrypted and sent to the client. The client
then obliviously traverses this decision tree using OT [30].
Such solutions are useful in high-bandwidth, low-latency net-
works but fall short over high-latency networks.

Amongst solutions that have no leakage, the current most
efficient non-interactive PSI protocols in the unbalanced case
are based on homomorphic encryption [10, 11, 14]. Homo-
morphic encryption (HE) is a type of encryption that allows
computations on data in its encrypted form. Chen et al. [11]
were among the first to propose a PSI protocol specifically
designed for the unbalanced setting using homomorphic en-
cryption. If Y represents the server set, the key idea is to
construct the polynomial P(x) = r ∏yi∈Y(x− yi), for some
random value r. The client sends an encryption of its ele-
ments to the server, which then homomorphically evaluates
P(x) on the client input. For a certain client element x0, if
x0 ∈ Y, then P(x0) = 0, otherwise P(x0) is a random number.
The idea of representing the set as a polynomial had been
proposed before [26] and Chen et al. included optimizations
to reduce the multiplicative depth of the function that is ho-
momorphically evaluated, thereby enhancing efficiency [11].

Chen et al. [10] and Cong et al. [14] built upon [11], em-
ploying a combination of Oblivious Pseudorandom Functions
(OPRF) and homomorphic encryption. This improved per-
formance extended the security to the malicious model and
also allowed the protocol to extend to elements of arbitrary
bitlength.

2.3 Labelled PSI
A specific variant of PSI is labelled PSI, where the server has
a private label associated with each element in its private set.
The server stores pairs in the form of (yi, ℓi) where yi is the
identifier of the element and ℓi is the label associated with that
element. The two parties compute the intersection of their sets
and output all the pairs (yi, ℓi) where yi is in the intersection of
the two sets. Nothing beyond the elements in the intersection
and their corresponding labels are revealed to either one of the
parties. When the client has only one element, this problem is
equivalent to private information retrieval by keywords, first
proposed by Chor et al. [12]. In the context of private contact
discovery, the client may wish to retrieve the public keys of
users in their contact list [16, 24].

Many PSI protocols can be extended to labelled PSI with
additional computation and communication costs. For exam-
ple, Chen et al. [10] and Cong et al. [14] extend their protocol
to labelled PSI by evaluating another polynomial which eval-
uates to the ℓi when x = yi. For the protocols of Pinkas et
al. [33] and Chandran et al. [7] the extension to labelled PSI
can be done without changing the asymptotic complexity, but
it does result in doubling the concrete communication and
computation cost.

2.4 Circuit PSI
Another variant of PSI is circuit PSI, where the objective
is to compute a function of the intersection, rather than the
intersection itself. One example is PSI-Cardinality, where
the parties compute the size of the intersection [23]. Another
example is PSI-Sum [22], where the sum of values associated
with elements in the intersection is revealed.

One application for PSI-Sum, known as ad-conversion, is
assessing the effectiveness of ad campaigns [22]. A company
purchasing an ad through an ad service company, such as
Google, would like to know the total purchases made by users
who have seen their particular ad. If Google can show a client
who paid to have an ad displayed through their system that
the ad leads to sales, then it is easier to convince the client to
purchase more ads in the future. Such ad-conversion compu-
tations can be done by linking those who have seen an ad with
their credit card transactions. However, credit card vendors
are unwilling to disclose their clients’ transactions. PSI-Sum
is a solution in this scenario.

In the existing approaches [10, 11, 14], every comparison
between a client and server element results in an arithmetic

USENIX Association 33rd USENIX Security Symposium 6455

output. An arithmetic output means that if the elements are
equal, the output is zero, and the output is a random non-zero
number in Zp, for some p. While using this approach results
in fast PSI protocols, computing a function of the intersection
is not feasible. To compute a function, the result of each
comparison must be converted to a binary output, i.e., one for
a match and zero otherwise.

One approach to computing such functions is to use se-
cure two-party computation (2PC) to convert the arithmetic
output into a secret-shared binary output. 2PC can then be
used to compute any arbitrary function over the binary output.
While there is flexibility regarding the functions that can be
computed in this approach, the communication complexity
of MPC protocols is high. More specifically, the communi-
cation complexity depends on the size of both sets and the
complexity of the desired function [7, 33].

Another approach is to compare elements from the client
and server homomorphically via a homomorphic equality
circuit. The output of the comparisons is binary in this case.
This is the only non-interactive approach in the literature
and is more suitable for the unbalanced setting since it does
not require any client interaction. The work of Kacsmar et
al. [23], which they call DiPSI, uses this approach. DiPSI
achieves asymptotically optimal communication, given that
only the client dataset is communicated over the network. The
authors use this protocol to compute a differentially private
PSI-Sum and other functions. The main problem with DiPSI
is the extremely high runtime. PSI-Sum between 1024 client
elements and 1 million server elements can take over 600
minutes. This can mainly be attributed to the homomorphic
comparison function that they employ. We propose a solution
that compares elements homomorphically, similar to DiPSI
but is over four orders of magnitude faster.

Some works take a different approach to circuit PSI by
designing a protocol that can compute a very specific func-
tion very efficiently [22, 28]. This is in contrast to the other
approaches where an arbitrary function can be derived. A spe-
cialized protocol outperforms generalized protocols in terms
of performance but restricts the functions that can be derived
and may leak additional information in the process [22].

Ion et al. [22] propose a protocol for PSI-Sum-with-
Cardinality. This protocol outputs, to the server, the sum of
values associated with elements in the intersection, whilst
also revealing the intersection cardinality to the client. Le-
point et al. [28] proposed Private Join and Compute (PJC)
which provides PSI-sum, which is the sum of values asso-
ciated with elements in the intersection, without leakage of
the intersection cardinality. However, their protocol cannot
compute any function other than the sum and has an expen-
sive offline phase. PSI-Stats follows a similar approach and
supports more functions including arithmetic and geometric
mean, standard deviation, and approximate composition [42].
However, this protocol is still limited to the functionalities
proposed by the authors. A common feature of these works is

they require three rounds of interaction and the final results
are revealed to the server.

3 Background

3.1 The FV Cryptosystem

The FV cryptosystem [18] permits computation over vectors
of numbers using Single Instruction, Multiple Data (SIMD)
operators. Plaintexts are vectors of length N where each el-
ement is in Zt . N and t are called the polynomial modulus
degree and the plaintext modulus, respectively. Ciphertexts
are vectors of polynomials with coefficients in Zq, where q is
called the ciphertext modulus and C is the ciphertext space.
The following operations are permitted in FV:

• Addition: Given cX ,cY ∈ C which encrypts X ,Y ∈ ZN
t ,

respectively, output cA which encrypts X +Y .

• Plain Multiplication: Given X ∈ ZN
t and cY ∈ C which

encrypts Y ∈ ZN
t , output cPM which encrypts X⊙Y .

• Multiplication: Given cX ,cY ∈ C which encrypt X ,Y ∈
ZN

t , respectively, output cM which encrypts X⊙Y .

Note the addition (+) and multiplication (⊙) operations
from FV over vectors in Zt are defined element-wise.

3.2 Constant-weight Encoding

A constant-weight code is a collection of binary codewords
with the same Hamming weight, i.e., each codeword has a
fixed number of bits set to one. Throughout this paper, we de-
note the common Hamming weight that the codewords share
as h. We denote the set of ℓ-bit constant-weight codewords
with Hamming weight h by CW (ℓ,h).

We use the arithmetic constant-weight equality operator
from Mahdavi and Kerschbaum [19] for comparing constant-
weight codewords with Hamming weight h. The choice of
h impacts the computation cost of the operator and the re-
quired communication. This operator does not depend on the
operands which it is comparing, and so can be computed us-
ing SIMD operations. Algorithm 1 describes this operator.
Throughout this paper, we denote [n] = {0,1, ...,n− 1} for
n ∈ N.

Algorithm 1 Arithmetic Constant-weight Equality Operator

1: algorithm ARITH-CW-EQ(x,y)
2: h′ = ∑i∈[ℓ] xi · yi

3: e = (1/h!)∏i∈[h](h′− i)
4: return e ∈ {0,1}

6456 33rd USENIX Security Symposium USENIX Association

3.3 Hashing Optimizations
We use a collection of hashing techniques to reduce the total
number of comparisons and the cost of each comparison.

Hashing-to-Bins. Hashing-to-bins reduces the number of
comparisons in a PSI protocol [20, 23, 32, 35]. Elements are
distributed into a predetermined number of bins and compar-
isons are only performed between client and server elements
in the same bin; since the bin in which an element is placed
is determined using hashes of that element. When using this
strategy, note that it is necessary to pad each bin with dummy
elements up to a predetermined size to prevent the load of the
bins from leaking information about the dataset.

