
This paper is included in the Proceedings of the 
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the 
33rd USENIX Security Symposium 

is sponsored by USENIX.

FEASE: Fast and Expressive Asymmetric 
Searchable Encryption

Long Meng, Liqun Chen, and Yangguang Tian, University of Surrey; Mark Manulis, 
Universität der Bundeswehr München; Suhui Liu, Southeast University

https://www.usenix.org/conference/usenixsecurity24/presentation/meng



FEASE: Fast and Expressive Asymmetric Searchable Encryption

Long Meng
University of Surrey

long.meng@surrey.ac.uk

Liqun Chen
University of Surrey

liqun.chen@surrey.ac.uk

Yangguang Tian
University of Surrey

yangguang.tian@surrey.ac.uk

Mark Manulis
Universität der Bundeswehr München

mark.manulis@unibw.de

Suhui Liu
Southeast University

230219091@seu.edu.cn

Abstract
Asymmetric Searchable Encryption (ASE) is a promising
cryptographic mechanism that enables a semi-trusted cloud
server to perform keyword searches over encrypted data for
users. To be useful, an ASE scheme must support expressive
search queries, which are expressed as conjunction, disjunc-
tion, or any Boolean formulas. In this paper, we propose a fast
and expressive ASE scheme that is adaptively secure, called
FEASE. It requires only 3 pairing operations for searching any
conjunctive set of keywords independent of the set size and
has linear complexity for encryption and trapdoor algorithms
in the number of keywords.

FEASE is based on a new fast Anonymous Key-Policy
Attribute-Based Encryption (A-KP-ABE) scheme as our first
proposal, which is of independent interest. To address optional
protection against keyword guessing attacks, we extend
FEASE into the first expressive Public-Key Authenticated
Encryption with Keyword Search (PAEKS) scheme.

We provide implementations and evaluate the performance
of all three schemes, while also comparing them with the state
of the art. We observe that FEASE outperforms all existing
expressive ASE constructions and that our A-KP-ABE scheme
offers anonymity with efficiency comparable to the currently
fastest yet non-anonymous KP-ABE schemes FAME (ACM
CCS 2017) and FABEO (ACM CCS 2022).

1 Introduction

Outsourcing data storage to third-party providers offers an effi-
cient way for clients with limited resources or expertise to man-
age and disseminate large volumes of encrypted data. However,
traditional public or private key encryption methods hinder the
ability to selectively retrieve specific data segments. To address
this limitation, Searchable Encryption (SE) emerges as a cryp-
tographic solution [15, 52]. SE empowers a user to securely
outsource data to a server in an encrypted form and perform
search operations on the data without revealing the plaintext to
the server. SE finds diverse applications including cloud stor-

age, secure messaging and email, healthcare, finance, academic
and research databases, Internet of Things security, and more.

SE can be classified into two categories: Symmetric
Searchable Encryption (SSE) [26, 55] and Asymmetric
Searchable Encryption (ASE) [13]. In SSE, a user employs
a secret key to encrypt a set of documents and keywords and
uploads the resulting ciphertext to a cloud server. Later, the
same secret key is used to generate a trapdoor for a specific
search query containing one or more keywords. This trapdoor
is sent to the server, which matches it with the ciphertext and
returns the searched documents. In ASE, the distinction lies
in that a data sender encrypts the document and keywords by
using a public key and a data receiver subsequently generates
the trapdoor by using the corresponding secret key.

A related field known as "Stream Encryption with Pattern
Matching" (SEPM) [16, 17, 22], has emerged in recent years.
SEPM achieves functionalities similar to traditional SE but
is tailored for searching patterns 1 within encrypted streams.
This means that data senders only need to encrypt data streams,
eliminating the need for encrypting a keyword set as indexes.
SEPM schemes share a similar syntax with ASE schemes
that are usually constructed in a public-key setting. They find
valuable applications in fields such as deep packet inspection,
genomic data, medical data analysis, and more.

It is widely recognized that SSE offers high efficiency and
has been extensively studied for its dynamic capabilities [33],
allowing for efficient addition and deletion of keywords
or documents in the encrypted dataset. ASE simplifies
key management, offering strong security arguments and
flexibility that can be extended to facilitate fine-grained
access control on data receivers [61]. SEPM shares similar
advantages with ASE but stands out for its capabilities for
searching patterns instead of exact keywords 2. In this paper,
our focus is on ASE schemes, which find practical applications
in various fields such as cloud storage [44], email filtering [13],
cloud-based healthcare [21], smart grids [60], etc.

1E.g., a pattern “ab**cd” means any 6-character string with the first two
letters “ab” and the last two letters “cd”.

2A comparison for these three fields is given in our full version [43].
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When designing an ASE scheme, the expressiveness of
keyword search queries is usually considered a critical aspect.
A search query is called expressive if contained keywords can
be represented as a conjunctive, disjunctive, or any monotonic
Boolean formula. For example, in the email filtering use
case [13], a typical search query may be: “(Sender: Tom AND
Subject: Rent) OR Priority: Urgent”, which asks the email
server to return emails sent from Tom with the subject “Rent”,
or emails with an “urgent” priority.

The efficiency of an ASE scheme is also crucial in
large-scale applications. For an ASE scheme to be efficient, the
communication overhead and computational overhead must
be small. For instance, in a cloud-based healthcare system [21],
a slow ASE scheme can delay access to critical patient infor-
mation, which can lead to serious consequences. In the email
filtering use case [13], an inefficient ASE scheme can result
in slower email retrieval time, the requirement of more storage
space, and thus higher resource utilization and higher costs.

In the literature, we observe that most of the ex-
isting ASE schemes that support expressive search
queries [21, 37, 42, 44, 53, 57] are derived from Anonymous
Key-Policy Attribute-Based Encryption (A-KP-ABE)
schemes. Informally, Attribute-Based Encryption (ABE) is
a form of public-key encryption enabling fine-grained access
control. In ABE, ciphertexts and secret keys are linked to sets
of attributes, and access policies specify which attributes are
required for decryption. Typically, ABE schemes use linear
secret-sharing techniques [6] to support expressive access poli-
cies. In a Key-Policy ABE (KP-ABE) scheme, a data sender
encrypts a message with an attribute set S to create a ciphertext
ct, and each data receiver owns a secret key sk tied to an access
structureA. The decryption is successful only ifS in ct satisfies
A in sk. However, KP-ABE prioritizes message privacy over
attribute privacy. This is inadequate for applications where
attributes, such as those in healthcare and E-commerce, contain
sensitive information. To address this, A-KP-ABE schemes are
developed to conceal attribute information within the cipher-
text. Due to the similarity in syntax, expressiveness, and secu-
rity properties, an A-KP-ABE scheme can be transformed into
an expressive ASE scheme by treating attributes as keywords 3.

Nevertheless, existing expressive ASE schemes [21, 34, 37,
42, 44, 53, 57] suffer from significant drawbacks. The scheme
in [34], based on inner-product encryption, experiences a
superpolynomial blowup in both ciphertext and trapdoor
size. The schemes in [37] and [42], relying on bilinear
pairings over composite-order groups, are highly inefficient.
Expressive ASE schemes proposed in prime-order groups,
such as [21, 44, 53, 57], offer better efficiency than [37, 42].
Unfortunately, these schemes suffer from either insecure
constructions that are vulnerable to attacks or intricate designs
leading to inefficiency 4. These limitations severely restrict

3This is intuitive from the transformation from anonymous IBE to ASE
supporting equality queries [2]. See Sec. 4.2 for details.

4Details of the literature are given in Sec. 2.1.

their practicality in real-world applications. Given these
challenges, a natural question arises: Can we construct a fast
and expressive ASE scheme by initially constructing a fast and
expressive A-KP-ABE scheme?

Continuing our research on ASE security. Typically,
an ASE scheme is designed to achieve semantic security,
protecting the privacy of the keyword sets encrypted within the
ciphertext. This property, referred to as Indistinguishability
against Chosen Keyword Attacks (IND-CKA), is foundational.
However, this property does not guarantee the confidentiality
of keywords in a trapdoor. Research has revealed a vulnera-
bility in ASE schemes known as Keyword Guessing Attacks
(KGA) [18]. In this scenario, a cloud server acting as an
adversary can generate ciphertext for every possible keyword
and test if it matches a trapdoor. If the number of potential
keywords is polynomially bounded, the adversary can deduce
the keyword hidden in the trapdoor. Several approaches have
been proposed to counter such attacks, such as fuzzy keyword
search [58], designated server [49], dual server [19], registered
keyword search [56], public-key authenticated keyword
search [31], secure-channel free keyword search [5], etc.

Among these countermeasures, Public-key Authenticated
Encryption with Keyword Search (PAEKS) [31] stands out
as a promising technique. The fundamental concept behind
PAEKS is to enable a data sender to encrypt keywords with his
own secret key sks and a data receiver’s public key pkr, while a
data receiver generates a trapdoor by using his own secret key
skr and a data sender’s public key pks. In this case, a PAEKS
scheme is required to simultaneously achieve “Ciphertext In-
distinguishability” 5, and “Trapdoor Indistinguishability (TI)”,
where the latter ensures that a trapdoor does not reveal any key-
word value. Crucially, since the cloud server lacks access to the
secret keys skr and sks, it is unable to generate ciphertext for
keywords and test them, effectively preventing KGA. In the lit-
erature of PAEKS [20,24,31,40,41,45,47,48], we observe that
they only focus on supporting equality search queries and lack
expressiveness. Motivated by the situation,our second question
arises: Can we construct a fast and expressive PAEKS scheme?

Contributions. In summary, we have the following
contributions in this paper:

• We introduce a fast and expressive A-KP-ABE scheme,
serving as the foundation for our research and it is
independent of interest.

• Our primary achievement is to transform our A-KP-ABE
scheme into FEASE – a Fast and Expressive ASE scheme.

• Building upon FEASE, we further extend it to create the
first expressive PAEKS scheme, which is secure under
the state-of-the-art security model 6.

