
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

“Belt and suspenders” or “just red tape”?:
Investigating Early Artifacts and User

Perceptions of IoT App Security Certification
Prianka Mandal, Amit Seal Ami, Victor Olaiya, Sayyed Hadi Razmjo,

and Adwait Nadkarni, William & Mary
https://www.usenix.org/conference/usenixsecurity24/presentation/mandal

“Belt and suspenders” or “just red tape”?: Investigating Early Artifacts and User
Perceptions of IoT App Security Certification

Prianka Mandal, Amit Seal Ami, Victor Olaiya, Sayyed Hadi Razmjo, Adwait Nadkarni
William & Mary

{pmandal, aami, voolaiya, srazmjo, apnadkarni}@wm.edu

Abstract
As IoT security regulations and standards emerge, the in-

dustry has begun adopting the traditional enforcement model
for software compliance to the IoT domain, wherein Commer-
cially Licensed Evaluation Facilities (CLEFs) certify vendor
products on behalf of regulators (and in turn consumers).
Since IoT standards are in their formative stages, we investi-
gate a simple but timely question: does the traditional model
work for IoT security, and more importantly, does it work as
well as consumers expect it to? This paper investigates the
initial artifacts resultant from IoT compliance certification,
and user perceptions of compliance, in the context of certified
mobile-IoT apps, i.e., critical companion and automation apps
that expose an important IoT attack surface, with a focus on
three key questions: (1) are certified IoT products vulnerable?,
(2) are vulnerable-but-certified products non-compliant?, and
finally, (3) how do consumers perceive compliance enforce-
ment? Our systematic analysis of 11 mobile-IoT apps certified
by IOXT, along with an analysis of 5 popular compliance stan-
dards, and a user study with 173 users, together yield 17 key
findings. We find significant vulnerabilities that indicate gaps
in certification, but which do not violate the standards due to
ambiguity and discretionary language. Further, these vulnera-
bilities contrast with the overwhelming trust that users place
in compliance certification and certified apps. We conclude
with a discussion on future directions towards a “belt and
suspenders” scenario of effective assurance that most users
desire, from the status quo of “just red tape”, through objec-
tive checks and balances that empower the regulators and
consumers to reform compliance enforcement for IoT.

1 Introduction
Federal and state governments have only recently begun to
grapple with the reality of billions of potentially vulnera-
ble Internet of Things (IoT) products, and have responded
with the promise of targeted security and privacy regula-
tions [24, 47, 58]. For instance, the US Senate is considering
The Cyber Shield Act [59], which provisions security certifica-
tions for IoT products in accordance with IoT-specific security

Consumers

IoT Vendor

Regulators

The Affected Party

Commercially Licensed
Evaluation Facility (CLEF)

Pay

Certify
Product

License

Figure 1: The Product Security Certification Loop

standards developed by the National Institute of Standards
and Technology (NIST) and other standards bodies. Similarly,
a recent US presidential executive order [56] instructs NIST to
identify the relevant criteria that defines comprehensive secu-
rity testing requirements for IoT products. While these policy
initiatives are a step in the right direction, their effectiveness
on IoT security in practice hinges their actual enforcement.

Emerging IoT security standards and regulations outline
an enforcement strategy similar to the one used for software
security certification, which we term as the traditional model,
as shown in Figure 1. Under this model, regulators (and by
extension consumers) delegate enforcement to several Com-
mercially Licensed Evaluation Facilities (CLEFs). Product
vendors contract CLEFs, which then evaluate and certify prod-
ucts. Such delegation enables certification to scale through
hundreds of CLEFs that certify millions of products produced
by thousands of small and medium-scale vendors. However,
this delegation comes at a steep price: as seen in Figure 1,
the affected party, i.e., regulators and consumers who are the
primary beneficiaries of compliance, are left (almost) entirely
outside the product security certification loop.

The limited role of the affected party enables an incentive
structure that is skewed against effective enforcement. Partic-
ularly, vendors have no incentive to select an ideal CLEF that
would thoroughly evaluate their product, instead seeking the
fastest route to certification, as Lerner and Tirole demonstrate
in their study of “Forum Shopping” [43]. Moreover, CLEFs
are licensed on the basis of procedural competence (e.g., fa-
cilities as per ISO 17025 [31]) and not performance at finding

USENIX Association 33rd USENIX Security Symposium 4927

vulnerabilities in practice, which reduces their incentive to
improve. In effect, the traditional model disenfranchises the
affected party, rendering it powerless to directly affect im-
provement in either CLEFs or vendors.

This paper seeks to motivate a change to this status quo by
investigating the current state of product security certification
in IoT, guided by the following question:

Does the traditional security certification model (i) work in
the context of IoT products, and more importantly, (ii) work
as well as consumers (i.e., the affected party) expect it to?

This question is timely, as IoT standards are in their forma-
tive stages, and re-thinking compliance enforcement for IoT is
feasible. To this end, we further distill this question into three
research questions (RQ1→RQ3) that help us investigate the
initial outcomes of the traditional certification model applied
to IoT, and consumer perceptions regarding it:

RQ1: Are certified IoT products vulnerable? What are
the characteristics of the vulnerabilities they exhibit? Are they
less vulnerable relative to non-certified products?

RQ2: Are vulnerable but certified IoT products non-
compliant? Do the vulnerabilities in certified products violate
relevant IoT standards? If not, despite vulnerabilities, why?

RQ3: How do consumers, i.e., the affected party, per-
ceive compliance enforcement? How aware are consumers
of security compliance standards? What are their expectations
from certified IoT products? Who do they hold responsible
for ensuring security compliance, or liable for failures?

With the view of enabling a tractable analysis and gen-
erating actionable insights, we scope our investigation of
RQ1→RQ3 by targeting an IoT product-type that is central
to the IoT system as a whole: mobile-IoT apps [34], i.e., com-
panion apps and third-party automation services help users
control devices and manifest an important attack surface of
the IoT system. This work makes the following contributions:

• Analysis of certified mobile-IoT apps (RQ1): We ana-
lyze 11 certified mobile-IoT apps from IOXT [32], focusing
on vulnerabilities resulting from cryptographic API misuse
that critically impact on the secrecy/integrity of IoT data in
transit or at rest [37, 38] and are highly relevant to mobile
apps. In addition, we target mobile security issues explicitly
outlined in standards, namely requesting more permissions
than necessary, and leaking private data. Our analysis of
crypto-API misuse finds 35 serious vulnerabilities in 9/11
apps, including attempts to evade compliance and security
checks (F1). Many of the vulnerabilities are not detected
by popular crypto-API misuse detectors [40, 49, 53] (F5),
and adversely impact the security of IoT data (e.g., cam-
era feeds, authentication and account credentials) (F2, F3).
Additionally, the mobile-IoT apps request at least one dan-
gerous permission without justifying it to the user (F7) and
may leak sensitive data to logs (F8). Repeating the analysis
on a comparable set of non-certified apps reveals a simi-

lar rate of vulnerabilities (F6), indicating a potential gap
between consumer expectations and reality (see F14).

• Analysis of security compliance (RQ2): We evaluate
the compliance of the certified (but vulnerable) mobile-
IoT apps with IOXT (according to which they were
certified), as well as 4 additional standards/guidelines,
namely MASVS [11], IOTSF [7], IOTAA [6] and NI-
STIR 8259A [9]. We find that it is infeasible to precisely
establish non-compliance according to the letter of the stan-
dard, despite vulnerabilities mapping to specific criteria,
for three key reasons. First, certain broad criteria give the
appearance of making vulnerabilities non-compliant (i.e.,
an “effective” standard), while a literal interpretation of
the criteria may allow vulnerable code to be justified as
compliant (F9). Second, the test cases elaborated in certain
criteria provide significant discretion to testers through am-
biguous terminology (F10). Finally, we find that the IOXT
standard includes language (such as “where possible”) that
makes essential criteria discretionary for app developers
(F11).
• User survey and qualitative analysis of common per-

ceptions and expectations (RQ3): We perform a survey
with 173 IoT users (denoted as P1→P173) to gauge their
awareness of IoT security compliance regulations, expecta-
tions from certified products and stakeholders, as well as
perceptions regarding vulnerabilities, compromises, and ac-
countability. We find that users are generally not informed
on IoT security compliance standards (F12), but neverthe-
less, a overwhelmingly trust that certified apps are secure
(F14), in direct contrast to the status quo discovered in Find-
ings F1→F3. This belief is not shaken even after users are
faced with scenarios of compliance failures (F16). Finally,
users hold all stakeholders (i.e., the app developers, CLEFs,
and standards bodies) equally responsible for correctly en-
forcing standards (F15), but hold developers disproportion-
ately more liable for compliance failures (F17).

Our study leads to 17 key findings (F1→F17) that not only
demonstrate certification failures with serious impact on IoT
security, but also challenge user perceptions. That is, most
users trust the assurance enabled by certification, believing in
a “belt and suspenders” scenario (P144) (Section 4). How-
ever, a minority consider it to be “just red tape” (P11) with-
out additional guarantees, and Sections 2 and 3 show that this
assessment matches the status quo. Finally, we discuss (Sec-
tion 5) how we can change the status quo towards a “belt and
suspenders” scenario, through objective checks and balances
that validate the security posture of CLEFs, and empower the
affected party to reform the product certification loop for IoT.

2 Mobile-IoT App Analysis (RQ1)
To develop a preliminary understanding of the IoT security
compliance ecosystem, we identified 30 unique CLEFs li-
censed to perform assessments for popular IoT standards such
as IOTSF [7] and IOTAA [6]. From an analysis of the doc-

4928 33rd USENIX Security Symposium USENIX Association

umentations and websites of these CLEFs, we observe that
25/30 CLEFs provide certification/assessments for mobile-
IoT apps, which is expected, given that mobile-IoT apps serve
as the primary UIs for controlling, configuring, and automat-
ing IoT devices, and vulnerabilities in them could provide
adversaries with privileged access to devices and other com-
ponents of the holistic IoT system. This importance assigned
to mobile-IoT apps by CLEFs, and their general accessibility
relative to firmware, motivates our focus. To identify target
products for our analysis, we conducted a semi-automated
search for certified mobile-IoT apps (see Appendix A.1), and
found that the only set of mobile-IoT apps available for our in-
vestigation of RQ1 is the list from IOXT [32], a popular CLEF
as well as an alliance that administers the IOXT standard.

2.1 Methodology
As of January 2023, IOXT certified 32 Android apps, of which,
11 can be classified as mobile-IoT as they directly automate/-
control an IoT device or automation platform. We evaluate
these 11 mobile-IoT apps, listed in Table 3 in Appendix A.
Our analysis focuses on vulnerabilities resulting from cryp-
tographic misuse, followed by additional security-relevant
criteria such as over-privilege and data leaks.

Recall that our goal is to uncover gaps in compliance en-
forcement, and not to measure the state of crypto-misuse in
general. Hence, we do not seek coverage of all vulnerabilities,
but rather to find (i) common/mundane vulnerabilities that
certifiers should have caught, and (ii) highly complex/evasive
examples [15] that would be hard to detect. A systematic,
manual, analysis is best-suited for these goals, as it allows
us to find common vulnerabilities faster without combing
through FPs generated by automated tools (e.g., CryptoGuard
alone raised 546 vulnerability alarms in the 11 apps, see the
online appendix [20]), and, to find complex vulnerabilities
that crypto-detectors fail to detect [15]. Further, we use auto-
mated tools for tasks that are impractical to perform manually,
such as finding multi-hop data leaks to storage or logs. We
now describe the core steps of our analysis methodology.