There is a possibility that the number of elements in a bin
exceeds the predetermined maximum, which would constitute
a failure in the protocol. Thus, it is necessary to employ a
strategy that cleverly manages elements that fall into the same
bin.

Cuckoo hashing [31, 41] is a strategy for hashing elements
into bins such that elements can be ejected from their cur-
rent bin and placed in another bin after their initial place-
ment. In Cuckoo hashing [31], there are m elements which
are placed in b = εm bins, for some constant ε. Each bin holds
at most one element and the placement of each element is de-
termined using k hash functions, denoted as Hi : X 7→ [b] for
i = 1,2, · · · ,k.

For each element x, we place x in bin H1(x). If bin H1(x)
was already occupied by x′, such that H1(x) =Hi(x′), we evict
x′ from the bin. The new placement for x′ is bin Hi+1 mod k(x′).
If that bin is empty, we are done; otherwise, we repeat this
process, evicting the current resident of the bin. To ensure the
protocol terminates, it is necessary to define an upper bound
on the number of evictions permitted. If an empty bin is not
found with the permitted number of evictions, the element is
placed in a stash with a fixed size. Thus, to locate an element
x, it is sufficient to look in bin H1(x), H2(x), · · · , Hk(x) or in
the stash. When selecting parameters ε, k, and the stash size,
please refer to past work analyzing the failure rates of Cuckoo
hashing [3, 25, 31, 34].

Permutation-based Hashing Permutation-based hashing
(PBH) is a technique to reduce the length of elements [3, 27,
32, 35]. We describe PBH in the following paragraph using
the assumption that the number of bins is b = 2c, for some
c ∈ N.

For a λ-bit element x, assume x = xH ||xL where || is the
concatenation operation and |xH |= c and |xL|= λ− c. In the
binning procedure, instead of placing x in bin H(x), we place
xL in bin bx = xH ⊕H(xL). Now, if two elements x and y are
placed in the same bin and match, this means that xL = yL and
bx = by. From that, we have

bx = by⇒ xH ⊕H(xL) = yH ⊕H(yL)⇒ xH = yH

Combining xL = yL and xH = yH , we can deduce that x =
y. Using this technique, we compare λ̄-bit elements where

λ̄ = λ− c. Since we can identify matches using only these
shorter elements, we will only store elements of length λ̄ in
our bins. Thus, we term λ̄ the effective bitlength and use it
as the bitlength parameter throughout our descriptions and
analysis of our protocol.

Client Server

Request (!"!)

Response (!""#$)

1.Dataset
Preprocessing

2. Server
Computation

3. Result
Extraction

1.Dataset
Preprocessing

Figure 1: Stages of PEPSI.

4 PEPSI: Practically Efficient PSI

In this section, we describe our protocol PEPSI in detail;
specifically, we describe the necessary steps to compute the
intersection between a client set of size n and a server set of
size m, where each set contains λ-bit elements. PEPSI is a
PSI protocol that operates in one round and consists of three
stages: Dataset Preprocessing, Server Computation, and Re-
sult Extraction. The client sends a request message to the
server and the server responds with a response message. The
request and response message constitute the total communi-
cation complexity of the protocol. At the end of the protocol,
the client learns the intersection and the server learns nothing
about the client set.

Figure 1 visualizes the steps of the protocol and the in-
teraction between the client and server. In the base case (no
variants), the Server Computation stage simply computes the
intersection. This can be extended to other functionalities
such as labelled PSI, computing a function on top of the in-
tersection, and laconic PSI. See Section 5 for such variants.
Table 2 summarizes all the notations used in the protocol
description.

4.1 Dataset Preprocessing
In the first stage, the client and server must asynchronously
preprocess their datasets to prepare them for the next stage.
Preprocessing the dataset reduces the protocol latency when
a client queries a server. This preprocessing is also helpful
for the server, which has a large dataset and can reuse the pre-
processed dataset for many queries by various clients. Both
parties, client and server, preprocess their data in three steps:
hashing optimization, encoding elements, and finally, batch-
ing (and encryption). Figure 2 visualizes the steps of the
preprocessing. Note the actions in each step by a party are de-
pendent on whether they are in the role of client or server. We

USENIX Association 33rd USENIX Security Symposium 6457

Table 2: Summary of notation for algorithm description.

Input Parameters

X Client set
Y Server set
m Client set size
n Server set size
λ Bitlength of elements
α Maximum Error rate

Cryptographic Parameters

N Polynomial modulus degree
q Coefficient modulus
t Plaintext modulus

Binning Parameters

b Number of bins in Tc and Ts
γ Client maximum bin load
µ Server maximum bin load
λ̄ Effective bitlength (used in PBH)

Constant-weight Code Parameters

h Hamming weight of constant-weight code
ℓ Constant-weight code length

Auxiliary Notation

Tc Client table with b bins with γ elements
Ts Server table with b bins with µ elements
T ′c Tc with encoded elements
T ′s Ts with encoded elements
ptc Plaintexts of clients elements
ctc Ciphertexts of clients elements
valc Ciphertexts of clients values
pts Plaintexts of servers elements
vals Plaintexts of server values

provide a high-level overview here with relevant pseudocode
in Appendix B.

Hashing Optimization. Our hashing optimization uses a
hashing-to-bins strategy in conjunction with permutation-
based hashing. Hashing-to-bins reduces the number of el-
ements we need to compare, and permutation-based hashing
reduces the size of elements that are inserted in the table (re-
call λ̄ = λ− c as the effective bitlength from Section 3). The
selected hashing-to-bins strategy in PEPSI must insert ele-
ments into b bins and does not require a stash. Elements that
fall into the stash must be compared with all other elements,
which severely diminishes the performance of our protocol.
Moreover, permutation-based hashing cannot be used in con-
junction with a stash. Hence, for the binning portion of the
hashing optimization, we can use known hashing strategies
that do not have a stash, such as Cuckoo hashing without a

stash [33, 35] or Dual hashing [23].
The client and server have predetermined maximum bin

loads, γ and µ, respectively, which are a function of their set
sizes and the number of bins. After inserting elements into
the bins, each party pad bins with dummy elements up to the
maximum load of the bin. If more elements are inserted into
a bin than the maximum load, the protocol fails. We denote
the client’s binning table with b bins and a maximum load of
γ as Tc. Similarly, we denote the server’s binning table with b
bins and a maximum load of µ as Ts.

Encode to Constant-weight Codewords. The client encodes
each λ̄-bit element in Tc as a constant-weight codeword of
length ℓ and Hamming weight h. The Hamming weight can
be chosen freely but affects the communication-computation
tradeoff (see Section 6). We set ℓ as a function of λ̄ and h such
that there is a unique representation for every λ̄-bit element
in Tc. So,

ℓ= ℓ(λ̄,h) = min
{
ℓ ∈ N |

(
ℓ

h

)
≥ 2λ̄

}
. (1)

We denote T ′c as the new table which holds the encoded
elements. Dummy elements are encoded to the all-zero string
of length ℓ. The server constructs T ′s from Ts using the same
procedure as the client uses to construct T ′c from Tc.

Batching (and Encryption). In the last step, the client re-
structures T ′c to obtain a table of plaintexts. Recall that plain-
texts are vectors of length N. Each position in ptc[i][j] corre-
sponds to elements from one of the b bins. More concretely,
ptc[i][∗] contains the bits of the i-th encoded element in each
of the b bins of Tc. We call this the client’s i-th batch. More-
over, this process, which we call batching, allows the protocol
to perform comparisons in different bins simultaneously. Each
shade of red in Figure 2 shows the contents of one plaintext.
The client additionally encrypts each plaintext with its secret
key. The server constructs plaintexts pts in a similar fashion
from the contents of T ′s and the server’s i′-th batch is defined
similarly. The server does not need to encrypt its plaintexts.

We assume b = N in this example to simplify the explana-
tion, but we show how to relax this assumption in relevant
steps of the protocol.

4.2 Server Computation
The client sends the ciphertexts it has produced to the server
for the next stage. In this stage, the server receives the cipher-
texts of the client’s elements and performs the set intersection
(see Algorithm 2). At a high level, for each i ∈ [γ] and i′ ∈ [µ],
the server compares batch i of the client’s dataset with batch
i′ of the server’s dataset. The output of this step is a table of
ciphertexts of size γ×µ, which we denote by cteq. For i ∈ [γ]
and i′ ∈ [µ], cteq[i][i′] denotes the result of comparing elements
from batch i from the client and batch i′ from the server.

Recall that the arithmetic constant-weight equality operator
does not depend on the operands of the comparison. Hence,

6458 33rd USENIX Security Symposium USENIX Association

Figure 2: Client Dataset Preprocessing in PEPSI. d indicates dummy elements, b is the number of bins, and γ is the clients
maximum bin load. From left to right: symbols represent the real-valued payload that is hashed into bins with a maximum
bin load γ. The payload is encoded into bits using our constant-weight codewords, whereby the same color indicates the same
payload, and finally encrypted into a ciphertext by batching across bins. The preprocessing outputs ℓ · γ ciphertexts.

we can use it as a SIMD operator in line 4 of Algorithm 2.