• Our three schemes share the following features:
5CI in PAEKS is similar to IND-CKA in traditional ASE schemes.
6The literature of this model is reviewed in our full version [43]. The detail

of this model is introduced in Sec. 5.3 in the PAEKS field.
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1. They support expressive search queries (or access
policies) that are conjunctive, disjunctive or any
monotonic Boolean formulas.

2. They have a linear complexity for both communica-
tion and computational overhead in the encryption
and trapdoor/key generation algorithm, and require
only 3 pairing operations for searching/decrypting
any conjunctive set of keywords/attributes
independent of the set size.

3. They are constructed in the prime-order group with
the efficient Type-III pairing.

4. They have no restrictions on the size of keywords
(attributes) or policies and allow any arbitrary string
to be used as a keyword (attribute).

5. They satisfy the adaptive security in the generic
group model and random oracle model 7.

• The implementation results show that our three schemes
have almost the same efficiency and achieve the best
performance in their corresponding fields. We stress
that our A-KP-ABE scheme is even comparable to
state-of-the-art non-anonymous KP-ABE schemes
FAME [3] and FABEO [50] in terms of their efficiency.
For 100 keywords/attributes, our schemes run around
0.07s for encryption, 0.24s for trapdoor/key generation,
and 0.012s for searching a conjunctive set of 100
keywords. Compared to FAME, our A-KP-ABE is 2
times faster for key generation and 4 times faster for
encryption. Compared to FABEO, our A-KP-ABE is 0.7
times slower for key generation and 0.1 times slower for
encryption. This shows that anonymity in KP-ABE can
be achieved without noticeable degradation in efficiency.

2 Related work

In this section, we first review the literature on ASE, SSE, and
SEPM and provide a comprehensive comparison between
these three fields. Then we review PAEKS and A-KP-ABE
schemes. Due to the page limit, we only present the literature
of ASE field here. The rest is shown in our full version [43].

2.1 ASE schemes
The concept of ASE traces back to Boneh et al [13]. They
started up the ASE research with the first construction. Subse-
quently, Abdalla et al. [2] formalized ASE consistency and ex-
plored the relationship between ASE and Anonymous Identity-
Based Encryption (AIBE). Several ASE constructions based
on different techniques were proposed later in [7,23,35]. These
ASE schemes primarily supported equality search and lacked
expressiveness. Advancements came with Park et al. [46]

7The use of random oracle is fairly common in many cryptographic
protocols such as Full Domain Hash signatures [8] and OAEP encryption [9].

and Golle et al. [27], who introduced ASE schemes capable
of handling conjunctive search queries. Hwan and Lee [32]
enhanced these schemes, optimizing ciphertext and secret
key sizes and extending the techniques to multi-user scenarios.
Zhang et al. [59] studied the cases where the keyword numbers
in search queries formed subsets of those in ciphertexts. Boneh
and Waters [14] introduced a comprehensive framework for
analyzing and constructing Searchable Public Key Encryption
(S-PKE) schemes, a generalization of ASE, supporting diverse
families of predicates and arbitrary conjunctions.

In 2008, Katz et al. [34] introduced the concept of
Inner-Product Encryption (IPE) that paved the way for the
construction of the first expressive ASE scheme capable of
handling both conjunctive and disjunctive keyword queries.
However, this solution faced a superpolynomial increase in
both ciphertext and trapdoor sizes. Addressing this, Lai et
al. [37] and Lv et al. [42] presented expressive ASE schemes,
ensuring linear complexity in ciphertext size concerning the
number of keywords, which is a significant improvement over
the superpolynomial complexity. Nevertheless, their schemes
relied on inefficient bilinear pairings over composite-order
groups. Though there exist techniques [25] to convert
pairing-based schemes from composite-order groups to
prime-order groups, there is still a significant performance
degradation due to the required size of the special vectors [51].

In 2016, Cui et al. [21] proposed the first expressive ASE
scheme in the prime-order groups that significantly improves
the performance over existing schemes and proves the selec-
tive security of their scheme in the standard model. After that,
Meng et al. [44] improved the construction of [21] to achieve
constant-size ciphertext and seven pairings in the search algo-
rithm without depending on the number of keywords. However,
their scheme has a quadratic trapdoor size O(ℓ2+ℓ) where ℓ
represents the number of keywords in the keyword policy. Ad-
ditionally, this scheme requires all keywords that appeared in
the ciphertext must be a part of the search query, otherwise, the
search will fail. These trade-offs hugely decrease the practical-
ity of their scheme. In 2019, Shen et al. [53] proposed a generic
transformation from an A-KP-ABE scheme to an expressive
ASE scheme, then they proposed an A-KP-ABE scheme and
transformed it into an expressive ASE scheme. Recently, Tseng
et al. [57] proposed a fast A-KP-ABE scheme and transformed
it into an expressive ASE scheme that achieves only two pair-
ings in the search algorithm without depending on the number
of keywords. Unfortunately, the A-KP-ABE schemes in [53]
and [57] bring the construction of KP-ABE schemes from [51]
and [30] respectively with only removing the exposed at-
tributes in the ciphertext. Their constructions do not satisfy
the anonymity of an A-KP-ABE scheme 8. Therefore, [21]
and [44] remain at the forefront of the expressive ASE field.

As shown in Table 1, we compare different features between
our FEASE and PAEKS and other ASE schemes. For expres-

8The reasons are the same as in FABEO, as introduced in Sec. 4.1.
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Scheme Expressiveness Group Pairing KGA Security Universe Efficiency
BCOP04 [13] AND Prime Type I No Full, RO Large -
KSW08 [34] AND, OR Composite - No Sel., STD Small *

LZDLC13 [37] AND, OR Composite - No Full, STD Small **
LHZF14 [42] AND, OR, NOT Composite - No Full, STD Small **

CWDWL16 [21] AND, OR Prime Type I Partial Sel., STD Large ***
MZNLHS17 [44] AND, OR Prime Type III Partial Sel., STD Large ***

FEASE AND, OR Prime Type III No Full, GGM & RO Large ****
Our PAEKS AND, OR Prime Type III Yes Full, GGM & RO Large ****

Table 1: A property-wise comparison of the various ASE schemes for different features. “KGA” represents the security against
the keyword guessing attack, “RO” stands for “Random Oracle”, “STD” stands for “Standard Model”, “GGM” stands for “Generic
Group Model”. The more number of “*”, the better the efficiency (lower running time and communication overhead).

siveness, [13] is the first ASE scheme and it supports only
equality queries, other schemes support at least any monotonic
Boolean formulas 9. For the bilinear pairing group, [34,37,42]
are using composite-order groups, and other schemes are built
on the prime-order group. For pairing type, [13, 21] are using
the Type I pairing, and other schemes are using the faster Type
III pairing. For stronger security requirements, [21, 44] can
partially protect against KGA since they allow a designated
server to perform KGA, and our PAEKS can fully prevent the
KGA from any cloud server. For the security model, [13] is
fully secure under the random oracle model. [37, 42] satisfies
full security under the standard model, while [21, 34, 44] are
selectively secure in the standard model. Our FEASE and
PAEKS are fully secure under the generic group model and ran-
dom oracle model. For the restriction of keyword space, except
from [34, 36, 42], all other schemes support a large universe
of keywords and hence do not need to restrict the number of
keywords in the system. Finally, we rate the level of efficiency
of all the expressive ASE schemes in a qualitative way.

3 Preliminaries

In this section, we define the notation, access structures,
monotone span programs for providing expressiveness, the
partially hidden structure, and hardness assumptions.

3.1 Notation

For integers m, n where m < n, [m, n] denotes the set
m, m+1, ..., n. For m = 1, we simply write [n]. For a prime
p, let Zp denote the set [0, ..., p − 1] where addition and
multiplication are computed modulo p. The set Z∗p is same
as Zp but with 0 removed. Let λ denote the security parameter.

For a set S, s $← S denotes that s is sampled uniformly and
independently at random from S. y←A(x) denotes that y is
the output of running algorithm A on input x with uniformly
random bits. An adversary is a probabilistic algorithm. A

9 [42] supports non-monotonic queries (e.g., ‘’NOT gate’‘) as well.

probabilistic algorithm is called probabilistic polynomial time
(PPT) if its running time is bounded by some polynomial in
the length of its input.

We use bold letters to denote vectors and matrices, with the
former in lowercase and the latter in uppercase. By default,
a vector v is treated as a column vector. vk denotes the k-th
element of v and ∥ denotes concatenation of vectors. Mi and
Mi, j denote the i-th row and the (i, j)-th element of a matrix
M, respectively. We use MT for the transpose of M.

3.2 Access structures
In this paper, access structures and attribute sets, keyword
policy and keyword set are defined in the same way. Below
we only provide the definition of the former set of terms.

Definition 1. Definition 2.1 (Access structure). If U denotes
the universe of attributes, then an access structureA is a collec-
tion of non-empty subsets of U, i.e., A⊆2U\{0}. It is called
monotone if for every B,C⊆U such that B⊆C,B∈A⇒C∈A.

Monotone means that an authorized user who acquires
more attributes will not lose any privileges. A (monotone)
Boolean formula consists of AND and OR gates, where each
input is associated with an attribute in U. A set of attributes
S⊆U satisfies a Boolean formula if we set all inputs of the
formula that map to an attribute in S to true and the others to
false and the formula evaluates to true.

Monotone span programs (MSP) (or linear secret sharing
schemes [6]) are a more general class of functions and
include Boolean formulas. We encode an access structure by
a policy (M, π) where M of size ℓ×n over Zp and a general
mapping function π : {1, ..., ℓ} → U. In [39], Lewko and
Waters describe a simple and efficient method to convert
any (monotone) Boolean formula F into an MSP(M, π)
such that every row of M corresponds to input in F and the
number of columns is same as the number of AND gates in
F . Furthermore, each entry in M is either a 0, 1, or -1.

Let S = {ui}i∈[m] ⊆ U be a set of m attributes and
I = {i | i∈{1, ..., ℓ}, π(i) ∈ S} be the set of rows in M that
belong to S. We say that (M, π) accepts S if there exists
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a linear combination of rows in I that gives (1, 0, ..., 0).
This means, there exist constants γi ∈ Zp for i ∈ I such that
∑i∈I γiMi = (1, 0, ..., 0). These constants can be computed
in time polynomial in the size of M. It is worth noting that if
Lewko and Water’s method is applied to Boolean formulas,
then it is always possible to pick coefficients that are either
0 or 1 for the resulting MSPs, irrespective of the set S.