1. Selecting crypto-API misuse cases for analysis: Prior
work by Ami et al. has developed a large-scale taxonomy
of cryptographic API misuse cases, containing 105 such
cases [15]. For a tractable analysis, we sampled a set of 10
misuse cases (see Table 7, Appendix A), which satisfy two
key criteria: (i) the misuse is commonly found in apps and
hence is frequently discussed in literature [15], and (ii) is con-
sidered by at least one of the three automated tools that we
initially used, i.e., CryptoGuard, CogniCrypt, and MobSF.

2. Vulnerability analysis and confirmation: We disassem-
bled each app using jadx [33], and analyzed it for each of the
misuse cases in Table 7. To find vulnerabilities that can be
unequivocally said to be in the certified app, versus auxiliary
code, we focused on the app’s core/main package, instead of
the external libraries and SDKs. We searched for the key API

invocation(s) specific to each misuse, and confirmed the reach-
ability of the vulnerable API call, validating control flows upto
4 hops back. We considered nuances that may make a mis-
use not be vulnerable, such as using MD5 for non-security
purposes, and did not treat such cases as vulnerabilities.

3. Post-analysis to identify potential impact on IoT: We
performed additional analysis to understand the implications
of the discovered vulnerabilities, by examining the surround-
ing code semantics to understand how vulnerable code is used,
and what IoT-related function it performs. We also examined
the source/destination of the data to determine the signifi-
cance of the data to IoT security/privacy. We did not establish
impact unless we could do so without any doubt, considering
code obfuscation and incomplete decompilation. This con-
servative approach, in a manner similar to the vulnerability
analysis itself, led us to make fewer but certain determinations
of the potential impact of the vulnerabilities on IoT security.

4. Permission analysis: Criteria such as IOXT SD113 (“An-
droid Permissions Requested - Only Necessary Permissions”)
require mobile-IoT apps to request only the permissions they
need. As IOXT does not define “necessary”, and as least priv-
ilege is subjective, we adopt a definition from prior work that
uses “informed consent” to adjudicate least privilege (e.g.,
Whyper [50], SmartAuth [57]). That is, we define “necessary
permissions” as those that the developer justifies to the user in
(1) the app description or (2) its privacy policy (obtained from
Google Play or by running the app if needed). For each app,
we extracted the runtime (dangerous) permissions using adb

dumpsys, and compared this set with those described in text
resources to identify unjustified/unnecessary permissions.

5. Sensitive data leak analysis: Standards for mobile-IoT
apps also describe how sensitive data should not leak to the
logs (e.g., IOXT SD111 - No sensitive data is logged) or ex-
ternal storage (e.g., IOXT SD109: Store sensitive data only
within the application container). We define a sensitive data
leak as a data flow from a sensitive source, i.e., Android APIs
associated with a dangerous permission, to a relevant sink,
i.e., android logs and external storage, and leverage Flow-
Droid [21] to detect such leaks. We customized FlowDroid to
focus on the sinks relevant to this analysis (i.e., log and stor-
age APIs), and expanded the sources to include the relevant
APIs connected with dangerous permissions. We analyzed
each app with a timeout of 24 hours per app, and manually val-
idated the sources/sinks of the reported data leaks/violations,
but were unable to validate the flows given heavy obfuscation.

6. Sampling and analyzing non-certified mobile-IoT apps:
Finally, we compare the state of certified vs non-certified
mobile-IoT apps to answer a simple question: are certified
mobile-IoT apps more or less vulnerable than a comparable
set of non-certified apps? For this, we repeated the method-
ology described previously on a comparable set of 11 non-
certified mobile-IoT apps, sampled from the 37k mobile-IoT
apps developed by Jin et al. [34], as elaborated in Appendix A.

USENIX Association 33rd USENIX Security Symposium 4929

2.2 Results: Crypto-API Misuse Analysis
We discovered 35 vulnerabilities stemming from crypto-API
misuse in 9/11 certified mobile-IoT apps, counting only one
instance of every vulnerability. Table 1 shows the distribution
of the vulnerabilities across specific crypto-API misuse cases.

Most vulnerabilities were expressed in their simplest
forms, e.g., the use of AES without specifying the block
chaining mode, which results in ECB being used by de-
fault, was found in several apps as follows: Cipher cipher

= Cipher.getInstance(“AES”). However, Listing 1 below
shows an intriguing use of ECB that seems as if it was written
to look inconspicuous, to evade compliance/quality checks:
//The string operations below result in: "AES/" + "E" +

"C" + "B" + "/NoPadding" = "AES/ECB/NoPadding".
this.ALGO= "AES/" + ((char)

("AES/GCM/NoPadding".charAt(4) - 2)) +
"AES/GCM/NoPadding".charAt(5) + ((char)
("AES/GCM/NoPadding".charAt(6) - 11)) +
"/NoPadding";

Cipher cipher = Cipher.getInstance(this.ALGO);

Listing 1: A complex instantiation of AES in ECB mode in
TUYA, made to look like the GCM mode instead.

While prior work has theorized an evasive-developer threat
model [15], this paper is the first to report a real instance of
such evasive code in mobile-IoT apps.

Finding 1 (F1) – Some mobile-IoT apps evade compliance
checks by disguising vulnerable code as compliant, which
indicates a serious challenge for CLEFs, and a pressing
need to perform a hostile review of products.

The app in which several instances of this vulnerability
were found, i.e., TUYA, is a major IoT development platform
that provides a “no code” development interface and an SDK
for IoT developers to build OEM and smart home “hub” apps.
Any vulnerabilities in TUYA potentially impact millions, given
that its interface/SDK is used by over 580,000 IoT developers,
and its app installed by over 5 million users.

Upon further analysis, we identified 6 vulnerabilities that
clearly impacted a security/privacy-sensitive IoT function or
data. Particularly, several instances of vulnerable encryption
in TUYA, mainly AES in ECB mode (including the evasive use
above), are used when potentially pairing with BLE devices,
or in classes used to enable local communication. We also
found that TUYA uses “AES/CBC/PKCS5Padding, susceptible to
padding oracle attacks [2], to potentially send/store “security
alert images” from devices such as security cameras (also
confirmed from TUYA’s official documentation [4]).

Finding 2 (F2) – Some certified mobile-IoT apps use vul-
nerable encryption when transmitting/receiving sensitive
audio/video data to/from devices such as cameras.

In a similar vein, we found vulnerable implementations
of the TrustManager interface that accept all certificates. For
instance, the MSMARTHOME app (100k+ installs) uses such
a TrustManager in a key class that is used for authentication

and account management, including for tasks such as account
creation and user login. While prior work has already demon-
strated how mobile-IoT apps may be subjected to man-in-the-
middle (MiTM) attacks to steal authentication tokens [37,38];
this set of vulnerabilities takes it further, by enabling attackers
to steal user credentials and hijack the account and all associ-
ated devices. We found a similarly vulnerable TrustManager,
and an overridden HostnameVerifier that trusts all hosts, used
to set up general SSL/TLS connections in WYZE.

Finding 3 (F3) – Some certified mobile-IoT apps override
TrustManagers and HostnameVerifiers in ways that make
critical communication for user authentication and account
management vulnerable to MiTM attacks.

As we describe in Section 2.5, WYZE confirmed that they
were aware of the vulnerabilities, and had addressed them in
the new version, as the certified versions are seldom the latest.
To validate the possibility that newer versions of apps may
contain fixes to vulnerabilities found in certified versions, we
evaluated the latest version (as of November 2022) of all 9/11
vulnerable certified apps. Our analysis demonstrates that for
the vast majority, i.e., 6/9 vulnerable apps, the newer versions
are just as vulnerable, if not more. The only exceptions are
DALS CONNECT and EUREKA, for which some (i.e., for DALS

CONNECT) or all (i.e., for EUREKA) vulnerabilities were not
found in the new versions, and MSMARTHOME app, which
moved the vulnerable methods into native code hence could
not be similarly analyzed. In WYZE, we found that the devel-
opers had simply refactored the code around the vulnerability,
without fixing it, which contradicts the vendor’s response.
Similarly, in NETHOME PLUS, we found that a previously un-
reachable vulnerability (MD5) was now reachable.

Finding 4 (F4) – The latest versions of vulnerable certified
mobile-IoT apps are generally similarly or more vulnerable
than the (older) certified versions.

Prior to our systematic manual analysis, we had also au-
tomatically analyzed the certified apps with CryptoGuard,
CogniCrypt, and MobSF, but chose manual analysis for rea-
sons described in Section 2.1. The tools led to 772 alarms
cumulatively. Given this volume of alarms, one might expect
the tools to find all (or most) of the vulnerabilities discov-
ered using our manual analysis. However, the tools failed to
detect several critical vulnerabilities that we independently
found and confirmed, even cumulatively detecting only 22/35
vulnerabilities, with none detecting the evasive instance (F1).

Finding 5 (F5) – Three automated tools, CogniCrypt,
MobSF, and CryptoGuard, do not detect several of the
35 critical vulnerabilities discovered using manual reverse
engineering, i.e., 33/35, 28/35, and 15/35 respectively, de-
spite generating 89, 137, and 546 alarms, respectively.

Finally, we found 22 vulnerabilities in 8/11 of a comparable

4930 33rd USENIX Security Symposium USENIX Association

Table 1: Distribution of the crypto-API misuse vulnerabilities in 9/11 vulnerable certified apps.*

No. Misuse case Tuya NetHome Plus Eureka Midea Air MSmartHome GreenMAX Wyze Dals Connect Google Home Total

1. Only AES for encryption X 1

2. AES with ECB for encryption X X X X 4

3. AES with CBC for encryption X X X X X X 6

4. No clearpassword() call after us-
ing PBEKeySpec

X 1

5. MD5 hashing X X X X X X X 7

6. SHA1 hashing X X X X X X 6

7. Trusting all certificates X X X 3

8. Allowing all hostnames X X X 3

9. “SSL” as context X X 2

10. “TLSv1” as context X X 2

5 2 2 2 6 2 5 5 6 35

*We did not find any vulnerability in TSmartLife and Hubspace.

set of non-certified apps, which indicates that overall our set
of certified apps is more vulnerable than non-certified apps,
given that we previously found 35 vulnerabilities in 9/11
certified apps. However, as shown in Table 5 in Appendix A,
for most misuse cases, certified and non-certified apps have a
similar rate of vulnerabilities per app, with a few exceptions.

Finding 6 (F6) – Our equivalent set of certified and non-
certified mobile-IoT apps are similarly vulnerable in terms
of the crypto-API misuse cases we analyzed for.

We emphasize that F6 may not generalize to the broader
ecosystem of certified and non-certified mobile-IoT apps,
given our limited sample, as we also elaborate in Section 6.

2.3 Results: Permission Analysis
Recall that in the absence of a definition of what a “necessary”
permission constitutes, we consider a permission necessary
if the app justifies it to the user, i.e., leveraging the notion of
overprivilege based on informed consent from prior work [50,
57]. We found that all certified mobile-IoT apps request at
least one dangerous/sensitive-data related permission without
describing it in their privacy policy or description, as shown in
Table 6 in Appendix A. For example, Wyze requests several,
sensitive, permissions, e.g., background location, and reading
contacts, while claiming “No data collected” in the data safety
section of its Google Play listing.

Finding 7 (F7) – 11/11 certified mobile-IoT apps request
at least one dangerous permission that is not justified in
the app description or privacy policy.

2.4 Results: Sensitive Data Leak Analysis
FlowDroid reported sensitive data leaks to external storage
and logs in all certified and non-certified apps except HUB-
SPACE and GREENMAX DRC.1 However, upon manual valida-

1GreenMAX DRC could not be analyzed due to its hybrid nature, and
FlowDroid timed out for Hubspace.

tion of the sources and sinks in the alerts, we discovered that
most were false positives, with only a few, relevant, leaks.