Algorithm 2 Compute intersection of client and server set

1: algorithm INTERSECT(ctc, pts)
2: for each client batch i ∈ [γ] do
3: for each server batch i′ ∈ [µ] do
4: cteq[i][i′]← ARITH-CW-EQ(ctc[i], pts[i′])

5: ctind [i]← ∑i′∈[µ] cteq[i][i′]

6: return ctind

If b ̸= N, line 4 of Algorithm 2 is repeated ⌈b/N⌉ times.

4.3 Result Extraction
The server sends the ciphertexts from the previous stage to
the client for the final stage. In this final stage, the client
decrypts the ciphertexts received from the server to obtain the
indicator vector. The indicator vector specifies whether there
was a match in the server set, for each element in the client set.
From that, the client extracts the intersection. Algorithm 3
shows the procedure for this stage.

Algorithm 3 Extract intersection from server output

1: algorithm EXTRACTINTERSECTION
2: for each client batch i ∈ [γ] do
3: ind[i]← Dec(ctind [i],skc)
4: for each bin k ∈ [b] do
5: if ind[i][k] = 1 then
6: Add Tc[k][i] to intersection
7: return intersection

5 PEPSI Variants

Section 4 describes PEPSI for computing the intersection of
two sets of λ-bit elements. However, the algorithm can be

adapted for several other scenarios as well. Each adaptation
adds extra steps to the protocol to achieve extra functionality
or enhance performance. We describe these adaptations in
detail in this section.

5.1 Optimization for Large Elements
In some applications, the client and server elements are very
large, e.g., file names or 256-bit strings. In these cases, it is
inefficient to compare large elements homomorphically. In-
stead, we map each element to a smaller λ-bit element using
a hash function. However, if λ is too small, there may be col-
liding elements, which results in an incorrect result. Hence,
we derive the failure rate of PEPSI if we map m client ele-
ments and n server elements to λ-bit elements. Conversely,
we choose λ such that the failure rate of PEPSI is less than a
given parameter α.

Not all collisions result in failure of the protocol, i.e., an
incorrect result. Failure occurs when two unequal elements,
one from the server and one from the client, have an identical
mapping and are compared to each other by being placed in
the same bin. Such an event produces an incorrect result since
two unequal elements match. The upper bound on the failure
rate is given in Lemma 1. Note that collision between two
client elements (similarly, server elements) does not result
in an incorrect result since client elements are not directly
compared with each other.

Lemma 1. When hashing m client elements and n server ele-
ments to λ-bit strings, the probability of failure in the protocol
due to collisions is upper bounded by

bγµ
2λ

, (2)

where b, γ, and µ are the number of bins, maximum client
bin size, and maximum server bin size, respectively.

We prove Lemma 1 in Appendix A. Using Lemma 1,
we can see that, to bound the failure rate by 2−α, we must

USENIX Association 33rd USENIX Security Symposium 6459

choose λ, such that bγµ2−λ ≤ 2−α. Hence, we set λ = α+
⌈log2(bγµ)⌉.

5.2 Labelled PSI

PEPSI can be adapted to labelled PSI by altering the server
computation and the result extraction. Algorithm 4 shows the
adapted algorithm. In this algorithm, we denote the server
labels as vals, which is a vector of µ plaintexts. Moreover, the
algorithm assumes that the label fits within one plaintext slot,
but this can be extended to labels of arbitrary size. We show
this extension in Appendix C and the corresponding result
extraction procedure in Algorithm 4.

Algorithm 4 Server Computation and Result Extraction for
Labelled PSI

1: algorithm LABELLEDPSI(ctc[i],pts[i′])
2: for each client batch i ∈ [γ] do
3: for each server batch i′ ∈ [µ] do
4: cteq[i][i′]← ARITH-CW-EQ(ctc[i], pts[i′])

5: ctres[i]← ∑i′ vals[i′] · cteq[i][i′]

6: Send ctres to the client

7: algorithm EXTRACTLABELS(ctres)
8: for each client batch i ∈ [γ] do
9: val[i]← Dec(ctres[i],skc)

10: for each bin k ∈ [b] do
11: if val[i][k] ̸= 0 then
12: Add val[i][k] to intersection labels
13: return intersection labels

5.3 Circuit PSI

PEPSI can additionally be extended to compute functions
over the intersection. Such functions include PSI-Cardinality,
PSI-Sum [23], PSI-Inner-Product [22, 28], and beyond. We
introduce additional functionalities in the appendix.

PSI-Sum & PSI-Cardinality. In PSI-sum, the sum of server
values associated with the elements in the intersection are
output to the client. Algorithm 5 show the modified server
computation and result extraction for PSI-sum, respectively.
Kacsmar et al. use the same algorithm for securely computing
PSI-sum and give proof of correctness and security [23]. PSI-
Cardinality, which computes the size of the intersection, is a
special case where the server values are equal to one.

PSI-Inner-Product. PSI-sum can be generalized to PSI-
Inner-Product [28] as well. Assuming that the encrypted client
values are denoted as valc, we simply replace line 4 of Algo-
rithm 5 with

sum← ∑
i′∈[µ]

vals[i′] ·∑
i

valc[i] · cteq[i][i′].

Algorithm 5 Server computation and result extraction for
PSI-Sum

1: algorithm COMPUTEPSISUM(ctc, pts)
2: for each client batch i ∈ [γ] do
3: for each server batch i′ ∈ [µ] do
4: cteq[i][i′]← ARITH-CW-EQ(ctc[i], pts[i′])

5: ctsum← ∑i′∈[µ] vals[i′] ·∑i cteq[i][i′]
6: Sample vector r← [r0,r1, · · · ,rN−1] s.t. ∑ri = 0
7: ctres← ctsum + r
8: return ctres

9: algorithm EXTRACTPSISUM(ctres)
10: res← Dec(ctres,skc)
11: ctsum← ∑k∈[b] res[i]
12: return ctsum

6 Analysis of PEPSI

In this section, we provide an overview of the security analysis
and details on communication and computation complexities.
The communication and computation analysis is necessary
to choose optimal parameters and enables PEPSI to achieve
competitive performance compared to related work.

Security Analysis. The PEPSI protocol operates in the
semi-honest model, i.e., the client and server follow the pro-
tocol but may try to infer extra information. The client input
privacy is guaranteed due to the use of homomorphic encryp-
tion. The noise level in the homomorphic ciphertexts can
reveal extra information about the server’s dataset. Hence,
we need a technique to make the noise level of the output
ciphertexts indistinguishable from fresh ciphertexts. This is
referred to as circuit privacy in the literature [5]. Techniques
such as noise flooding [4, 9] achieve this property and can
also be used in this work. Noise flooding is not implemented
in the available homomorphic encryption libraries, so we do
not perform that step in our implementation. However, it has
a negligible effect on runtime, i.e., at the cost of one extra
homomorphic addition, so our experimental results are unaf-
fected. We choose all parameters such that we have 128-bit
security.

Extending to the Malicious Model. The malicious secu-
rity model removes the assumption that adversaries follow
the protocol and considers active adversaries behaving arbi-
trarily. The malicious model for PSI has two limitations: 1)
A malicious party may simply substitute its input and learn
(parts of) the other party’s set once the intersection is re-
vealed, which cannot be prevented in the malicious model.
2) In a one-round protocol, arbitrary behaviour is only pos-
sible in the input-carrying first message. Hence, additional
information can only be computed from the message (output)
received in response to this first message. Using techniques
such as input verification [6, 15] and verifiable homomorphic

6460 33rd USENIX Security Symposium USENIX Association

encryption [40] we can augment our protocol to account for
malicious clients and servers. However, we leave a details
description of such a protocol for future work.

Notes on Performance Analysis. The communication and
computation costs of PEPSI depend on many parameters, the
most apparent of which are the set sizes and the bitlength of
elements. Two parameters that can be tuned to optimize per-
formance are the binning strategy and the Hamming weight.

The choice of binning strategy and associated parameters
has been extensively discussed in previous works [31, 35],
and using existing analysis, we can derive the relevant binning
parameters b, γ, and µ, given the set sizes. Hence, in this work,
we compute the communication and computation cost as a
function of γ, µ, and b instead of the set sizes. As a result, our
analysis is agnostic to the binning strategy.

The other parameter we can optimize over is the Hamming
weight. The Hamming weight h is a parameter of the constant-
weight equality operator. Cryptographic parameters depend
solely on h as it determines the multiplicative depth. The code
length is a function of the bitlength (and effective bitlength)
and the Hamming weight, so it does not need to be optimized.
In this section, we discuss how the communication and com-
putation of PEPSI are affected by the Hamming weight and
the tradeoff between these two metrics.