3.3 Partially hidden structures
We apply the partially hidden structure for an attribute set
(keyword set) and an access policy (keyword policy) for our
proposed schemes. This structure is firstly proposed in [36]
for an anonymous CP-ABE and then applied in the expressive
ASE schemes [21, 44]. Taking A-KP-ABE as an example, the
structure works as follows: Each attribute is divided into a
generic attribute name and an attribute value. The attribute
values used in both the secret key and ciphertext are not
disclosed to the cloud server, whereas a partially hidden
access structure and attribute set with only attribute names
are included in a secret key and ciphertext respectively. The
decryption algorithm matches the attribute names first and then
decrypts the ciphertext by testing if the attribute values match.

More specifically, we define an attribute set S= {ui}i∈[m]

has m attributes with each attribute belonging to a different
category. Let ni and vi denote the attribute name and attribute
value of an attribute ui respectively, i.e., ui = {ni, vi}. We
express an access policy as A= (M, π, π(i)), where M is a
ℓ×n share-generating matrix, Mi denotes the ith row of M, π is
a mapping function from Mi to an attribute π(i). Let nπ(i) and
vπ(i) denote the attribute name and attribute value of attribute
π(i) respectively, i.e., π(i)={nπ(i), vπ(i)}. In our schemes, the
attribute values vπ(i) of an access policy (M, π, {π(i)}) and
the attribute values vi of an attribute set S are not exposed in
the ciphertext or secret key, while (M, π, nπ(i)) and attribute
names ni are disclosed.

Using our notation, a user’s attribute set S={ui}={ni, vi}
satisfies an access policy (M, π, π(i) = {nπ(i), vπ(i)}) if and
only if there exists I ⊆{1, ..., ℓ} and constants{γi}i∈I such that

∑
i∈I

γiMi=(1, 0, ..., 0) and π(i)=xi for ∀i∈I .

Similar to the scheme in [36], our schemes have the
restriction that each attribute name can only be used once
in an access policy. We can obtain a partially hidden access
structure where attribute names are used multiple times (up
to a constant number of uses fixed at setup) from a one-use
scheme by applying the generic transformation given in [38].
While the transformation does incur some cost in key size, it
does not increase the size of the ciphertext.

3.4 Bilinear maps
Bilinear maps. Let GroupGen be a PPT algorithm that takes
as input a security parameter 1λ and outputs a set of group

parameters par=(p,G1,G2,GT , e, g1, g2), where p is a prime
of Θ(λ) bits,G1,G2 andGT are cyclic groups of order p, g1 and
g2 are the generators of G1 and G2 respectively. e :G1×G2→
GT is a bilinear mapping that satisfies the following properties:

• Computable: Given g1 ∈ G1, g2 ∈ G2, there is a
polynomial time algorithm to compute e(g1, g2)∈GT .

• Bilinear: For all g1 ∈ G1, g2 ∈ G2 and any integers
a, b∈Zp, we have e(ga

1, gb
2)=e(g1, g2)

ab.

• Non-Degenerate: There exists g1∈G1 and g2∈G2 such
that e(g1, g2) ̸= 1.

In this work, we only consider asymmetric (or Type-III) pairing
groups where there exists no efficiently computable homomor-
phism between G1 and G2. Remark that while our construc-
tions are using bilinear maps the security of our constructions
will be proven to hold in the generic group model rather than
under standard assumptions in pairing-based cryptography.

4 Our proposed schemes

Our research begins with FABEO [50], the fastest KP-ABE
scheme known for its linear complexity in key size and
ciphertext size, and a constant 2 pairing operations in the
decryption process. As shown in Fig. 1, our design strategy
unfolds in stages. Initially, we transform from the FABEO
KP-ABE scheme into an A-KP-ABE scheme as a solid
foundation. Subsequently, this A-KP-ABE scheme serves
as the basis for creating FEASE as our primary achievement.
Building upon FEASE, we extend its capabilities to craft the
first expressive PAEKS scheme. Notably, all our schemes
maintain the same level of expressiveness and efficiency as
FABEO, inheriting the strengths of its construction. In this
section, we guide you through the step-by-step evolution of
our designs, starting from FABEO and progressing through
each scheme outlined in our roadmap.

4.1 Transform from FABEO KP-ABE into
anonymous KP-ABE

First, we show the syntax of an (anonymous) KP-ABE scheme.
A KP-ABE (or A-KP-ABE) scheme consists of the following
algorithms:

• (pk, msk)← Setup(1λ). The setup algorithm Setup is
run by a key generation center (KGC). The algorithm
takes as input a security parameter 1λ. It outputs a system
public key pk and a master secret key msk.

• sk←KeyGen(pk,msk,A). The key generation algorithm
KeyGen is run by the KGC. The algorithm takes as input
a public key pk, a master secret key msk, and an access
structure A. It outputs a secret key sk.
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Technical Roadmap of our schemes

• FABEO KP-ABE: why we choose, why it is not anonymous

• A-KP-ABE: partially hidden structure (explain reason), DLIN protection for ciphertext

• FEASE: generic transformation, treat attributes as keywords

• PAEKS: KGA security requirements, data sender authentication, SXDH protection for trapdoor

FABEO

KP-ABE
A-KP-ABE

Partially hidden

FEASE

Generic 

transformation

PAEKS

Data sender

Authentication

Syntax

Scheme

Syntax

Scheme

Syntax

Scheme

Syntax

Scheme

Randomness splitting

Figure 1: The technical roadmap of our proposed schemes. The texts on the arrows indicate the main techniques we used for
the transformation from the left scheme to the right one.

• ct← Enc(pk, S, msg). The encryption algorithm Enc
is run by the data sender. The algorithm takes as input
a public key pk, a set of attributes S, and a message msg.
It outputs a ciphertext ct.

• msg/ ⊥← Dec(ct, sk). The decryption algorithm Dec
is run by the data receiver. The algorithm takes as input
a ciphertext ct associated with an attribute set S and a
message msg, and a secret key sk associated with an
access policy A. It outputs the message msg if S satisfies
A, or outputs a⊥ otherwise.

The concrete construction of FABEO KP-ABE scheme [50] is
presented in Fig. 2. Note that the π(i) is the attribute inA and ui
is the attribute in S, following the notation defined in Sec. 3.2.
Besides, the r value in sk1 would have been a vector r′, and the
original version should be sk1, j =gr′[ j]

2 where j∈ [τ] indicates
the number of attribute re-use. In this paper, we simplify it and
let j=1 since it is easier for further illustrations.

Why the FABEO KP-ABE does not ensure anonymity? In
terms of the anonymity of an A-KP-ABE scheme defined in
the Sec. 5.1, a close inspection of the FABEO construction
reveals two fundamental issues:

1. Exposed attribute set: The ciphertext in FABEO includes
the exposed attribute set S as an element, making it
directly accessible to potential attackers.

2. Attribute guessing attack: Even if the exposed attributes
are removed from the ciphertext, anonymity is not
guaranteed. Specifically, when provided with two
attributes, u0 and u1, and a ciphertext (ct1,ub , ct2) where
b∈{0, 1}, attackers can determine b from the equation
e(ct1,ub , g2)=e(H(ub), ct2).

To address the above vulnerabilities, we apply the following
techniques to transform FABEO KP-ABE into an A-KP-ABE
scheme. The A-KP-ABE construction is shown in Fig. 3. We
highlight the differences between the two schemes in red fonts.

Partially hidden structure. To consider how to conceal the ex-
posed attribute set, the choice of the privacy level becomes piv-
otal. If the objective is to safeguard the complete privacy of the
attribute set without any information leakage, the existing tech-
nique, Inner Product Encryption (IPE) by Katz et al. [34], is an
option. However, it suffers from a significant drawback: a super-
polynomial increase in both ciphertext and trapdoor size, mak-
ing it highly inefficient. Considering our goal of developing a
fast ASE scheme, a more viable alternative is the widely used

(pk,msk)←Setup(1λ).
Run GroupGen(1λ) to obtain the group parameters

par := (p, e, G1, G2, GT , g1, g2). Pick α
$←Zp and a hash

function H : {0, 1}∗→G1. Compute the public key pk and
master secret key msk as

pk=(par,H, e(g1, g2)
α),msk=α.

sk←KeyGen(pk,msk,A=(M, π, {π(i)}i∈[ℓ])).

Pick r $←Zτ
p, v $←Zn−1

p . Compute

sk1=gr
2, sk2,i=gMi(α∥v)⊤

1 ·H(π(i))r.

Output sk=(A, sk1, {sk2,i}i∈[ℓ]).

ct←Enc(pk, S={ui}i∈[m],msg). Pick s $←Zp. Compute

ct1,i=H(ui)
s, ct2=gs

2, ct3=e(g1, g2)
αs ·msg.

Output ct=(S, {ct1,i}i∈[m], ct2, ct3).

msg/⊥←Dec(ct, sk).
If S satisfies A, there exists constants {γi}i∈I s.t. ∑i∈I γiMi=
(1, 0, ..., 0) and reconstruct the message msg by computing:

msg=
e(∏i∈I (ct1,π(i))

γi , sk1)·ct3

e(∏i∈I (sk2,i)γi , ct2)
.

Figure 2: The FABEO KP-ABE scheme.

method known as the "partially hidden structure", illustrated in
Sec. 3.3. The essence of this structure lies in the division of each
attribute into a generic attribute name and an attribute value.
While the attribute values remain undisclosed in both the pri-
vate key and ciphertext, a partially hidden access structure and
attribute set expose only the attribute names. For instance, con-
sidering an access structure like “(Sender: Tom AND Subject:
Rent) OR Priority: Urgent” and an attribute set “[Sender: Bob,
Subject: Meeting, Priority: Medium]”, the partially hidden
access structure becomes “Sender AND (Subject OR Prior-
ity)” and the partially hidden attribute set is “[Sender, Subject,
Priority]”. During decryption, the algorithm first matches the
attribute names and then tests if the attribute values match.