Upon manual validation, we confirmed that 4/11 certified
mobile-IoT apps log sensitive data, such as location (MS-
MARTHOME, TSMARTLIFE, WYZE), the phone’s MAC address
(EUREKA, TSMARTLIFE), and the phone-specific telephony
device ID (TSMARTLIFE). Similarly, of the 11 comparable
non-certified mobile-IoT apps, we confirmed that 6 apps leak
sensitive data to the log, which is not considerably different
from certified apps. Also, outside the scope of the permission-
protected API-related definition of a data leak in Section 2.1,
we found user-provided passwords being leaked by EUREKA

and MIDEA AIR to the logs.
Finally, in contrast to logs, FlowDroid did not throw any

alerts for leaks to external storage, i.e., we conclude that nei-
ther the certified nor non-certified mobile-IoT apps leak data
from sensitive APIs to external storage, unless they lever-
age implicit flows that are beyond FlowDroid’s capabilities.

Finding 8 (F8) – Both certified and non-certified mobile-
IoT apps from our set leak privacy-sensitive data such as
location, the device ID, and sometimes the user-provided
password, to the logs, but not to external storage.

2.5 Vulnerability Disclosure

We have reported all the vulnerabilities in the certified and
non-certified apps to the concerned vendors. The vulnerabili-
ties and our reports are available in our online appendix [20].
WYZE responded to the reports and confirmed that they were
aware of the vulnerabilities, but also stated that the vulnera-
bilities were fixed in the new (non-certified) version. As the
analysis of the new version contradicts this assertion, and
we have followed up with WYZE, and are waiting on their
response. TUYA, i.e., the developer whose code contained the
evasive behavior, as well as several other instances of weak
encryption, simply marked the severity of our reports as “ig-
nored”, but did not provide any explanation or respond to our

USENIX Association 33rd USENIX Security Symposium 4931

communication. We are following up with IOXT separately
regarding this case, and have filed certification disputes.

3 Security Compliance Analysis (RQ2)
We now know that certified mobile-IoT apps are not free
from vulnerabilities, but the question is, does being vulnerable
also make them non-compliant? (RQ2). This section seeks to
address this question more broadly, i.e., not just in the context
of IOXT, but by also evaluating whether the apps would be
certifiable under other IoT security standards or guidelines.
We also explore the criteria further to understand why, despite
vulnerabilities, app could still argue compliance, leading to
findings that motivate improvements in compliance standards.

3.1 Methodology
We select 5 popular IoT security standards (i.e., 4 besides
IOXT), namely: (1) The OWASP Mobile Application Secu-
rity Verification Standard (MASVS) [11], (2) the IoT Secu-
rity Foundation (IOTSF) standard [7], (3) the IoT Alliance
Australia (IOTAA) security guidelines [6], and finally, (4)
NIST’s Core IoT Cybersecurity Capabilities Baseline (NIS-
TIR 8259A) [9]. Note that we exclude standards that only
govern devices (e.g., GSMA’s IoT security standard [5]).

To analyze compliance with respect to each standard, we
first systematically transformed the relevant parts of the stan-
dard into specific criteria, and then compared these criteria
with the vulnerabilities from Section 2.2. This analysis is
composed of two aspects: determining what criteria apply to
the vulnerabilities, and using additional information (e.g., test
cases) to determine how they apply.

To elaborate, we systematically deconstructed each stan-
dard into specific criteria that apply to mobile-IoT apps, fol-
lowed by mapping explicit criteria to the vulnerabilities stud-
ied in Section 2 (see Table 2 for the mapping). Particularly,
we exhaustively reviewed the standard documents, comparing
each criterion to the precise nature of the discovered vulner-
ability in order to find one that applies. Further, only IOXT
provides test cases associated with the criteria in its Test Case
Library (v5). We used these test cases to further understand
how the criteria may apply to the vulnerabilities we detected,
analyzing the specified test steps and acceptance requirements.
We also considered external references where provided, e.g.,
for “PC1: Standard Cryptography”, where the acceptance and
additional requirements specify existing guidelines, such as
OWASP MASVS 3.1 – 3.6 and NIST.

3.2 Results: Compliance Analysis
Table 2 maps the vulnerabilities and security/privacy issues
identified in our analysis to the applicable criteria in each
standard. Given that the spirit of the standards is to facilitate
secure products, vulnerabilities in apps that map to specific
regulatory criteria should technically be sufficient to make the
apps non-compliant. However, we discover that establishing
non-compliance is not straightforward, as imprecision, am-

biguity, and loopholes in standards may enable vendors to
argue compliance by the letter, regardless of vulnerabilities.

1. Overly broad criteria: Consider IOTAA, which provides a
single, broad, criterion, for the use of cryptography, as follows:

“Ensure devices and associated applications support current
generally accepted security and cryptography protocols and
best practices. All personally identifiable data in transit and
in storage must be encrypted using current generally accepted
security standards.” The NISTIR 8259A baseline is just as
broad. It may be somewhat acceptable (although not ideal) for
both IOTAA and NISTIR 8259A to be this broad, as they
are not standards, but serve as guidelines for the development
of more precise standards. Indeed, the MASVS and IOTSF
standards are more precise, and discuss specific lists of gov-
ernmental sources of secure/deprecated ciphers to use/avoid.
However, the same cannot be said of IOXT.

To elaborate, in IOXT, the key requirement that governs
the use of cryptography is “standard cryptography (PC1)”.
Under PC1, apps are required to verify that: (i) “all choices
of cryptography are supported by appropriate industry or
government recognized standards or best practices...”, and
(ii) “all choices of cryptography have not been deprecated
or reported to be insecure by industry or government orga-
nizations”, with the later referring to OWASP MASVS’s
criteria 3.1−3.6. The overly broad language allows IOXT to
claim completeness without being as precise as MASVS and
IOTSF, as essentially every vulnerability could be argued as
against a recognized best practice. However, we observe that
if this broad language is taken literally, it could also allow a
developer to argue that certain vulnerable uses are compliant.
For example, one might literally interpret PC1 to argue that
Cipher.getInstance(“AES”) is compliant, as this specific in-
vocation is not deprecated, and “AES” is a standard “choice of
cryptography”, regardless of the eventual vulnerable outcome
(i.e., the call results in ECB mode by default).

Finding 9 (F9) – Certain standards criteria are overly
broad, making them appear comprehensive. However, a lit-
eral interpretation of the same may help developers claim
vulnerable code as compliant.

2. Ambiguous test cases, discretion to testers: Criteria rel-
evant to data security are more precisely defined in IOXT,
relative to the broadly described PC1. That is, rather than just
broadly requiring apps to collect and process data “as per
industry best practices”, IOXT further elaborates on what this
correct handling should entail, with specific criteria SD113
(“Android Permissions Requested - Only Necessary Permis-
sions”), SD111 (“No sensitive data is logged”), and SD109
(“Store sensitive data only within the application container”).
While this increased precision is welcome, we observe that the
actual test cases for these specific criteria contain ambiguous
language that leaves significant discretion to testers.

For example, for SD113, the tester may accept the app if it

4932 33rd USENIX Security Symposium USENIX Association

Table 2: A mapping of the vulnerabilities identified to the specific criteria in the standards analyzed.

No. Vulnerabilities Apps with Vulnerability Specific criteria from individual standards that pertain to each vulnerability

IOXT MASVS/ MASA NISTIR 8259A IOTSF IOTAA

1. Using only AES for en-
cryption

Tuya PC1 MSTG-CRYPTO-2,
MSTG-CRYPTO-3

Data Protection 2.4.7.15 5.1.1

2. Using AES with ECB for
encryption

MSmartHome, Tuya, Wyze, Dals Con-
nect

PC1 MSTG-CRYPTO-2,
MSTG-CRYPTO-3

Data Protection 2.4.7.15 5.1.1

3. Using AES with CBC for
encryption

MSmartHome, Tuya, Wyze, Dals Con-
nect, Google Home, GreenMAX DRC

PC1 MSTG-CRYPTO-2,
MSTG-CRYPTO-3

Data Protection 2.4.7.15 5.1.1

4 . No clearpassword() call
after PBEKeySpec

GreenMAX DRC PC1 MSTG-CRYPTO-3 Data Protection – 5.1.1

5. Using MD5 hashing Dals Connect, Eureka, MSmartHome,
Tuya, Wyze, NetHome Plus, Midea Air,
Google Home

PC1 MSTG-CRYPTO-2,
MSTG-CRYPTO-4

Data Protection 2.4.9.5 5.1.1

6. Using SHA1 hashing Dals Connect, Eureka, MSmartHome,
NetHome Plus, Midea Air, Google Home

PC1 MSTG-CRYPTO-2,
MSTG-CRYPTO-4

Data Protection 2.4.9.5 5.1.1

7. Trusting all certificates MSmartHome, Wyze, GoogleHome SI110 MSTG-NETWORK-3 Logical Access to Interface 2.4.13.4 5.1.1

8. Allowing all hostnames Wyze, Google Home SI113 MSTG-NETWORK-4 Logical Access to Interface 2.4.13.10 5.1.1

9. Using SSL as context Dals Connect, Wyze SI110 MSTG-NETWORK-2 Data Protection 2.4.7.19 5.1.1

10. Using TLSv1 as context Tuya, Google Home SI110 MSTG-NETWORK-2 Data Protection 2.4.7.19 5.1.1

11. Requesting unnecessary
permissions

All Apps SD113 MSTG-PLATFORM-1 Logical Access to Interfaces 2.4.5.1, 2.4.8.9 5.1.1

12. Logging sensitive data Eureka, MSmartHome, TSmartLife,
Wyze

SD111 MSTG-STORAGE-3 Data Protection 2.4.9.7 5.1.1

13. Storing sensitive data out-
side the app container

NONE SD109 MSTG-STORAGE-2 Data Protection 2.4.9.7 5.1.1

–IOTSF does not contain any information regarding the use of PBEKeySpec, and hence, would not consider apps vulnerable to misuse #4 (i.e., GreenMax DRC) in violation.

“does not request excessive sensitive permissions”. However,
defining excessive, whether quantitatively (i.e., “how many
extra permissions is excessive”) or qualitatively (i.e., “what
permission is unnecessary”) is entirely left to the tester. Recall
that our analysis defines unnecessary permissions as those not
justified to the user, and identifies several apps that request
such permissions. However, given that lack of clarity on what
“excessive sensitive permissions” entails, it is infeasible to
unequivocally deem any of the apps non-compliant.

Similarly, SD111 and SD109 do not specify exactly what
data is to be considered “sensitive”, leaving that aspect to the
tester’s discretion. Recall that aside from private data such as
location and MAC addresses, we also found potential leaks
of authentication credential to the logs (F8), in certified apps.
Note that the OWASP MASVS guidelines, which IOXT often
refers to, do provide a definition of sensitive data as generally
within the bounds of “user credentials and private informa-
tion”, including all information “that must be protected by
law or for compliance reasons” [10]. However, IOXT does not
require the tester to adhere to this definition, only referring
to OWASP MASVS broadly under “additional information”.
Thus, here too, the ambiguous language prevents us from
firmly establishing (non) compliance.

Finding 10 (F10) – Test cases accompanying criteria con-
tain ambiguous phrases (e.g., “excessive permissions”),
allowing significant discretion to the tester, preventing an
unequivocal determination of compliance.

3. Loopholes in the criteria, discretion to developers: In
contrast to the broad requirements in PC1 (standard cryptog-
raphy), we find that the correct use of SSL/TLS is clearly
specified and in precise detail in IOXT, as a part of the SI110
criteria, which directly maps to several of the vulnerabilities
we studied (i.e., vulnerability #7, #9, #10 in Table 2). The
criteria discuss several precise checks (e.g., validating certifi-
cate expiration, hostnames). Such precise description is ideal
as it makes it easier for developers to adopt and implement
the standard, while also making it straightforward for CLEFs
to perform checks. However, the following language used to
describe how developers should comply with these criteria
reduces its weight, by making it largely optional: Encrypt all
network traffic, using verified TLS where possible.