Analysis for Parameter Selection. Using the analysis from
this section, we define strategies for optimally selecting pa-
rameters for PEPSI. There are two obstacles to optimizing
the parameters in PEPSI. Firstly, there are circular dependen-
cies between the parameters. For example, the cryptographic
parameters, N and q dictate the number of bins, which influ-
ences the error rate which in turn influences the parameters of
the constant-weight code. However, the Hamming weight of
the constant-weight code determines the multiplicative depth,
which puts a lower bound on the cryptographic parameters.
The second obstacle is that there is no precise closed-form
formula for the runtime so it requires experimental evalua-
tion. Moreover, in many cases, there is no definitive choice
for the parameters that optimize both communication and
computation. In such cases, we visualize the communication
computation tradeoff to assist in parameter selection. Hence,
optimizing the parameters amounts to a non-trivial task that
requires experimental evaluation and careful and systemic
selection of the parameters.

6.1 Communication Complexity
The total communication complexity of PEPSI consists of
the request and response messages. The response message
depends on the function that is being evaluated. For example,
if the set intersection is returned, the response is as big as
the request message. In contrast, if we want the intersection
cardinality, the response is only one ciphertext. In all the

examples examined in this work, the response is smaller than
the request size. Hence, to encompass all of these applications,
we analyze and optimize the request size.

Asymptotic Communication Complexity. Theorem 1 de-
rives the asymptotic complexity of the request in PEPSI as a
function of the code length, ℓ.

Theorem 1. The asymptotic complexity of the request mes-
sage in PEPSI is O(b · γ · ℓ), where ℓ = ℓ(λ̄,h) as defined in
Equation (1).

Proof. As shown in Section 4, in the request, the encrypted
plaintexts containing T ′c are sent to the server. T ′c is a table
with dimension b×γ×ℓ, with one bit in each cell of this table.
Hence, the total communication is O(b · γ · ℓ).

Corollary 1.1. If we use Cuckoo hashing in PEPSI, then
the communication complexity can be simplified to O(m · ℓ)
where m is the client set size and ℓ = ℓ(λ̄,h) as defined in
Equation (1).

Concrete Communication Cost. Theorem 1 only states
the asymptotic complexity of the request size, but in practice,
the size of the ciphertext must also be considered. Encoded
elements in the client’s set are put into ⌈b/N⌉ ·γ ·ℓ ciphertexts
and each ciphertext in the request is approximately N ·q bits,
where q is the FV ciphertext modulus which is used. So
overall, the size of the request in PEPSI is ⌈b/N⌉ · γ · ℓ ·N ·q
bits (or simply b · γ · ℓ ·q when b is a multiple of N).

Note that the ciphertext modulus depends on the multiplica-
tive depth, which depends only on the Hamming weight. N
and q must also satisfy requirements for security which have
been outlined in the literature [8]. For each Hamming weight,
we select the smallest parameter set, which ensures the cor-
rectness of the result while also providing at least 128-bit
security. Table 3 shows the polynomial modulus degree and
bitlength of the coefficient modulus we use for each h.

Table 3: Polynomial modulus degree and coefficient modulus
as a function of the Hamming weight.

h 1 2 3-4 5-8 9-16 17-32 33-64

log2 N 12 13 13 13 14 14 14
log2 q 72 144 168 204 240 276 312

Optimizing Communication Cost. The communication
cost is derived as a function of the code length. However, the
code length itself depends on the Hamming weight and effec-
tive bitlength, as shown in Equation (1). Hence, to minimize
the communication complexity, we look for the Hamming
weight which minimizes ⌈b/N⌉ · γ · ℓ ·N ·q.

We know that γ does not depend on the Hamming weight so
it acts as a constant in our optimization and can be removed.

USENIX Association 33rd USENIX Security Symposium 6461

So we can minimize ⌈b/N⌉·ℓ ·N ·q, where ℓ= ℓ(λ̄,h). The ef-
fect of b is more convoluted and must be taken into account in
the optimization. For simplicity, we assume b≤ 4096, which
is less than the smallest possible value for N, so ⌈b/N⌉= 1.
We show results for other values of b in the appendix.

Figure 3 plots ⌈b/N⌉ · ℓ ·N ·q with b≤ 4096 as a function
of the Hamming weight for λ̄ = 16,32,48 to demonstrate that
a minimum exists. The minimum communication occurs for
h = 8,8,23, respectively.

We plot the optimal Hamming weight for communication
for each effective bitlength in Figure 4 assuming b≤ 4096. In
the case of a tie between two Hamming weights, we choose
the smaller Hamming weight since it requires less compu-
tation. Generally, as the effective bitlength grows, a larger
Hamming weight is required to achieve the smallest commu-
nication cost.

0 10 20 30
0

50

100

150

Hamming Weight (h)

C
om

m
un

ic
at

io
n

C
os

t(
M

B
)

λ̄ = 16
λ̄ = 32
λ̄ = 48

Figure 3: Code length as a function of the Hamming weight
for λ̄ ∈ {16,32,48} for b≤ 4096. The minimum occurs for a
Hamming weight of 8, 8, and 23, respectively.

0 10 20 30 40 50 60 70
0

10

20

30

Effective Bitlength (λ̄)

H
am

m
in

g
W

ei
gh

t(
h)

Comm. Optimal
Comp. Optimal

Figure 4: Hamming weight which optimizes communication
and computation as a function of the effective bitlength (λ̄)
in blue and red, respectively. We assume b ≤ 4096 in these
graphs.

6.2 Computation Complexity
Amongst the stages of the protocol, the Result Extraction has
a small computation overhead and also depends on the spe-
cific function that we derive. The data preparation can be done

offline. Most of the online computation time is dedicated to
the Server Computation stage. Within that stage, the majority
of the runtime is dedicated to computing the encrypted indi-
cator vector (Algorithm 2) and is required for any subsequent
computation. The server computation algorithms described
in Section 5.3 may perform additional operations after the
indicator vector is derived, but in all cases, these operations
are insignificant compared to calculating the indicator vec-
tor. Hence, we base our analysis and parameter selection on
Algorithm 2 and calculate and optimize the runtime of this
algorithm.

Approximate Server Computation Complexity. We ap-
proximate the computational complexity of the Server Com-
putation stage by counting the number of expensive homo-
morphic operations, i.e., plaintext and homomorphic multipli-
cations.

Theorem 2. The number of homomorphic operations in Algo-
rithm 2 is (ℓ ·PM+h ·M) · ⌈b/N⌉ · γ ·µ where PM and M denote
plaintext and homomorphic multiplication, respectively, and
ℓ= ℓ(λ̄,h).

Proof. The constant-weight equality operator in line 3 of
Algorithm 2 consists of ℓ homomorphic multiplications and
h plaintext multiplications [19]. In the general case when
the number of bins is larger than N, line 4 of Algorithm 2 is
performed ⌈b/N⌉ times. Moreover, this line is repeated in two
loops of length γ and µ, hence the total number of operations
is (ℓ ·PM+h ·M) · ⌈b/N⌉ · γ ·µ.

Optimizing Computation Cost. Given that we do not have
a closed-form formula for the computation complexity of the
homomorphic operators, optimizing the computation com-
plexity is not possible. However, the concrete computation
cost of PEPSI can be optimized empirically. Optimization is
performed over the Hamming weight since we assumed that
the bitlength, b, γ, and µ are given.

The client and server set sizes determine γ and µ, based on
the binning strategy. The choice of h does not affect any of
these parameters and only influences ℓ. Hence, γ and µ can
be treated as constants in the optimization and it suffices to
minimize

⌈ b
N

⌉
· (ℓ ·PM+h ·M). Theoretically, optimizing this

term is difficult since there are no closed-form formulas for
the runtime of homomorphic operations. Instead, we empiri-
cally optimize it by trying different Hamming weights. We
set γ = µ = 1 to eliminate the variance introduced by those
parameters and run PEPSI using only one thread.

6462 33rd USENIX Security Symposium USENIX Association

2 4 6 8 10 12 14 16 18
0

500

1,000

Hamming Weight (h)

R
un

tim
e

(m
s)

λ̄ = 16
λ̄ = 32
λ̄ = 48

Figure 5: Runtime as a function of the Hamming weight for
λ̄ ∈ {16,32,48} for b ≤ 4096. The minimum occurs for a
Hamming weight of 4, 8, and 8, respectively.

Figure 4 shows, in red, the Hamming weights which opti-
mize computation time for each effective bitlength assuming
that b ≤ 4096. Similar to the communication, the optimal
Hamming weight for runtime increases as λ̄ increases.