As highlighted in Fig. 3, each attribute π(i) in an access
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structure A is separated into a name nπ(i) and a value vπ(i),
in which nπ(i) is exposed with (M, π) in sk. Similarly, each
attribute ui in an attribute set S is separated into a name ni and
a value vi, in which ni is disclosed in ct.

This technique, although leaking a certain level of informa-
tion (i.e., attribute names), provides high efficiency. Attribute
names, being less sensitive than attribute values, allow for
efficient matching without involving pairing or exponentiation
operations. This efficiency improvement is critical, enabling
a fast location of specific attribute values under corresponding
names, thereby significantly enhancing decryption efficiency.

(pk,msk)←Setup(1λ).
Run GroupGen(1λ) to obtain the group parameters

par :=(p, e, G1, G2, GT , g1, g2). Pick α, b1, b2
$←Zp and

a hash function H : {0, 1}∗→G1. Compute the public key
pk and master secret key msk as

pk=(par,H, gb1
2 , gb2

2 , e(g1, g2)
α),msk=(α, b1, b2).

sk←KeyGen(pk,msk,A=(M, π, {π(i)}i∈[ℓ]).

Remind that {π(i)}i∈[ℓ] = {nπ(i), vπ(i)}i∈[ℓ]. Pick r $← Zp,

v $←Zn−1
p . Compute sk1=gr

2,

sk2,i=(gMi(α∥v)⊤
1 ·H(π(i))r)

1
b1 , sk3,i=(gMi(α∥v)⊤

1 ·H(π(i))r)
1

b2 .

Output sk=((M, π, {nπ(i)}i∈[ℓ]), sk1, {sk2,i, sk3,i}i∈[ℓ]).

ct←Enc(pk, S={ui}i∈[m]={ni, vi}i∈[m],msg).

Pick s1, s2
$←Zp, let s=s1+s2. Compute

ct1,i=H(ui)
s, ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1,g2)

αs ·msg.

Output ct=({ni}i∈[m], {ct1,i}i∈[m], ct2, ct3, ct4).

msg/⊥←Dec(ct, sk).
Tests if there is any subset I that matches the attribute names
{ni}i∈[m] in ct with (M, π, {nπ(i)}i∈[ℓ]) in sk. If not, return
⊥. Otherwise, it finds constants {γi}i∈I s.t. ∑i∈I γiMi =
(1, 0, ..., 0) and reconstruct the message msg by computing:

msg=

e
(

∏i∈I (sk2,i)
γi , ct2

)
·e
(

∏i∈I (sk3,i)
γi , ct3

)
e
(

∏i∈I (ct1,π(i))γi , sk1

)
·ct4

.

If the equation holds, return 1. Otherwise, continue to find
another subset of I and repeat the checking. If the above
equation does not hold for all subsets, return 0.

Figure 3: Our A-KP-ABE scheme.

Randomness splitting technique. We observe that the

attribute guessing attack is available as ct1,u and ct2 sharing
the same randomness s. To counter this problem, we introduce
a technique to split the randomness in the ciphertext. Specifi-
cally, we divide the randomness s into two distinct components
s1, s2 ∈ Zp and let s = s1 + s2. As highlighted in Fig. 3, the
ciphertext components are now structured as ct1,i = H(ui)

s,
ct2=gb1s1

2 , and ct3=gb2s2
2 , where gb1

2 and gb2
2 are parts of the

public key. At the secret key side, to recover s and eliminate

the b1, b2 terms, the secret key element gMi(α∥v)⊤
1 ·H(π(i))r

is doubling and exponentiation by 1
b1

and 1
b2

separately. By
correctness, ct4 remains the same as the ct3 in FABEO. In
this case, given two attributes, u0 and u1, and a ciphertext
(ct1,ub , ct2, ct3, ct4) where b∈{0, 1}, an attacker who owns
gb1

2 and gb2
2 can no longer discern the attribute ub. Consequently,

the ciphertext successfully conceals the attribute value.

4.2 FEASE: A Fast and Expressive ASE scheme
In this section, we demonstrate how to convert the A-KP-ABE
scheme proposed in Sec. 4.1 into the FEASE, which is our main
research target. We first introduce the syntax of an expressive
ASE scheme, which includes the following four algorithms:

• (pk, sk)←KeyGen(1λ). The key generation algorithm
KeyGen is run by the data receiver. The algorithm takes
as input a security parameter 1λ. It outputs a public key
pk and a secret key sk.

• td←Trap(pk, sk, P). The trapdoor generation algorithm
Trap is run by the data receiver. The algorithm takes as
input a public key pk, a secret key sk, and a keyword
policy structure P. It outputs a trapdoor td.

• ct←Enc(pk,W). The encryption algorithm Enc is run
by the data sender. The algorithm takes as input a public
key pk, and a set of keywordsW. It outputs a ciphertext ct.

• 1/0← Search(ct, td). The search algorithm Search is
run by the cloud server. The algorithm takes as input a
keyword ciphertext ct and a trapdoor td. It outputs a bit 1
if the search is successful, or a bit 0 if the search is failed.

In addition to the keyword ciphertext described in our syntax,
the data owner also encrypts documents using a public-key
encryption scheme. However, it is essential to highlight that
our focus in this paper is solely on the encryption of keywords.

It is easy to see that an A-KP-ABE scheme shares a similar
syntax as an expressive ASE scheme. In A-KP-ABE, a cipher-
text can only be decrypted with a secret key if the attributes in
the ciphertext satisfy the policy in the key. In expressive ASE,
keywords can only be searched if the keywords in the ciphertext
satisfy the policy associated with the trapdoor. Besides, the se-
mantic security of ASE (IND-CKA) (defined in Sec. 5.2) aligns
with the same level of security as the anonymity in A-KP-ABE
(defined in Sec. 5.1). Therefore, we can convert our A-KP-ABE
to FEASE by using the following generic transformation:
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Generic transformation from A-KP-ABE to expressive
ASE. An ASE scheme ASE= (KeyGen, Enc, Trap, Search)
can be constructed from an A-KP-ABE scheme A-KP-ABE
=(Setup,KeyGen, Enc,Dec) by the following steps:

• (pk, sk) ← ASE.KeyGen(1λ). On input of a security
parameter 1λ, this algorithm executes as follows: (1) Run
(pk, msk)← A-KP-ABE.Setup(1λ). (2) Set sk← msk
and output (pk, sk).

• td ← ASE.Trap(pk, sk, P). On input of pk, sk and a
keyword policy P, this algorithm executes as follows: (1)
Run sk← A-KP-ABE.KeyGen(pk, sk, P). (2) Set td←sk
and output td.

• ct ← ASE.Enc(pk, W). On input of pk and a set
of keywords W, this algorithm executes as follows:
(1) Set a message msg = 1. (2) Run ct ← A-KP-
ABE.Enc(pk,W,msg) and output ct.

• 1/0← ASE.Search(ct, td). On input of td and ct, this
algorithm executes as follows: (1) Set sk ← td. Run
msg′ ← A-KP-ABE.Dec(ct, sk). (2) If msg′ = 1, the
algorithm outputs 1, else 0.

Based on this transformation, the resulting construction of
FEASE is shown in Fig. 4. We highlight the differences be-
tween FEASE and our A-KP-ABE scheme. Note that nπ(i) and
vπ(i) represent the keyword name and value in the keyword pol-
icy P respectively. ni and vi are the keyword name and value in
the keyword set W respectively. We can see that FEASE’s con-
struction mirrors our A-KP-ABE scheme by treating attributes
as keywords and setting the message as a known value.

4.3 Fast and Expressive PAEKS scheme

After obtaining FEASE, we extend it into the first expressive
PAEKS scheme that has security against Keyword Guessing
Attack (KGA). Traditional ASE schemes cannot resist KGA
because 1) the data sender encrypts the keyword with only a
data receiver’s public key. The cloud server can generate ci-
phertext and exhaustively test the keywords within an existing
trapdoor, and 2) the trapdoor does guarantee keyword privacy:
Given two keyword policies, a cloud server can discern a trap-
door is generated from which policy. Thus, to defend against
KGA, the following security requirements should be satisfied:

1. The cloud server is not capable of matching an existing
trapdoor by generating a ciphertext.

2. Ciphertext Indistinguishability (CI): A ciphertext should
not reveal the keyword values in the keyword set.

3. Trapdoor Indistinguishability (TI): A trapdoor should
not reveal the keyword values in the keyword policies.

(pk, sk)←KeyGen(1λ).
Run GroupGen(1λ) to obtain the group parameters

par :=(p, e, G1, G2, GT , g1, g2). Pick α, b1, b2
$←Zp and

a hash function H : {0, 1}∗→G1. Compute the public key
and secret key as

pk=(par,H, gb1
2 , gb2

2 , e(g1, g2)
α), sk=(α, b1, b2)

td←Trap(pk, sk, P=(M, π, {π(i)}i∈[ℓ])).

Remind that {π(i)}i∈[ℓ] = {nπ(i), vπ(i)}i∈[ℓ]. Pick r $← Zp,

v $←Zn−1
p . Compute td1=gr

2

td2,i=(gMi(α∥v)⊤
1 ·H(π(i))r)

1
b1 , td3,i=(gMi(α∥v)⊤

1 ·H(π(i))r)
1

b2

Output td=((M, π, {nπ(i)}i∈[ℓ]), td1, {td2,i, td3,i}i∈[ℓ]).

ct←Enc(pk,W={wi}i∈[m]={ni, vi}i∈[m]).

Pick s1, s2
$←Zp, let s=s1+s2. Compute

ct1,i=H(wi)
s, ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1, g2)

αs

Output ct=({ni}i∈[m], {ct1,i}i∈[m], ct2, ct3, ct4).

1/0←Search(ct, td).
Tests if there is any subset I that matches the keyword
names {ni}i∈[m] in ct with (M, π, {nπ(i)}i∈[ℓ]) in td. If
not, return 0. Otherwise, it finds constants {γi}i∈I s.t.
∑i∈I γiMi=(1, 0, ..., 0) and computes:

ct4=

e
(

∏i∈I (td2,i)
γi , ct2

)
·e
(

∏i∈I (td3,i)
γi , ct3

)
e
(

∏i∈I (ct1,π(i))γi , td1

) .