The last phrase, i.e., where possible, leaves complying with
the criteria to the developer’s discretion. That is, the developer
may consider using SSL/TLS unnecessary/impractical for any
communication, and yet consider their code to be compliant,
as the criteria does not elaborate what “possible” entails.

Finding 11 (F11) – IOXT makes certain precise criteria
discretionary for developers to comply with, leaving devel-
opers with the flexibility of choosing what communication
or data to protect, which may result in vulnerable apps that
developers may contest are compliant with the standard.

4 User Perceptions and Expectations (RQ3)
Recall that this paper seeks to investigate whether the tradi-
tional compliance model works as well as consumers expect

USENIX Association 33rd USENIX Security Symposium 4933

it to. To this end, we conduct a user survey that allows us to
explore consumer perceptions on compliance enforcement.

4.1 Methodology
Our methodology is guided by several questions that intu-
itively emerge when we consider user perceptions regarding
compliance enforcement. For instance, what do consumers
know and believe about compliance enforcement? Who do
they find responsible for enforcing standards correctly? And,
who would they hold accountable if things break down? The
survey design reflects these questions.

4.1.1 Survey Design
Our survey consists of questions regarding participants’ famil-
iarity and experience with mobile-IoT apps, IoT security com-
pliance regulations, their enforcement, and their beliefs and
opinion about specific scenarios related to IoT compliance.
We constructed 39 questions with a mix of 15 open-ended
and 24 close-ended questions, organized as follows (see the
online appendix [20] for the survey instrument):
Experience with mobile-IoT apps: Participants were asked
about their familiarity and experience with mobile-IoT apps.
Further, we provided the list of certified mobile-IoT apps stud-
ied in this paper and asked participants about their familiarity
with those specific apps. Participants were also given the
opportunity to list additional mobile-IoT apps they had used.
Familiarity with IoT security compliance standards: We
asked participants if they were familiar with a list of well-
known general, i.e., non-IoT compliance standards used in
the software industry. We then asked them about their famil-
iarity with the IoT security compliance standards studied in
Section 3. Lastly, we elicited participants opinions about the
entities they think are responsible for the correct enforcement
of IoT compliance standards, among the key stakeholders.
Expectations from certified apps and scenario-based
questions: After obtaining their general perceptions regard-
ing compliance enforcement, participants were presented with
questions regarding their expectations from certified apps. Par-
ticularly, we asked participants about their opinions regarding
the prevalence of vulnerabilities, developer diligence regard-
ing data security, and the amount of trust they would place
when it came to their confidential/private data, in certified vs
non-certified apps. We then posed 2 hypothetical scenarios
inspired from the vulnerabilities discovered in the certified
mobile-IoT apps from our analysis in Section 2, and asked
participants to rate the severity and likelihood of these scenar-
ios, as well as the stakeholder(s) that would be liable if the
scenario happens in practice. We then again asked them for
their preference towards certified vs non-certified apps.

4.1.2 Participant Recruitment
We invited 425 IoT users to participate in our survey through
Prolific [12]. Our participant screening criteria included the
following: participants must (i) be at least 18 years of age, (ii)

reside in the USA, (iii) self-report fluency in English, and (iv)
be IoT users (i.e., previously used IoT devices). We received a
total of 180 responses, of which we discarded seven responses
due to failed attention check questions or finishing the study
too quickly (i.e., within 5 minutes in our case, as per Prolific’s
general guidelines [52]). Our survey took an average of 15
minutes to complete. We paid each participant $5.

4.1.3 Coding and Analysis
We used reflexive thematic analysis to analyze our free-text re-
sponses [23]. We used the inductive coding approach to derive
codes from open-ended question response data. At first, two
coders randomly selected a subset of responses (20-30%) per
question for familiarization and to derive preliminary codes.
These codes were applied to the selected responses by both
coders to resolve differences and for evolving the preliminary
codes. Next, the coders split the data equally and applied the
codes separately on the split data. During this step, the coders
discussed any response that could not be labeled using any
of the existing codes and updated the codebook. Finally, the
authors held an agreement-disagreement discussion to reach
a consensus for each coded response.

4.1.4 Ethical Considerations
Our survey protocol was approved by our Institutional Re-
view Boards (IRB). Participants were informed about the
goal of the study before participating, and willingly pro-
vided consent to participate, including the consent to disclose
anonymized survey responses and quotes. In scenario-based
questions where we presented information from our analy-
sis, we anonymized application names and other details, and
presented the scenarios as hypothetical, in order to prevent
and adverse impact on the apps studied, and in the spirit of
responsible vulnerability disclosure.

4.2 Results: User Perceptions
This section discusses the results from our analysis of 173 sur-
vey responses. We organize the results across four key themes
that we observe: (i) the lack of exposure to compliance stan-
dards, (ii) the overwhelming confidence in certification over
brand reputation, (iii) the view that all stakeholders except
users (i.e., developers, CLEFs, standards bodies) are equally
responsible for compliance enforcement, and (iv) the dispro-
portionate blame assigned to developers in case of failures.
As we elaborate in Section 6, our qualitative analysis and
results draw from self-reported data, which may suffer from
biases and a lack of generalizability.

4.2.1 Lack of Exposure to Compliance Standards
We find that participants are generally familiar with mobile-
IoT apps, as illustrated in Figure 2. However, participants
do not demonstrate familiarity with compliance standards,
be they for general software or for IoT security compliance,
as shown in Table 8 in Appendix C. Particularly, only 19
participants know of at least one of the listed IoT compliance

4934 33rd USENIX Security Symposium USENIX Association

13 46 57 45 12

0 25 50 75 100 125 150 175

Responses

Number of participants

Participant familiarity with mobile-IoT apps

Extremely familiar Very familiar Moderately familiar
Slightly familiar Not familiar at all

Figure 2: Participant familiarity with mobile-IoT apps

standards, be it through online materials (8), professional
settings (5), personal connections (3), and/or coursework (3).
As P99 states, “I learned it from google search...aware about
from my colleague and then I further looked into it.”

Moreover, since most participants are not familiar with
compliance standards, their perspectives are mainly based on
their common sense, as P12 states: “Common sense is using
one that is certified secure.”

When we asked participants whether they had used any
mobile-IoT apps that were certified with any of the previously
mentioned IoT security standards, 128 (73.99%) participants
stated they had not, and 17 (9.83%) were unsure. The rest
(i.e., 28 or 16.18%) mentioned several apps they had used that
they knew were certified. Of these, 19 mentioned apps that
are indeed certified, i.e., 17 mentioned using Google Home
(certified by IOXT), 2 mentioned Wyze (certified by IOXT),
and 4 mentioned Google Nest (certified by MASA). However,
other participants mentioned apps that are not certified by any
extant IoT standard to our knowledge, e.g., Ring (2), Alexa(2),
Echo (1), Smart Life (1) and Siri (1).

Moreover, when we provided participants with our list of
certified apps from IOXT without explicitly telling them that
they were certified, participants indicated having used the apps
in much larger numbers, as shown in Table 9 in Appendix C.
For instance, 86 participants mentioned using Google Home
when we provided the list without mentioning certification,
whereas previously, only 17 had mentioned Google Home
when asked about certified apps they had used.

Finding 12 (F12) – Users are generally not informed of
IoT compliance standards, and often unaware of the certi-
fied (status of the) mobile-IoT apps they use.

This clear lack of exposure can be attributed to either the
fact that IoT compliance standards are still in the early stages
of adoption, or, because CLEFs and vendors may not want
users to incorporate compliance in their decision-making
process, only relying on it as a liability shield; e.g., only
2/11 mobile-IoT apps certified by IOXT (i.e., GOOGLE HOME,
TUYA) disclose their certification to users.

4.2.2 Trust in Certification over Brand Reputation

Users have traditionally focused on brand reputation and third-
party product reviews while choosing a certain product [26].
Particularly for mobile-IoT apps and IoT products in general,
until very recently there was no avenue such as certification

13 46 57 45 12

0 25 50 75 100 125 150 175

Responses

Number of participants

Participant responses about whether they would check a mobile-IoT app they
are about to start using is compliant with some IoT security standards

Extremely likely Somewhat likely Neither likely nor unlikely
Somewhat unlikely Extremely unlikely

Figure 3: Participant responses about whether they would check if
a mobile-IoT app they are about to start using is certified

to evaluate products, and hence, criteria such as brand image
and reputation were the only ones available to consumers.

When asked if they would check whether mobile-IoT apps
were in compliance with some IoT security standard/certi-
fication before use, 74 (42.77%) participants indicated that
they would not be likely to check, generally prioritizing brand
reputation and third-party product reviews over certification
when assessing an app’s security and safety. As P9 states, “If
the app is from a reputable company and has good reviews
I wouldn’t have second thoughts.”. Moreover, participants
also stated that they rely on popularity and reviews because
they are not aware of compliance standards and processes,
as P41 states: “I wouldn’t know where to start looking for
this information or how to interpret it. I would instead trust
reviews or I guess expert opinions.”

On the other hand, an equal number of the participants (74
or 42.77%) indicated that they are at least somewhat likely
to check, mainly because doing so would provide them with
additional assurance, i.e., as P69 puts it, “...I need some re-
assurance that the devices and apps I am using are going
to keep my information safe.” However, some participants
who are somewhat likely to check also focus brand reputation.
As P125 states, “I generally look, but try to get devices from
more trusted brands.” Figure 3 shows the full distribution of
the results for this question.

Finding 13 (F13) – While a significant number of users
are likely to check the certification status of the mobile-IoT
apps they use, mainly for additional assurance, an equal
proportion believe brand reputation and popularity to be
more valuable.

Further, when presented with scenarios that required them
to choose between a certified or non-certified app with identi-
cal functionality, an overwhelming majority of participants
put their trust in certification and assumed the certified app
to be (1) more secure and (2) better designed. To elaborate,
when asked whether they considered certified apps or non-
certified apps to be more secure (i.e., free of vulnerabilities),
156 (90.17%) chose certified apps, only 1 chose non-certified
apps, 6 (3.47%) considered both as equally secure, and 10
(5.78%) considered neither as secure. Similarly, when asked
what they would assume regarding the effort taken by develop-
ers toward security and protection of user data, an overwhelm-

USENIX Association 33rd USENIX Security Symposium 4935

95

102

91

8

50

46

52

18

21

19

22

54

3

2

5

51

4

4

3

42

0 25 50 75 100 125 150 175

The developer

The CLEF

The standard body

The user

Number of participants

St
ak

eh
ol

de
rs

How responsible each stakeholder is for correct compliance
enforcement

Extremely responsible Very responsible Moderately responsible
Slightly responsible Not responsible at all

Figure 4: Attribution of responsibility in compliance enforcement

ing majority 127/173 (73.41%) assumed the developers of
the certified app to take relatively more efforts, only 1 chose
the developer of the non-certified app, 35 (20.23%) assumed
that both spent equal effort, while 10 (5.78%) assumed that
neither spent any effort. Moreover, when asked to select a cer-
tified vs non-certified app in a scenario that required the app
to process sensitive information, a majority of participants,
i.e., 163 (94.22%) chose the certified app, nobody chose the
non-certified app, 7 (4.05%) indicated that they would not
care about certification, while 3 (1.73%) chose not sure.

Finding 14 (F14) – Users overwhelmingly put their trust
in certification, assuming that (1) certified apps are more
secure (i.e., less prone to vulnerabilities), (2) their devel-
opers spend more effort on security, and (3) they can be
trusted to handle security/privacy sensitive information.