6.3 Communication/Computation Tradeoff

Note that choosing parameters that optimize the computa-
tion would increase communication costs and vice versa. In
practice, it may be reasonable to choose parameters that fall
somewhere between the two extremes. Figure 6 visualizes
the communication/computation tradeoff for the intersection
as the Hamming weight varies. We plot the communica-
tion/computation tradeoff for λ̄ = 16,24,32 assuming that
b≤ 4096.

5 10 15 20

100

200

300

Communication (MB)

R
un

tim
e

(m
s)

3

4

5

6

7

8

9

10

H
am

m
ing

w
eight

Figure 6: Visualizing the tradeoff between communication
cost and runtime in PEPSI for λ̄ = 16 (triangles), λ̄ = 24
(squares), and λ̄ = 32 (circles) with b ≤ 4096. Each point
indicated running PEPSI with a specific Hamming weight
which varies from 3 (on the lower right side) to 9 (on the
upper left). We set γ = µ = 1 in this example to isolate the
effect of other parameters.

Notice that in some cases, the communication optimal may
incur a high burden on the computation for very little gain,
and vice versa. For example, in Figure 3 for λ̄ = 48, the com-
munication cost decreases very slightly (less than 6%) as we
increase h from 16 to 23. However, in Figure 5, the computa-
tion cost is much lower for h = 16 compared to h = 23 (over
40%).

7 Evaluation

Experimentation Details. We implement PEPSI in C++
using the Microsoft SEAL1 library and measure runtime and
communication. The SEAL library implements a variant of
the FV cryptosystem and supports the operations we use (re-
call Section 3). Our implementation of PEPSI and the code
used in our evaluation is available on Github 2. We run exper-
iments using two scenarios: 1) 32-bit elements and 2) large
elements. 32-bit elements can be used to represent phone
numbers in private contact discovery [23, 24]. Large elements
are useful for applications such as checking for compromised
credentials, where credentials could be strings of arbitrary
length [29]. Parameters for these two scenarios are selected
as follows:

Parameters for 32-bit Elements. Based on Figure 4, the
best Hamming weight we can choose for the communication
cost is h = 8, which results in N = 213 and log2 q = 192. As
explained in Section 4, we round the number of bins up to a
multiple of N for efficiency. Consequently, in our experiments,
we have b = N = 213, λ̄ = 19, and ℓ = 24. For our binning
strategy, we use Cuckoo hashing with three hash functions
without a stash, so γ= 1. We choose the parameters of Cuckoo
hashing such that the failure rate is less than 2−40. Based on
the analysis in the literature [33, 35], the number of bins must
be at least 1.27m. The server bin size depends on the server
set size and the number of bins. We use upper bounds for the
server bin load found in the literature [31] and confirm the
numbers experimentally using a simulation of the binning
strategy.

Parameters for Large Elements. We choose the parameters
such that the failure rate due to colliding elements is less than
α = 2−40, so λ changes as the server set size increases. The
binning strategy is Cuckoo hashing with three hash functions
and no stash, so γ = 1. As a result, b = N = 16384,λ = 40+
⌈log2(b · γ ·µ)⌉= 40+ ⌈log2(b ·µ)⌉, λ̄ = 40+ ⌈log2(µ)⌉.

7.1 PSI Evaluation and Comparison

Comparison with DiPSI [23]. DiPSI [23] is the most simi-
lar work in the literature and operates in one round, similar to
PEPSI. While PEPSI uses a homomorphic equality operator,
similar to DiPSI, it improves on DiPSI in several aspects. The

1https://github.com/microsoft/SEAL
2https://github.com/RasoulAM/pepsi

USENIX Association 33rd USENIX Security Symposium 6463

https://github.com/microsoft/SEAL
https://github.com/RasoulAM/pepsi

two main differences are the use of a more efficient equality
operator and permutation-based hashing. These differences
result in significant improvements in concrete runtime and
communication costs. Moreover, the advantage is increased
by careful optimization of the parameters of PEPSI, as was
mentioned in Section 6. Such optimizations are not required in
DiPSI given that there is no variable parameter in the equality
operator.

Table 1 shows that the asymptotic complexity of DiPSI and
PEPSI is identical, but if we include parameters regarding the
bitlength of elements, there is a difference. Table 4 displays
the asymptotic complexity of the two protocols. The table
also shows that the multiplicative depth of PEPSI does not
depend on the bitlength, which results from our choice of
equality operator.

Protocol Communication Computation Mult. Depth

DiPSI O(mλ) O(n ·λ) log2 λ

PEPSI O
(
m · ℓ(λ̄,h)

)
O
(
n · ℓ(λ̄,h)

)
1 + log2 h

Table 4: Asymptotic complexity of DiPSI vs PEPSI in the
unbalanced case, i.e., m≪ n.

All our experiments follow the unbalanced setting where
the server has more elements than the client. DiPSI performs
the intersection over 32-bit elements, so we do the same for
a fair comparison. Cong et al. [14] allows to use elements
of arbitrary length so we compare with the variant of PEPSI
which can do the same. We measure all messages exchanged
as the total communication and for computation, we measure
the server’s total runtime. We repeat experiments three times
and report the average. However, the runtime of DiPSI is
prohibitively high, so we take numbers from their paper [23].

Table 5 shows runtime of DiPSI and PEPSI for intersection
of sets with 32-bit elements. This table shows that DiPSI is
much slower than our work. PEPSI is at least four orders of
magnitude faster than DiPSI. Most of this speedup can be
attributed to the faster comparison operator, which we use in
PEPSI. The communication of PEPSI is much smaller as well,
which stems from 1) better parameters for the cryptosystem,
2) permutation-based hashing in conjunction with Cuckoo
hashing, and 3) optimal Hamming weight, which minimizes
communication. PEPSI requires 90% less communication
compared to DiPSI. DiPSI can extend to labelled PSI and
circuit PSI as well, which increases the total runtime and
communication. We omit DiPSI from the rest of the evaluation
due to its low performance.

To summarize, PEPSI is a strict improvement over DiPSI.
It is non-interactive, similar to DiPSI, requires strictly less
communication, is over three orders of magnitude faster, and
is capable of all functionalities that DiPSI offers.

Table 5: Private set intersection over 32-bit elements using
DiPSI and PEPSI. The bin size in PEPSI is b = 8192 in all
cases. DNF indicates experiments which did not finish in less
than an hour. * We copied the runtimes and communicating
cost for DiPSI from their paper [23]. Note that the runtime of
DiPSI is in minutes.

n m
DiPSI [23] PEPSI

Time Comm. µ Time (s) Comm. (MB)
(mins) (MB) Offline Online Req. Resp.

220
1024 600∗ 200∗

526 0.11
0.83 4.1 0.11

2048 350∗ 200∗ 0.81 4.1 0.11
4096 190∗ 200∗ 1.5 8.1 0.22

224
1024 DNF DNF

6710 1.5
8.9 4.1 0.11

2048 DNF DNF 9.0 4.1 0.11
4096 DNF DNF 17.5 8.1 0.22

228
1024 DNF DNF

100565 19.9
133 4.1 0.11

2048 DNF DNF 133 4.1 0.22
4096 DNF DNF 260 8.1 0.22

Comparison with Cong et al. [14] Cong et al. [14] is the
state-of-the-art amongst non-interactive PSI protocols with
only two rounds of interaction. The work of Cong et al. has
strictly improved over the work of Chen et al. [10, 11]. Cong
et al. denote the time required to compute the OPRF of server
elements as offline time. We report the offline and online time
separately. We use the publicly available implementation of
the work of Cong et al. [14], which is published on Github3

and is called APSI. We use parameters provided with their
code for each client and server set size pair. Table 6 compares
PEPSI and the work of Cong et al. [14] for intersection of sets
with large elements.

The communication cost of PEPSI is more than the work
of Cong et al. in PSI and labelled PSI, but the gap narrows
as the size of the labels increases. Regarding runtime, most
of the server runtime (over 95%) in the work of Cong et
al. [14] is spent computing a pseudo-random function for
each server element in the offline phase. They state that this
step could be computed offline and stored on the server. This
is a valid assumption for some applications but does not apply
to scenarios in which the server database frequently changes
or when we require the overall runtime to be small. In the
case of PSI (without labels), for smaller server set sizes, the
protocol of Cong et al. has a better total runtime. However, for
server sets with over 224 elements, the total runtime of PEPSI
is less than the work of Cong et al., with PEPSI requiring less
time in the offline phase, but more time in the online phase.
Hence, in the case of PSI, PEPSI is preferable for large server
sets that frequently change.