If the equation holds, return 1. Otherwise, the cloud server
continues to find another subset of I and repeats the checking.
If the above equation does not hold for all subsets, return 0.

Figure 4: Our FEASE scheme.

The formal definitions of CI and TI are defined in the Sec. 5.3.
In a PAEKS scheme, the data sender is allowed to have a public
key and a secret key. The keywords are encrypted by using
the data sender’s secret key and the data receiver’s public key.
The trapdoor is generated by using data receiver’s secret key
and the data sender’s public key. Since the cloud server does
not hold any of the secret keys, it cannot generate a ciphertext
to match with an existing trapdoor. Borrowing the semantic
security of FEASE, it is feasible to preserve CI in the PAEKS.
Thus, our main target is to develop TI in our PAEKS design.

The syntax of an expressive PAEKS scheme is defined with
the following algorithms:
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• pp←Setup(1λ). The Setup algorithm is run by a trusted
party. The algorithm takes as input a security parameter
1λ. It outputs the global public parameter pp.

• (pks, sks)← KeyGens(1λ). The KeyGens algorithm is
run by a data sender. This algorithm takes as input a
security parameter 1λ. It outputs the sender’s public key
pks and secret key sks.

• (pkr, skr)← KeyGenr(1λ). The KeyGenr algorithm is
run by a data receiver. This algorithm takes as input a
security parameter 1λ. It outputs the receiver’s public key
pkr and secret key skr.

• td ← Trap(pp, pks, skr, P). The trapdoor generation
algorithm Trap is run by the data receiver. The algorithm
takes as input the public parameter pp, the sender public
key pks, the receiver secret key skr, and a keyword policy
structure P. It outputs a trapdoor td.

• ct← Enc(pkr, sks, W). The encryption algorithm Enc
is run by the data sender. The algorithm takes as input
the public parameter pp, the receiver public key pkr, the
sender secret key sks, and a set of keywords W. It outputs
a keyword ciphertext ct.

• 1/0← Search(ct, td). The search algorithm Search is
run by the cloud server. The algorithm takes as input a
keyword ciphertext and a trapdoor td. It outputs a bit 1
if the search is successful, or a bit 0 if the search is failed.

Data sender authentication. We first analyze why the trap-
door construction of FEASE does not guarantee keyword pri-
vacy. Considering the TI security model defined in the Sec. 5.3:
Given two keyword policies that contain keywords π(i)0
and π(i)1 separately, and a trapdoor (td1, td2,π(i)b

, td3,π(i)b
)

where b∈ {0, 1}, a cloud server can test the keywords π(i)0

and π(i)1 separately into the equation e(∏i∈I(td2,i)
γi , gb1

2 )=
e(g1, g2)

α ·e(∏i∈IH(π(i)b)
γi , td1) where the γi can be easily

calculated since there is no policy for a single keyword. Even
to distinguish two sets of keywords, the server can try different
policies together with γi and hash values. Since the number
of keywords and policies is polynomially bounded, the server
can discern the keywords hidden in the trapdoor.

The concrete construction of our PAEKS scheme is shown
in Fig. 5. We highlight the difference between the PAEKS and
FEASE. Our idea to extend from FEASE to PAEKS is to embed
a data sender’s secret key 1

c ∈Zp in the keywords term to be
distinguished in the ciphertext: H(wi)

s
c , and eliminate 1

c by the
corresponding pairing element gcr

2 in trapdoor, where gc
2 is the

data sender’s public key. The reasons are listed as follows:

• Multiplying a random number 1
c to s does not affect the

construction for the ciphertext, thus the CI security is
inherited from the IND-CKA security of FEASE.

pp←Setup(1λ). Run GroupGen(1λ) to obtain group
parameters par := (p, e, G1, G2, GT , g1, g2). Pick a hash
function H :{0, 1}∗→G1. The global public parameter is

pp=(par,H).

(pkr, skr)←KeyGenr(1λ). Pick α, b1, b2←Zp. Compute

pkr =(gb1
2 , gb2

2 , e(g1, g2)
α), skr =(α, b1, b2).

(pks, sks)←KeyGens(1λ). Pick c←Zp. Compute

pks=gc
2, sks=c.

td←Trap(pp, pks, skr, P=(M, π, {π(i)}i∈[ℓ])).

Remind that {π(i)}i∈[ℓ] = {nπ(i), vπ(i)}i∈[ℓ]. Pick r $← Zp,

v $←Zn−1
p . Compute td1=gcr

2

td2,i=(gMi(α∥v)⊤
1 ·H(π(i))r)

1
b1 , td3,i=(gMi(α∥v)⊤

1 ·H(π(i))r)
1

b2 .

Output td=((M, π, {nπ(i)}i∈[ℓ]), td1, {td2,i, td3,i}i∈[ℓ])

ct←Enc(pkr, sks,W={wi}i∈[m]={ni, vi}i∈[m]).

Pick s1, s2
$←Zp, let s=s1+s2. Compute

ct1,i=H(wi)
s
c , ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1, g2)

αs

Output ct=({ni}i∈[m], {ct1,i}i∈[m], ct2, ct3, ct4).

1/0←Search(ct, td).
Tests if there is any subset I that matches the keyword
names {ni}i∈[m] in ct with (M, π, {nπ(i)}i∈[ℓ]) in td. If
not, return 0. Otherwise, it finds constants {γi}i∈I s.t.
∑i∈I γiMi=(1, 0, ..., 0) and computes:

ct4=

e
(

∏i∈I (td2,i)
γi , ct2

)
·e
(

∏i∈I (td3,i)
γi , ct3

)
e
(

∏i∈I (ct1,π(i))γi , td1

) .

If the equation holds, return 1. Otherwise, the cloud server
continues to find another subset of I and repeats the checking.
If the above equation does not hold for all subsets, return 0.

Figure 5: Our PAEKS scheme.

• gcr
2 is a single element that is not related to the number

of keywords, thus the efficiency of trapdoor generation
remains almost the same as FEASE.

• After changing the term from gr
2 to gcr

2 , the cloud server
is not capable of attacking the trapdoor since it only has
the knowledge of gc

2 and gcr
2 instead of gr

2.
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5 Security definitions

In this section, we introduce the formal security definitions and
models of expressive A-KP-ABE, ASE, and PAEKS schemes.

5.1 Security definitions of A-KP-ABE
The security model for an A-KP-ABE scheme with a partially
hidden structure addresses the property that a ciphertext does
not reveal any information about the encrypted message,
which we call “Indistinguishability against Chosen Plaintext
Attack (IND-CPA)” security and that a ciphertext does not
reveal any information about the encrypted attribute set, which
we call “Anonymity (Anon)”.

IND-CPA Security. We model the adaptive IND-CPA
security in a game ∏ that is running between an adversary A
and a challenger C as follows:

• Setup. C runs Setup(1λ) to obtain a public key pk and
a master secret key msk. It sends pk to the adversary and
keeps msk secret.

• Phase 1. A issues queries to a key generation oracle for
polynomial many times:

– Key generation oracle: Given an access
structure A, the oracle generates a secret key
sk←KeyGen(pk,msk,A) and returns sk to A .

• Challenge. A outputs a challenge attribute set S∗ and two
equal-length messages msg∗0, msg∗1 with the restriction
that S∗ cannot satisfy any access structure A that has
been queried in Phase 1. Then C selects a random bit
b∈{0, 1}, runs the algorithm ct∗b←Enc(pk, S∗, msg∗b)
and returns the challenge ciphertext ct∗b to A .

• Phase 2. Same as Phase 1 with the restriction that any
input access structure A cannot be satisfied by S∗.

• Guess. A outputs b′∈{0, 1} and wins the game if b′=b.

An A-KP-ABE scheme is adaptively IND-CPA secure if the
advantage function refers to the security game ∏

AdvCPA
∏,A(λ)=

∣∣∣∣Pr[b′=b]− 1
2

∣∣∣∣
is negligible in security parameter λ for any PPT adversary A .

Anonymity. Then we model the anonymity property in
a game ∏ that is running between an adversary A and a
challenger C as follows:

• Setup. C runs Setup(1λ) to obtain a public key pk and
a master secret key msk. It gives pk to adversary A and
keeps msk secret.

• Phase 1. The adversary A issues queries to a key
generation oracle for polynomial many times:

– Key generation oracle: Given an access
structure A, the oracle generates a secret key
sk←KeyGen(pk,msk,A) and returns sk to A .

• Challenge. A outputs a messagemsg∗ and two equal-size
attribute sets S∗0 = {ni, vi0}i∈[m], S∗1 = {ni, vi1}i∈[m] with
the restriction that S∗0, S∗1 have the same attribute names
{ni}i∈[m] and neither of them satisfies any access structure
A that has been queried in Phase 1. C selects a random bit
b∈{0, 1}, runs the algorithm ct∗b←Enc(pk, S∗b, msg∗)
and returns the challenge ciphertext ct∗b to A .

• Phase 2. Same as Phase 1 with the restriction that any
input access structure A cannot be satisfied by S∗0 and S∗1.

• Guess. A outputs b′∈{0, 1} and wins the game if b′=b.

An A-KP-ABE scheme is anonymous if the advantage
function refers to the security game ∏

AdvAnon
∏,A (λ)=

∣∣∣∣Pr[b′=b]− 1
2

∣∣∣∣
is negligible in security parameter λ for any PPT adversary A .

5.2 Security definitions of expressive ASE
The security model for an expressive ASE scheme with
a partially hidden structure addresses the property that a
ciphertext does not reveal any information about the keyword
values, which we call Indistinguishability against Chosen
Keyword Attacks (IND-CKA) defined here for keyword sets.

IND-CKA security. We model the adaptive IND-CKA
security in a game ∏ that is running between an adversary A
and a challenger C as follows:

• Setup. The challenger C runs KeyGen(1λ) to obtain a
public key pk and the a secret key sk. It gives the public
key pk to adversary A and keeps sk to itself.

