
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

INSIGHT: Attacking Industry-Adopted Learning
Resilient Logic Locking Techniques Using

Explainable Graph Neural Network
Lakshmi Likhitha Mankali, New York University; Ozgur Sinanoglu,

New York University Abu Dhabi; Satwik Patnaik, University of Delaware
https://www.usenix.org/conference/usenixsecurity24/presentation/mankali

INSIGHT: Attacking Industry-Adopted Learning Resilient Logic Locking

Techniques Using Explainable Graph Neural Network

Lakshmi Likhitha Mankali
New York University

lm4344@nyu.edu

Ozgur Sinanoglu
New York University Abu Dhabi

os22@nyu.edu

Satwik Patnaik
University of Delaware

satwik@udel.edu

Abstract

Logic locking is a hardware-based solution that protects

against hardware intellectual property (IP) piracy. With the

advent of powerful machine learning (ML)-based attacks, in

the last 5 years, researchers have developed several learning

resilient locking techniques claiming superior security guar-

antees. However, these security guarantees are the result of

evaluation against existing ML-based attacks having criti-

cal limitations, including (i) black-box operation, i.e., does

not provide any explanations, (ii) are not practical, i.e., non-

consideration of approaches followed by the semiconductor

industry, and (iii) are not broadly applicable, i.e., evaluate the

security of a specific logic locking technique.

In this work, we question the security provided by learn-

ing resilient locking techniques by developing an attack

(INSIGHT) using an explainable graph neural network (GNN).

INSIGHT recovers the secret key without requiring scan-

access, i.e., in an oracle-less setting for 7 unbroken learning

resilient locking techniques, including 2 industry-adopted

logic locking techniques. INSIGHT achieves an average key-

prediction accuracy (KPA) of 2.87×, 1.75×, and 1.67× higher

than existing ML-based attacks. We demonstrate the efficacy

of INSIGHT by evaluating locked designs ranging from widely

used academic suites (ISCAS-85, ITC-99) to larger designs,

such as MIPS, Google IBEX, and mor1kx processors. We per-

form 2 practical case studies: (i) recovering secret keys of

locking techniques used in a widely used commercial EDA

tool (Synopsys TestMAX) and (ii) showcasing the ramifica-

tions of leaking the secret key for an image processing appli-

cation. We will open-source our artifacts to foster research on

developing learning resilient locking techniques.

1 Introduction

1.1 Security Threats in IC Supply Chain

Integrated circuits (ICs) serve as the workhorse of all elec-

tronic systems, from smartphones to artificial intelligence

systems. The demand for high-performing systems has cat-

alyzed technological scaling, making transistors miniaturized.

As a result, manufacturing costs for ICs have increased sub-

stantially. For instance, the manufacturing costs for TSMC (a

leading contract IC manufacturer) have surged 10×, jumping

from four billion dollars (22nm node) [1] to 40 billion dollars

(2nm node) [2]. Escalating manufacturing costs have forced

leading chip (semiconductor) design companies (e.g., Apple,

NVIDIA) to transition to a globalized IC supply chain model.

While chips are designed in-house, the fabrication, testing,

and packaging of ICs are outsourced to off-shore and geo-

graphically disparate foundries, which could be (i) potentially

untrustworthy and (ii) prone to geopolitical conflicts [3].

A U.S. government report revealed that the U.S. relies

heavily on East Asia, which handles 75% of the world’s IC

production [4]. Meanwhile, the U.S. only manufactures 10%

of the ICs, indicating a significant security threat. Several

security concerns emanate due to the globalized landscape of

manufacturing chips, such as hardware intellectual property

(IP) piracy [5–10], reverse engineering [11, 12], IC counter-

feiting [13,14], and insertion of hardware Trojans [15–17]. In

this work, we focus on the problem of hardware IP piracy.

1.2 Hardware IP Piracy

Hardware IP piracy poses a financial burden for IC design

companies, causing losses of billions of dollars. A U.S. De-

partment of Justice report indicates that one IC design com-

pany lost around $8.75 billion due to IP theft [18]. Further-

more, IP theft by nation-state adversaries has significant rami-

fications on national security. For example, in 2009, attackers

gained unauthorized access to sensitive information on the

F-35 fighter jet, compromising its advanced capabilities and

highlighting the risks of hardware IP piracy [19].

Researchers have proposed countermeasures against hard-

ware IP piracy—three prominent examples are logic lock-

ing [20], IC camouflaging [11], and split manufacturing [21].

Logic locking protects the hardware IP from all the untrust-

worthy entities in the IC supply chain [22], i.e., foundry, test-

USENIX Association 33rd USENIX Security Symposium 91

= 1

(a)

!!= 0

!"

!!= 0

!" = 1
(b)

Original design

Figure 1: (a) Logic locking and (b) TRLL-locked design [24].

ing, and end-user, unlike IC camouflaging and split manufac-

turing. Logic locking has attracted attention from academia,

government, and commercial entities. For instance, the De-

fense Advanced Research Projects Agency (DARPA) is in-

vesting in several initiatives [23] to thwart hardware IP piracy.

1.3 Logic Locking for Hardware IP Protection

Logic locking modifies the original design by inserting ad-

ditional logic, i.e., key-gates controlled by a secret key (Fig-

ure 1(a)). The secret key is stored in a tamper-proof memory

and programmed by a trusted facility (e.g., an IC design house)

after the fabrication and testing of ICs. Inserting key-gates

results in additional inputs, i.e., key-inputs. The locked design

functions correctly after applying the correct key, while an

incorrect key produces corrupted outputs. Logic locking is

analogous to a password protection mechanism protecting

the hardware IP using a password, i.e., a secret key.

DARPA is proactively funding the research and develop-

ment of secure logic locking techniques through programs

such as the Automatic Implementation of Secure Silicon

(AISS) [23], Structured Array Hardware for Automatically

Realized Applications (SAHARA) [25], and Efficient Cross-

Layered IP Protection Scheme (ECLIPSE) [26]. Besides, lead-

ing electronic design automation companies such as Synopsys

and Mentor Graphics have integrated logic locking in their

tools, i.e., TestMAX [27] and TrustChain platform [28].

Although there have been 300+ papers in logic lock-

ing [22,29], over the last 5 years, researchers have focused on

developing locking techniques resilient to machine learning

(ML)-based attacks, which is also the scope of our work.

1.4 ML-based Attacks on Logic Locking

ML-based attacks identify and exploit the structural and func-

tional hints in the hardware implementation of locked designs

to recover the secret key [30–34]. These attacks use different

approaches, such as unsupervised learning [32], graph neural

networks (GNNs) [31, 33], and random forest [30].

Limitations of Existing Attacks. Existing ML-based attacks:

(i) operate as a black-box, i.e., do not provide any explana-

tions regarding the failure of attacks, (ii) do not consider

industry-adopted locking techniques, and (iii) are not broadly

applicable, i.e., evaluate the security (predict the secret key)

of a given locking technique and do not apply to different

locking techniques. These limitations also compromise the

evaluation methodology and heuristics to develop and bench-

mark learning resilient locking techniques. In our work, we

question the security of learning resilient locking techniques

by overcoming the aforementioned limitations.

1.5 Our Goals and Contributions

We assume the role of a practical attacker and aim to recover

the secret key from several unbroken and industrially adopted

locking techniques. These techniques involve various algo-

rithms, such as (i) XOR/XNOR-based locking [24,35], (ii) ad-

versarial learning [36], (iii) multiplexer (MUX)-based lock-

ing [37], and (iv) adversarial sample generation [38]. Hence,

there is a need to develop an attack that is broadly applica-

ble and recovers the secret key by evaluating the hardware

implementation of learning resilient locking techniques.

However, numerous obstacles exist to developing an attack

that has broad applicability. First, as an attacker, we only

have access to the underlying locked design with Boolean

logic gates and wires; it is computationally challenging to

examine each substructure in the locked design and ascertain

the role played by the substructure in recovering the secret

key. Second, the locking techniques considered in this work

follow different algorithms to thwart learning-based attacks;

developing a broadly applicable attack encompassing several

techniques is challenging. Finally, it is challenging to obtain

suitable/relevant explanations and use them to enhance the

efficacy of the attack in recovering the secret key.

We address the abovementioned obstacles and develop a

practical attack, INSIGHT, using explainable ML. Researchers

have used explainable ML for malware detection [39–41], ML

security [42], and network security [43], and explainability

has provided insights into the decision-making process of

ML models, making their outputs understandable to humans.

Furthermore, GNNs are suitable for Boolean logic designs

since circuits are best represented as graphs [44, 45]. There-

fore, we utilize GNNs for our work and improve our attack

significantly by using explainable GNNs (or explainers).

However, utilizing explainers to develop an attack is not

straightforward, and several challenges exist in developing a

practical attack: 1 selecting a suitable explainer, i.e., choos-

ing an appropriate explainer for recovering the secret key of

locked designs, 2 identifying vulnerabilities, i.e., finding

exploitable hints (structural/functional), 3 attacking practi-

cal designs, i.e., evaluating the security of logic-synthesized

designs, 4 tackling unique graph representations, i.e., re-

covering secret from non-XOR/XNOR/MUX key-gates, and

5 insufficient training datasets, i.e., attacking locked designs

having limited (or no) training samples.

We overcome challenge 1 of selecting a suitable explainer

by evaluating state-of-the-art explainers (§4.3). We overcome

challenge 2 of identifying structural vulnerabilities (hints) in

locked designs by analyzing GNN explanations and modify-

ing our problem modeling (§4.4). For challenge 3 of attack-

0

0

0

0

0
0

0

0

92 33rd USENIX Security Symposium USENIX Association

ing practical locked designs, we use the explanations from the

explainer and improve the architecture of the GNN by incor-

porating attention (§4.5). To enable the attack for 4 unique

graph representations, i.e., different key-gates, we perform

local and global graph transformations and modify the attack

pipeline to account for other key-gates (§4.5). Finally, we per-

form data augmentation and follow semi-supervised learning

to attack locked designs with 5 insufficient training datasets

(§4.6). Our primary contributions are as follows.

• We develop an explainability-guided GNN-based attack

(INSIGHT) that recovers secret keys from the hardware im-

plementation of 7 unbroken locking techniques. To the best

of our knowledge, our work is the first to use explainable

GNN to develop a successful attack in semiconductor sup-

ply chain security (§4).

• We showcase the efficacy and applicability of INSIGHT on

7 unbroken locking techniques. These techniques are pub-

lished at premier EDA and security venues and are yet un-

broken. In fact, 2 of the locking techniques are integrated

into Synopsys TestMAX, a widely used EDA tool in

the semiconductor industry. INSIGHT achieves an improved

accuracy of 1.75×, 2.87×, and 1.67× compared to existing

open-source attacks OMLA, SCOPE, and MuxLink (§5).

• We experiment with designs from the widely used ISCAS-

85, ITC-99, and EPFL academic suites to open-source de-

signs such as the Stanford MIPS processor [46] (≈23k

gates), Google IBEX processor [47] (≈18k gates), DARPA

Common Evaluation Platform GPS [48] (≈193k gates), and

mor1kx processor [49] (≈158k gates). We experiment with

different key-sizes and synthesis settings, demonstrating

scalability and broad applicability (§5).

• We perform 2 practical case studies. We showcase the

efficacy of INSIGHT on designs locked using Synopsys

TestMAX [50] (§5.5) and illustrate the ramifications of se-

cret key leakage for an image processing application (§5.6).

• We mention the findings provided by INSIGHT (§5.4) and

discuss potential countermeasures that IC designers can

utilize to strengthen the locking techniques (§6.3).

2 Background and Preliminaries

We initially describe machine learning (ML)-attack resilient

logic locking techniques (§2.1). Next, we discuss existing

ML-based attacks on logic locking (§2.2) and their limita-

tions (§2.3). Finally, we briefly discuss graph neural networks

(GNNs), explainable GNNs, and key definitions (§2.4).

2.1 ML-attack Resilient Logic Locking

Researchers proposed various locking techniques in response

to ML-based attacks (§1.4). These techniques: (i) eliminate

the correlation between key-value and key-gate, (ii) do not

depend on logic synthesis-based transformations, and (iii) re-

place inverters in the design with key-gates (XOR/XNOR/-

MUX). For our work, we chose 7 unbroken locking tech-

niques, including 2 industry-adopted techniques.

UNSAIL [38] inserts key-gates to mitigate ML-based at-

tacks that exploit hints from the design structure to resolve

structural transformations caused by logic synthesis [30].

TRLL [24] inserts XOR/XNOR-based key-gates randomly,

ensuring no correlation between the type of key-gate and

the key-bit (Figure 1(b)). TRLL+ [35] improves TRLL for

designs with limited inverters and minimizes the number of

correct keys. TroMUX [37] randomly inserts MUX key-gates

to thwart ML-based attacks [32, 33]. RGLock [51] replaces

XOR/XNOR gates with modified XOR/XNOR gates. AL-

MOST [36] uses adversarial learning, and SimLL [52] inserts

MUX key-gates between logic gates, showcasing functional

similarity to thwart ML-based attacks.