7.2 Labelled PSI Evaluation and Comparison
We compare with the work of Cong et al., which is the state-
of-the-art in non-interactive labelled PSI. They use the same

3https://github.com/microsoft/APSI

6464 33rd USENIX Security Symposium USENIX Association

https://github.com/microsoft/APSI

Label
Size

(Bytes)
n m

Cong et al. [14] PEPSI
Time (s) Comm. (MB) µ Time (s) Comm. (MB)

Offline Online Request Response Offline Online Request Response

No
Label

220
1024 5.6 0.44 1.3 1.2

296 0.11
7.8 30.0 0.22

2048 5.7 0.82 2.7 1.5 7.1 30.0 0.22
4096 6.1 0.94 3.5 2.2 7.0 30.0 0.22

224
1024 99 1.2 1.8 2.1

3487 1.5
75.4 33.7 0.22

2048 97 1.5 3.0 2.3 75.6 33.7 0.22
4096 97 1.8 5.2 2.6 75.9 33.7 0.22

228
1024 1770 7.3 3.5 9.5

50812 19.9
1144 39.2 0.22

2048 1720 7.4 6.0 9.5 1154 39.2 0.22
4096 1790 7.7 8.5 9.8 1141 39.2 0.22

32

220 256 92 2.4 4.2 3.8 296 0.11 7.2 30.7 2.9
4096 95 2.4 4.4 3.5 7.0 30.7 2.9

222 256 535 2.9 4.2 6.7 976 0.45 21.5 32.1 2.9
4096 530 3.3 4.4 6.9 21.3 32.1 2.9

224 256 DNF DNF DNF DNF 3487 1.5 76.0 34.5 2.9
4096 DNF DNF DNF DNF 75.0 34.5 2.9

288

220 256 567 2.0 2.7 9.1 296 0.11 7.1 30.7 26.0
4096 578 1.7 2.7 9.1 7.2 30.7 26.0

222 256 3501 13.6 4.2 37.4 976 0.45 21.5 32.1 26.0
4096 3388 14.2 4.4 35.3 21.5 32.1 26.0

224 256 DNF DNF DNF DNF 3487 1.5 76.5 34.5 26.0
4096 DNF DNF DNF DNF 76.1 34.5 26.0

Table 6: Private set intersection and Labelled PSI over large elements using the work of Cong et al. and PEPSI. The number of
bins is set to b = 16384 in PEPSI for all cases.

parameters for the experiment but vary the label size. We
choose 32-byte and 288-byte labels in our experiments. The
results of this comparison are summarized in Table 6.

However, the work of Cong et al. has a high overhead when
extending to labelled PSI instead of PSI. The computation
cost of Cong et al. scales with the size of the label. In con-
trast, our work requires negligible additional server time to
compute labelled PSI. The total runtime of PEPSI is consis-
tently less than Cong et al. and the gap widens as the server
set size increases, but PEPSI still requires more time in the
online phase. So, in summary, in the case of labelled PSI,
PEPSI is consistently faster than Cong et al., particularly for
large, dynamic server sets and large labels but requires more
communication.

7.3 Circuit PSI Evaluation and Comparison

Our evaluation of circuit PSI is focused on non-interactive
solutions, which are compatible with the unbalanced setting.
Hence, we omit solutions based on 2PC [33, 35], which re-
quire interaction between the client and server to compute

the function. DiPSI can extend to circuit PSI and evaluate
arbitrary functions but has a prohibitively high runtime, as we
saw in Table 5. Recall that the work of Chen et al. [10, 11]
and Cong et al. [14] cannot extend to circuit PSI. Instead,
we compare with the work of Ion et al. [22], which is also
a circuit PSI protocol but is limited to only a few functions:
PSI-Cardinality and PSI-Sum-with-Cardinality. We use the
public implementation4 which is provided by the authors. PSI-
Stats [42] performs the same operations as Ion et al. in the
first two rounds of interaction and requires more operations
when computing more complex functions. In the case of com-
puting the PSI-Sum, PSI-Stats is identical to the work of Ion
et al. Given that there is no publicly available implementation
of PSI-Stats, we resort to the measurements from the work of
Ion et al.

In our experiments in this section, we set the client set size
to be m ∈ {1024,2048,4096,8192} and vary the server set
size to observe the effect on communication and computation.
The entire communication across all rounds is recorded and

4https://github.com/google/private-join-and-compute

USENIX Association 33rd USENIX Security Symposium 6465

https://github.com/google/private-join-and-compute

n m
Ion et al. [22] PEPSI

Time
(s)

Comm. µ Time (s) Comm.
(MB) Offline Online (MB)

218

1024 52.9 20.0

100 0.01

3.1 27.6
2048 71.9 20.7 2.7 27.6
4096 64.8 21.9 2.7 27.6
8192 74.7 24.4 2.8 27.6

220

1024 199 78.2

296 0.11

7.0 30.0
2048 254 78.9 7.1 30.0
4096 214 80.1 7.0 30.0
8192 221 82.6 6.8 30.0

222

1024 950 311

976 0.44

21.4 31.4
2048 797 312 21.4 31.4
4096 791 313 21.4 31.4
8192 808 315 21.5 31.4

224

1024 3153 1240

3487 1.5

75.8 33.7
2048 3380 1240 76.3 33.7
4096 3120 1250 75.8 33.7
8192 3140 1250 75.6 33.6

Table 7: PSI-Sum using PEPSI and the work of Ion et al. [22].
Times are reported in seconds, and communication is in
MegaBytes. DNF denotes instances which did not finish in
under one hour. The number of bins is set to b = 16384 in
PEPSI for all cases.

the runtime denotes the server runtime. Ion et al. [22] map
elements to 256-bit strings using hash functions, so we use the
variant of PEPSI with large elements to have a fair comparison.
Table 7 summarizes the results of the experiments in this
section.

Note that the cardinality is leaked whilst computing the
sum in the work of Ion et al. [22]. In contrast, PEPSI does not
have such leakage and is advantageous in this regard. More-
over, Ion et al. [22] is very limited in the functions that it
can compute. Another observation is that the communication
of the work of Ion et al. scales linearly with the server set
size [22], whereas the communication cost of PEPSI increases
at a much lower rate. For this reason, PEPSI is advantageous
in the unbalanced setting and can scale to much larger server
set sizes. The runtime of both protocols increases as the server
size increases, but PEPSI is over 100x times faster than the
work of Ion et al. [22]. One reason that PEPSI is faster than
the work of Ion et al. [22] is the low per-element computation
cost due to the use of batched homomorphic encryption. In
contrast, the work of Ion et al. uses expensive modular expo-
nentiations. The client must also perform expensive modular
exponentiations, whereas in PEPSI, the client requires only a
small amount of computation.

7.4 Summary of Evaluation
In our evaluation of PSI, we found that PEPSI demonstrates
runtime that is comparable with other approaches [10, 14]
but requires more communication. However, PEPSI excels
particularly when the server size is very large and dynamic.

In the context of labelled PSI, PEPSI is consistently faster
than existing methods but requires more communication. The
advantage of PEPSI increases as the label size increases. For
circuit PSI, and specifically for PSI-Sum, PEPSI is faster than
existing non-interactive approaches [22, 23], especially when
dealing with larger server sets. Additionally, PEPSI has a sig-
nificant advantage in communication cost, as it only depends
on the client set size, making it highly efficient for large server
sets. Furthermore, PEPSI offers the flexibility to easily extend
to other functions, a capability that is not feasible with related
work.

8 Conclusion

We propose PEPSI, a practical non-interactive circuit PSI pro-
tocol using homomorphic encryption. Some state-of-the-art
PSI protocols cannot extend to circuit PSI. Those extending
to circuit PSI require an interactive step with the client to
compute the function or have the communication cost propor-
tional to the server set size. These limitations are undesirable
in the unbalanced setting. DiPSI, the only solution which does
not have these limitations, has impractical runtimes. PEPSI
addresses all these problems and proposes an efficient circuit
PSI protocol with low communication overhead.

We use multiple techniques, such as constant-weight equal-
ity operators and permutation-based hashing that greatly im-
prove the runtime and communication cost of PEPSI and
result in a protocol that is competitive with existing work. We
achieve competitive runtime and communication through care-
ful optimization of parameters such as the Hamming weight.

PEPSI can compute the intersection of 1024 client elements
with one million server elements in less than one second with
less than 5 MB of communication. Functions such as sum
and cardinality can be computed with negligible additional
runtime. PEPSI is over four orders of magnitude faster than
DiPSI, and 20x faster than the work of Ion et al. [22].

Acknowledgements

We gratefully acknowledge the support of NSERC for grants
RGPIN-2023-03244, IRC-537591, the Government of On-
tario and the Royal Bank of Canada for funding this research.

References

[1] Navid Alamati, Pedro Branco, Nico Döttling, Sanjam
Garg, Mohammad Hajiabadi, and Sihang Pu. Laconic
private set intersection and applications. In Theory
of Cryptography: 19th International Conference, TCC
2021, Raleigh, NC, USA, November 8–11, 2021, Pro-
ceedings, Part III, pages 94–125. Springer-Verlag, 2021.