• Phase 1. The adversary A adaptively issues queries to
a trapdoor oracle for polynomial many times:

– Trapdoor oracle: Given a keyword policy
structure P, the oracle generates a trapdoor
td←Trap(pk, sk, P) and returns td to A .

• Challenge. A outputs two equal-size keyword sets
W∗0 = {ni, vi0}i∈[m], W∗1 = {ni, vi1}i∈[m] with the
restriction that W∗0, W∗1 have the same keyword names
{ni}i∈[m], and neither of them satisfies any trapdoor that
has been queried in Phase 1. C selects a random bit
b ∈ {0, 1}, runs the algorithm ct∗b← Enc(pk, W∗b) and
returns the challenge ciphertext ct∗b to the A .

• Phase 2. A continues to issue queries to the trapdoor
oracle for polynomial times with the restriction that any
P input by A cannot be satisfied by W∗0 and W∗1.
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• Guess. A outputs its guess b′∈{0, 1} and wins the game
if b′=b.

An expressive ASE scheme is adaptively IND-CKA secure
if the advantage function refers to the security game ∏

AdvCKA
∏,A (λ)=

∣∣∣∣Pr[b′=b]− 1
2

∣∣∣∣
is negligible in security parameter λ for any PPT adversary A .

5.3 Security definitions of expressive PAEKS
The security model for an expressive PAEKS scheme with a
partially hidden structure addresses the property that a cipher-
text does not reveal any information about the keyword values,
which we call “Ciphertext Indistinguishability (CI)” and the
property that a trapdoor does not reveal any information about
the keyword policy values, which we call “Trapdoor Indistin-
guishability (TI)”. CI and TI are defined in two separate games
that are running between an adversary A and a challenger C .
We refer to the state-of-the-art PAEKS security model proposed
in [20], in which it addresses both the CI and TI in a multi-user,
multi-challenge, and fully chosen setting. Intuitively, these
terms indicate the following conditions in the CI/TI game:

1. Multi-user CI/TI: In the CI/ TI game, A can not only
input a keyword set/keyword policy but also input
a data receiver/data sender’s public key 10 to the
ciphertext/trapdoor oracle respectively.

2. Multi-challenge CI/TI: In the CI/TI game, A can choose
two sets of keywords for challenge keyword sets/policies
rather than only two single keywords respectively 11.

3. Fully-chosen CI/TI: In the CI/TI game, A can query ci-
phertext/trapdoor for the challenge keyword sets/keyword
policies from the ciphertext/trapdoor oracle respectively.

Game 1: Ciphertext Indistinguishability

1. Setup. Given a security parameter λ, the challenger C gen-
erates the global system parameter pp. Then C generates
a pair of sender’s key (pks, sks) and a pair of receiver’s
key (pkr, skr). It gives (pp, pks, pkr) to the adversary A .

2. Phase 1. A is allowed to adaptively issue queries to the
following oracles for polynomial many times:

• Trapdoor Oracle OT (P, pk): Given a keyword
policy structure P and a public key pk (not
necessarily the sender’s pks), the oracle computes a
trapdoor td←Trap(skr, pk, P) and returns td to A .

10The public key is not necessary to be the challenged data sender or
receiver, it could be anyone’s public key including A .

11This setting is not naturally preserved in a PAEKS scheme that only
supports equality queries. But for an expressive PAEKS, this is a default setting.

• Ciphertext Oracle OC(W, pk): Given a set of
keywords W and a public key pk (not necessarily
the receiver’s pkr), the oracle computes a ciphertext
ct←Enc(sks, pk,W) and returns ct to A .

3. Challenge. After Phase 1, A outputs two equal-size
keyword sets W∗0 = {ni, vi0}i∈[m], W∗1 = {ni, vi1}i∈[m]

with the restriction that W∗0,W∗1 have the same keyword
names {ni}i∈[m] and neither of them satisfies any trapdoor
that has been queried for OT (·, pks) in Phase 1, and
submits them to C . C randomly chooses a bit b∈{0, 1},
computes ct∗b←Enc(pkr, sks,W∗b) and returns ct∗b to A .

4. Phase 2. A continues to issue queries to OT and OC as
above, with the restriction that any trapdoor that is queried
for OT (·, pks) should not be satisfied by W∗0 and W∗1.

5. Guess. A outputs b′∈{0, 1} and wins the game if b′=b.

We define A’s advantage of successfully distinguishing the
ciphertext of PAEKS as

AdvCI
A (λ)=

∣∣∣∣Pr[b′=b]− 1
2

∣∣∣∣.
Definition 2. A PAEKS scheme is fully CI secure if for any PPT
adversary A , AdvCI

A (λ) is negligible for security parameter λ.

Game 2: Trapdoor Indistinguishability

1. Setup. The challenger C generates pp, (pks, sks) and
(pkr, skr) as in Game 1. It then gives (pp, pks, pkr) to
the adversary A .

2. Phase 1. A issues queries to oracles OT (P, pk) and
OC(W, pk) as in Game 1.

3. Challenge. After Phase 1, A chooses two equal size
keyword policiesP∗0=(M∗,π∗, {nπ∗(i), vπ(i)0}i∈[ℓ]),P∗1=
(M∗, π∗, {nπ∗(i), vπ(i)1}i∈[ℓ]) with the restriction that
P∗0,P∗1 have the same (M∗,π∗, {nπ∗(i)}i∈[ℓ]) and neither of
them are satisfied by any ciphertext that has been queried
to OC(·, pkr) in Phase 1, and submits them to C as the
challenge keywords. C randomly chooses a bit b∈{0, 1},
computes td∗b←Trap(pks, skr, P∗b) and returns td∗b to A .

4. Phase 2. A continues to issue queries to OT and OC as
above, with the restriction that any ciphertext that is
queried for OC(·, pkr) should not be satisfied by P∗0 and
P∗1.

5. Guess. A outputs b′∈{0, 1} and wins the game if b′=b.

We define A’s advantage of successfully distinguishing the
trapdoors of PAEKS as

AdvTI
A (λ)=

∣∣∣∣Pr[b′=b]− 1
2

∣∣∣∣.
Definition 3. A PAEKS scheme is fully TI secure if for any PPT
adversary A , AdvTI

A (λ) is negligible for security parameter λ.
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6 Security Analysis of our schemes

In this section, we prove the security of our A-KP-ABE,
FEASE, and PAEKS schemes under the Generic Group Model
(GGM) and random oracle model. The reasons we use the
generic group model can be summarized into the following
aspects:

• The GGM is widely utilized in practical applications
due to its sufficient security, supported by a deep
understanding of pairing curves and widespread adoption.
In practice, there is no significant difference observed
between standard assumptions like SXDH and GGM
security [50]. Real-world systems are more vulnerable
to issues such as side-channel attacks or poor security
practices, which are beyond the scope of GGM.

• The most efficient ABE schemes, such as FABEO [50]
and BSW [10], are proven under GGM. Our proposed
schemes, aimed at efficiency, utilize the same proof
technique as [50], making GGM the natural choice.

• GGM serves as the base technique for proving the security
of many well-known static assumptions like Diffie-
Hellman (DH), Bilinear Diffie-Hellman (BDH), and their
variants [11, 12, 54]. This underscores GGM’s role in
security proofs within various cryptographic contexts.

Theorem 1. Our A-KP-ABE scheme is adaptively IND-CPA
secure under the generic group model by modeling the hash
function H as a random oracle.

The proof of Theorem 1 is shown in our full version [43].

Theorem 2. Our A-KP-ABE scheme is anonymous under
the generic group model by modeling the hash function H as
a random oracle.

The proof of Theorem 2 is shown in our full version [43].

Theorem 3. FEASE is adaptively IND-CKA secure under
the generic group model by modeling the hash function H as
a random oracle.

The proof of Theorem 3 is shown in our full version [43].

Theorem 4. The proposed PAEKS scheme is fully CI secure
under the generic group model by modeling the hash function
H as a random oracle.

The proof of Theorem 4 is shown in our full version [43].

Theorem 5. The proposed PAEKS scheme is fully TI secure
under the generic group model by modeling the hash function
H as a random oracle.

The proof of Theorem 5 is shown in our full version [43].

7 Implementation and performance

We first introduce the roadmap of our experiments. Then we
analyze the performance of the expressive ASE and KP-ABE
schemes. Finally, we conduct an additional set of experiments
for larger datasets.

7.1 Implementation roadmap
We implement our FEASE, PAEKS, A-KP-ABE schemes and
the most efficient expressive ASE and ABE schemes in Python
3.9.16 using the Charm 0.5 framework [4] and the MNT224
curve for pairings because it is the best Type-III curve in PBC,
the default pairing library in Charm. All running times below
were measured on a PC with a 3.59 GHz AMD Ryzen 5 3600
6-Core Processor and 16GB RAM. The implementation code
is available on GitHub [1].

In particular, we compare our FEASE and PAEKS
scheme with the most efficient expressive ASE schemes
CWDWL16 [21] and MZNLHS17 [44] and compare our A-
KP-ABE scheme with the most efficient KP-ABE schemes
FAME [3] and FABEO [50] 12. Among these schemes, only
CWDWL16 is constructed on a symmetric setting. In order to
compare their efficiency on the same level, we transfer the con-
struction of CWDWL16 to the asymmetric setting (presented
in Appendix A). We choose not to compare FEASE with former
expressive ASE schemes [34,37,42] since they are all based on
the inefficient composite order groups. According to the anal-
ysis in [25, 29], in terms of the pairing-friendly elliptic curves,
prime order groups have a clear advantage in both parameter
size and computational efficiency over composite order groups.

For the expressive ASE schemes, we first choose random
words from the English vocabulary to form keyword names
and randomly assign a positive integer between 1 - 100 as a
keyword value to each keyword name. Thus, every keyword is
in the format of “Department: 2”, “Professional: 6”, “Hospital:
7”, etc. The keyword values are the input of the trapdoor and
encryption algorithm and the keyword names are exposed. We
ensure that the keyword names in every trapdoor are included
in the ciphertext, i.e., the keyword names can always match
regardless of the policy, but the keyword values are chosen
randomly for the trapdoor and ciphertext side. i.e., the keyword
values only have little probability to match. In this way, we can
simulate the worst case that the search has to traverse every
subset of the matched keyword names to maximize the search
time. On the ciphertext side, we test the encryption for 10, 20,
..., 100 keywords. On the trapdoor side, we choose 10, 15, ...,
50 keywords and assign “AND” and “OR” gates between the
keywords to form policies.