Apart from being unbroken, the above-mentioned lock-

ing techniques claim at least one of the following proper-

ties: (i) <=50% key-prediction accuracy (equivalent to ran-

dom guess) against ML-based attacks, (ii) do not depend on

logic synthesis-based transformations to improve security,

and (iii) do not reveal the secret key through the presence of

structural and functional hints.

Researchers evaluate the security of the aforementioned

locking techniques using key-prediction accuracy (KPA).

KPA is defined as the percentage of correctly recovered key-

bits, i.e., KPA = |Kc|/|K| ∗ 100, where |Kc| is the number

of correct key-bits and |K| is the key-size. We use the KPA

metric to evaluate the efficacy of INSIGHT (§5.2 and §5.3).

2.2 Existing ML Attacks on Logic Locking

SAIL [30] is an ML-based attack on X(N)OR-based lock-

ing. It converts the locked design to a vector format consist-

ing of the structural information (connectivity between logic

gates) and gate-types of the logic gates around the key-gate.

SAIL uses a neural network to predict if the key-gates have

undergone changes due to logic synthesis and restores any

changes that might have occurred. Finally, SAIL predicts the

secret key-value upon reverting the post-synthesis modifica-

tion. OMLA [31] leverages GNN-based subgraph classifica-

tion to recover the secret key-value in X(N)OR-based locking.

It converts the locked design to a graph and extracts subgraphs

around the key-gate. Next, OMLA uses GNN to exploit the

structural and functional hints from the extracted subgraphs

to predict the secret key. SnapShot [34] uses a convolutional

neural network (CNN) to recover the secret key in X(N)OR-

based locking. It converts the locked design to a vector format

and extracts structural features (e.g., path depth, fan-out) from

the locality around key-gates. Based on the extracted features

and locality, CNN predicts the secret key. SCOPE [32] uses

unsupervised learning and exploits hints (e.g., area) to recover

the secret key in multiplexer (MUX)-based locking. It exploits

the changes in the locked design when a single key-bit value is

hard-coded and predicts each key-input (one at a time) based

0

0

USENIX Association 33rd USENIX Security Symposium 93

Table 1: Distinctions and advantages of INSIGHT compared to existing ML/GNN-based attacks.

Attack Task
Attacks industry-adopted

locking techniques

Key-gate

types

Explainer

insights

Adaptability to

new techniques

Applicable to

logic-synthesized designs

SAIL [30] (2021)
Neural network-based

classification
✗ X(N)OR/MUX ✗ ✗ ✓

SnapShot [34] (2021)
CNN-based

classification
✗ X(N)OR ✗ ✗ ✓

OMLA [31] (2021)
GNN-based

subgraph classification
✗ X(N)OR ✗ ✗ ✓

SCOPE [32] (2021) Unsupervised learning ✗ MUX ✗ ✗ ✓

MuxLink [33] (2022)
GNN-based

link prediction
✗ MUX ✗ ✗ ✗

INSIGHT (This Work)
Explainability-guided

GNN-based node classification
✓

X(N)OR/MUX/

(N)AND/(N)OR
✓ ✓ ✓

on the difference of synthesis-based hints when the key is 0

and 1. MuxLink [33] leverages GNN-based link prediction

to recover the secret key in MUX-based locking. It extracts

the subgraph (neighborhood) around the input nets of MUX

key-gates, considering the correct (incorrect) connection as a

positive (negative) link. It extracts structural and functional

hints from the subgraph and uses GNN to perform binary

classification on the extracted subgraph to predict the correct

connections (or secret key).

2.3 Limitations of Existing Attacks

Existing ML-based attacks lack in the following aspects.

Firstly, the aforementioned attacks operate as a black-box,

i.e., provide only KPA as a result and do not provide explana-

tions regarding the success/failure of the attack. As a result,

these attacks cannot be strategically improved to evaluate the

security of new/unbroken locking techniques. For instance,

OMLA obtains a KPA of 49.97% for the unbroken locking

techniques. In contrast, INSIGHT utilizes explainable GNN to

improve the attack strategically achieving a KPA of 87.30%

for the aforementioned locking techniques.

Secondly, existing ML-based attacks do not evalu-

ate industry-adopted locking techniques (TRLL [24] and

TRLL+ [35]). These techniques are integrated into an industry-

adopted and widely used semiconductor EDA tool, Synopsys

TestMAX. In contrast, INSIGHT achieves a KPA of 88.76% on

TRLL [24] and TRLL+ [35] locking techniques.

Finally, existing ML-based attacks are not broadly appli-

cable to different locking techniques. The attacks are pro-

posed to (i) evaluate the security of either 1 or 2 locking

techniques and (ii) apply to either X(N)OR-based locking

or MUX-based locking techniques. Unlike existing attacks,

INSIGHT recovers secret keys in 7 unbroken logic locking

techniques consisting of 7 different types of key-gates, i.e.,

X(N)OR/(N)AND/(N)OR and MUX (Table 1). Moreover, IN-

SIGHT evaluates the locking techniques that utilize different

key-gate insertion algorithms such as (i) random XOR/XNOR

locking [24, 35], (ii) adversarial learning [36], (iii) random

MUX-based locking [37], (iv) adversarial sample genera-

tion [38] and (v) functionality similar locking [52].

2.4 (Explainable) Graph Neural Networks

GNNs perform inference (predictions) on graph-structured

data and demonstrate significant performance in applications

such as learning patterns in protein interactions [53], rec-

ommender systems [54, 55], and computer security [56, 57].

GNNs can (i) handle irregular and structured data and (ii) in-

corporate topological information from the graph into the

learning process. GNNs are used for (i) node classification,

(ii) link prediction, and (iii) graph classification. Explainable

GNNs make predictions of the model transparent and inter-

pretable by providing human-understandable explanations.

They explain predictions through the importance of features,

nodes, and edges in the graph. Explanations can help to build

trust in the model and facilitate the adoption of GNNs in

real-world applications. Next, we provide some definitions.

Substructures (or subgraphs) are the local neighborhood

around to-be-classified nodes. Subgraph extraction extracts

the local neighborhood of unlabeled to-be-classified nodes.

Node classification classifies the unknown nodes based

on the features of the nodes in their local neighborhood.

Neighborhood-based node classification uses subgraphs

around to-be-classified nodes for classification instead of indi-

vidual nodes. It captures structural information from the local

neighborhood of the unlabeled node to predict node labels.

3 Threat Model

Our work considers an oracle-less threat model widely used

in the logic locking literature [5–10, 22]. Next, we discuss

the notations and outline the attacker’s location, resources

available to the attacker, and the attacker’s goal.

Notations. A combinational design Dorig is represented

as a directed acyclic graph with x primary inputs (PI) and y

primary outputs (PO), where PI = {0,1}x and PO = {0,1}y.

Dorig implements the Boolean function Forig : PI →PO. Dorig

is locked using a locking technique L with a secret key K, re-

sulting in a locked design Dlock consisting of additional key-

inputs KI ={KI0,KI1, ...,KI|K|−1}, where KI = {0,1}|K| and

|K| is the cardinality of KI, i.e., key-size. The locked design

Dlock implements the Boolean function Flock : PI × KI → O.

94 33rd USENIX Security Symposium USENIX Association

Note that Dlock is functionally equivalent to Dorig only upon

loading the correct secret key (K), i.e., Forig(j) = Flock(j,K),
∀ j ∈ PI. Dlock is converted to a Graphics Database System

II (GDSII)* represented as D
GDS
lock and sent to a potentially

untrustworthy foundry for fabrication. The foundry converts

D
GDS
lock to a chip Dlock. Dlock is tested, packaged, and sent to a

trustworthy facility (e.g., design house), which loads the cor-

rect key in the tamper-proof memory and obtains an activated

chip Dorc. The activated chip is also known as an oracle in

the logic-locking community. Additionally, A
T represents an

attacker A using technique T to recover the secret key (K).

Attacker location. We assume that the attacker A is located

in an untrustworthy foundry. A foundry could be potentially

untrustworthy since (i) most chip design companies (e.g., Ap-

ple, NVIDIA) outsource the fabrication of chips to off-shore

foundries [58], and (ii) the U.S. relies heavily on overseas

foundries for its manufacturing needs [4, 59] representing a

pernicious security threat (§1.1,§1.2).

Attacker resources. The resources available are as follows.

• Attacker A has access to reverse-engineering tools [60] and

can reverse-engineer GDSII of a locked design (DGDS
lock) to

extract the reverse-engineered gate-level netlist (Dlock).

• We consider an oracle-less threat model, i.e., the attacker

has no access to the functionally activated chip/oracle (Dorc)

for the following reasons.

– Firstly, having simultaneous access to GDSII (DGDS
lock)

and the activated chip/oracle (Dorc) may not be practical.

This limitation arises because an attacker is located in an

untrustworthy foundry, but Dorc is available only after the

fabrication, testing, and activation of the chip (performed

by loading the correct key onto the memory).

– Secondly, we assume scan-chain† protection techniques

in Dlock; these techniques (e.g., DisORC [24], scan-chain

locking [61]) either disable or protect the scan-chain ac-

cess. For example, DisORC [24] corrupts the outputs

of an oracle (Dorc) whenever a potential attack utilizing

a scan chain is detected. Since the outputs of Dorc are

corrupted, the attacker can no longer rely on an oracle

to obtain correct input/output pairs, thus preventing (re-

stricting) the oracle-guided attacks. Scan-chain locking

techniques [61] lock selected flip-flops to restrict the

controllability and observability of the scan-chain. Re-

stricting the controllability and observability of the scan-

chain hinders an attacker’s ability to access and control

the internal states of the scan flip-flops. Consequently,

scan-chain locking restricts oracle-guided attacks.

– Thirdly, the oracle-guided threat model is less challeng-

ing than the oracle-less threat model, especially since

there is no access to Dorc. If chips are manufactured for

military purposes [62], it is unlikely that an attacker in

*A database file used to represent IC layout information.
†Scan-chain access converts flip-flops into pseudo-primary inputs and

outputs, enabling the attacker to access and control the internal states. As-

suming scan chain access represents the best-case scenario for an attacker.

the foundry can access an activated chip/oracle (Dorc).

– Finally, we consider the same threat model (oracle-

less) as the targeted locking techniques (TRLL [24],

TRLL+ [35], UNSAIL [38], RGLock [51], TroMUX [37],

ALMOST [36] and SimLL [52]). These techniques mitigate

attacks that do not have access to an oracle.

• Attacker A knows the locking technique implemented in

the locked design. In addition, A can (i) identify key-inputs

(KIs) and (ii) detect key-gates in the reverse-engineered

locked design Dlock. To identify KIs, A can trace the con-

nections from the tamper-proof memory (TPM) to the chip,

as the secret key is stored in the TPM. Furthermore, A

can detect the key-gates by identifying the logic gates con-

nected to key-inputs. These assumptions are consistent with

Kerckhoff’s principle, which asserts that the security of a

system should rely exclusively on the secrecy of the secret

key, K, and not on the secrecy of other system aspects [63].

Attacker goal. The goal of attacker A is to recover the se-

cret key K from the GDSII of a locked design, obtaining the

recovered design Drec and enabling IP piracy [5–10, 22].

4 INSIGHT

We explain why we use explainable machine learning (ML) to

develop an attack (§4.1), followed by the problem modeling

(§4.2). However, using explainers is not straightforward, and

we face various challenges. We elaborate on these challenges

and outline our solutions to overcome them (§4.3–§4.6). Fi-

nally, we discuss the overall architecture of INSIGHT (§4.7).

4.1 Why Explainable ML/GNN?

Recovering the secret key from unbroken locking techniques

entails identifying structural and functional hints from the

locked design. To develop a practical attack, an attacker re-

quires feedback. Existing attacks utilize ML (GNN) models

as a black-box and (i) perform feature engineering, (ii) tune

the model parameters, and (iii) improve the model architec-

ture based on human interpretation. However, a systematic

approach requires understanding the inner workings of the

trained ML model and making informed decisions. To that

end, using explainable ML in the attack pipeline could aid an

attacker in improving the attack systematically. INSIGHT uses

explainable GNN to understand the reasons behind the incor-

rect predictions of the attack on targeted locking techniques.

Explainable GNN provides explanations of the important

nodes and features influencing the predictions of GNN-based

node classification. Using the explanations obtained by ex-

plainable GNN, we determine the important nodes/features

that help improve our attack. Without an explainable GNN, it

would be difficult to ascertain the factors (important features

and nodes in the graph) that lead to incorrect predictions of

the attack (as it requires an exhaustive search among features

and nodes around the key-gate).

USENIX Association 33rd USENIX Security Symposium 95

4.2 Problem Modeling

Problem Definition. Given a locked design Dlock having key-

size |K|, INSIGHT aims to recover the secret key K of targeted

locking techniques using explainable GNN.