[2] Diego F. Aranha, Chuanwei Lin, Claudio Orlandi, and
Mark Simkin. Laconic private set-intersection from

6466 33rd USENIX Security Symposium USENIX Association

pairings. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’22, pages 111–124. Association for Computing
Machinery, 2022.

[3] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard
cuckoo hashing: Constant worst-case operations with a
succinct representation. 2010 IEEE 51st Annual Sympo-
sium on Foundations of Computer Science, pages 787–
796, 2010.

[4] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran
Tromer, Vinod Vaikuntanathan, and Daniel Wichs. Mul-
tiparty computation with low communication, compu-
tation and interaction via threshold fhe. In Advances
in Cryptology–EUROCRYPT 2012: 31st Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings 31, pages 483–501. Springer, 2012.

[5] Florian Bourse, Rafaël Pino, Michele Minelli, and
Hoeteck Wee. FHE circuit privacy almost for free. In
Proceedings, Part II, of the 36th Annual International
Cryptology Conference on Advances in Cryptology —
CRYPTO 2016 - Volume 9815, pages 62–89. Springer-
Verlag, 2016.

[6] Jan Camenisch and Gregory M. Zaverucha. Private
intersection of certified sets. In 13th International Con-
ference Financial Cryptography and Data Security (FC),
2009.

[7] Nishanth Chandran, Divya Gupta, and Akash Shah.
Circuit-PSI with Linear Complexity via Relaxed Batch
OPPRF. In 22nd Privacy Enhancing Technologies Sym-
posium (PETS 2022), jun 2022.

[8] Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,
Sergey Gorbunov, Jeffrey Hoffstein, Kristin Lauter,
Satya Lokam, Dustin Moody, Travis Morrison, Amit
Sahai, and Vinod Vaikuntanathan. Security of homo-
morphic encryption. Technical report, Homomorphi-
cEncryption.org, Redmond WA, USA, July 2017.

[9] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Multi-
key homomorphic encryption from tfhe. In Advances
in Cryptology–ASIACRYPT 2019: 25th International
Conference on the Theory and Application of Cryptology
and Information Security, Kobe, Japan, December 8–12,
2019, Proceedings, Part II 25, pages 446–472. Springer,
2019.

[10] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal.
Labeled PSI from fully homomorphic encryption with
malicious security. In 24th ACM Conference on Com-
puter and Communications Security (CCS), 2018.

[11] Hao Chen, Kim Laine, and Peter Rindal. Fast private
set intersection from homomorphic encryption. In 23rd
ACM Conference on Computer and Communications
Security (CCS), 2017.

[12] Benny Chor, Niv Gilboa, and Moni Naor. Private infor-
mation retrieval by keywords. pages 0–18, 1997.

[13] Michele Ciampi and Claudio Orlandi. Combining Pri-
vate Set-Intersection with Secure Two-Party Compu-
tation. In Security and Cryptography for Networks:
11th International Conference, SCN 2018, Amalfi, Italy,
September 5–7, 2018, Proceedings, pages 464–482,
Berlin, Heidelberg, September 2018. Springer-Verlag.

[14] Kelong Cong, Radames Cruz Moreno, Mariana Botelho
da Gama, Wei Dai, Ilia Iliashenko, Kim Laine, and
Michael Rosenberg. Labeled PSI from Homomorphic
Encryption with Reduced Computation and Commu-
nication. In 27th ACM Conference on Computer and
Communications Security (CCS), 2021.

[15] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik.
Linear-complexity private set intersection protocols se-
cure in malicious model. In 16th International Confer-
ence on the Theory and Application of Cryptology and
Information Security (ASIACRYPT), 2010.

[16] Daniel Demmler, Peter Rindal, Mike Rosulek, and
Ni Trieu. PIR-PSI: Scaling Private Contact Discov-
ery. Proceedings on Privacy Enhancing Technologies,
2018:159–178, 10 2018.

[17] Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic:
Delegated psi cardinality with applications to contact
tracing. In Advances in Cryptology – ASIACRYPT 2020:
26th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Daejeon,
South Korea, December 7–11, 2020, Proceedings, Part
III, page 870–899, Berlin, Heidelberg, 2020. Springer-
Verlag.

[18] Junfeng Fan and Frederik Vercauteren. Somewhat prac-
tical fully homomorphic encryption. Cryptology ePrint
Archive, 2012.

[19] Rasoul Akhavan Mahdavi Florian Kerschbaum.
Constant-weight PIR: Single-round Keyword PIR via
Constant-weight Equality Operators. In 31st USENIX
Security Symposium (USENIX Security 22), Boston,
MA, August 2022. USENIX Association.

[20] Michael J Freedman, Carmit Hazay, Kobbi Nissim, and
Benny Pinkas. Efficient set intersection with simulation-
based security. Journal of Cryptology, 29(1):115–155,
2016.

USENIX Association 33rd USENIX Security Symposium 6467

[21] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas.
Efficient private matching and set intersection. In
23rd International Conference on the Theory and Appli-
cations of Cryptographic Techniques (EUROCRYPT),
2004.

[22] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sar-
var Patel, Shobhit Saxena, Karn Seth, Mariana Raykova,
David Shanahan, and Moti Yung. On Deploying Secure
Computing: Private Intersection-Sum-with-Cardinality.
In 2020 IEEE European Symposium on Security and Pri-
vacy (EuroS&P), pages 370–389, Genoa, Italy, Septem-
ber 2020. IEEE.

[23] Bailey Kacsmar, Basit Khurram, Nils Lukas, and et al.
Differentially Private Two-Party Set Operations. In 2020
IEEE European Symposium on Security and Privacy
(EuroS&P), pages 390–404. IEEE, 2020.

[24] Daniel Kales, Christian Rechberger, Thomas Schneider,
Matthias Senker, and Christian Weinert. Mobile Private
Contact Discovery at Scale. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1447–1464,
Santa Clara, CA, August 2019. USENIX Association.

[25] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder.
More robust hashing: Cuckoo hashing with a stash.
SIAM Journal on Computing, 39(4):1543–1561, 2010.

[26] Lea Kissner and Dawn Song. Privacy-preserving set
operations. In Proceedings of the 25th Annual In-
ternational Conference on Advances in Cryptology,
CRYPTO’05, page 241–257, Berlin, Heidelberg, 2005.
Springer-Verlag.

[27] Mikkel Lambæk. Breaking and fixing private set in-
tersection protocols. Cryptology ePrint Archive, Paper
2016/665, 2016. https://eprint.iacr.org/2016
/665.

[28] Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Karn
Seth, and Ni Trieu. Private Join and Compute from PIR
with Default. In Mehdi Tibouchi and Huaxiong Wang,
editors, Advances in Cryptology – ASIACRYPT 2021,
pages 605–634, Cham, 2021. Springer International Pub-
lishing.

[29] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul
Chatterjee, and Thomas Ristenpart. Protocols for check-
ing compromised credentials. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’19, page 1387–1403, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[30] Jack P. K. Ma and Sherman S. M. Chow. Secure-
Computation-Friendly Private Set Intersection from

Oblivious Compact Graph Evaluation. In Proceedings
of the 2022 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’22, pages 1086–
1097, New York, NY, USA, May 2022. Association for
Computing Machinery.

[31] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. J. Algorithms, 51(2):122–144, may 2004.

[32] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private set intersection us-
ing permutation-based hashing. In 24th USENIX Secu-
rity Symposium (USENIX Security 15), pages 515–530,
Washington, D.C., August 2015. USENIX Association.

[33] Benny Pinkas, Thomas Schneider, Oleksandr
Tkachenko, and Avishay Yanai. Efficient Circuit-Based
PSI with Linear Communication. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2019, pages 122–153, Cham, 2019.
Springer International Publishing.

[34] Benny Pinkas, Thomas Schneider, Christian Weinert,
and Udi Wieder. Efficient circuit-based psi via cuckoo
hashing. In Advances in Cryptology–EUROCRYPT
2018: 37th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29-May 3, 2018 Proceedings, Part III
37, pages 125–157. Springer, 2018.

[35] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Scalable private set intersection based on ot extension.
ACM Transactions on Privacy and Security (TOPS),
21(2):1–35, 2018.

[36] L. Reichert, M. Pazelt, and B. Scheuermann. Circuit-
based psi for covid-19 risk scoring. In 2021 IEEE In-
ternational Performance, Computing, and Communica-
tions Conference (IPCCC), pages 1–8, Los Alamitos,
CA, USA, oct 2021. IEEE Computer Society.