For the KP-ABE schemes, We separate it into two cases:
for our A-KP-ABE scheme, we create the attribute set and
access policies in the way as the keyword set and keyword
policies as stated above. For FAME and FABEO KP-ABE

12The reasons are separately shown in Sec. 2.1 and our full version [43].
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Groups Choose Multiply Exp. Hash Pairing
G1 0.58 0.02 0.57 0.04

3.68G2 4.32 0.28 4.37 10.85
GT - 0.05 0.96 -

Table 2: Average time (in milliseconds) for various operations
on MNT224 curve.

Scheme Setup KeyGens KeyGenr KeyGenc
CWDWL16 [21] 31.56 - - 4.1
MZNLHS17 [44] 25.7 - - 1.2
FEASE (Fig. 4) 19.44 - - -
PAEKS (Fig. 5) 9.33 4.2 11.34 -

FAME [3] 21.69 - - -
FABEO [50] 9.8 - - -

A-KP-ABE (Fig. 3) 19.1 - - -

Table 3: Setup time and sender/receiver/server key generation
time for various schemes (in milliseconds).

schemes, the partially hidden structure is not needed since they
do not aim to protect attribute privacy. Thus, their attributes
are straightforward and their policies are to use AND gate
between any attribute because all the attributes are then
required for decryption. We test these schemes against policies
and attribute sets of size 10, 20, ..., 100 since large policy sizes
are quite likely in typical use cases [28].

For both the keyword policies and access policies, we first
convert the policies into a Boolean formula and then to an
MSP using Lewko-Waters’ method [39] (see Sec. 3.2 for a
detailed discussion) so that the matrix M has only entries in
{0, 1,−1} and the reconstruction coefficients {γi} are always
0 or 1, which reduces the number of exponentiations.

We present the setup times for the expressive ASE schemes
and KP-ABE schemes in Table 3. Then we show the running
times for the expressive ASE schemes in Fig. 6 and for the
KP-ABE schemes in Fig. 7. These results are supported by
our theoretical overview in Table 4 and Table 5 which lists the
number of multiplications and exponentiations for each group
as well as the number of hashing and pairing operations for
each scheme. Additionally, we provide the number of group el-
ements of trapdoor/secret key and ciphertext in Table 6. A more
detailed explanation of running times and sizes is shown below.

7.2 Basic operation and initializations

Table 2 lists the average time taken by various operations on
MNT224 in milliseconds. We can see that operations on group
G2 are much more expensive than on G1, in which it has 8
times for choosing an element and exponentiation, 14 times
for multiplication, and 271 times for hashing. Pairing is also
a relatively expensive operation that is close to the cost of
exponentiation on G2. It is also important to note that the size
of an element in G2 is 3 times that of G1.

Setup time. In Table 3, we show the time of setup, data
sender/data receiver key generation (only used in our

PAEKS scheme), and cloud server key generation (used in
CWDWL16 and MZNLHS17) of the schemes listed in our
evaluation. Since all schemes support large universes of
keywords/attributes, all of these schemes have a constant
setup time and user/server key generation time and are almost
equally fast. In specific, the setup time of FEASE/PAEKS is
a bit faster than CWDWL16 and MZNLHS17, and the setup
time for our A-KP-ABE lies between FAME and FABEO.

7.3 Expressive ASE schemes

The running times for expressive ASE schemes are shown in
Fig. 6. For encryption, MZNLHS17 and our FEASE/PAEKS
have a very close time around 0.06∼ 0.07s for encrypting 100
keywords, in which CWDWL16 is nearly 7 times slower. This
result can be supported by Table 4: Although FEASE/PAEKS
has two more exponentiations in G2, MZNLHS17 has 6
more exponentiations and m + 2 multiplications in G1 and
CWDWL16 has much more of them.

For the trapdoor generation algorithm, FEASE/PAEKS has
the fastest 0.03s for generating a trapdoor with 50 keywords,
followed by 3.76s from CWDWL16, and the MZNLHS17
runs a very inefficient 53.75s for 50 keywords. In terms of
Table 4, almost all the multiplications and exponentiations of
CWDWL16 and MZNLHS17 are calculated on G2. Instead,
FEASE/PAEKS has less number of them and they happened
in G1. Besides, MZNLHS17 has a quadratic increasing
time regarding keyword numbers in a trapdoor, in which the
trade-off is brought from the target of constant-size ciphertext.

For the search algorithm, we can see from Fig. 6 (c) that,
all the schemes are linear to the number of matched keyword
names subset. For the special case that we implement (each
subset contains only one keyword), FEASE/PAEKS runs
the fastest 0.1s for 10 subsets which is 2 times faster than
CWDWL16 and MZNLHS17. Then Fig. 6 (d) shows that
FEASE/PAEKS is the only one that remains a constant time
around 0.011s for searching no matter how many keywords
are included in a subset, while CWDWL16 and MZNLHS
has a linear increase. We can see this in Table 5. First of all,
FEASE/PAEKS has the least number of multiplications in
GT and pairings. Second, the pairing number of CWDWL16
is related to x2 - the total number of keywords needed for
search, which is why the search time is both related to x1 -
the matched subset number, and the number of keywords in
each subset. Instead, the pairing number of MZNLHS17 and
FEASE/PAEKS is only related to x1. However, MZNLHS17
has extra calculations to multiply 4 components for each
trapdoor element in each subset, before carrying out the
pairing operations. This calculation is on the costly G2 group
and is linear to x2, which incurs a linear increase for their
search time. Note that FEASE/PAEKS also has a linear
increase regarding x2 for multiplications in G1, but as shown
in Table 2, it only takes 0.02ms for each hence it does not
impact the search time for a limited number of keywords.
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Schemes
Trapdoor/Secret Key Encryption

G1 G2 G1 G2
Mul Exp Hash Mul Exp Hash Mul Exp Hash Mul Exp Hash

CWDWL16 [21] - 1 - 3ℓ 8ℓ+1 - 2m 6m+2 - - - -
MZNLHS17 [44] - 1 - 3ℓ 4ℓ2+4ℓ+1 - m+2 m+6 - - - -
FEASE (Fig. 4) 2ℓ 4ℓ ℓ - 1 - - m m - 2 -
PAEKS (Fig. 5) 2ℓ 4ℓ ℓ - 1 - - m m - 2 -

FAME [3] 9ℓn+3n 9ℓ+3n 6ℓ+6n - 3 - 3m 6m 6m - - -
FABEO [50] ℓ 2ℓ ℓ - 1 - - m m - 1 -

A-KP-ABE (Fig. 3) 2ℓ 4ℓ ℓ - 1 - - m m - 2 -

Table 4: Computational overhead for trapdoor/key generation and encryption between ASE (top)/KP-ABE (bottom) schemes.
m denotes the number of keywords/attributes in the ciphertext, ℓ, and n are the number of rows and columns of the MSP matrix.

Schemes
Search/Decryption

G1 G2 GT
Mul Mul Exp Mul Pairing

CWDWL16 [21] - 1 - 5x2 6x2+1
MZNLHS17 [44] - 7x2−x1+1 - 5 6x1+1
FEASE (Fig. 4) 3x2 - - 2 3x1
PAEKS (Fig. 5) 3x2 - - 2 3x1

FAME [3] 6x2 - - 6 6
FABEO [50] 2x2 - - 2 2

A-KP-ABE (Fig. 3) 3x2 - - 3 3x1

Table 5: Computational overhead for search/decryption
between ASE (top)/KP-ABE (bottom) schemes. x1 denotes
the total number of matched keyword/attribute names subset.
x2 denotes the total number of keywords/attributes under every
matched names subset.

Schemes Trapdoor/Secret key Ciphertext
G1 G2 G1 G2

CWDWL16 [21] 1 6ℓ+1 5m+1 -
MZNLHS17 [44] 1 4ℓ2+2ℓ+1 6 -
FEASE (Fig. 4) 2ℓ 1 m 2
PAEKS (Fig. 5) 2ℓ 1 m 2

FAME [3] 3ℓ 3 3m 3
FABEO [50] ℓ 1 m 1

A-KP-ABE (Fig. 3) 2ℓ 1 m 2

Table 6: Comparison of communication overhead between
ASE (top)/KP-ABE (bottom) schemes. m denotes the number
of keywords/attributes in the ciphertext, and ℓ is the number
of rows of the MSP matrix.

Then we can see the comparison of the communication over-
head in Table 6, which shows the number of group elements of
trapdoor and ciphertext. Note that in general, elements in G2
are about 2 to 3 times the size of elements inG1. For ciphertext,
MZNLHS17 has a constant of 6 ciphertext elements in G1.
FEASE/PAEKS has m element in G1 and 2 elements in G2,
which is less than CWDWL16 that has 5m+ 1 elements on
G1. For trapdoor, FEASE/PAEKS has 2ℓ elements in G1 and
1 element in G2 while CWDWL16 has 6ℓ+1 elements in G2
group and 1 element in G1. The worst one is MZNLHS17
that they have quadratic 4ℓ2+2ℓ+1 trapdoor elements in G2,
which is a trade-off of their constant-size ciphertext.

7.4 KP-ABE schemes
We can see the running times for KP-ABE schemes in Fig. 7.
For encryption, our A-KP-ABE scheme runs a very fast 0.07s
for the encryption of 100 keywords, with only 0.01s slower
than FABEO! FAME needs 0.38s in the same case, which is 5
times slower than our A-KP-ABE. Referring to Table 4, this is
because our A-KP-ABE has the same m exponentiations and
hashes in G1 as same as FABEO while FAME has 6m. The
only difference between our A-KP-ABE and FABEO is that
we have one more exponentiation in G2.