The rationale for placing this level of trust in certified apps
may vary. Several participants desire certified apps for the
assurance they offer, e.g., as P31 states, “I would prefer the
certified IoT apps simply because of the extra peace of mind.”
Others attest their preference for the third-party verification
and extra focus on security that is expected from the certifi-
cation process. For instance, P83 states that “Certification is
an endorsement by a third-party regulating org to assure that
the standards are up to compliance. A non-certified has no
objective party to endorse its security.”, while P22 states that

“A certified app shows that the developers of the app placed
at least a decent amount of effort on security, and that would
bias me toward that app’s security features and capabilities.”

4.2.3 All Stakeholders (except users) are Responsible
for Proper Enforcement

As shown in Figure 4, participants hold application develop-
ers, CLEFs, and standard organizations as somewhat equally
responsible for enforcing correct compliance standards.

CLEFs are most responsible (by a small margin): As the
CLEFs’ entire value proposition is in ensuring that prod-
ucts meet a standard, most participants (102 or 58.96%) hold
CLEFs directly responsible for enforcing the compliance stan-
dards correctly. As P23 succinctly states, “The certification

labs should also be on the hook because if they don’t enforce
their own certifications, what good are they.”

Developers are responsible too: Out of 173 participants, 95
(54.91%) participants considered application developers ex-
tremely responsible whereas only 4 (2.31%) participants think
developers are not responsible at all for enforcing correct com-
pliance standards. There are two common themes that make
developers responsible. The first and most common reason
for considering developers responsible is that they develop
the app and control it. As P95 states, “I’d view any security
issues with IoT devices to be primarily a result of the devel-
opers’ programming...” The second theme that emerges is
that developers should meet certain security standards to en-
sure the apps’ and users’ safety and security. That is, as P13
puts it: “The developer must take into account the compliance
standards...when designing the app and considering how data
is used... especially to prevent compromise...”

Standards organizations are responsible, although less
than CLEFs and developers: Participants believe that the
standard bodies should ensure that the compliance standards
are comprehensive enough, and that CLEFs and developers
are accountable. As P77 states, “If there are going to be cer-
tification authorities, then they need to be responsible and
accountable for the products that get their ‘seal of approval’”.

Users also stated that they would consider a certified app
secure only if they are able to trust the standards organization
itself, regardless of the actual app, i.e., as P85 states: “I would
trust an FDA-approved vaccine much more than one that
wasn’t”. This sentiment is also exhibited in the significant
trust that users place in the compliance infrastructure (F14).

Finding 15 (F15) – Users hold CLEFs, developers, and
standard organizations as almost equally responsible, and
are able to clearly define what role each party plays in
correctly enforcing security compliance standards.

4.2.4 Developers Are Mostly to Blame

In the survey, we defined liability as the attribution of blame
when things break down, i.e., when security failures occur. We
presented participants with two such scenarios inspired from
Section 2.2. In one scenario, we presented the case of sensi-
tive information leakage from an app (inspired from TUYA,
F2), and in another we discussed the attacker being able to
steal authentication tokens and hijack IoT devices (inspired
from MSMARTHOME, F3). A majority of the participants, i.e.,
90.17% on average, expressed that these scenarios were crit-
ical/high in severity, with only 1.45% on average, assessing
them as low/no severity. Similarly, i.e., 71.10% on average,
assessed the scenarios as somewhat or extremely likely, with
only 13.88% on average, assessing them as unlikely. Tables 11
and 12 in Appendix C provide the per-scenario results for

4936 33rd USENIX Security Symposium USENIX Association

90

59

38

2

61

72

65

2

14

27

49

24

6

9

14

42

2

6

7

103

0 25 50 75 100 125 150 175

The developer

The CLEF

The standard body

The user

Number of participants

St
ak

er
ho

ld
er

s

How much liable each stakeholder is for the information leakage
in scenario-1

Extremely liable Very liable Moderately liable Slightly liable Not liable at all

Figure 5: How liable is each stakeholder for information leakage?

116

82

56

3

37

54

65

5

13

25

34

20

5

6

10

42

2

6

8

103

0 25 50 75 100 125 150 175

The developer

The CLEF

The standard body

The user

Number of participants

St
ak

er
ho

ld
er

s

How much liable each stakeholder is in case users' devices are
compromised in scenario-2

Extremely liable Very liable Moderately liable Slightly liable Not liable at all

Figure 6: How liable is each stakeholder for compromise?

severity and likelihood, respectively.

Finding 16 (F16) – Users rate a set of vulnerabilities found
in our analysis to be both severe and likely.

When we asked participants about who they would hold li-
able for each scenario, participants overwhelmingly expressed
that developers were much more liable relative to CLEFs, stan-
dards organizations, or users, as seen in Figure 5 and Figure 6
for the two respective scenarios. P32 summarizes this senti-
ment as follows: “The developer is most responsible for the
safety and security of the user, and the certification lab is at
fault just as much because their certification should not have
dangerous cracks in the infrastructure that allow something
like this to happen. The standards body is liable as well by
not vetting the certification lab as well as they should. The
user is just a pawn and a victim in this scenario.”

Developers are most liable: Application developers are con-
sidered liable for handling all vulnerabilities as well as not
testing the apps before release, i.e., as P53 states, “...definitely
the ones liable for not finding the fault beforehand.”

CLEFs are liable because vulnerabilities imply derelic-
tion of duty: Participants hold CLEFs liable as they certified
a vulnerable app, i.e., as P74 states, “...it is the certification
labs job to make sure this does not happen in the first place!”.

Standard organizations are liable for lack of oversight:

Participants consider standards bodies liable, sometimes even
more so than developers, because they view vulnerabilities
as the result of weak standards or enforcement. As P69 puts
it, “the developer is liable for a lack of oversight into secure
data protocols. but the standards body and certification labs
are even more liable because they did not set nor enforce a
security standard that was high enough.”

Users are not liable: Participants consider users to be the
only stakeholder that can be assigned the least liability for
security breaches and vulnerabilities in certified products, as
users have no role in the compliance infrastructure, and may
lack the technical knowledge to play any.

Finding 17 (F17) – Users generally hold developers as
the most liable in the event of vulnerabilities and security
breaches in certified mobile-IoT apps, since they develop
the vulnerable code. CLEFs are considered the second
most liable as vulnerable-but-certified apps represent a
dereliction of duty, followed by standards bodies who are
blamed for weak standards or enforcement.

Finally, even after presenting scenarios where vulnerabili-
ties were found in certified apps, most participants expressed
their interest in certified apps over non-certified apps (see
Table 10, Appendix C), indicating that users would trust stake-
holders to responsibly uphold the standards, and echoing F14.

5 Discussion
We began this study with a simple question: does the tradi-
tional security certification model work for IoT, and as well
as consumers expect it to? Given the evidence and findings
from Section 2→4, the answer to this question is a resounding
no. That is, while consumers have very high expectations and
place a significant degree of trust in the certification process
(F14), we find that certified mobile-IoT apps are generally
vulnerable (F1, F4), with vulnerabilities that seriously impact
IoT security (F2, F3), and no better than non-certified apps
(F6) regardless of what consumers want to believe. While the
vulnerabilities map to precise criteria in IOXT, we find that
it is hard to establish (non) compliance despite vulnerabili-
ties given the broad criteria (F9), and the discretion offered
to both testers (F10) and developers (F11), indicating a clear
failure in compliance enforcement.

To summarize, while a majority of the surveyed users ex-
pect security compliance to work for IoT in the form of an
additional layer of security assurance, i.e., as P144 puts it, in
a “belt and suspenders scenario”, some hold a more dismal
belief that certifications are “just red tape” (P11), and don’t
provide any added value for security. Given our findings, the
skeptics seem to be winning this argument. To avoid a future
where IoT compliance enforcement is simply treated as a lia-
bility shield, we seek to initiate a timely conversation in the
security community, between researchers, practitioners, and
policymakers, on how to transition from the “just red tape”
status quo to a practical “belt and suspenders” future.

USENIX Association 33rd USENIX Security Symposium 4937

1. The Traditional Model is Here to Stay: Given our find-
ing, it might be tempting to conclude that as the traditional
model does not seem to work, we should move to a more di-
rect approach that involves hostile reviews of products by the
affected party itself (i.e., regulators, on behalf of consumers).
Indeed, such models have been tested before, e.g., the US
Government’s Trusted Computer Systems Evaluation Crite-
ria [60], colloquially known as the Orange Book. However,
the Orange Book’s centralized reviews required significant
manual effort, and took months to complete, which limited
their scalability and practicality [45], and gave way to the in-
direct compliance enforcement for commodity software, i.e.,
the traditional model we see today.

As compliance enforcement for millions of IoT products
is clearly a matter of scale, reverting to an orange book-style
model would be infeasible. That is, we need to delegate en-
forcement to CLEFs for scalability. Thus, instead of replacing
the traditional model, we should explore ways to reform it
through effective checks and balances.

2. Reforming the Traditional Model: One way to reform
the traditional model is through auditing certified products,
similar to the approach used in this paper. However, while
necessary to motivate change, auditing products is not a pre-
ventative approach, and may not bring long-term benefit. In-
stead, we must empower the affected party with tools that
enable it to radically alter the incentive structure ingrained
in the compliance infrastructure, by empirically validating
the claimed security posture of the pivotal participant in the
compliance enforcement loop: the CLEF.

We foresee a future where researchers develop tools that
evaluate the CLEFs’ effectiveness at detecting vulnerabilities,
by adapting recent techniques for evaluating vulnerability
detection tools [15–17, 22]. Such tools will help regulators
evaluate a CLEF ’s performance during the license-granting
process, thereby incentivizing improvement. Similarly, ven-
dors shopping for CLEFs will leverage the tools to obtain
objective measures of the CLEFs’ abilities, in contrast with
the subjective “reputation” available presently. Finally, practi-
tioners in the compliance industry will be able to empirically
evaluate and improve CLEFs, making them robust against
rogue vendors that try to evade checks (see F1).

3. Robust Vulnerability Detectors: As discussed in Sec-
tion 2, it is likely that most CLEFs use automated tools along
with manual analysis in order to analyze products at scale.
However, we find that automated static analysis tools are
unable to find a significant number of the critical vulnera-
bilities we discovered using reverse engineering (F5), which
highlights a key gap: the lack of tools suitable for the security-
critical task of compliance enforcement. For effective com-
pliance, we need tools that prioritize vulnerability discovery,
i.e., seek to avoid false negatives, over other criteria.

4. Holding Developers Accountable through Policy and
Analysis: Evading certification checks is not just a matter of

cheating CLEFs, but given the high degree of trust put by users
in certified apps and the certification process, it is effectively a
betrayal of public trust in the developer and their product. As
a result, mechanisms must be built into the certification model
to deter, prevent, and detect such behavior. Policymakers and
regulators have an important role to play here: compliance
regulations must clearly describe such behavior and the penal-
ties awarded for it in addition to those for non-compliance
only. Moreover, regular audits of random samples of products
by researchers, similar to the one performed in this paper,
will also help identify unwanted behavior. Given how users
mostly blame developers when compliance failures happen
(F17), such measures would receive consumer support.

5. Bringing the User in the Loop: A key limitation in the
existing model is that the user generally remains outside the
security certification loop, and often unaware of its very ex-
istence (F12). Given the trust users place in the compliance
infrastructure, informing users is critical. Several users re-
marked that while they were unaware of IoT compliance prior
to taking the survey, they were now intrigued and would try
to learn more about it. As P109 states, “Before this, I didn’t
even know that these things would be certified or have a stan-
dard. Now that I know, it makes sense to see what future
products meet the standard before I start using them.” If a
survey can pique user interest and cause participants to seek
out more information, we believe that dedicated consumer ed-
ucation programs (e.g., those recommended in NIST-CSWP-
02042022-2 [13]) can change this status quo, by dissuading
users from blindly trusting compliance, helping them make
informed assessments of certifications, and helping them chal-
lenge vendors/CLEFs upon observing inadequacies.