Preliminary Problem Modeling. We map the problem of

key prediction to GNN-based node classification. Node clas-

sification aims to classify the key-gates or key-inputs (KIi)

to either a key-value of {0} or {1}. Recall that GNN-based

node classification classifies unknown nodes based on the

features of the nodes in their local neighborhood; therefore,

we perform neighborhood-based node classification (§2.4).

Next, we discuss the 4 steps in detail.

(1) Convert to Graph. The locked design Dlock is converted

to a graph G = (V,E) with nodes V and edges E, where nodes

(edges) represent the Boolean logic gates (wires). G = (V,E)
is provided as an input to subgraph extraction.

(2) Subgraph Extraction. Subgraphs are extracted around all

the key-gates with key-inputs {KI0,KI1, ..,KI|K|−1} for r hop-

size, where r is user-defined and design specific. Consider an

example of extracting the subgraph around key-gate KIi in

graph G with nodes {u0,u1,uN}, where N is the number of

nodes in G. The subgraph extraction step returns a subgraph

G′(V ′
,E ′) where any node v ∈ V ′ is at a hop-size of r (or

less). After extracting their features, the subgraphs around

key-gates are provided to GNN for node classification.

(3) Feature Extraction. We extract the following features for

the nodes in subgraphs: (i) gate type, (ii) input degree (inp),

(iii) distance of the node from the key-gate (DE), (iv) a (+/-)

sign indicating if a node is located in the fan-in/fan-out of

the key-gate (sign), (v) subgraph size (SS), (vi) output degree

(out), and (vii) truth table of logic gates (TT). Feature (i) and

(vii) captures the functionality of the node, while (ii), (iii),

(iv), (v), and (vi) capture the structure of the nodes in the

subgraph. The feature for subgraph G′ is given as X ′, where

x′v corresponds to the feature of node v ∈V ′.

(4) Node classification aims to predict the key-value for all

the key-inputs (key-gates), similar to OMLA. GNN classi-

fies the subgraphs extracted around key-gates. For predict-

ing the key-value for G′, i.e., the subgraph extracted around

KIi, the GNN returns pi, i.e., its corresponding class as:

pi = g(G′
,X ,

′
σ) where pi ∈ {0,1}, X ′ is the feature vector of

G′, g corresponds to GNN, and σ are trainable parameters of

GNN (weights and bias). The key-value of KIi is equal to pi.

GNN. We leverage state-of-the-art GNN, i.e., graph isomor-

phism network (GIN) [64], which is widely used and per-

forms best for graph classification. Here, GNN performs

neighborhood-based node classification for subgraphs ex-

tracted around the key-gates.

The preliminary problem modeling does not provide expla-

nations that aid in (i) finding structural hints and (ii) improv-

ing the attack for targeted (unbroken) locking techniques.

Challenges. The challenges toward developing an

explainability-guided GNN-based attack are (i) selecting a

suitable explainer and (ii) inferring the explainer results to

identify structural hints for targeted locking techniques. Next,

we explain the challenges and our solutions in detail.

4.3 Selecting A Suitable Explainer

Since our attack aims to recover the secret key from the tar-

geted locking techniques, it is necessary to understand the

reasons behind the failure of existing ML-based attacks to

identify the structural hints that aid in improving the attack.

Challenge 1 . An explainable GNN must (i) be computation-

ally efficient, i.e., runtime should not be prohibitively large,

and (ii) provide relevant explanations. Selecting a suitable

explainer with these characteristics poses a key challenge.

Solution 1 . To address challenge 1 , we consider explain-

ers that have demonstrated effectiveness in node classifica-

tion tasks. We evaluate 4 state-of-the-art explainable GNNs—

GNNExplainer [65], SubgraphX [66], ZORRO [67], and PG-

Explainer [68] renowned for their effectiveness in node clas-

sification tasks [69]. GNNExplainer and ZORRO provide

explanations for features and nodes in the neighborhood of

a given node, whereas PGExplainer provides explanations for

only nodes in the neighborhood of a given node. SubgraphX

provides information regarding the important subgraph, i.e.,

the neighborhood of a given node. We provide the preliminary

problem modeling (trained on TRLL-locked designs) as input

to the explainers. We evaluate the relevancy of important fea-

tures obtained from the explanations by temporarily removing

the top feature (important nodes) from the dataset to observe

the change in the model predictions. A significant change in

predictions indicates the high importance of features (nodes).

Runtime. GNNExplainer and PGExplainer exhibit better

computational efficiency than others. For example, the run-

time of SubgraphX (≈ 60 min) is 600× higher than GN-

NExplainer (6 s) and 1200× higher than PGExplainer when

generating explanations for subgraphs with an average of 35

nodes. ZORRO has an acceptable runtime, i.e., 58 s. Hence,

we do not consider SubgraphX due to its large runtime.

Relevant feature explanations. Only GNNExplainer and

ZORRO provide explanations for features. These explainers

provide the importance scores for the features of prelimi-

nary problem modeling. The top feature returned by GN-

NExplainer is gate-type, and ZORRO is DE. Removing the

gate-type feature reduces the key-prediction accuracy (KPA)

of the preliminary model from 50.78% to 46.09%. Removing

the DE feature reduces the KPA to 50.78%. These results

indicate that removing the gate-type feature affects KPA more

than removing DE, indicating higher importance for the gate-

type feature. Hence, we do not consider ZORRO due to its

non-relevant feature explanations.

Relevant node explanations. We evaluate the relevancy of

nodes for GNNExplainer and PGExplainer. They both provide

the importance scores of nodes in the subgraph around the key-

gate. We consider the nodes with higher importance scores as

0

0 0

96 33rd USENIX Security Symposium USENIX Association

�!= 0

�!= 1

INV

�!= 0

�! = 1

BUF

(a)

(b)

Figure 2: Mapping key-prediction problem to (a) inverter

(INV) and (b) buffer (BUF) prediction problem.

important nodes. The KPA of preliminary problem modeling

decreases from 54.68% to 46.87% for GNNExplainer and to

51.56% for PGExplainer by removing the important nodes

returned by the corresponding explainers. Results indicate

that removing important nodes returned by GNNExplainer

affects KPA more than the important nodes returned by PG-

Explainer. Hence, the important node explanations returned

by GNNExplainer are more relevant.

In conclusion, GNNExplainer is a more suitable explainer

for INSIGHT due to its (i) computational efficiency and

(ii) ability to provide relevant explanations. Consequently,

we utilize GNNExplainer in our work.‡

4.4 Identifying Structural Hints

Challenge 2 . GNNExplainer provides explanations for ex-

tracted subgraphs of the targeted locking techniques (§4.3).

The preliminary problem modeling obtains a KPA of 50.52%.

The next challenge is identifying the reasons behind the fail-

ure of the preliminary problem modeling (§4.2). Understand-

ing the reasons can help in improving the performance (KPA)

of the attack. Next, we analyze the explainer results.

Failure of Preliminary Problem Modeling. We analyze the

explainer results and observe that the preliminary problem

modeling (§4.2) trains the same substructure (neighborhood

around key-gate) for two key-values (classes) (Figure 2).

Example 1. Consider Figure 2(a); even though the logic gates

in the neighborhood of the key-gates are identical, the key-

input values are different. Such training samples create ambi-

guity for the ML model, resulting in lower KPA.

Identification of Common Structural Hints. Example 2.

Consider Figure 2(a) for the TRLL-locked design; even though

the key-input values for both substructures are different, both

key-gates transform into an inverter upon applying the correct

key, i.e., XOR key-gate with key-input of “1” and XNOR key-

gate with key-input of “0.” Thus, if a GNN model were to train

both designs with the same neighborhood, i.e., substructure

around the key-gate for inverter prediction instead of key-

values, the ambiguity of the GNN model would be discarded.

‡Please refer to Appendix A.1 for further details on GNNExplainer.

�!= 1

0

1

�!= 0

0

1

�!= 1

MUX

0

1

�!= 0

MUX

0

1

BUF

INV

Figure 3: Example of transforming key-prediction for

TroMUX [37] to inverter/buffer prediction problem.

Figure 4: Heat map of importance scores of features of IN-

SIGHT, i.e., gate-type, inp, sign, out, TT, and SS.

The same is true for Figure 2(b), where both the substructures

can be trained for buffer prediction.

In TRLL [24], TRLL+ [35], UNSAIL [38], and ALMOST [36],

the key-gates map to either a buffer (inverter) based on key-

input and key-gates (XOR/XNOR). In TroMUX [37], an in-

verted and non-inverted logic of the locked wire is fed to

the MUX-based key-gate. This construction can also be con-

verted to an inverter/buffer prediction problem (Figure 3). The

same is also true for RGLock [51]. Thus, recovering the key

in the aforementioned locking techniques can be mapped to

an inverter/buffer prediction problem.

Solution 2 . To address challenge 2 , we propose advanced

problem modeling that classifies the key-gates in the locked

design as an inverter (INV) or buffer (BUF). We map the in-

verter/buffer prediction to the GNN-based node classification

problem as follows. The first two steps, i.e., (1) conversion

of locked design to graph and (2) extraction of the subgraph,

remain the same (§4.2); however, the feature extraction and

modified node classification are explained next.

Feature Extraction. In advanced problem modeling, we re-

fine the feature selection by conducting an explainer analysis

on 7 features (§4.2). We observe that the features (i) gate-

type, (ii) inp, (iii) DE, and (iv) sign have higher importance

compared to the remaining features (Figure 4). Hence, we

utilize these 4 features in advanced problem modeling.

Modified Node Classification aims to predict whether the

key-gate maps to INV/BUF. The GNN classifies the sub-

graphs extracted around key-gates as: pi = g(G′
,X ′

,σ) where,

pi ∈ {0,1}. The output class returned by GNN maps to an

INV/BUF, i.e., pi = 0 for an INV and pi = 1 for a BUF.

Post-processing. We recover the key-values by utilizing the

(i) predictions of GNN-based node classification and (ii) type

of the key-gate, i.e., (X(N)OR/MUX/(N)AND/(N)OR) (Ta-

ble 2). For example, if the key-gate is XOR, and GNN predicts

INV (BUF), the key-value is inferred as 1 (0) (Figure 5 (a)).

Heat Map of Feature Importance Scores

Gate-type lnp DE Sign O~t TT 55

0

0 0

1.00

0.75

0.50

0.25

USENIX Association 33rd USENIX Security Symposium 97

Table 2: Mapping of key-gate to INV, BUF, constant–0 (const–

0), and constant–1 (const–1) based on key-value.

Key-value XOR XNOR AND NAND NOR OR

0 BUF INV const–0 const–1 INV BUF

1 INV BUF BUF INV const–0 const–1

(a) XOR key-gate (b) XNOR key-gate (c) MUX key-gate

�!

INV

BUF

�!
= 1

�
! = 0

�!

INV

BUF

�!
= 0

�
! = 1

0

1

�!
= 0

�
! = 1

INV

BUF

MUX

Figure 5: Mapping between key-gate, key-value, and GNN

prediction (INV/BUF) for X(N)OR and MUX key-gates.

Similarly, if the key-gate is XNOR, and GNN predicts INV

(BUF), the key-value is inferred as 0 (1) (Figure 5 (b)). If

the key-gate is MUX, the key-value is inferred based on the

connections of INV and BUF to the MUX. If GNN predicts

INV, and INV is connected to the first (second) input of MUX,

the key-value is inferred as 0 (1) (Figure 5 (c)).

In conclusion, the advanced problem modeling success-

fully predicts the secret key (KPA of 99.52%) for designs

locked with TRLL (Table 3).

4.5 Attacking Logic Synthesized Designs

Challenge 3 . The semiconductor industry performs logic

synthesis§ to reduce the area, power, and delay of circuits.

The advanced problem modeling (§4.4) reduces KPA (70%)

for synthesized TRLL-locked designs. The KPA for non-

synthesized designs from the same benchmark suite is 99.52%

(Table 3). Modifying the attack to improve KPA for synthe-

sized locked designs is challenging due to the different graph

representations in logic-synthesized designs.

Solution 3 . Using our advanced problem modeling, we input

the trained model on synthesized TRLL-locked designs to GN-

NExplainer. We observe that the nodes in the subgraph, i.e.,

the logic gates in the neighborhood of the key-gate contribute

with different importance to the prediction. As manually infer-

ring the explainer results and providing the important nodes to

the attack is time-consuming, we improve the architecture of

GNN by incorporating an attention layer. The attention layer

assigns varying degrees of importance to the nodes in the

subgraph using learnable weights [70]. The attention weight

α
(t)
vu measures the strength of connectivity between the node

v ∈V ′ and u in a graph G′ for the tth layer of GNN as follows.

α
t
vu = softmax

(

f (a⊤[W (t)h
(t−1)
v ||W (t)h

(t−1)
u])

)

(1)

where f (·) is a LeakyReLU activation function, h(t−1) is out-

§A process transforming a behavioral chip description to an optimized

hardware implementation, i.e., a netlist consisting of Boolean logic gates.

Table 3: Key-prediction accuracy (KPA) for TRLL-locked de-

signs (|K| = 128) using advanced problem modeling.

