é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

YPIR: High-Throughput Single-Server PIR
with Silent Preprocessing
Samir Jordan Menon, Blyss; David J. Wu, UT Austin

https://www.usenix.org/conference/usenixsecurity24/presentation/menon

This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium
is sponsored by USENIX.

+ 8 ';\-_. - —
R b »

YPIR: High-Throughput Single-Server PIR with Silent Preprocessing

Samir Jordan Menon
Blyss

Abstract

We introduce YPIR, a single-server private information re-
trieval (PIR) protocol that achieves high throughput (up to
83% of the memory bandwidth of the machine) without
any offline communication. For retrieving a 1-bit (or 1-byte)
record from a 32 GB database, YPIR achieves 12.1 GB/s/core
server throughput and requires 2.5 MB of total communica-
tion. On the same setup, the state-of-the-art SimplePIR pro-
tocol achieves a 12.5 GB/s/core server throughput, requires
1.5 MB total communication, but additionally requires down-
loading a 724 MB hint in an offline phase. YPIR leverages
a new lightweight technique to remove the hint from high-
throughput single-server PIR schemes with small overhead.
We also show how to reduce the server preprocessing time in
the SimplePIR family of protocols by a factor of 10-15x.

By removing the need for offline communication, YPIR
significantly reduces the server-side costs for private auditing
of Certificate Transparency logs. Compared to the best previ-
ous PIR-based approach, YPIR reduces the server-side costs
by a factor of 8x. Note that to reduce communication costs,
the previous approach assumed that updates to the Certificate
Transparency log servers occurred in weekly batches. Since
there is no offline communication in YPIR, our approach al-
lows clients to always audit the most recent Certificate Trans-
parency logs (e.g., updating once a day). Supporting daily
updates using the prior scheme would cost 48 x more than
YPIR (based on current AWS compute costs).

1 Introduction

A private information retrieval (PIR) [23, 50] protocol allows
a client to privately retrieve a record from a database with-
out revealing to the database which record was requested.
PIR is a useful building block in systems for metadata-hiding
messaging [71, 51, 5, 4], private database queries and web
search [82, 41], password breach alerting [57, 81, 3], Cer-
tificate Transparency auditing [43], private media consump-
tion [39], private ad delivery [47, 7, 37], and more.

David J. Wu
UT Austin

Recently, there has been a flurry of works pushing the
limits on the concrete efficiency of single-server PIR. Most
concretely-efficient PIR constructions rely on an initial offline
phase where the client either uploads or downloads some
information to or from the server:

* Downloading a hint: The fastest single-server PIR
schemes [26, 43, 86, 74] rely on the client first download-
ing a query-independent “hint” in an offline phase. With
a \/N-size hint (where N is the size of the database) the
SimplePIR scheme [43] achieves a throughput (i.e., the ra-
tio of the database size and the time needed to answer a
query) that is comparable to the memory bandwidth of the
system (i.e., the speed at which the PIR server can read
the database from memory; this is 14.6 GB/s on our ma-
chine). Moreover, if the client can stream the entire database
in the offline step (and cache O(v/N) bits), then schemes
like [86, 74, 35] even allow the server to answer queries
with sublinear online computation; this enables protocols
that can easily handle databases with hundreds of GB of
data (e.g., in an application to private DNS lookups). Of
course, this assumes that clients can perform a streaming
download of this size.

» Uploading client-specific state: In an alternative model [4,
1, 72, 67], clients instead upload a “public key” to the
server in the offline phase. The public key is typically
used to “compress” the query and response. For retrieving
large records (e.g., tens of KB long), these protocols cur-
rently achieve the best communication. However, the high-
est server throughput [67] achieved by these approaches
is much smaller (over 10x) than the throughput of their
hint-based counterparts.