6 Threats to Validity
The value of this work is in obtaining early insights into vul-
nerabilities in certified IoT apps, and user perceptions of cer-
tification. Given this focus, the findings should be considered
in view of the following threats:

1. Generalizability: We focus on IOXT-certified mobile-IoT
apps, which form the only publicly available set at this time.
IoT apps certified by other CLEFs may certainly exist, even
if not publicly advertised, and our findings may not general-
ize to them (or mobile-IoT apps in general). However, our
methodology is sufficiently repeatable to be applied to more
certified apps, as and when they become available.

2. Exploitability: Although we confirmed vulnerabilities
statically (e.g., validating reachability, ignoring non-security
crypto-API misuse), we did not confirm the exploitability of
these vulnerabilities in practice. Further, our analysis only es-
timates the use case/impact, given the significant obfuscation.
Regardless, some of our vulnerability reports have received
vendor confirmation (see Sec. 2.5), and we believe that the
presence of vulnerabilities in certified mobile-IoT apps is of
significant concern, regardless of exploitability.

4938 33rd USENIX Security Symposium USENIX Association

3. Self-reported survey responses: Generally, survey re-
sponses may be biased due to self reporting factors, e.g., over-
and/or under-reporting, sample bias, and social desirability
bias. While we mitigated this by asking the participants to pro-
vide examples based on their experience, opinions on concrete
scenarios, and to elaborate their response through open-ended
questions, we acknowledge that these characteristics of our
survey responses form a threat to the validity of the findings.

4. Lack of demographic information: Although our survey
participants are from the USA, we cannot say that the find-
ings from the survey are generalizable to the population of the
USA or outside, as we did not collect several aspects of de-
mographics, such as gender, age and educational background.

7 Related Work
This paper is the first to analyze certified mobile-IoT apps,
and juxtapose the findings of the vulnerability analysis with
qualitative findings from a user study on compliance. Our
study is related to prior work in the following areas:

Security Analysis of Mobile-IoT Apps: In terms of the vul-
nerabilities targeted and techniques used, our work is close to
prior security evaluations of mobile-IoT apps [25, 36–38, 61].
A significant distinction is that prior studies simply demon-
strate developer mistakes or at most violations of app-store
policies [37, 42], we analyze certified apps, and hence, the
findings of our analysis demonstrate systemic failures involv-
ing CLEFs, developers, and standards bodies. Moreover, we
posit these failures in the context of user expectations and
perceptions, leading to key takeaways that motivate a change
in the compliance enforcement infrastructure.

Security Compliance Standards and Processes: Stevens et
al. recently performed qualitative analyses of the issues in
the controls established in digital compliance standards and
the challenges faced by organizations in practice [54, 55].
We deviate from this work in terms of the goal: we seek to
study what consumers perceive and expect from product com-
pliance certifications, whereas Stevens et al. focus more on
organizational compliance with digital security standards, as
well as on how organizations comply. That said, our general
approach towards the analysis of user expectations is inspired
by the methodology leveraged in this body of work, although
we leverage large-scale surveys of common users as an in-
strument of collecting data, in contrast to a more focused
approach of recruiting experts in prior work.

Building Trust via Certification: Prior work emphasizes
the role of third-party certification in building consumer trust
[48], indicating that consumers may spend more on certified
products [35]. Furthermore, a study conducted by Emami-
Naeini et al. with IoT consumers showed that consumers are
willing to pay more for IoT products with better security and
privacy practices [28], which complements our finding (F14)
regarding the trust consumers place in certified products. In
addition to prior work, our findings demonstrate a blind belief

in IoT security compliance (F12 – F14) and provide novel in-
sights into user perceptions regarding perceived responsibility
and liability (F15, F17).

Communicating Security Compliance/Certification:
Complementary to our work, prototype-based prior studies
have explored effective design factors, placement consid-
erations, and delivery mechanisms of security labels with
the goal of maximizing the informative and educational
value of security compliance/certification [27, 29, 39, 44].
For instance, Emami-Naeini et al. proposed privacy and
security labels for IoT devices that may affect consumers’
purchase decisions [27]. Moreover, Kelly et al. showed that
permissions and privacy information may positively influence
consumers’ decisions about purchasing apps [39]. While
our study demonstrates that users prefer certified products
over non-certified ones, we show that certified apps may be
over-privileged (F7) or vulnerable (F1 – F4), and users may
hold CLEFs, developers, and labs responsible for the lacklus-
ter enforcement of compliance standards (F15). Moreover,
several countries, such as Singapore, Germany, and Finland,
have introduced independently verifiable cybersecurity
certificates with cybersecurity labels [3], which the USA
is expected to introduce as well, as per EO 14028 [1, 30].
Given this background, our study demonstrates severe gaps
in compliance enforcement (F9 – F11), a prerequisite for
effective labels, and hence, complements prior work towards
informed, transparent, compliance.

Non-IoT Compliance Analysis of Mobile Apps: A recent
body of work, including but not limited to Cardpliance [46],
PolicyLint [18], and PoliCheck [19], analyzes code and text
artifacts against security/privacy regulations such as PCI
DSS [14], GDPR [51], and CPRA [41]. A key difference
between the products/mobile-IoT apps we target versus prior
work is that our targets explicitly claim to be compliant, i.e.,
claim to offer a higher degree of assurance, which users also
generally believe. Thus, the implications of analysis in the
two domains are vastly different, although they yield com-
plementary benefits for end-users: our analysis and findings
motivate reform in the compliance ecosystem, whereas prior
work motivates better tooling to enable secure apps.

8 Conclusion
This paper presents the first investigation into the initial arti-
facts from IoT compliance certification, and user expectations
and perceptions of it. It presents a vulnerability analysis of
11 certified mobile-IoT apps, with 5 popular standards, and
a user study with 173 participants, that together lead to 17
key findings. The findings demonstrate significant failures in
compliance enforcement in the form of certified apps with crit-
ical vulnerabilities, problems with the standards themselves,
as well as the lack of general user awareness of compliance,
all of which are contrasted by the overwhelming trust that
users place in compliance certifications and certified products.
The findings motivate an increased focus on empowering reg-

USENIX Association 33rd USENIX Security Symposium 4939

ulators and consumers to reform compliance enforcement
through objective checks and balances, starting with tech-
niques to evaluate the performance of CLEFs.

9 Acknowledgements

We would like to thank our shepherd and the anonymous re-
viewers for their constructive feedback on the paper. The au-
thors have been supported in part by the NSF-2237012 grant,
and a COVA CCI Dissertation Fellowship. Any opinions, find-
ings, and conclusions expressed herein are the authors’ and
do not reflect those of the sponsors.

References
[1] Certification Mark – U.S. Cybersecurity Labeling Pro-

gram for Smart Devices. https://www.fcc.gov/
cybersecurity-certification-mark. Last accessed on July
15, 2023.

[2] Cipher is susceptible to Padding Oracle. https://find-sec-bugs.
github.io/bugs.htm#PADDING_ORACLE. Last accessed on February
05, 2023.

[3] Cybersecurity Labelling Scheme (CLS). https://www.csa.gov.sg/our-
programmes/certification-and-labelling-schemes/cybersecurity-
labelling-scheme.

[4] Encrypted Images-IoT App SDK-Tuya Developer. https:
//developer.tuya.com/en/docs/app-development/
encryptimage?id=Ka6nxw2hetr2y. Last accessed on Febru-
ary 05, 2023.

[5] GSMA IoT Security Guidelines Endpoint Ecosystem
Version 2.2 29 February 2020. https://www.gsma.
com/iot/wp-content/uploads/2020/05/CLP.13-v2.
2-GSMA-IoT-Security-Guidelines-for-Endpoint-Ecosystems.
pdf. Last accessed on January 17, 2023.

[6] IoTAA Security Guideline V1.2 November 2017. https:
//www.iot.org.au/wp/wp-content/uploads/2016/12/
IoTAA-Security-Guideline-V1.2.pdf. Last accessed on
February 05, 2023.

[7] IoTSF IoT Security Assurance Framework
Release 3.0 Nov 2021. https://www.
iotsecurityfoundation.org/wp-content/uploads/2021/
11/IoTSF-IoT-Security-Assurance-Framework-Release-3.
0-Nov-2021-1.pdf. Last accessed on February 05, 2023.

[8] Mobile Application Security Assessment 1.4 January 2022.
https://github.com/appdefensealliance/ASA/tree/main/
MobileAppSecurityAssessment. Last accessed on February 05,
2023.

[9] NISTIR 8259A IoT Device Cybersecurity Capability Core Base-
line. https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.
8259A.pdf. Last accessed on January 31, 2023.

[10] OWASP MASVS V2: Data Storage and Privacy Require-
ments. https://mobile-security.gitbook.io/masvs/
security-requirements/0x07-v2-data_storage_and_
privacy_requirements. Last accessed on July 15, 2023.

[11] OWASP Mobile Application Security Verification Standard v1.4.2
January 2022. https://mas.owasp.org/MASVS/. Last accessed on
January 2, 2023.

[12] Prolific. https://www.prolific.co/. Last accessed on February
05, 2023.

[13] Recommended Criteria for Cybersecurity Labeling for Consumer
Internet of Things (IoT) Products. https://nvlpubs.nist.gov/
nistpubs/CSWP/NIST.CSWP.02042022-2.pdf. Last accessed on
July 15, 2023.

[14] The Payment Card Industry Data Security Standard. https://www.
pcisecuritystandards.org/.

[15] Amit Seal Ami, Nathan Cooper, Kaushal Kafle, Kevin Moran, Denys
Poshyvanyk, and Adwait Nadkarni. Why Crypto-detectors Fail: A
Systematic Evaluation of Cryptographic Misuse Detection Techniques.
In IEEE Symposium on Security and Privacy (S&P), April 2022.

[16] Amit Seal Ami, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and
Denys Poshyvanyk. Demo: Mutation-based Evaluation of Security-
focused Static Analysis Tools for Android. In Proceedings of the
43rd IEEE/ACM International Conference on Software Engineering
(ICSE’21), Formal Tool Demonstration Track, May 2021.

[17] Amit Seal Ami, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and
Denys Poshyvanyk. Systematic Mutation-based Evaluation of the
Soundness of Security-focused Android Static Analysis Techniques.
ACM Transactions on Privacy and Security (TOPS), 24(15), February
2021.

[18] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin
Whitaker, William Enck, Bradley Reaves, Kapil Singh, and Tao Xie.
PolicyLint: Investigating Internal Privacy Policy Contradictions on
Google Play. In Proceedings of the USENIX Security Symposium,
2019.

[19] Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William
Enck, Bradley Reaves, Kapil Singh, and Serge Egelman. Actions
Speak Louder than Words: Entity-Sensitive Privacy Policy and Data
Flow Analysis with PoliCheck. In Proceedings of the USENIX Security
Symposium, 2020.

[20] Anonymous. Online appendix for “Belt and suspenders” or “just red
tape”?: Investigating Early Outcomes and Perceptions of IoT Secu-
rity Compliance Enforcement. https://sites.google.com/view/
iotcompliance/home, 2023.

[21] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm Sigplan Notices,
49(6):259–269, 2014.

[22] Richard Bonett, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and
Denys Poshyvanyk. Discovering Flaws in Security-Focused Static
Analysis Tools for Android Using Systematic Mutation. In Proceedings
of the 27th USENIX Security Symposium (USENIX Security’18), pages
1263–1280, 2018.