Design b14_C b15_C b17_C b20_C b21_C b22_C

Solution 2 99.78 99.68 99.06 99.53 99.53 99.53

Figure 6: Improvement in key-prediction accuracy (KPA) for

TRLL-locked designs for |K| = 128 with and without attention.

put of (t−1)th GNN layer with h
(0)
v = x′v, where x′v ∈ X ′, W (t)

is a learnable weight matrix, and a is vector of learnable pa-

rameters. Thus, the modified GNN with an attention layer

(i) captures relevant information (important nodes) from the

local neighborhood of the key-gate without the need for GN-

NExplainer, and (ii) reduces the manual effort of identifying

important nodes using GNNExplainer. Incorporating attention

increases KPA by 10% for synthesized designs (Figure 6).

Challenge 4 . Depending on optimization techniques (e.g.,

minimizing area, power), logic synthesis tools may gener-

ate designs consisting of non-XOR/XNOR/MUX-based key-

gates. We observe the KPA for our advanced problem model-

ing being limited for such designs. Thus, INSIGHT needs to be

extended to tackle non-XOR/XNOR/MUX-based key-gates.

Solution 4 . To address challenge 4 , we first perform graph

transformations to maximize the number of XOR/XNOR-

based key-gates. We use a commercial logic synthesis tool

(e.g., Synopsys Design Compiler) with different optimiza-

tion commands to generate structurally disparate (and func-

tionally equivalent) locked designs. Doing so increases the

number of XOR/XNOR-based key-gates in the locked design.

However, even after these graph-based transformations, we

observe non-XOR/XNOR-based key-gates. To that end, we

extend the GNN prediction classes for other type of key-gates

(Table 2). Considering key-values ‘1’ and ‘0’, the key-gates

(AND/NAND/NOR/OR) either map to INV, BUF, constant–1,

or constant–0. Thus, we introduce two additional classes to

the prediction tasks, i.e., constant–1 and constant–0. Incor-

porating the above-mentioned steps improves KPA by 1.53×
(on average) for synthesized ALMOST designs (Table 4).

4.6 Lack (or Scarcity) of Training Data

Challenge 5 . To facilitate (i) reduction in time-to-market,

(ii) lower economic costs, and (iii) easier integration of chips,

the semiconductor industry follows the concept of design-

reuse [71]. Thus, an attacker is assumed to have access to

0

0

80

60

* 40

:..::

= With Attention

0

0 0

0

98 33rd USENIX Security Symposium USENIX Association

Circuit to
Graph

Feature
Extraction

Subgraph
Extraction

GNN
Attention-

based GNN
INV

BUF

const-0

const-1

Recovered
Secret Key

Post-processing

Locked Design
(§4.5)

non-
X(N)OR

key-gates
No

Selective
Logic Synthesis

(§4.6)
Yes Subg-

raphX

GNN
Explainer

Selecting a Suitable
Explainer (§4.3)

Preliminary
 Model
(§4.2) GNNExplainer

(Preliminary
Explanation)

 INV/BUF
Prediction

(§4.4)

Important Nodes
and Features

GNNExplainer
(Advanced

Explanation)

Important
Nodes

Requires
Attention

Non Diverse
Training Data

Limited
Training Data

Semi-
supervised
Learning

Data
Augmentation

(§4.6)

cc

c

𝑘0
𝑘1

Initial
Training

Data

Lack of
Training

Data

Yes

No

D

so
ftm

ax

ar
gm

ax

Attention + Agg.
GNN layer 1

Dense Layers

D

so
ftm

ax

ar
gm

ax

Aggregation
GNN layer 1

Dense Layers

Figure 7: Architecture of INSIGHT.

Table 4: Improvement in key-prediction accuracy (KPA) for

ALMOST (|K| = 64) with non-XOR/XNOR-based key-gates.

Design c1355 c1908 c2670 c6288 c7552

OMLA [31] 54.18 47.80 49.78 49.88 55.55

Solution 4 81.25 76.56 75 79.69 81.25

Improvement (×) 1.5× 1.6× 1.51× 1.6× 1.46×

Table 5: Improvement in key-prediction accuracy (KPA) for

RGLock (|K| = 128) with and without data augmentation.

Design b14_C b15_C b17_C b20_C b21_C

No Data Augmentation (✗) 69.05 72.13 66.67 66.38 67.72

Solution 5 76.56 82.79 71.87 72.56 74.83

Improvement (×) 1.11× 1.15× 1.08× 1.09× 1.10×

datasets consisting of diverse examples to effectively capture

the underlying patterns and relationships in the (graph) data.

This is analogous to a library of publicly available designs

having similar graph structures compared to the locked de-

sign under attack. However, an attacker faces considerable

challenges when they have limited access to training data

owing to a (i) closed-source (proprietary) locking technique

and (ii) limited diversity of subgraphs in the training dataset.

Thus, we utilize two techniques, i.e., data augmentation and

semi-supervised learning, to increase the training samples.

Solution 5 . To address challenge 5 , we propose data aug-

mentation and semi-supervised learning. Data Augmenta-

tion augments training samples by graph transformations, i.e.,

logic synthesis using logic optimization procedures (known

as synthesis recipes). This step increases the overall train-

ing samples, which vary in structure, i.e., graph-based rep-

resentation. For instance, the GNN model trained using the

circuit library approach showed lower KPA for synthesized

RGLock designs. Data augmentation increases the KPA by

1.11× (Table 5). Semi-supervised Learning can be used

by an attacker having access only to the locked design and

no/limited access to a circuit library. This corresponds to

cases when attacking a newly developed/unknown hardware

IP. An attacker adopts semi-supervised learning and locks

other (unprotected) logic gates in the design to generate train-

ing samples. Semi-supervised learning increases the KPA

by 1.29× (from 67.14% to 86.94%) for the TroMUX-locked

design, AES, compared to training on a circuit library, i.e.,

designs from the ITC-99 benchmark suite.

Algorithm 1: Pseudocode of INSIGHT

Input: Locked design Dlock , Circuit library Clib, Locking technique L
Output: Secret key Kpred

1 Function test_attention_GNN(Testsubgraphs,Xtest):

2 for (G′(V ′,E ′),X ′) ∈ (Testsubgraphs,Xtest) do

3 for l = 1 to L do

4 for v ∈V ′ do

5 h
(l)
v ← σ(AGGREGATE({ATTENTION(h

(l−1)
v ,h

(l−1)
u) |

u ∈N (v)}))

6 ytest .append(argmax(HL))

7 return ytest

8 if Dlock contains non-X(N)OR-based key-gates then

9 Dlock ← graph_transformation (Dlock) /* Perform logic synthesis on

Dlock to increase X(N)OR key-gates (§4.5) */

10 if circuit library is available then

11 Traindata←create_training_data(Clib) /* Generate training dataset

using circuit library (§4.6) */

12 else

13 Traindata← create_semi_supervised_training(Dlock ,L)
/* Generate training dataset by locking unprotected logic (§4.6) */

14 if limited training dataset exists then

15 Traindata←data_augmentation(Traindata) /* Increase training

dataset by performing data augmentation (§4.6) */

16 Gtrain,Gtest ←convert_to_graph(Traindata,Dlock)
17 Trainsubgraphs,Testsubgraphs,Xtrain,Xtest ←

subgraph_feature_extraction(Gtrain,Gtest) /* Extract subgraphs and

features (§4.2) */

18 TGNN ← train_attention_GNN(Trainsubgraphs,Xtrain) /* Train modified

GNN for advanced problem modeling (§4.5) */

19 ytest ← test_attention_GNN(Testsubgraphs,Xtest) /* Obtain predictions for

testing dataset (Dlock) (§4.5) */

20 Featscores,Nodesscores← GNNExplainer(ytest ,Testsubgraphs,TGNN) /* Obtain

explanations for predictions (§4.3) */

21 Kpred ← post_process(ytest ,Dlock) /* Post-processing (§4.5) */

22 return Kpred ,Featscores,Nodesscores

4.7 Final Architecture (Putting it all Together)

We illustrate and describe the final architecture of INSIGHT in

Figure 7 and Algorithm 1. Given a locked design Dlock with

|K| key-gates, INSIGHT recovers the secret key using explain-

able GNN. We use GNNExplainer to improve our attack

0 0

l

l

l

l

:'i=S:
:CJi
:CJ:

4 ° : Tj : p'---· _

USENIX Association 33rd USENIX Security Symposium 99

since it provides relevant explanations and is computationally

efficient (§4.3). Next, as per the explanations from GNNEx-

plainer, we map the key-prediction problem to INV/BUF

prediction (§4.4). To attack logic-synthesized designs, we

utilize another insight from GNNExplainer, highlighting the

varied importance of nodes (in the neighborhood of key-gates)

toward predictions. Consequently, we improve the attack by

incorporating attention (§4.5). If the locked design consists of

non-X(N)OR-based key-gates, we perform graph transforma-

tions, i.e., logic synthesis, to increase the number of X(N)OR

key-gates (lines 8–9 in Algorithm 1) and extend the GNN

prediction classes for different types of key-gates (Table 2).

If an attacker has access to a circuit library (Clib), they gen-

erate the training dataset using a circuit library (lines 10–11).¶

If there is no access to a circuit library, we lock the unpro-

tected logic gates in the locked design to generate training

samples, i.e., semi-supervised learning (lines 12–13) (§4.6).

If a limited training dataset exists, we perform graph trans-

formations to increase the number of training samples, i.e.,

data augmentation (lines 14–15) (§4.6). Next, we convert the

designs to graphs (line 16) and extract the (i) subgraph (neigh-

borhood of key-gates) and (ii) features of the training and

testing samples (line 17) (§4.2). We then train the modified

GNN with the training subgraphs and obtain a trained GNN

model (TGNN) (line 18). Upon obtaining the trained GNN

model, we test the GNN for testing subgraphs (Testsubgraphs)

and obtain GNN predictions (ytest), i.e., INV/BUF prediction

(line 19). The inference algorithm of attention-based GNN

is mentioned in lines 1–7. Upon obtaining the GNN predic-

tions, (i) we pass the predictions (ytest), subgraphs of testing

data (Testsubgraphs), and trained GNN model (TGNN) through

GNNExplainer to obtain corresponding explanations in terms

of importance scores for features and nodes in the subgraph

(line 20) and (ii) perform post-processing on the predictions

(ytest) to obtain the secret key (Kpred) using the mapping be-

tween INV/BUF prediction and key-gate types (line 21).||

The computational complexity of INSIGHT depends on all the

aforementioned steps. It is non-trivial to derive the time com-

plexity of INSIGHT due to the closed-source commercial logic

synthesis algorithms utilized for graph transformations.**

5 Results

We outline our experimental setup (§5.1) and evaluate IN-

SIGHT on 7 unbroken locking techniques (§5.2, §5.3). We

perform experiments on designs from the ISCAS-85 and

ITC-99 academic suites to open-source designs such as the

Stanford MIPS processor [46], Google IBEX processor [47],

DARPA Common Evaluation Platform (CEP) GPS [48], and

mor1kx processor [49]. Finally, we perform 2 practical case

studies: (i) recovering the secret key from designs locked

¶The to-be-attacked locked design is not a part of the circuit library.
||Refer to Appendix A.2 for integrating INSIGHT with LL techniques.

**Refer to Appendix A.3 for details on computational complexity.

using Synopsys TestMAX, a commercial, widely used EDA

tool (§5.5), and (ii) showcasing the ramifications of leaking

the secret key using an image processing application (§5.6).

5.1 Experimental Setup

Implementation Setup. We implement INSIGHT using

Python 3.7 (converting locked designs to graphs and post-

processing of graph neural network (GNN) predictions), Py-

Torch 1.12 (GNN-based node classification), and deep graph

library (GNNExplainer). We perform experiments on a single

compute node of AMD EPYC Rome CPU with 128 cores

operating at 2.25GHz with 512GB RAM each. We use a

graph isomorphism network as the baseline GNN architec-

ture. It consists of 2 multilayer perceptron layers and 4 to

6 GNN layers (based on the dataset). Moreover, we imple-

ment a multi-head attention layer in GNN where the number

of heads varies between 1 and 4 (based on the dataset). We

set the batch size and hidden dimension to 128 and use a

LeakyRelu activation function. We set the number of epochs

to 100 and use the Adam optimizer with a learning rate 0.001.

Locking Techniques. We implement TroMUX and RGLock in

Python 3.7, as the source codes are not publicly available. We

received the binaries of TRLL and TRLL+ from the authors. We

received locked benchmarks from the authors of ALMOST [36]

and SimLL [52]. Also, we obtain open-source benchmarks

for TroMUX [72] and UNSAIL [73]. For experiments with

Synopsys TestMAX, we use version T-2022.03-SP5-4.