[37] Jonathan Takeshita, Ryan Karl, Alamin Mohammed,
Aaron Striegel, and Taeho Jung. Provably secure con-
tact tracing with conditional private set intersection. In
Joaquin Garcia-Alfaro, Shujun Li, Radha Poovendran,
Hervé Debar, and Moti Yung, editors, Security and Pri-
vacy in Communication Networks, Lecture Notes of
the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, pages 352–373.
Springer International Publishing, 2021.

[38] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Bor-
bala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,
and Elie Bursztein. Protecting accounts from credential
stuffing with password breach alerting. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1556–
1571, 2019.

6468 33rd USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2016/665
https://eprint.iacr.org/2016/665

[39] Ni Trieu, Kareem Shehata, P. Saxena, R. Shokri, and
Dawn Xiaodong Song. Epione: Lightweight contact
tracing with strong privacy. ArXiv, abs/2004.13293,
2020.

[40] Alexander Viand, Christian Knabenhans, and Anwar
Hithnawi. Verifiable fully homomorphic encryption,
2023.

[41] Udi Wieder. Hashing, load balancing and multiple
choice. Foundations and Trends® in Theoretical Com-
puter Science, 12(3–4):275–379, 2017.

[42] Jason H. M. Ying, Shuwei Cao, Geong Sen Poh, Jia Xu,
and Hoon Wei Lim. PSI-Stats: Private Set Intersection
Protocols Supporting Secure Statistical Functions. In
Giuseppe Ateniese and Daniele Venturi, editors, Applied
Cryptography and Network Security, pages 585–604,
Cham, 2022. Springer International Publishing.

A Proof of Lemma 1

Lemma 1. When hashing m client elements and n server ele-
ments to λ-bit strings, the probability of failure in the protocol
due to collisions is upper bounded by

bγµ
2λ

, (2)

where b, γ, and µ are the number of bins, maximum client
bin size, and maximum server bin size, respectively.

Proof. Let P[B] denote the probability of failure due to a
collision. Let P[Bi] denote the probability of there existing
a collision between any two of the elements of bin i, for
i ∈ {1,2, · · · ,b}. So we have

P[B]≤ ∑
i∈[b]

P[Bi]. (3)

We know that, in a given bin, failure only occurs when two
unequal elements, one from the server and the other from
the client, have an equal constant-weight mapping. We know
that the probability of a collision between two distinct ele-
ments from the domain is 2−λ, where the probability is in
expectation over all perfect hash functions.

Hence, combining the facts stated above, we have that

P[B]≤ ∑
i∈[b]

P[Bi] = ∑
i∈[b]

γµ2−λ = bγµ2−λ. (4)

Algorithm 6 Client and server data preparation

1: algorithm CLIENTDATAPREP(X)
2: Initialize Tc with b bins.
3: for each element x ∈ X do
4: Append x to the bins of Tc according to the bin-

ning strategy
5: Append dummy elements to fill each bin in Tc to the

max
6: for each bin k ∈ [b] do
7: for each batch i ∈ [γ] do
8: T ′c [k][i] = CW-ENCODE(Tc[k][i], ℓ,h)
9: for each batch i ∈ [γ] do

10: for each bit j ∈ [ℓ] do
11: pt[i][j] = [T ′c [1][i][j],T

′
c [2][i][j], · · · ,T ′c [b][i][j]]

12: ctc[i][j] = Enc(ptc[i][j],skc)

13: return ctc

14: algorithm SERVERDATAPREP(Y)
15: Initialize Ts with b bins
16: for each server element y ∈ Y do
17: Append y to bins chosen by the binning strategy.
18: Append dummy elements to fill each bin in Ts to µ.
19: for each batch k ∈ [b] do
20: for each batch i ∈ [µ] do
21: T ′s [k][i] = CW-ENCODE(Tc[k][i], ℓ,h)
22: for each batch i ∈ [µ] do
23: for each bit j ∈ [ℓ] do
24: pts[i][j] = [T ′s [1][i][j],T

′
s [2][i][j], · · · ,T ′s [b][i][j]]

25: return pts

B Data Preparation

The algorithm for server and client data preparation is pro-
vided as Algorithm 6. The client’s secret key is denoted skc,
and is used for encryption. The encryption procedure is de-
noted with Enc. CW-ENCODE is the algorithm for mapping
elements to constant-weight codewords. Precisely, we use the
perfect mapping [19, Algorithm 3] and the lossy mapping [19,
Algorithm 8] from the work of Mahdavi and Kerschbaum in
the case of small and large elements, respectively. We refer
the reader to the paper for the details of those algorithms.

C Large Labels

Algorithm 4 can be extended to the case where server labels
are larger than one plaintext slot. The expensive step of the
algorithm, which is matching client and server elements, does
not need to be repeated. Instead, we simply repeat line 4 of
Algorithm 4 for as many times that is required, depending on
the size of the label.

USENIX Association 33rd USENIX Security Symposium 6469

D PSI-kth-Match.

Another function that the server can compute over the inter-
section is returning only one element in the intersection. This
can be used to iteratively return the results of the protocol.
For example, a data scientist may wish to see a sample of
items in the intersection before deciding whether to recieve
the entire intersection.

For simplicity, we only describe the cleartext algorithm for
finding the kth match in a vector. The algorithm is designed
such that it can be efficiently computed using homomorphic
encryption. We include correctness and security proof to show
that this algorithm can compute the kth match whilst not re-
vealing any other information about the intersection. The full
details on how to implement this algorithm using homomor-
phic encryption and the FV library are left for future work.

Assume that I ∈ {0,1}n denotes a vector with ones in some
indices. The objective is to compute M such that M[ik] = 0
where ik is the position of the kth one in I. Algorithm 7 shows
the algorithm that can achieve this.

Algorithm 7 Algorithm for kth match

1: algorithm COMPUTEPSIKTHMATCH(I ∈ {0,1}n,k)
2: for each i ∈ [n] do
3: r $←− Zp
4: M[i]← r · (k · I[i]−1−∑i′<i I[i′])
5: return M

Theorem 3. Algorithm 7 is correct, i.e., M is zero at the index
of the kth one in I, and non-zero in all the indicies.

Proof. Let i1 < i2 < · · ·< is be the indicies such that I[i1] =
I[i2] = · · ·= I[is] = 1 and I[i] = 0 for i ̸= i j. If M[i] = k · I[i]−
1−∑i′≤i I[i′] then

M[ik] = k · I[ik]−1− ∑
i′<ik

I[i′] = k−1− (k−1) = 0

Moreover,

j ̸= k⇒M[i j] = k · I[i j]−1− ∑
i′<i j

I[i′] = k− j ̸= 0

i j < i < i j+1⇒M[i] = k · I[i]−1−∑
i′≤i

I[i′] =−1− j ̸= 0

which proves the theorem.

The security of this algorithm is proven by showing that M
reveals nothing about I other than the position of the kth one
in the array.

Theorem 4. If M is defined as in Algorithm 7, then M reveals
nothing about I other than the index of the kth one.

Proof. As shown in the correctness proof,

k · I[i]−1−∑
i′≤i

I[y′] ̸= 0

for i ̸= ik. Moreover, due to the multiplication of r, which is
uniformly random, M[i] is also uniformly random, for i ̸= ik.
Hence, M[i′] for i′ ̸= ik does not reveal any information about
I.

E Optimization for different values of b

Figure 5 showed the relationship between runtime and the
Hamming weight for a fixed range of b. While there is not a
close formula to show the effect of b, we can see in the graph
below that for a larger b, the effect is roughly the same.

0 10 20 30

0

0.5

1

·109

Hamming Weight (h)

R
un

tim
e

(m
s)

Runtime vs. Hamming weight

Figure 7: Code length as a function of the Hamming weight
for λ̄ ∈ {16,32,48,64} for 4096 < b≤ 8192. The minimum
occurs for a Hamming weight of 8, 8, and 23, respectively.

6470 33rd USENIX Security Symposium USENIX Association

	Introduction
	Related Work
	PSI with Leakage
	Unbalanced PSI
	Labelled PSI
	Circuit PSI

	Background
	The FV Cryptosystem
	Constant-weight Encoding
	Hashing Optimizations

	pepsibluePEpepsiredPSI: Practically Efficient PSI
	Dataset Preprocessing
	Server Computation
	Result Extraction

	pepsibluePEpepsiredPSI Variants
	Optimization for Large Elements
	Labelled PSI
	Circuit PSI

	Analysis of pepsibluePEpepsiredPSI
	Communication Complexity
	Computation Complexity
	Communication/Computation Tradeoff

	Evaluation
	PSI Evaluation and Comparison
	Labelled PSI Evaluation and Comparison
	Circuit PSI Evaluation and Comparison
	Summary of Evaluation

	Conclusion
	Proof of lemma:fail-collide
	Data Preparation
	Large Labels
	PSI-kth-Match.
	Optimization for different values of b