[23] V. Braun and V. Clarke. Thematic Analysis: A Practical Guide. SAGE
Publications, 2021.

[24] California Legislature. Sb-327 information privacy: con-
nected devices. https://leginfo.legislature.ca.gov/faces/
billNavClient.xhtml?bill_id=201720180SB327, 2020.

[25] Efstratios Chatzoglou, Georgios Kambourakis, and Christos Smil-
iotopoulos. Let the cat out of the bag: Popular android iot apps under
security scrutiny. Sensors, 22(2):513, 2022.

[26] Anca E Cretu and Roderick J Brodie. The influence of brand im-
age and company reputation where manufacturers market to small
firms: A customer value perspective. Industrial marketing manage-
ment, 36(2):230–240, 2007.

[27] Pardis Emami-Naeini, Yuvraj Agarwal, Lorrie Faith Cranor, and Hanan
Hibshi. Ask the Experts: What Should Be on an IoT Privacy and
Security Label? In 2020 IEEE Symposium on Security and Privacy
(SP), pages 447–464, May 2020.

[28] Pardis Emami-Naeini, Janarth Dheenadhayalan, Yuvraj Agarwal, and
Lorrie Faith Cranor. Are consumers willing to pay for security and
privacy of iot devices?

4940 33rd USENIX Security Symposium USENIX Association

https://www.fcc.gov/cybersecurity-certification-mark
https://www.fcc.gov/cybersecurity-certification-mark
https://find-sec-bugs.github.io/bugs.htm#PADDING_ORACLE
https://find-sec-bugs.github.io/bugs.htm#PADDING_ORACLE
https://developer.tuya.com/en/docs/app-development/encryptimage?id=Ka6nxw2hetr2y
https://developer.tuya.com/en/docs/app-development/encryptimage?id=Ka6nxw2hetr2y
https://developer.tuya.com/en/docs/app-development/encryptimage?id=Ka6nxw2hetr2y
https://www.gsma.com/iot/wp-content/uploads/2020/05/CLP.13-v2.2-GSMA-IoT-Security-Guidelines-for-Endpoint-Ecosystems.pdf
https://www.gsma.com/iot/wp-content/uploads/2020/05/CLP.13-v2.2-GSMA-IoT-Security-Guidelines-for-Endpoint-Ecosystems.pdf
https://www.gsma.com/iot/wp-content/uploads/2020/05/CLP.13-v2.2-GSMA-IoT-Security-Guidelines-for-Endpoint-Ecosystems.pdf
https://www.gsma.com/iot/wp-content/uploads/2020/05/CLP.13-v2.2-GSMA-IoT-Security-Guidelines-for-Endpoint-Ecosystems.pdf
https://www.iot.org.au/wp/wp-content/uploads/2016/12/IoTAA-Security-Guideline-V1.2.pdf
https://www.iot.org.au/wp/wp-content/uploads/2016/12/IoTAA-Security-Guideline-V1.2.pdf
https://www.iot.org.au/wp/wp-content/uploads/2016/12/IoTAA-Security-Guideline-V1.2.pdf
https://www.iotsecurityfoundation.org/wp-content/uploads/2021/11/IoTSF-IoT-Security-Assurance-Framework-Release-3.0-Nov-2021-1.pdf
https://www.iotsecurityfoundation.org/wp-content/uploads/2021/11/IoTSF-IoT-Security-Assurance-Framework-Release-3.0-Nov-2021-1.pdf
https://www.iotsecurityfoundation.org/wp-content/uploads/2021/11/IoTSF-IoT-Security-Assurance-Framework-Release-3.0-Nov-2021-1.pdf
https://www.iotsecurityfoundation.org/wp-content/uploads/2021/11/IoTSF-IoT-Security-Assurance-Framework-Release-3.0-Nov-2021-1.pdf
https://github.com/appdefensealliance/ASA/tree/main/MobileAppSecurityAssessment
https://github.com/appdefensealliance/ASA/tree/main/MobileAppSecurityAssessment
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8259A.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8259A.pdf
https://mobile-security.gitbook.io/masvs/security-requirements/0x07-v2-data_storage_and_privacy_requirements
https://mobile-security.gitbook.io/masvs/security-requirements/0x07-v2-data_storage_and_privacy_requirements
https://mobile-security.gitbook.io/masvs/security-requirements/0x07-v2-data_storage_and_privacy_requirements
https://mas.owasp.org/MASVS/
https://www.prolific.co/
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.02042022-2.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.02042022-2.pdf
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://sites.google.com/view/iotcompliance/home
https://sites.google.com/view/iotcompliance/home
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720180SB327
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720180SB327

[29] Pardis Emami-Naeini, Janarth Dheenadhayalan, Yuvraj Agarwal, and
Lorrie Faith Cranor. An Informative Security and Privacy “Nutri-
tion” Label for Internet of Things Devices. IEEE Security & Privacy,
20(2):31–39, March 2022.

[30] The White House. The President’s Executive Order
(EO) 14028 on Improving the Nation’s Cybersecurity.
https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity/, May 2021.

[31] International Standards Organization. ISO/IEC 17025 TESTING
AND CALIBRATION LABORATORIES. https://www.iso.org/
ISO-IEC-17025-testing-and-calibration-laboratories.
html, 2021.

[32] ioXt Alliance Members. ioxt: The global standard for iot security.
https://www.ioxtalliance.org/, 2021.

[33] J. Developers,. jadx - Dex to Java decompiler. https://github.com/
skylot/jadx/, 2022.

[34] Xin Jin, Sunil Manandhar, Kaushal Kafle, Zhiqiang Lin, and Adwait
Nadkarni. Understanding iot security from a market-scale perspective.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 1615–1629, 2022.

[35] Shane D. Johnson, John M. Blythe, Matthew Manning, and Gabriel
T. W. Wong. The impact of IoT security labelling on consumer product
choice and willingness to pay. PLOS ONE, 15(1):e0227800, January
2020.

[36] Davino Mauro Junior, Luis Melo, Hao Lu, Marcelo d’Amorim, and
Atul Prakash. A study of vulnerability analysis of popular smart devices
through their companion apps. In 2019 IEEE Security and Privacy
Workshops (SPW), pages 181–186. IEEE, 2019.

[37] Kaushal Kafle, Kevin Moran, Sunil Manandhar, Adwait Nadkarni, and
Denys Poshyvanyk. A Study of Data Store-based Home Automation.
In Proceedings of the 9th ACM Conference on Data and Application
Security and Privacy (CODASPY), March 2019.

[38] Kaushal Kafle, Kevin Moran, Sunil Manandhar, Adwait Nadkarni, and
Denys Poshyvanyk. Security in Centralized Data Store-based Home
Automation Platforms: A Systematic Analysis of Nest and Hue. ACM
Transactions on Cyber-Physical Systems (TCPS), 5(1), December 2020.

[39] Patrick Gage Kelley, Lorrie Faith Cranor, and Norman Sadeh. Privacy
as part of the app decision-making process. In Proceedings of the
SIGCHI conference on human factors in computing systems, pages
3393–3402, 2013.

[40] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini,
Eric Bodden, Florian Göpfert, Felix Günther, Christian Weinert, Daniel
Demmler, and Ram Kamath. CogniCrypt: Supporting Developers in
Using Cryptography. In Proceedings of the 32Nd IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2017,
pages 931–936, Piscataway, NJ, USA, 2017. IEEE Press.

[41] California State Legislature. California Privacy Rights Act of 2020
(“CPRA”). https://leginfo.legislature.ca.gov/faces/
codes_displayText.xhtml?division=3.&part=4.&lawCode=
CIV&title=1.81.5, 2020.

[42] Christopher Lentzsch, Sheel Jayesh Shah, Benjamin Andow, Martin
Degeling, Anupam Das, and William Enck. Hey alexa, is this skill
safe?: Taking a closer look at the alexa skill ecosystem. Network and
Distributed Systems Security (NDSS) Symposium2021, 2021.

[43] Josh Lerner and Jean Tirole. A model of forum shopping. American
economic review, 96(4):1091–1113, 2006.

[44] Tianshi Li, Kayla Reiman, Yuvraj Agarwal, Lorrie Faith Cranor, and
Jason I. Hong. Understanding Challenges for Developers to Create
Accurate Privacy Nutrition Labels. In CHI Conference on Human
Factors in Computing Systems, pages 1–24, New Orleans LA USA,
April 2022. ACM.

[45] Steven B. Lipner. The birth and death of the orange book. IEEE Annals
of the History of Computing, 37(2):19–31, 2015.

[46] Samin Yaseer Mahmud, Akhil Acharya, Benjamin Andow, William
Enck, and Bradley Reaves. Cardpliance: Pci dss compliance of an-
droid applications. In Proceedings of the 29th USENIX Conference on
Security Symposium, pages 1517–1533, 2020.

[47] Matt Warman MP. New cyber security laws to protect smart devices
amid pandemic sales surge. https://tinyurl.com/ae28rcp, 2021.

[48] Oliver Michler, Reinhold Decker, and Christian Stummer. To trust or not
to trust smart consumer products: A literature review of trust-building
factors. Management Review Quarterly, 70(3):391–420, August 2020.

[49] MobSF. Mobile Security Framework (MobSF). https://github.
com/MobSF/Mobile-Security-Framework-MobSF, 2022.

[50] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie.
{WHYPER}: Towards automating risk assessment of mobile applica-
tions. In 22nd USENIX Security Symposium (USENIX Security 13),
pages 527–542, 2013.

[51] European Parliament and Council of the European Union. General
Data Protection Regulation (EU) 2016/679 (“GDPR”), 2016.

[52] Prolific. Approvals, rejections and returns; Prolific. https:
//researcher-help.prolific.co/hc/en-gb/articles/
360009092394-Approvals-rejections-returns, 2023.

[53] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian,
Miles Frantz, Murat Kantarcioglu, and Danfeng (Daphne) Yao. Cryp-
toGuard: High Precision Detection of Cryptographic Vulnerabilities in
Massive-sized Java Projects. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security - CCS ’19,
pages 2455–2472, London, United Kingdom, 2019. ACM Press.

[54] Rock Stevens, Josiah Dykstra, Wendy Knox Everette, James Chapman,
Garrett Bladow, Alexander Farmer, Kevin Halliday, and Michelle L
Mazurek. Compliance Cautions: Investigating Security Issues Associ-
ated with US Digital-Security Standards. In In the Proceedings of the
Network and Distributed Systems Symposium (NDSS), 2020.

[55] Rock Stevens, Faris Bugra Kokulu, Adam Doupé, and Michelle L
Mazurek. Above and beyond: Organizational efforts to complement
us digital security compliance mandates. In In the Proceedings of the
Network and Distributed Systems Symposium (NDSS), 2022.

[56] The White House. Executive order on improving the
nation’s cybersecurity. https://www.whitehouse.gov/
briefing-room/presidential-actions/2021/05/12/
executive-order-on-improving-the-nations-cybersecurity/,
May 2021.

[57] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur,
Xianzheng Guo, and Patrick Tague. {SmartAuth}:{User-Centered}
authorization for the internet of things. In 26th USENIX Security
Symposium (USENIX Security 17), pages 361–378, 2017.

[58] United States Congress. Internet of things cybersecurity improvement
act of 2020. https://www.congress.gov/116/plaws/publ207/
PLAW-116publ207.pdf, 2020.

[59] United States Senate. S.965 - cyber shield act of 2021. https://www.
congress.gov/bill/117th-congress/senate-bill/965, 2021.

[60] U.S. Department of Defense. Department of Defense Trusted
Computer System Evaluation Criteria. https://csrc.nist.
gov/csrc/media/publications/conference-paper/1998/
10/08/proceedings-of-the-21st-nissc-1998/documents/
early-cs-papers/dod85.pdf, 1985. Accessed on: June 2021.