Designs. We demonstrate the efficacy of INSIGHT on designs

from ISCAS-85 [74], ITC-99 [75], and EPFL [76] benchmark

suites widely used in the hardware design/security commu-

nity. We conduct experiments on open-source designs such

as the Stanford MIPS processor [46] (≈23k gates), Google

IBEX processor [47] (≈18k gates), DARPA CEP GPS [48]

(≈193k gates), mor1kx processor [49] (≈158k gates), crypto

cores [77], openMSP430 microcontroller [78], arithmetic de-

signs, and an image-processing application [79]. These de-

signs encompass a diverse range of IPs comprising processors,

arithmetic designs, controllers, microcontrollers, crypto cores,

a GPS core, and an image processing application (Gaussian

blurring), widely used in hardware designs.

5.2 Evaluation of Locking Techniques

We evaluate the efficacy of INSIGHT using key-prediction ac-

curacy (KPA) (§2.1). We compare the KPA with existing and

open-source ML-based attacks [31, 32] for non-synthesized

(Table 6) and synthesized (Table 7) locked designs.

Non-Synthesized Designs. Table 6 depicts the performance

of INSIGHT with existing ML-based attacks for TRLL, TRLL+,

TroMUX, and RGLock. INSIGHT achieves a significantly higher

KPA than existing ML-based attacks, i.e., our attack improves

KPA by 2.96×, 1.64×, and 1.86× than SCOPE, MuxLink,

and OMLA. Notably, INSIGHT achieves a KPA of ≈ 100

100 33rd USENIX Security Symposium USENIX Association

Table 6: Efficacy (measured in KPA) of INSIGHT compared to existing ML-based attacks for non-synthesized designs. “–”

indicates designs do not support locking for key-size (|K|) = 256. All numbers are in percentage and averaged across ten trials.

Design Key-size
SCOPE [32] OMLA [31] INSIGHT (This Work)

TRLL [24] TRLL+ [35] TroMUX [37] RGLock [51] TRLL TRLL+ TroMUX RGLock TRLL TRLL+ TroMUX RGLock

b14_C
128

256

38.59

35.21

21.12

23.30

41.64

41.95

25.54

22.65

50.54

50.56

50.78

48.44

51.09

49.80

51.87

50.52

99.78

99.43

93.05

99.09

89.84

89.06

76.02

80.20

b15_C
128

256

27.85

34.52

10.51

15.46

44.14

45.43

13.20

–

46.24

49.88

46.87

47.65

50.47

49.65

50.58

–

99.68

99.62

92.71

97.60

87.5

94.92

78.91

–

b17_C
128

256

30.31

33.94

10.58

10.38

43.20

44.65

29.29

28.08

51.01

50.26

52.56

50.56

49.65

50.56

49.61

49.22

99.06

99.89

95.70

98.44

92.18

91.40

77.11

68.59

b20_C
128

256

31.87

43.32

19.37

23.08

44.69

46.29

30.00

27.77

48.98

50.27

51.56

49.55

51.79

50.35

50.47

50.01

99.53

99.87

98.91

98.44

83.59

87.11

78.20

81.13

b21_C
128

256

32.15

38.38

22.26

23.47

45.44

46.60

30.00

27.54

50.00

51.02

50.45

48.76

48.43

51.39

49.29

51.72

99.53

99.41

94.14

97.90

87.50

88.67

85.16

83.05

b22_C
128

256

33.20

41.35

20.59

17.93

48.20

45.97

30.55

31.79

51.82

48.77

49.65

51.32

49.33

50.16

51.78

48.05

99.53

99.90

93.12

99.28

84.37

83.59

82.97

83.24

Average
128

256

32.33

37.78

17.46

18.94

44.55

45.15

26.56

22.97

49.76

50.13

50.31

49.38

50.13

50.32

50.6

41.59

99.52

99.69

94.60

98.46

87.49

89.12

79.73

79.24

Table 7: Efficacy (measured in KPA) of INSIGHT compared to existing ML-based attacks for synthesized designs. “–” indicates

designs do not support locking for key-size (|K|) = 256. All numbers are in percentage and averaged across ten trials.

Design Key-size
SCOPE [32] OMLA [31] INSIGHT (This Work)

TRLL [24] TRLL+ [35] TroMUX [37] RGLock [51] TRLL TRLL+ TroMUX RGLock TRLL TRLL+ TroMUX RGLock

b14_C
128

256

37.65

34.94

20.97

22.42

38.12

38.20

14.68

17.93

50.28

50.81

52.35

52.45

50.47

49.20

47.14

50.02

79.93

79.56

77.78

78.83

82.20

81.76

76.56

73.96

b15_C
128

256

33.71

33.34

10.52

16.37

37.26

38.51

10.00

–

48.42

50.24

49.15

50.32

48.89

49.56

51.21

–

78.90

79.31

70.36

73.19

84.25

84.99

82.79

–

b17_C
128

256

35.58

34.55

15.23

10.49

38.91

39.06

15.00

16.17

51.79

50.55

51.95

48.76

47.72

51.82

50.87

50.08

81.98

79.22

70.91

69.44

84.53

84.20

71.87

72.58

b20_C
128

256

39.17

40.89

18.83

18.16

40.62

40.74

16.09

16.05

48.55

49.49

49.20

50.42

50.40

50.59

50.26

51.68

80.11

79.55

77.78

77.12

82.67

82.17

72.56

74.39

b21_C
128

256

39.33

36.99

22.77

23.38

39.76

41.64

17.26

19.06

50.77

50.93

52.34

48.96

50.14

50.74

51.42

48.19

81.46

79.88

78.56

69.84

82.67

82.95

74.83

75.21

b22_C
128

256

40.82

41.09

22.91

17.77

44.61

41.87

17.35

17.11

50.86

49.64

51.20

49.67

50.69

46.09

48.14

50.84

77.51

78.24

78.03

79.87

82.65

82.41

73.53

74.92

Average
128

256

37.71

36.97

18.54

18.09

39.88

40.03

15.06

17.26

50.11

50.27

51.03

50.09

49.71

49.67

49.84

50.16

79.98

79.29

75.57

74.71

83.16

83.08

75.36

74.21

for TRLL. On average, INSIGHT achieves a KPA of 99.60%,

96.53%, 88.30%, and 79.48% for TRLL, TRLL+, TroMUX, and

RGLock, respectively. In contrast, the KPA of OMLA is ≈
50%, equivalent to a random guess. Our results highlight

that INSIGHT successfully recovers the secret keys for non-

synthesized locked designs, indicating that the aforementioned

techniques leak exploitable structural information.

Synthesized Designs. Recall that the semiconductor industry

performs logic synthesis to reduce the area/power/delay of

circuits (§4.5). Hence, we perform security analysis on syn-

thesized locked designs. Table 7 depicts the performance

of INSIGHT on synthesized locked designs. INSIGHT im-

proves KPA by 2.8× and 1.56× than SCOPE and OMLA.

On average, INSIGHT achieves a KPA of 79.64%, 75.14%,

83.12%, and 74.78% for TRLL, TRLL+, TroMUX, and RGLock,

respectively. Our results highlight that INSIGHT recovers the

secret key for synthesized locked designs, whereas other ML-

based attacks [31, 32] are severely limited. In addition, our

results indicate that the aforementioned techniques rely on

synthesis-induced transformations to enhance security.

Other Locking Techniques. We evaluate the security of

ALMOST [36],UNSAIL [38], and SimLL [52]—these techniques

claim security against ML-based attacks (§2.1). On aver-

age, INSIGHT achieves a KPA of 77.4% for ALMOST, 78.56%

for UNSAIL, and 99.51% for SimLL (Table 8), indicating broad

applicability across learning resilient locking techniques.

5.3 Analysis of INSIGHT

Effect of Graph Transformations. The underlying struc-

ture of the graph, i.e., locked design changes with syn-

thesis recipes.†† Thus, we analyze the impact of synthesis

recipes on the efficacy of INSIGHT. We fix the synthesis

tool (widely used commercial EDA tool—Synopsys Design

Compiler), locking technique as TRLL, and technology li-

brary as Nangate 45nm. Our results indicate that the differ-

††Sequence of optimization commands to minimize area/power/delay.

USENIX Association 33rd USENIX Security Symposium 101

Table 8: Efficacy (KPA (%)) of INSIGHT on open-sourced

ALMOST [36], UNSAIL [38], and SimLL [52] designs. “–” indi-

cates designs are not open-sourced and publicly available.

Design
ALMOST [36] UNSAIL [38]

|K| = 64 |K| = 128 CL_v2 CL_v4 XOR

c1355 81.25 79.69 – – –

c1908 76.56 75 – – –

c2670 75 73.44 89.84 82.03 81.54

c3540 79.69 75.78 84.09 84.09 84.49

c5315 81.25 77.34 77.37 75.78 80.91

c6288 79.69 70.31 71.61 – –

c7552 81.25 77.34 79.68 73.48 –

c880 – – 76.92 79.53 78.29

Average 79.24 75.55 79.92 78.98 81.31

Design
SimLL [52]

|K| = 512

b14_C 99.78

b15_C 99.44

b17_C 99.22

b20_C 99.61

b21_C 99.78

b22_C 99.22

Average 99.51

ence between the average KPA for both synthesis recipes is

negligible (refer to Table 13 in Appendix A.4 for results).

Scalability and Runtime. We analyze the impact of (i) key-

size and (ii) design size on the attack runtime of INSIGHT (re-

fer to Figure 9 in Appendix A.4 for results). The attack run-

time increases with a negligible difference with an increase in

key-size (64 to 256). In addition, INSIGHT is scalable to larger

designs such as IBEX, mor1kx processor, and GPS; i.e., the at-

tack runtime on these designs (with an average of 123k gates)

is 597.31 seconds. Note that INSIGHT performs inference on

the subgraphs extracted around the key-gate. Thus, the run-

time depends on the subgraph size rather than the design size.

The training time for INSIGHT is: (i) 6 hours for circuit library-

based training, (ii) 36 hours for samples generated using data

augmentation, and (iii) 8 hours for semi-supervised learning.

These numbers (training and attack runtime) show that an

attacker in the foundry can perform this attack, given that the

time allotted to foundries for fabrication is 3 months [16].

5.4 Findings of INSIGHT

• Recall that we embed structural and functional features to

the datasets (§4.2) and convert the key-prediction problem

to inverter/buffer prediction (§4.4). We note that the ex-

plainer attributes higher importance to structural features

than functional features when the key-gate maps to a buffer.

Conversely, higher importance is attributed to functionality,

i.e., gate-type, when the key-gate maps to an inverter.

• In the considered TRLL-locked designs, if the key-gate has

inputs of primary input and key-input, the key-gate maps to

an inverter irrespective of the logic gates in the neighbor-

hood. Similarly, if the output of the key-gate is connected

to a primary output, the key-gate maps to a buffer.

• Logic synthesis is a double-edged sword for the security of

learning resilient locking techniques. While ALMOST uses

adversarial learning to generate synthesis recipes for locked

designs (§2.1), our experiments demonstrate that an attacker

can use logic synthesis to reduce the security guarantees

through tailored graph transformations (Table 4).

Table 9: Efficacy (KPA (%)) of INSIGHT on practical designs

locked using Synopsys TestMAX (|K| = 128).

Design #gates TRLL [24] TRLL+ [35]

Google IBEX 17,764 99.22 99.22

Stanford MIPS 23,511 97.65 99.22

DARPA CEP GPS 193,141 99.22 99.22

mor1kx 158,265 99.22 96.87

Average – 98.82 98.63

Table 10: Efficacy (KPA (%)) of INSIGHT on practical designs

locked using TroMUX [37].

Design #gates Key-size (|K|) KPA (%)

AES 16,509 1,202 86.94

SEED 12,682 1,612 80.64

SPARX 8,146 2,582 99.07

Camellia 6,710 1,271 94.02

CAST 12,682 1,572 80.41

TDEA 2,269 214 99.53

PRESENT 868 241 87.55

openMSP430 5,921 543 84.89

Average – 1,155 89.13

5.5 Security Evaluation on Practical Designs

We evaluate the security of practical designs locked us-

ing TroMUX [37] and Synopsys TestMAX. For TroMUX, we

launch attacks on 7 locked crypto cores and microcon-

troller [72] for varying key-sizes. On average, we achieve

a KPA of 89.13% (Table 10). TRLL and TRLL+ are integrated

into an industry-adopted and widely used semiconductor EDA

tool, Synopsys TestMAX. We evaluate the security of proces-

sors and GPS locked using TRLL and TRLL+ (Table 9). On

average, INSIGHT achieves a KPA of 98.82% and 98.63%,

highlighting that it (i) can successfully recover the secret keys

from practical designs locked using industry-adopted locking

techniques and (ii) is scalable w.r.t. design size and key-sizes.