For key generation, FABEO has the fastest 0.13s for a secret
key with 100 attributes. Our A-KP-ABE doubles the time
with 0.24s but it is 3.5 times faster than FAME. As Table 4
shows, all schemes mainly build elements in G1. FABEO
has ℓ hashes and 2ℓ exponentiations in G1, our A-KP-ABE
has double size calculations for them in order to build the
D-LIN type construction. Nevertheless, it is more efficient
than FAME since the number of exponentiations, hashes, and
multiplications of FAME all depend on ℓ and n.

For decryption, the Fig. 7 (c) shows that FAME and FABEO
all have a constant decryption time of 0.02s and 0.007s re-
spectively while our A-KP-ABE has a linear increase with the
number of matched attribute names subset x1. Even in this case,
our A-KP-ABE is only 0.08s slower than FAME and 0.093s
slower than FABEO when x1=10. We can see from Fig. 7 (d)
that when x1=1, our A-KP-ABE has a constant 0.012s no mat-
ter how many attributes are included in the subset, which is very
close to FABEO and even two times faster than FAME. In other
words, when x1≤2, our A-KP-ABE can decrypt at least as fast
as FAME. Table 5 shows the reason that, when x1=1, our A-
KP-ABE has a constant 3 pairings that lie between FABEO (2
pairings) and FAME (6 pairings). The linear relation to x1 is the
main bottleneck between our A-KP-ABE and non-anonymous
FAME and FABEO since the former protects anonymity by
using the partially hidden structure while the latter does not.
However, it is common sense that stronger security requirement
leads to the degradation of efficiency. Compared to former A-
KP-ABE schemes, our scheme already achieves the smallest
gap between the anonymous ABE and non-anonymous ABE
field, in which our A-KP-ABE scheme can even have compara-
ble efficiency to the fastest non-anonymous KP-ABE schemes!
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(a) ASE Encryption (b) ASE Trapdoor generation (c) ASE Search regarding matched sub-
set number (assume only one keyword
in each subset)

(d) ASE Search regarding keyword num-
ber in a matched subset (assume there is
only one matched subset)

Figure 6: Running times for ASE schemes.

(a) KP-ABE Encryption (b) KP-ABE Key generation (c) KP-ABE Decryption regarding
matched subset number (assume only
one attribute in each subset)

(d) KP-ABE Decryption regarding key-
word number in a matched subset (as-
sume there is only one matched subset)

Figure 7: Running times for KP-ABE schemes.

To compare the communication overhead, we can go
through Table 6. For ciphertexts, FABEO has only m elements
inG1 and one element inG2, FAME is three times heavier than
FABEO in every parameter. Our A-KP-ABE only adds one
more element in G2 so it has a very similar ciphertext size as
FABEO. For the secret key, FABEO has ℓ size elements in G1
and 1 element in G2, while FAME has thrice more again. Our
A-KP-ABE doubles the size of elements in G1 of FABEO, so
the communication overhead lies between FABEO and FAME.

7.5 Experiments with larger datasets

In the previous sections, we compared our schemes with the
state-of-the-art expressive ASE and ABE schemes using 100
keywords. Despite being acknowledged as the fastest in the
expressive ASE field, we recognized the importance of testing
our schemes on a larger, more practical dataset size. Thus, we
expand our dataset to 1000, 5000, and 10000 keywords for both
our FEASE and PAEKS schemes. This decision was influenced
by the fact that many state-of-the-art SSE schemes evaluate
their efficiency on much larger datasets. This marks the first

Schemes Dataset Setup Trap Enc Search

FEASE
1000 0.018 2.17 0.62 0.068
5000 0.018 14.13 3.28 1.5

10000 0.018 35.64 6.61 6.76

PAEKS
1000 0.031 2.05 0.64 0.076
5000 0.031 12.81 3.05 1.75

10000 0.031 33.4 6.31 6.55

Table 7: The running time (in seconds) for our FEASE
and PAEKS in larger datasets with 1000, 5000, and 10000
keywords for both the keyword sets and keyword policies.

ASE work to explore datasets of such a substantial scale.
Table 7 presents the setup, trapdoor generation, encryption,

and search algorithms for both our FEASE and PAEKS
schemes. These algorithms were tested with 1000, 5000,
and 10000 keywords, considering "AND" gates between all
keywords in the policy for simplicity. First, the setup time for
both schemes remains constant and unaffected by the number
of keywords 13. In the case of FEASE, with a dataset containing

13The same considerations apply to the data sender key and data receiver
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1000 keywords, trapdoor generation, and encryption take
2.17s and 0.62s, respectively. The search algorithm operates at
0.068s. As the dataset expands to 5000 keywords, these times
increase to 14.13s, 3.28s, and 1.5s, respectively. For a dataset
of 10,000 keywords, these times further rise to 35.64s, 6.61s,
and 6.76s. Besides, the results from the PAEKS scheme mirror
those of FEASE closely, given their similar constructions.

The diagrams in Figure 6 show a strict linear correlation
between the running time of encryption and the number of
keywords in the dataset. However, there are deviations in the
running time of trapdoor generation and the search algorithm,
exceeding the linear relation with the keyword count. This
discrepancy arises because when the number of keywords
surpasses 1000, the built-in recursive functions "evalStack"
and “requiredAttributes” utilized in the trapdoor and search
algorithm hit the maximum recursion depth of the program.
Consequently, the program requires additional memory to exe-
cute, leading to increased running times. Addressing this issue
and optimizing the program remain areas for our future work.

Based on the results of this experiment, it is evident that
while the efficiency of ASE has not yet reached the same level
as SSE, our FEASE demonstrates state-of-the-art efficiency in
the expressive ASE field. In summary, the asymptotic perfor-
mance of the expressive ASE field is developing from the fully
hidden scheme using IPE [34] to partially hidden schemes in
composite order groups [37,42], and further to partially hidden
schemes in prime order group [21, 44]. Furthermore, the
foundation KP-ABE scheme is chosen from [38] for [37, 42],
to [51] for [21,44], and finally to the most efficient FABEO [50]
for our FEASE and PAEKS. The progress in group settings,
partially hidden structure, and KP-ABE schemes together
form the efficiency enhancement for expressive ASE schemes.
We anticipate that future research efforts will continue to
explore novel techniques to further enhance ASE efficiency.

8 Conclusion

In this paper, we have proposed a fast and expressive asym-
metric searchable encryption (FEASE) scheme and applied
similar techniques to create two other fast and expressive ap-
plications: a public key authenticated encryption with key-
word search (PAEKS) scheme and an anonymous key-policy
attribute-based encryption (A-KP-ABE) scheme. The perfor-
mance of these three schemes reaches the highest efficiency
level in these three primitives, and it is comparable to the state-
of-the-art non-anonymous ABE schemes FAME and FABEO.
Compared to SSE, the lack of capabilities supporting dynamic
updates is still a shortcoming of ASE schemes. In the future, we
will carry on our research for the dynamism of the ASE field.

key generation algorithms in the PAEKS scheme. Therefore, we have omitted
the running time for these two algorithms in our evaluation.
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A CWDWL16 scheme in the Type-III setting

Fig. 8 shows [21] that we transformed into the Type-III setting.

(pp, sk)←KeyGen(1λ). Run GroupGen(1λ) to obtain

par := (p, e, G1, G2, GT , g1, g2). Pick u1, h1, δ1
$← G1,

u2, h2, δ2
$←G2, α, d1, d2, d3, d4

$←Zp, and a hash function
H :GT→G2. Compute the public key and secret key as

pp=(par,H, g1, u1, h1, δ1, u2, gd1
1 , gd2

1 , gd3
1 , gd4

1 , e(g1, g2)
α)

sk=(α, g2, h2, δ2, d1, d2, d3, d4)

(pkc, skc)←KeyGenc(pp). Pick β
$←Zp and compute

pkc=gβ

1 , skc=β

td←Trap(pp, pkc, sk, P=(M, π, P=(M, π, {π(i)}i∈[ℓ])).

Pick r, r′, t1,1, t1,2, ..., tℓ,1, tℓ,2
$←Zp, v $←Zn−1

p . Compute

td1,i=gMi(α∥v)⊤
2 ·δd1d2ti,1+d3d4ti,2

2 ,

td2,i=H(e(pkc, td8)
r)·gd1d2ti,1+d3d4ti,2

2 ,

td3,i=(uπ(i)
2 h2)

−d2ti,1 , td4,i=(uπ(i)
2 h2)

−d1ti,1 ,

td5,i=(uπ(i)
2 h2)

−d4ti,2 , td6,i=(uπ(i)
2 h2)

−d3ti,2 ,

td7=gr
1, td8=gr′

2 .

Output td=((M, π, {nπ(i)}i∈[ℓ]), {td1,i, td2,i, td3,i, td4,i, td5,i,
td6,i}i∈[ℓ], td7, td8).

ct←Enc(pk,W={wi}i∈[m]={ni, vi}i∈[m]).

Pick µ, s1,1, s1,2, ..., sm,1, sm,2, z1, ..., zm
$←Zp and compute

ct1=gµ
1, ct2,i=δ

−µ
1 (uwi

1 h1)
zi , ct3,i=g

d1(zi−si,1)
1 , ct4,i=g

d2si,1
1 ,

ct5,i=g
d3(zi−si,2)
1 , ct6,i=g

d4si,2
1 , ct7=e(g1, g2)

αµ

Output ct=({ni}i∈[m], ct1, {ct2,i, ct3,i, ct4,i, ct5,i, ct6,i}i∈[m], ct7).

1/0←Search(pp, skc, ct, td). Tests if there is any subset
I that matches the keyword names {ni}i∈[m] in ct with
(M, π, {nπ(i)}i∈[ℓ]) in td. If not, return 0. Otherwise, it finds
constants {γi}i∈I s.t. ∑i∈I γiMi=(1, 0, ..., 0) and computes:

ct7=∏
i∈I

(e(ct1, td1,i)e(ct2,i,
td2,i

H(e(td7, td8)β)
)e(ct3,i, td3,i)

e(ct4,i, td4,i)e(ct5,i, td5,i)e(ct6,i, td6,i))
γi ,

If the equation holds, return 1. Otherwise, the cloud server
continues to find another subset of I and repeats the checking.
If the above equation does not hold for all subsets, return 0.

Figure 8: The construction of Cui et al. [21] ASE scheme.
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