[61] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and XiaoFeng Wang.
Looking from the mirror: Evaluating iot device security through mo-
bile companion apps. In Proceedings of the 28th USENIX Security
Symposium (USENIX), pages 1151–1167, 2019.

USENIX Association 33rd USENIX Security Symposium 4941

https://www.iso.org/ISO-IEC-17025-testing-and-calibration-laboratories.html
https://www.iso.org/ISO-IEC-17025-testing-and-calibration-laboratories.html
https://www.iso.org/ISO-IEC-17025-testing-and-calibration-laboratories.html
https://www.ioxtalliance.org/
https://github.com/skylot/jadx/
https://github.com/skylot/jadx/
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://tinyurl.com/ae28rcp
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://researcher-help.prolific.co/hc/en-gb/articles/360009092394-Approvals-rejections-returns
https://researcher-help.prolific.co/hc/en-gb/articles/360009092394-Approvals-rejections-returns
https://researcher-help.prolific.co/hc/en-gb/articles/360009092394-Approvals-rejections-returns
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.congress.gov/116/plaws/publ207/PLAW-116publ207.pdf
https://www.congress.gov/116/plaws/publ207/PLAW-116publ207.pdf
https://www.congress.gov/bill/117th-congress/senate-bill/965
https://www.congress.gov/bill/117th-congress/senate-bill/965
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/dod85.pdf
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/dod85.pdf
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/dod85.pdf
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/dod85.pdf

Table 3: An overview of certified mobile-IoT apps that are an-
alyzed in this paper.

No. App Certified version Latest version

1. Tuya 3.28.5 4.4.2

2. NetHome Plus V4.3.710 V5.5.0922

3. Eureka 2.4.0 3.2.2

4. Midea Air V5.1.0.625 V5.5.0922

5. MSmartHome 2.16.1 2.28.1

6. TSmartLife 1.11.1 1.15.0

7. GreenMAX DRC v1.62 01.75.0025

8. Wyze 2.25.22 2.34.75

9. Dals Connect 1.2.1 1.3.0

10. Google Home 2.40.1.10 2.59.33.2

11. Hubspace 1.1.25 1.7.47

A Appendix - App Analysis

A.1 Preliminary search for mobile-IoT apps

We first analyzed the descriptions/Play Store listings and
developer websites of the top 100 mobile-IoT apps from a
dataset recently developed by Jin et al. [34], to identify any
mentions of any of the CLEFs we found, or general men-
tions of certification, allocating 10 minutes per application.
This analysis did not identify any instances of certification
mentioned in user-facing app metadata. We also manually
examined the websites of CLEFs to search for lists of apps
they may have certified. Upon the conclusion of this search,
we found two published lists of certified apps: (1) the list of
certified mobile-IoT apps published by IOXT [32], a popular
CLEF as well as an alliance that administers the IOXT stan-
dard, and (2) the list of general certified Android apps from
Google’s MASA [8]. As most MASA apps were generic
Android apps (i.e., not mobile-IoT), with the exception of the
NEST app, we decided to focus our investigation of RQ1 on
the list of the mobile-IoT apps certified by IOXT.

A.2 Sampling of non-certified apps

We sampled the set of non-certified apps using both Google
Play’s search engine as well as a dataset of 37k mobile-IoT
apps developed by Jin et al. [34]. To elaborate, to identify
a corresponding non-certified app for each certified app, we
searched Google Play for the certified app, and short-listed
apps that were classified by Google Play as “similar” to the
certified app, i.e., of comparable functionality. Further, we
eliminated apps that were not a part of the 37k mobile-IoT
dataset (as they were not mobile-IoT). As several non-certified
apps can be similar to a certified app, we selected the first
app with the highest install count. The set of non-certified
mobile-IoT apps identified using this approach is shown in
Table 4 in Appendix A.

Table 4: An overview of non-certified mobile-IoT apps and
their vulnerabilities.

App Version Vulnerabilities found

SmartThings 1.7.94.21 Using AES with CBC for encryption
Using only AES for encryption

Amazon Alexa 2.2.491118.0 Trusting all certificates
Using SSL as context

LG Thinq 4.1.32020 Using AES with CBC for encryption
Using AES with ECB for encryption
Trusting all certificates
Allowing all hostnames
Using TLSv1 as context
No clearPassword call after using
PBEKeySpec

iRobot Home 7.2.0 Using AES with CBC for encryption
Using AES with ECB for encryption

Blink Home Moni-
tor

6.21.0 None

Geeni 2.2.3 Using AES with CBC for encryption
Using MD5 hashing

Yi Home 6.0.3 Using SSL as context
Allowing all hostnames
Trusting all certificates
Using AES with CBC for encryption
Using AES with ECB for encryption
Using MD5 hashing

HappyLighting 1.6.21 None

mydlink 2.9.0 None

Gosund 5.1.83 Using AES with ECB for encryption

Amazon Key 2.0.3144.1 Using AES with CBC for encryption

Table 5: Fraction of vulnerable apps per misuse.

No. Vulnerabilities certified apps non-certified
apps

1. Using only AES for encryption 1/11 (0.09) 1/11 (0.09)

2. AES with ECB for encryption 4/11 (0.36) 4/11 (0.36)

3. AES with CBC for encryption 6/11 (0.55) 6/11 (0.55)

4 . No clearpassword() call after
using PBEKeySpec

1/11 (0.09) 1/11 (0.09)

5. Using MD5 hashing 7/11 (0.64) 2/11 (0.18)

6. Using SHA1 hashing 6/11 (0.55) 0

7. Trusting all certificates 3/11 (0.27) 3/11 (0.27)

8. Allowing all hostnames 3/11 (0.27) 2/11 (0.18)

9. Using SSL as context 2/11 (0.18) 2/11 (0.18)

10. Using TLSv1 as context 2/11 (0.18) 1/11 (0.09)

Total Vulnerabilities 35 22

A.3 Vulnerability Descriptions

B Appendix - Compliance Analysis

C Appendix - User Perceptions and Expecta-
tions

We piloted our survey with 8 graduate students and updated
it based on their feedback.

4942 33rd USENIX Security Symposium USENIX Association

Table 6: An overview of the permission analysis results.

No. App Requested permissions that the app does
not explicitly inform users

1 TUYA ACCESS BACKGROUND LOCATION

2 NETHOME PLUS ACCESS BACKGROUND LOCATION

3 EUREKA READ EXTERNAL STORAGE, WRITE
EXTERNAL STORAGE

4 MIDEA AIR READ EXTERNAL STORAGE, WRITE
EXTERNAL STORAGE

5 MSMARTHOME CALL PHONE, READ CONTACTS, GET
ACCOUNTS

6 TSMARTLIFE CALL PHONE, GET ACCOUNTS

7 GREENMAX DRC READ EXTERNAL STORAGE, WRITE
EXTERNAL STORAGE

8 WYZE READ SMS, READ CALL LOGS, AN-
SWER PHONE CALLS, RECEIVE SMS,
READ CONTACTS, ACCESS BACK-
GROUND LOCATION

9 DALS CONNECT READ EXTERNAL STORAGE, WRITE
EXTERNAL STORAGE

10 GOOGLE HOME ACCESS BACKGROUND LOCATION,
GET ACCOUNTS

11 HUBSPACE CAMERA

s

Table 7: A short description of each type of misuse cases con-
sidered in the vulnerability analysis of mobile-IoT apps.

No. Misuse case Description

Cryptographic encryption misuse

1. Using only AES for
encryption

Using AES for encryption defaults to ECB mode
in Java, which is vulnerable to dictionary attack
on encrypted messages

2. Using AES with
ECB for encryption

Using AES with ECB mode is vulnerable to dic-
tionary attack on encrypted messages

3. Using AES with
CBC for encryption

Using AES with CBC for encryption is suscepti-
ble to padding oracle attacks

4 . No clearpass-
word() call after
PBEKeySpec

Without calling clearPassword, PBEKeySpec
keeps an internal copy of the password in the
memory, which is unsafe

Cryptographic hash misuse

5. Using MD5 hashing MD5 is considered a weak hashing algorithm
that is susceptible to rainbow table attack

6. Using SHA1 hash-
ing

SHA-1 is considered weak hashing algorithm
that is susceptible to rainbow table attack

Client-server secrecy misuse

7. Trusting all certifi-
cates

Without checking the chain of trust, any certifi-
cate is accepted, making man in the middle at-
tack possible

8. Allowing all host-
names

Without checking hostname, any signed certifi-
cate is accepted, making man in the middle at-
tack possible

9. Using SSL as con-
text

Any version other than TLS <1.2 is less secure
and can be used by a malicious actor for a down-
grade attack

10. Using TLSv1 as con-
text

Any version other than TLS <1.2 is less secure
and can be used by a malicious actor for a down-
grade attack

Table 8: Participants’ familiarity with compliance standards

No. Choice Answer

Familiarity with Software/General Security Compliance Standards

1. Open Web Application Security Project (OWASP) Top 10 6

2. NIST Cryptographic Standards and Guidelines 9

3. Mobile Application Security Assessment (MASA) by Google 22

4 . Mobile Application Security Verification Standard (MASVS)
by OWASP

5

5 . None 140

Familiarity with IoT Specific Security Compliance Standards

6. ioXt IoT Security Standard 11

7. GSMA IoT Security Guidelines and Assessment 6

8. IoTSF IoT Security Assurance Framework 3

9. IoTAA Internet of Things Security Guideline 5

10. JPCERT - IoT Security Checklist 3

11. None 154

Table 9: Mobile-IoT apps that participants have used or are
using (from our given list)

No. App Number of participants

1. Google Home 86

2. Wyze 25

3. MSmartHome 6

4. Eureka 5

5. Tuya 4

6. NetHome Plus 2

7. TSmartLife 2

8. Midea Air 1

Table 10: Participants’ interest in mobile-IoT apps that they
consider to be better at protecting their data and devices

Choice Number of participants

Certified mobile-IoT apps 134

Non-certified mobile-IoT apps 1

Both of them 9

Neither of them 29

Total 173

Table 11: The severity level of two scenarios based on partici-
pants’ rating.

Severity Level S1: information leakage S2: stealing authentication

Critical 87 128

High 62 35

Medium 20 9

Low 2 1

Not severe at all 2 0

Total 173 173

USENIX Association 33rd USENIX Security Symposium 4943

Table 12: The likelihood of two scenarios based on partici-
pants’ rating.

Likelihood S1: information leakage S2: stealing authentication

Extremely likely 43 38

Somewhat likely 86 79

Neither likely nor
unlikely

23 29

Somewhat unlikely 19 24

Extremely unlikely 2 3

Total 173 173

4944 33rd USENIX Security Symposium USENIX Association

	Introduction
	Mobile-IoT App Analysis (RQ1)
	Methodology
	Results: Crypto-API Misuse Analysis
	Results: Permission Analysis
	Results: Sensitive Data Leak Analysis
	Vulnerability Disclosure

	Security Compliance Analysis (RQ2)
	Methodology
	Results: Compliance Analysis

	User Perceptions and Expectations (RQ3)
	Methodology
	Survey Design
	Participant Recruitment
	Coding and Analysis
	Ethical Considerations

	Results: User Perceptions
	Lack of Exposure to Compliance Standards
	Trust in Certification over Brand Reputation
	All Stakeholders (except users) are Responsible for Proper Enforcement
	Developers Are Mostly to Blame

	Discussion
	Threats to Validity
	Related Work
	Conclusion
	Acknowledgements
	Appendix - App Analysis
	Preliminary search for mobile-IoT apps
	Sampling of non-certified apps
	Vulnerability Descriptions

	Appendix - Compliance Analysis
	Appendix - User Perceptions and Expectations