5.6 Ramifications of Leaking Secret Key

We showcase the ramifications of leaking the secret key using

an image processing application (hardware implementation

of Gaussian blurring [79]) as follows. We lock the 16-bit

adders in the hardware implementation with |K| = 16 using

TRLL [24]. Subsequently, we launch INSIGHT and OMLA [31]

to recover the secret key of the locked adders. INSIGHT recov-

ers 93.75% of the secret key, while OMLA recovers only 50%

of the secret key. Next, we evaluated the functionality of the

recovered design by simulating the image processing module

with adders recovered by INSIGHT and OMLA. For example,

consider the image in Figure 8 (a) as input. The output of

the design recovered by INSIGHT (Figure 8 (c)) is similar

to the original output (Figure 8 (b)). However, the output of

the design recovered by OMLA (Figure 8 (d)) is completely

different from the original output (Figure 8 (b)). This case

study shows that by using INSIGHT, an attacker can cause a

102 33rd USENIX Security Symposium USENIX Association

practical attack by recovering the secret key.

(a) (b) (c) (d)

Figure 8: Gaussian blurring example. (a) input image, (b) out-

put (golden) image, (c) output image recovered by INSIGHT,

and (d) output image recovered by OMLA [31].

6 Related Work and Discussion

To the best of our knowledge, INSIGHT is the first to use

explainable machine learning (ML) to develop a successful

attack in semiconductor supply chain security. Here, we dis-

cuss (i) different hardware IP protections and attacks, (ii) the

actionability of INSIGHT, and (iii) potential countermeasures.

6.1 Hardware IP Protections and Attacks

FuncTeller [80] proposed an oracle-guided attack on em-

bedded field programmable gate array (eFPGA)-based hard-

ware redaction and recovered the approximate functionality

of eFPGA-redacted components using logic synthesis princi-

ples and querying input/output pairs from an oracle. Chho-

taray et al. [10] introduced a formal syntax for design-hiding

schemes to protect design IPs against reverse-engineering

attacks. Han et al. [9] proposed an oracle-guided attack re-

covering the secret key in selected corrupt-and-correct-based

locking techniques. It leverages logic synthesis principles

utilized in IC design tools to recover the secret key. Yasin

et al. [8] proposed the first-of-its-kind provably-secure logic

locking technique, providing quantifiable resilience against

oracle-guided attacks and removal attacks. The security guar-

antees of [8] were broken by Han et al. [9]. Massad et al. [12]

proposed an oracle-guided attack on IC camouflaging. The

attack employed an SAT solver to compute discriminating

set of input patterns to recover the Boolean functionality of

the camouflaged logic gates. Rajendran et al. [11] proposed

an IC camouflaging-based defense technique considering an

oracle-guided threat model. It strategically selects logic gates

(to be camouflaged) by leveraging VLSI/IC testing principles

to thwart reverse-engineering. This technique was broken

by Massad et al. [12]. Imeson et al. [7] proposed a split

manufacturing-based defense technique that thwarts oracle-

less attacks from untrusted foundry and leveraged 3D IC

technology to obfuscate security-critical wires in designs.

In contrast, INSIGHT: (i) is an explainability-guided at-

tack that employs explainable GNN, (ii) attacks learning re-

silient logic locking techniques, (iii) provides explanations,

and (iv) is an oracle-less attack.

6.2 Actionability from INSIGHT

INSIGHT provides explanations in terms of importance scores

for the (i) nodes in the neighborhood of key-gate and (ii) fea-

tures responsible for predictions (§4.4). Hardware designers

can understand these explanations as they are just numbers

(Appendix A.1). However, the actionability of explanations

from INSIGHT varies with the level of expertise (beginner,

intermediate, and advanced) in ML/GNNs. Next, we describe

the actionability of the explanations in enhancing the attack

and locking technique w.r.t. expertise in ML/GNNs.

Hardware designers with a beginner’s knowledge of

ML/GNN can interpret the important nodes or features in

the subgraph extracted around key-gates based on importance

scores. Through this information, a designer can protect the

important nodes and features, as showcased in §6.3. Hardware

designers with an intermediate knowledge of ML/GNN can

modify the problem modeling of INSIGHT by analyzing the

importance scores of nodes/features across different data sam-

ples, i.e., subgraphs extracted around different key-gates. For

instance, we modified the problem modeling by analyzing the

explanations from INSIGHT (§4.4). Similarly, a designer can

modify the locking technique by obtaining the global reason

behind the success of the attack by analyzing explanations.

Hardware designers with advanced knowledge of ML/GNN

can map explanations provided by INSIGHT to the working of

the GNN model. For instance, we modified the architecture

of GNN by analyzing explanations (§4.5). Moreover, with

advanced knowledge in ML/GNN, a designer can enhance a

locking technique by performing and analyzing graph pertur-

bations, i.e., analyzing how changes such as locking important

nodes or graph transformations impact the GNN predictions

and performance of INSIGHT.

6.3 Limitations and Countermeasures

Limitations. INSIGHT could not recover (i) the entire secret

key for many designs, i.e., there remains scope for improve-

ment, and (ii) the key-value in densely locked regions, i.e.,

key-gates surrounded by a majority of locked gates.

Potential countermeasures. INSIGHT uses explainability-

guided GNN-based node classification and recovers a sig-

nificant portion (87.30%) of the secret key of 7 unbroken

locking techniques. Existing ML-based attacks provide KPA

as a result. Although designers can identify which key-gates

are incorrectly predicted using KPA, the metric does not pro-

vide the reasons behind the predictions. Understanding the

reasons behind the predictions will aid designers in strategi-

cally developing countermeasures against ML-based attacks.

INSIGHT provides explanations regarding (i) important nodes

in the neighborhood of key-gate and (ii) important features

responsible for predictions (§4.4). Using these explanations,

we propose 2 potential countermeasures against INSIGHT.

The first direction (CM#1) is a consequence of important

USENIX Association 33rd USENIX Security Symposium 103

Table 11: Efficacy (KPA (%)) of INSIGHT compared to ex-

isting ML-based attacks (OMLA [31] and SCOPE [32]) for

potential countermeasures (CM#1 and CM#2) for |K| = 128.

Design
OMLA [31] SCOPE [32] INSIGHT (This Work)

CM#1 CM#2 CM#1 CM#2 CM#1 CM#2

b14_C 51.51 42.31 32.26 26.98 70.31 68.75

b15_C 51.28 46.46 25.71 26.12 64.84 63.28

b17_C 47.50 49.55 34.09 35.18 67.96 64.84

b20_C 46.15 50.00 35.00 37.09 66.40 63.28

b21_C 55.17 49.32 20.69 28.69 65.62 70.31

b22_C 48.79 50.00 31.17 27.66 65.62 62.50

Average 50.06 47.94 29.82 30.29 66.79 65.49

node explanations provided by explainable GNN. We observe

that the nodes in the neighborhood of the key-gate contribute

with different importance to the prediction. We lock the im-

portant nodes in the neighborhood of the key-gate to thwart

INSIGHT from exploiting hints. To evaluate the efficacy of

CM#1, we launch existing ML-based attacks (OMLA and

SCOPE) and INSIGHT on selected ITC-99 designs (locked

using CM#1) for |K| = 128. INSIGHT obtained a KPA of

66.79%, whereas existing attacks (SCOPE and OMLA) ob-

tained a KPA of 29.82% and 50.06% (Table 11).‡‡

Design tradeoffs. We observe that the number of key-gates in

designs locked using CM#1 increases with the number of im-

portant nodes, leading to higher area and power overheads (Ta-

ble 12). One potential way to reduce the overheads is to lock

the important nodes in an iterative approach (in the descend-

ing order of importance scores). In this approach, important

nodes are locked until the attack (INSIGHT) is thwarted.

The second direction (CM#2) is a consequence of impor-

tant feature explanations returned by explainable GNN. Re-

call that the gate-type feature has higher importance compared

to other features (§4.5). To thwart INSIGHT from exploiting

the gate-type features from the neighborhood of the key-gate,

we perform custom graph transformations in the neighbor-

hood of the key-gates. For example, if the “XNOR” gate-type

feature is of higher importance, we transform the neighbor-

hood of the key-gate so that it does not utilize the“XNOR”

gate. INSIGHT obtained a KPA of 63.83%, whereas exist-

ing attacks OMLA [31] and SCOPE [32] obtained a KPA of

47.94% and 30.29%, as shown in Table 11. In conclusion,

CM#1 and CM#2 decrease the KPA of INSIGHT by 1.32×
and 1.36× compared to targeted locking techniques.

Design tradeoffs. The custom graph transformations result

in higher area and power overheads (Table 12). One potential

way to reduce the overheads is to search for an important

feature (gate-type) iteratively and eliminate the gate-type that

results in higher overheads for custom graph transformations.

‡‡Providing theoretical analysis supporting the robustness (security) of

proposed countermeasures involves delving into the mathematical under-

pinnings of ML/GNN models, an ongoing research in the ML community.

Consequently, providing theoretical evidence against ML/GNN-based attacks

is non-trivial and beyond the scope of the current work.

Table 12: Area, power, and delay overheads (in %) for poten-

tial countermeasures (CM#1 and CM#2).

Design
CM#1 CM#2

Area Power Delay Area Power Delay

b14_C 6.76 14.41 0 14.16 9.42 0.30

b15_C 2.59 13.69 0 10.04 4.32 0.10

b17_C 2.65 7.78 0 10.91 6.11 0

b20_C 2.47 5.31 0 11.55 6.63 0

b21_C 2.11 5.54 0.10 12.53 7.84 0.10

b22_C 0.66 2.39 0.10 10.77 5.96 0.10

Average 2.87 8.19 0.03 11.66 6.71 0.10

7 Conclusion and Ramifications

By harnessing the potential of an explainable graph neu-

ral network (GNN), we developed INSIGHT, which recov-

ers the secret key (without requiring scan access) of 7 un-

broken learning resilient locking techniques, including 2

industry-adopted techniques. We overcame 5 critical chal-

lenges: (i) selecting a suitable explainer, (ii) identifying ex-

ploitable structural hints, (iii) attacking logic-synthesized de-

signs, (iv) tackling unique graph representations, and (v) tack-

ling insufficient training datasets. We showcased the efficacy

of INSIGHT on designs ranging from widely-used academic

benchmarks to processors. INSIGHT achieves an improved

key-prediction accuracy of 2.87×, 1.75×, and 1.67× com-

pared to existing ML-based attacks. Finally, we perform 2

practical case studies showcasing the promise of INSIGHT on

designs locked using Synopsys TestMAX and illustrating the

ramifications of leaking the secret key. Our work highlights

the potential of using explainable GNN, and our developed

solutions can be used for other hardware security problems.

Ramifications. INSIGHT questions the security of learning

resilient locking techniques (including industry-adopted tech-

niques). INSIGHT: (i) acts as a litmus test showcasing the real

efficacy of learning resilient locking techniques, (ii) cautions

developers of locking techniques to remain cognizant of the

fact that attackers can improve attacks by using explanations

from ML/GNN explainers, and (iii) provides explanations,

thereby aiding designers in developing countermeasures.

Ethical Considerations. We highlight that while IN-

SIGHT can be potentially harmful at the hands of a malicious

attacker whose goal is to break a logic locking defense, it is

important to note that logic locking is not yet widely utilized

by IC design companies for hardware IP protection. Our re-

search, therefore, presents a timely opportunity to evaluate

and enhance these techniques, paving the way for a solid and

stable solution before widespread adoption. INSIGHT sheds

light on vulnerabilities in learning resilient locking techniques,

thus encouraging the research on effective countermeasures

against ML/GNN-based attacks. Through this work, we invite

logic-locking developers to work collaboratively with us on

developing learning resilient locking techniques.

104 33rd USENIX Security Symposium USENIX Association

Acknowledgments

We thank the reviewers and Shepherd for providing valuable

and constructive comments toward improving our work.

References

[1] M. LaPedus. What is the cost of fabs and R&D at 22-nm? https://

rb.gy/zmk84x, October 2nd, 2009. [Online; last accessed 8-February-

2024].

[2] E. Kinery. TSMC to up Arizona investment to $40 billion with second

semiconductor chip plant. https://rb.gy/0z4zpd. [Online; last

accessed 8-February-2024].

[3] J. Mark and D. T. Roberts. United States–China semiconductor stand-

off: A supply chain under stress . https://rb.gy/h76yt9, February,

2023. [Online; last accessed 8-February-2024].

[4] FACT SHEET: CHIPS and Science Act Will Lower Costs, Create Jobs,

Strengthen Supply Chains, and Counter China. https://rb.gy/f3

5gpo, August 09, 2022. [Online; last accessed 8-February-2024].

[5] Y. Alkabani et al. Active hardware metering for intellectual property

protection and security. In Proc. USENIX Security Symposium., pp.

1–20, 2007.

[6] M. Rostami et al. A primer on hardware security: Models, methods,

and metrics. Proc. of IEEE, pp. 1283–1295, 2014.

[7] F. Imeson et al. Securing computer hardware using 3d integrated

circuit IC technology and split manufacturing for obfuscation. In Proc.

USENIX Security Symposium, pp. 495–510, 2013.

[8] M. Yasin et al. Provably-secure logic locking: From theory to practice.

In Proc. of the ACM SIGSAC Conference on Computer & Communica-

tions Security, pp. 1601–1618, 2017.

[9] Z. Han et al. Does logic locking work with EDA tools? In Proc.

USENIX Security Symposium, pp. 1055–1072, 2021.

[10] A. Chhotaray and T. Shrimpton. Hardening circuit-design IP against

reverse-engineering attacks. In IEEE Symposium on Security and

Privacy, pp. 1672–1689, 2022.

[11] J. Rajendran et al. Security analysis of integrated circuit camouflaging.

In Proc. of the ACM SIGSAC Conference on Computer & Communica-

tions Security, pp. 709–720, 2013.

[12] M. El Massad et al. Integrated circuit (IC) decamouflaging: Reverse

engineering camouflaged ics within minutes. In Proc. Network and

Distributed System Security Symposium, pp. 1–14, 2015.

[13] Annual Intellectual Property Report to Congress FY2021 . https:

//rb.gy/z70g1k, 2022. [Online; last accessed 8-February-2024].

[14] S. N. Dhanuskodi et al. COUNTERFOIL: Verifying provenance of

integrated circuits using intrinsic package fingerprints and inexpensive

cameras. In Proc. USENIX Security Symposium, pp. 1255–1272, 2020.

[15] K. Yang et al. A2: Analog malicious hardware. In IEEE Symposium

on Security and Privacy, pp. 18–37, 2016.

[16] T. Trippel et al. Icas: An extensible framework for estimating the

susceptibility of IC layouts to additive trojans. In IEEE Symposium on

Security and Privacy, pp. 1742–1759, 2020.

[17] V. Gohil et al. Attrition: Attacking static hardware trojan detection

techniques using reinforcement learning. In Proc. of the ACM SIGSAC

Conference on Computer & Communications Security, pp. 1275–1289,

2022.

[18] C. Horton. US hits back at China over IP theft in chip case. http:

//rb.gy/qhkj3q, December 5th, 2018. [Online; last accessed 8-

February-2024].

[19] D. Alexander. Theft of F-35 design data is helping U.S. adversaries

-Pentagon. http://rb.gy/5uxh3r, 2013. [Online; last accessed

8-February-2024].

[20] J. A. Roy et al. EPIC: Ending piracy of integrated circuits. In Proc.

DATE, pp. 1069–1074, 2008.

[21] R. Jarvis and M. McIntyre. Split Manufacturing Method for Advanced

Semiconductor Circuits, 2007. US Patent 7,195,931.

[22] A. Chakraborty et al. Keynote: A disquisition on logic locking. IEEE

Trans. on Comput.-Aided Design of Integr. Circuits and Syst., pp. 1952–

1972, 2019.

[23] S. Leef. AISS: Automatic Implementation of Secure Silicon. https:

//shorturl.at/QPlNl, 2019. [Online; last accessed 8-February-

2024].

[24] N. Limaye et al. Thwarting all logic locking attacks: Dishonest oracle

with truly random logic locking. IEEE Trans. on Comput.-Aided Design

of Integr. Circuits and Syst., pp. 1740–1753, 2021.

[25] Expanding Domestic Manufacturing of Secure, Custom Chips for De-

fense Needs . http://surl.li/tvcgf, 2021. [Online; last accessed

8-February-2024].

[26] A Cross-layer framework for cost-effective Intellectual Property (IP)

Protection . http://surl.li/tvcfx, February, 2021. [Online; last

accessed 8-February-2024].

[27] A. Cron. EDA Forms the Basis for Designing Secure Systems. http:

//surl.li/tvchc, 2016. [Online; last accessed 8-February-2024].

[28] Trustchain security platform. http://surl.li/tvcho. [Online; last

accessed 2-December-2023].

[29] M. Yasin et al. Trustworthy hardware design: Combinational logic

locking techniques. Springer, 2020.

[30] P. Chakraborty et al. SAIL: Analyzing structural artifacts of logic

locking using machine learning. IEEE Trans. Inf. Forensics Security,

pp. 3828–3842, 2021.

[31] L. Alrahis et al. OMLA: An oracle-less machine learning-based at-

tack on logic locking. IEEE Transactions on Circuits and Systems II:

Express Briefs, pp. 1602–1606, 2021.

[32] A. Alaql et al. SCOPE: Synthesis-based constant propagation attack

on logic locking. IEEE Transactions on Very Large Scale Integration

Systems, pp. 1529–1542, 2021.

[33] L. Alrahis et al. Muxlink: Circumventing learning-resilient mux-

locking using graph neural network-based link prediction. In Proc.

DATE, pp. 694–699, 2022.

[34] D. Sisejkovic et al. Challenging the security of logic locking schemes

in the era of deep learning: A neuroevolutionary approach. J. Emerg.

Technol. Comput. Syst., pp. 1–26, 2021.

[35] N. Limaye et al. Rescue: Resilient, scalable, high-corruption, compact-

key-set locking framework. IEEE Trans. on Comput.-Aided Design of

Integr. Circuits and Syst., pp. 2826–2838, 2023.

[36] A. B. Chowdhury et al. Almost: Adversarial learning to mitigate oracle-

less ml attacks via synthesis tuning. in ACM/IEEE Design Automation

Conference, 2023.

[37] F. Wang et al. Security closure of IC layouts against hardware trojans.

In Proceedings of the International Symposium on Physical Design, pp.

229–237, 2023.

[38] L. Alrahis et al. UNSAIL: Thwarting oracle-less machine learning

attacks on logic locking. IEEE Trans. Inf. Forensics Security, pp.

2508–2523, 2021.

[39] G. Severi et al. Explanation-Guided backdoor poisoning attacks against

malware classifiers. In Proc. USENIX Security Symposium, pp. 1487–

1504, 2021.

[40] A. Kuppa et al. Adversarial XAI methods in cybersecurity. IEEE Trans.

Inf. Forens. Sec., pp. 4924–4938, 2021.

[41] L. Yang et al. CADE: Detecting and explaining concept drift samples

for security applications. In Proc. USENIX Security Symposium, pp.

2327–2344, 2021.

USENIX Association 33rd USENIX Security Symposium 105

https://rb.gy/zmk84x
https://rb.gy/zmk84x
https://rb.gy/0z4zpd
https://rb.gy/h76yt9
https://rb.gy/f35gpo
https://rb.gy/f35gpo
https://rb.gy/z70g1k
https://rb.gy/z70g1k
http://rb.gy/qhkj3q
http://rb.gy/qhkj3q
http://rb.gy/5uxh3r
https://shorturl.at/QPlNl
https://shorturl.at/QPlNl
http://surl.li/tvcgf
http://surl.li/tvcfx
http://surl.li/tvchc
http://surl.li/tvchc
http://surl.li/tvcho

[42] X. Zhao et al. Exploiting explanations for model inversion attacks. In

IEEE/CVF International Conference on Computer Vision, pp. 662–672,

2021.

[43] T. Zebin et al. An explainable AI-based intrusion detection system for

dns over https (doh) attacks. IEEE Trans. Inf. Forensics Security, pp.

2339–2349, 2022.

[44] Z. Yang et al. Versatile multi-stage graph neural network for circuit

representation. Advances in Neural Information Processing Systems,

pp. 20313–20324, 2022.

[45] Y. Zhang et al. Grannite: Graph neural network inference for transfer-

able power estimation. In ACM/IEEE Design Automation Conference,

pp. 1–6, 2020.

[46] Opencores educational 16-bit MIPS processor. https://shorturl.a

t/DaJa5, 2013. [Online; last accessed 8-February-2024].

[47] Ibex RISC-V Core. https://encr.pw/FEROu, 2022. [Online; last

accessed 8-February-2024].

[48] CEP v2.0 Security Evaluation Targets. https://github.com/mit-l

l/CEP, 2019. [Online; accessed 8-February-2024].

[49] mor1kx - an OpenRISC processor IP core. https://shorturl.at/

GnoNM, 2022. [Online; last accessed 8-February-2024].

[50] Synopsys TestMAX . https://l1nq.com/ZGOke. [Online; accessed

8-February-2024].

[51] N. Kavand et al. Securing hardware through reconfigurable nano-

structures. In Proceedings of IEEE/ACM International Conference on

Computer-Aided Design, pp. 1–7, 2022.

[52] S. D. Chowdhury et al. SimLL: Similarity-based logic locking against

machine learning attacks. In ACM/IEEE Design Automation Confer-

ence, pp. 1–6, 2023.

[53] M. Réau et al. Deeprank-gnn: a graph neural network framework to

learn patterns in protein–protein interfaces. Bioinformatics, 2023.

[54] X. Xia et al. Self-supervised hypergraph convolutional networks for

session-based recommendation. In Proc. of the AAAI Conf. on Artificial

Intelligence, pp. 4503–4511, 2021.

[55] C. Huang et al. Knowledge-aware coupled graph neural network for so-

cial recommendation. Proceedings of the AAAI Conference on Artificial

Intelligence, pp. 4115–4122, 2021.

[56] W. Song et al. Deepmem: Learning graph neural network models for

fast and robust memory forensic analysis. In Proc. of the ACM SIGSAC

Conference on Computer & Communications Security, pp. 606–618,

2018.

[57] M. Shen et al. Accurate decentralized application identification via

encrypted traffic analysis using graph neural networks. IEEE Trans.

Inf. Forens. Sec., pp. 2367–2380, 2021.

[58] M. Hachman. Chip shortages will continue until 2023. https://rb

.gy/24e9bl, 2022. [Online; last accessed 8-February-2024].

[59] Securing Defense-Critical Supply Chains. https://rb.gy/3te29x,

February 2022. [Online; last accessed 8-February-2024].

[60] The most cost-effective way to get critical analysis. https://rb.gy/

ef0whi.

[61] K. Z. Azar et al. From cryptography to logic locking: A survey on the

architecture evolution of secure scan chains. IEEE Access, 9:73133–

73151, 2021.

[62] M. E. Massad et al. Logic locking for secure outsourced chip fabri-

cation: A new attack and provably secure defense mechanism. arXiv

preprint arXiv:1703.10187, 2017.

[63] A. Kerckhoffs. La cryptographie militaire. Journal des Sciences

Militaires, pp. 161–191, 1883.

[64] K. Xu et al. How powerful are graph neural networks? arXiv preprint

arXiv:1810.00826, 2018.

[65] Z. Ying et al. Gnnexplainer: Generating explanations for graph neural

networks. In Advances in Neural Information Processing Systems,

volume 32, 2019.

[66] H. Yuan et al. On explainability of graph neural networks via sub-

graph explorations. In Proceedings of the International Conference on

Machine Learning, pp. 12241–12252, 2021.

[67] T. Funke et al. Zorro: Valid, sparse, and stable explanations in graph

neural networks. IEEE Transactions on Knowledge & Data Engi-

neering, pp. 8687–8698, aug 2023.

[68] D. Luo et al. Parameterized explainer for graph neural network. In

Proceedings of the International Conference on Neural Information

Processing Systems, 2020.

[69] H. Yuan et al. Explainability in graph neural networks: A taxonomic

survey. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, pp. 5782–5799, 2023.

[70] P. Veličković et al. Graph Attention Networks. International Confer-

ence on Learning Representations, 2018.

[71] R. Saleh et al. System-on-chip: Reuse and integration. Proceedings of

the IEEE, 94(6):1050–1069, 2006.

[72] F. Wang et al. Baseline and protected layouts. https://rb.gy/t5g4

0y, 2022. [Online; last accessed 8-February-2024].

[73] L. Alrahis et al. Reference benchmarks for UNSAIL locking. https:

//rb.gy/ghgph6, 2020. [Online; last accessed 8-February-2024].

[74] M. C. Hansen et al. Unveiling the ISCAS-85 Benchmarks: A Case

Study in Reverse Engineering. IEEE Design and Test of Computers,

16(3):72–80, 1999.

[75] S. Davidson. Notes on ITC’99 Benchmarks. https://tinyurl.com/

2fdhx4ns, 1999. [Online; last accessed 8-February-2024].

[76] L. Amarú et al. The EPFL combinational benchmark suite. In Proc. of

International Workshop on Logic & Synthesis, 2015.

[77] S. Takeshi et al. Asic performance comparison for the iso standard

block ciphers. In Joint Workshop on Information Security, pp. 485–498,

2007.

[78] OpenCores. Opencores. 16-bit openmsp430 microcontroller. https:

//encr.pw/3VeTy, 2021. [Online; last accessed 8-February-2024].

[79] D. Doy. Fpga image processing. https://l1nq.com/rohjG, 2019.

[Online; last accessed 8-February-2024].

[80] Z. Han et al. Functeller: how well does efpga hide functionality? In

Proc. USENIX Security Symposium, 2023.

[81] Z. Wu et al. A comprehensive survey on graph neural networks. IEEE

Transactions on Neural Networks and Learning Systems, 32(1):4–24,

January 2021.

[82] P. A. Ruetz. The architectures and design of a 20-mhz real-time dsp

chip set. IEEE Journal of Solid-State Circuits, pp. 338–348, 1989.

A Appendix

A.1 GNNExplainer

High-level overview. GNNExplainer is a model-agnostic ex-

plainable GNN that provides explanations for predictions

made by a GNN model on graph-based machine learning tasks

(e.g., node classification, link prediction). GNNExplainer

takes the following inputs: (i) graph, (ii) features of the graph,

(iii) prediction of the graph, and (iv) trained GNN model.

In the context of INSIGHT, the (i) input graph refers to an

extracted subgraph, i.e., logic gates in the neighborhood of

106 33rd USENIX Security Symposium USENIX Association

https://shorturl.at/DaJa5
https://shorturl.at/DaJa5
https://encr.pw/FEROu
https://github.com/mit-ll/CEP
https://github.com/mit-ll/CEP
https://shorturl.at/GnoNM
https://shorturl.at/GnoNM
https://l1nq.com/ZGOke
https://rb.gy/24e9bl
https://rb.gy/24e9bl
https://rb.gy/3te29x
https://rb.gy/ef0whi
https://rb.gy/ef0whi
https://rb.gy/t5g40y
https://rb.gy/t5g40y
https://rb.gy/ghgph6
https://rb.gy/ghgph6
https://tinyurl.com/2fdhx4ns
https://tinyurl.com/2fdhx4ns
https://encr.pw/3VeTy
https://encr.pw/3VeTy
https://l1nq.com/rohjG

key-gates, (ii) features correspond to functionality/structure-

based features extracted for the logic gates in the subgraph,

(iii) prediction of the graph is an INV/BUF prediction, and

(iv) trained GNN model refers to attention-based GNN trained

on the training dataset (§4.4 and §4.5).

GNNExplainer provides explanations in terms of impor-

tance scores for nodes and features for a given graph. Consider

an input (sub)graph G′, its corresponding features X ′, a trained

GNN model TGNN , and the prediction y= TGNN(G
′). GNNEx-

plainer generates an explanation (G
′

S,X
′F
S), where G

′

S ⊆ G′

is the (important) neighborhood in the input graph G′. X ′
S

represents the features of G′
S, whereas X

′F
S represents the set

of features masked by the mask F , i.e., X
′F
S = {x

′F
i | vi ∈ G′

S}.

The importance scores of nodes and features are real numbers

in the range of (0,1), with higher scores indicating greater

importance of the respective node or feature.

Methodology of GNNExplainer. The importance scores are

calculated using mutual information (MI), and GNNExplainer

is formalized as an optimization framework, where H refers

to entropy and Y refers to predicted label distribution:

max
G′

S

MI(Y,(G′
S,X

′
S)) = H(Y)−H(Y | G′ = G′

S,X
′ = X ′

S). (1)

For a given (sub)graph G′, MI measures how much the proba-

bility of predicting y changes when the (sub)graph is restricted

to G′
S and its features are restricted to X ′

S. For example, if re-

moving vi from G′ decreases the probability of prediction

y with a large value, the node vi is a good explanation, i.e.,

an important node in (sub)graph G′. The entropy H(Y) in

Equation 1 is constant as TGNN is fixed for a given trained

GNN. Thus, maximizing mutual information between the pre-

dicted label distribution Y and explanation (G′
S,X

′
S) is similar

to minimizing conditional entropy H(Y | G′ = G′
S,X

′ = X ′
S),

which can be expressed as follows:

H(Y |G′=G′
S,X

′=X ′
S)=−EY |G′

S,X
′
S
[logPTGNN

(Y |G′=G′
S,X

′=X ′
S)].

(2)

where E is the expected value and PTGNN
represents the proba-

bility of the trained GNN model TGNN in predicting Y , given

that G′ is restricted to G′
S and X ′ is restricted to X ′

S.

Thus, the explanation for prediction y is a subgraph G′
S that

minimizes the uncertainty of TGNN when the GNN inference/-

computation is limited to G′
S. In simpler terms, the subgraph

G′
S is selected to optimize the understanding of how the GNN

arrives at its prediction when focusing only on a subset of

(sub)graph G′, i.e., G′
S and the subset of features (X ′

S).

Training process. GNNExplainer has no training process. It

provides explanations for the predictions made by GNNs.

Nature of outputs. The explanations are real numbers in the

range of (0,1).

A.2 Integration of INSIGHT

INSIGHT can be integrated with existing X(N)OR/MUX-

based logic locking techniques, including the 7 learning re-

silient locking techniques targeted in our work. Next, we

discuss the feasibility of integrating INSIGHT with existing

locking techniques, focusing on the (i) format of the locked de-

signs compatible with INSIGHT, (ii) additional steps required

to be performed on the locked designs, and (iii) software

requirements for installing INSIGHT.

Compatible locking techniques. INSIGHT is compatible with

X(N)OR/MUX-based locking techniques. For instance, in

our work, we showcased the compatibility of INSIGHT with

existing X(N)OR-based and MUX-based locking techniques.

Format of locked designs. INSIGHT is compatible with gate-

level designs in the Verilog format, mapped to a technology

library. Such a format (technology-mapped Verilog designs)

is widely adopted in academic research and semiconductor

industries for hardware design.

Additional steps. INSIGHT requires no additional steps for

locked designs in Verilog format. INSIGHT converts the Ver-

ilog designs to graph format and performs explainability-

guided GNN-based node classification and post-processing to

recover the secret key (§4.7). However, users must manually

analyze the explanations provided by INSIGHT to enhance the

attack or improve the logic locking technique.

Software requirements. INSIGHT is tested on 2 Linux operat-

ing systems (Ubuntu and RedHat). The software requirements

are minimal, and INSIGHT requires Python 3.7, Pytorch 1.7.0,

and installation of standard Python packages (e.g., networkx,

gensim, scikit-learn, and numpy).

Example of integration of INSIGHT with existing locking

technique. Consider an example of attacking designs locked

using the SimLL technique [52]. SimLL-locked designs, open-

sourced by the authors, are provided in BENCH format [52].

To ensure compatibility with INSIGHT, we convert the SimLL-

locked designs from BENCH format to technology-mapped

gate-level designs in Verilog format. Such a conversion is per-

formed using a custom Python script. Next, we perform graph

transformations, i.e., logic synthesis on the locked designs

to transform the MUX-based key-gates into Boolean logic

gates. Finally, we provide the synthesized locked designs to

INSIGHT to obtain predictions and explanations.

A.3 Computational complexity of INSIGHT

The computational complexity of the final architecture of

INSIGHT (§4.7) depends on the time complexity of the sub-

graph extraction, feature extraction, commercial logic synthe-

sis tools utilized for graph transformations, attention-based

GNN inference, and GNNExplainer. The subgraph extraction

step obtains the subgraph G′(V ′
,E ′) comprising the neigh-

bors of the target node, i.e., key-gate for a hop-size of r from

graph G(V,E). The time complexity of extracting neighbors is

O(|V |+ |E|), where |V | (|E|) is the number of nodes (edges)

in the graph G(V,E). The feature extraction step includes

extraction of (i) gate-type, (ii) input degree of the nodes in

the subgraph, (iii) distance of the nodes in the subgraph from

USENIX Association 33rd USENIX Security Symposium 107

Table 13: Efficacy (KPA (%)) of INSIGHT on TRLL-locked

designs synthesized with two different synthesis recipes.

Design Setting_A Setting_B

b14_C 79.64 79.54

b15_C 78.90 80.91

b17_C 81.98 80.83

b20_C 80.10 80.12

b21_C 81.45 80.88

b22_C 77.51 78.11

Average 79.93 80.05

the key-gate (DE), and (iv) a (+/-) sign indicating if the node

is in fan-in/fan-out of the key-gate. The time complexity of

extracting (i) gate-type is O(1), (ii) input degree is O(|E ′|),
(iii) DE is O(1), and (iv) sign is O(1). The time complexity of

the attention-based GNN is O(|E ′|) [81] for a sparse subgraph

and O(|V ′|2) for a dense subgraph, where |V ′| (|E ′|) denotes

the number of nodes (edges) in the subgraph G′(V ′
,E ′). The

time complexity of GNNExplainer is O(|E ′|) [68].

Deriving the time complexity of graph transformations is

non-trivial due to the closed-source commercial logic synthe-

sis algorithms, whose complexities are unknown. However,

the practical runtime required for the graph transformations

is an average of 30 minutes, making the graph transformation

step extremely efficient.

A.4 INSIGHT: Additional Results

(a) (b)

Figure 9: Impact of (a) key-size and (b) design size on IN-

SIGHT runtime for IBEX, mor1kx, and GPS designs.

Effect of architecture. The learning resilient locking tech-

niques offer protection against hardware IP piracy for various

design types, including arithmetic designs and controllers.

Next, we analyze the security of two widely-used classes of

designs, i.e., arithmetic designs and controllers.

Arithmetic designs. We choose different architectures of

widely-used and prevalent arithmetic designs (multipliers,

log2, square-root, square, and adders) and lock them using

TRLL. We adopt the standard leave-one-out training approach,

i.e., when attacking a locked multiplier (adder), we train the

GNN using the remaining locked multipliers (adders).

Multipliers. We choose three multiplier architectures

(Wallace-tree, Booth, and array) used in digital signal process-

ing applications [82]. The architectures have average KPA of

82.42%, 96.48%, and 99.22%, respectively (Table 14).

Adders. We choose three adder architectures (ripple carry,

Table 14: Efficacy (KPA (%)) of INSIGHT on architectures of

adders and multipliers locked using TRLL [24] for |K| = 128.

Adder Bit-width KPA (%)

Kogge-stone
64

128

95.31

99.22

Carry-skip
64

128

99.22

99.22

Ripple carry
64

128

99.22

93.75

Average
–

–

97.92

97.39

Multiplier Bit-width KPA (%)

Booth
64

128

75.00

89.84

Wallace-tree
64

128

99.22

93.75

Array
64

128

99.22

99.22

Average
–

–

91.15

94.27

carry-skip, and kogge-stone). The architectures have an aver-

age KPA of 97.26%, 99.22%, and 96.48% (Table 14).

Log2. We choose two log2 architectures (binary search and

Newton-Raphson). We observe both architectures having a

comparable KPA, i.e., 99.22% for binary search architecture

and 98.44% for Newton-Raphson architecture (Table 15).

Square-root. We choose two square-root architectures (non-

restoring and Newton-Raphson). We observe both archi-

tectures having a comparable KPA, i.e., 96.09% for non-

restoring architecture and 99.22% for Newton-Raphson archi-

tecture (Table 15).

Square. We choose three architectures (Wallace-tree, Booth,

and array). We observe that Booth multiplier-based square de-

sign has a comparatively lower KPA (90.62%) than other de-

signs, i.e., 99.22% for array-based square design and 98.44%

for Wallace-tree-based square design (Table 15).

Controllers. We choose four controllers from the EPFL

benchmark suite [76] (Table 16). We observe an average KPA

of 99.02%, indicating that INSIGHT exploits the structural

hints in the hardware implementation of the aforementioned

controllers when locked using TRLL.

Table 15: Efficacy (KPA (%)) of INSIGHT on log2, square-

root, and square locked using TRLL [24] for |K| = 128.

Design Architecture KPA (%)

Log2
Binary search 99.22

Newton-Raphson 98.44

Square-root
Non-restoring 96.09

Newton-Raphson 99.22

Square

Array 99.22

Booth 90.62

Wallace-tree 98.44

Table 16: Efficacy (KPA (%)) of INSIGHT on controllers [76]

locked using TRLL [24] for |K| = 128.

Design KPA (%)

mem_ctrl 99.22

voter 99.22

i2c 98.44

arbiter 99.22

Average 99.02

l000 .,-----T:.:R.::L:::L_,(:::Effc_:e::,c:,:t_,:oc,__f _::Kesy!'..:-~si'.=zes)~ l000 .,----c.:..:.::===~~~~~~~~~~~:;"

F

500

64 128

Key-size

~IBEX

-- morlkx

GPS

256

500

IBEX morlkx

Designs
GPS

108 33rd USENIX Security Symposium USENIX Association

	Introduction
	Security Threats in IC Supply Chain
	Hardware IP Piracy
	Logic Locking for Hardware IP Protection
	ML-based Attacks on Logic Locking
	Our Goals and Contributions

	Background and Preliminaries
	ML-attack Resilient Logic Locking
	Existing ML Attacks on Logic Locking
	Limitations of Existing Attacks
	(Explainable) Graph Neural Networks

	Threat Model
	Insight
	Why Explainable ML/GNN?
	Problem Modeling
	Selecting A Suitable Explainer
	Identifying Structural Hints
	Attacking Logic Synthesized Designs
	Lack (or Scarcity) of Training Data
	Final Architecture (Putting it all Together)

	Results
	Experimental Setup
	Evaluation of Locking Techniques
	Analysis of Insight
	Findings of Insight
	Security Evaluation on Practical Designs
	Ramifications of Leaking Secret Key

	Related Work and Discussion
	Hardware IP Protections and Attacks
	Actionability from Insight
	Limitations and Countermeasures

	Conclusion and Ramifications
	Appendix
	GNNExplainer
	Integration of Insight
	Computational complexity of Insight
	Insight: Additional Results