Challenges of offline communication. While moving some
of the communication to the offline phase has been critical
to the concrete efficiency of PIR, it also imposes challenges
for practical deployments. In the hint-based approach, the
offline download is large: for an 8 GB database such as the
one used in the application to signed certificate timestamp
(SCT) auditing in Certificate Transparency from [43], the size

USENIX Association

33rd USENIX Security Symposium 5985

of the hint is over 200 MB using the SimplePIR scheme and
16 MB using the DoublePIR scheme. This is problematic
for dynamic databases, since each time the database updates,
every client must re-download portions of the hint. When us-
ing DoublePIR for private SCT auditing, the protocol of [43]
compromised by having clients update their hints on a weekly
basis, even though Certificate Transparency log servers typi-
cally update their databases daily. Such a scheme sacrifices
real-time monitoring for efficiency. Indeed, if the log database
updates daily and the client always audits against the most
recent version of the database, the hint downloads and up-
dates are more than 90% of the total cost (see Section 4.4).
Dynamic databases are common to many other applications
of PIR, such as metadata-hiding messaging or private DNS
lookups. Moreover, if a client uses PIR to access multiple
databases, it would need to cache hints from each database,
which imposes storage burdens for the client.

The client-specific state used by OnionPIR [72], Spiral [67],
and similar schemes [4, 1] introduces its own share of chal-
lenges. In these schemes, the server must store a (large) pub-
lic key for each client, imposing high storage requirements
for the server and also requiring additional infrastructure to
support efficient client state lookups and retrieval. Reuse of
client-specific public keys can also enable active attacks on
the application [43].

Silent preprocessing. High offline communication costs and
large client-side or server-side storage requirements are major
bottlenecks in the most concretely-efficient single-server PIR
protocols. A natural question is whether we can achieve good
concrete efficiency with preprocessing, but without offline
communication (i.e., a protocol with silent preprocessing).
In fact, two recent works have already made great strides
in this direction: Tiptoe [41]' and HintlessPIR [55]. Both
schemes essentially leverage a form of “bootstrapping” [32]
to remove the hint from the SimplePIR protocol [43], where
the server homomorphically compresses the SimplePIR hint
using an encoding of the client secret key. We refer to the
full version of this paper [68] for a more detailed summary
of these two schemes. While these protocols eliminate the
client’s need to download the hint, they incur a computation
and communication penalty. For example, the throughput of
the Tiptoe system on a 32 GB database is over 7 x slower than
SimplePIR, and the communication cost (for retrieving a 1-bit
record) is over 35 x greater than the online communication of
SimplePIR. HintlessPIR is more lightweight, but still requires
4x more online communication than SimplePIR and has a
throughput that is at most 62% of the SimplePIR throughput.
We provide a more detailed comparison of the bootstrapping-
based approach from Tiptoe and HintlessPIR with our “key-
switching-based” approach in Section 4.2, and an overview
of the design of Tiptoe and HintlessPIR in the full version of

ITiptoe is a system for performing private web queries, but as part of their
design, they introduce a hintless variant of SimplePIR. In this work, when
we refer to Tiptoe, we refer specifically to their hintless PIR scheme.

this paper [68].

1.1 Our Contributions

In this work, we introduce YPIR, a new single-server PIR
protocol with silent preprocessing. Like Tiptoe [41] and Hint-
lessPIR [55], we build on SimplePIR and its recursive variant,
DoublePIR. However, instead of using bootstrapping, we take
a packing approach (which has a conceptually-similar flavor
to the response packing techniques from [67]) and “pack” the
DoublePIR response into a more compact representation us-
ing polynomial rings.” We provide a technical overview of
YPIR in Section 1.2 and the full construction in Section 3.

High throughput with silent preprocessing. The YPIR proto-
col can be viewed as appending a lightweight post-processing
step to DoublePIR to “compress” the DoublePIR response.
When retrieving a single bit from a 32 GB database, YPIR
achieves a throughput of 12.1 GB/s, which is 97% of the
throughput of SimplePIR (and 83% of the memory band-
width of the machine). In contrast, HintlessPIR achieves a
maximum throughput that is only 62% of SimplePIR (and
concretely, 6.4 GB/s on our machine) [55]. For database sizes
ranging from 1 GB to 32 GB, the YPIR response size is the
same as that in DoublePIR, 9-37 x shorter than the response
size in SimplePIR, and over 100x shorter than that of Hint-
lessPIR and Tiptoe. On the flip side, YPIR queries are 1.8-3 x
larger than those in DoublePIR, 3-7 x larger than SimplePIR,
and similar to those in HintlessPIR. We refer to Section 4
for a more detailed breakdown and comparison. In short, for
retrieving small records from a large database, YPIR achieves
97% of the throughput of one of the fastest single-server PIR
schemes while fully eliminating all offline communication
and only incurring a modest increase in query size.

Faster server preprocessing. While YPIR requires no offline
communication, it still relies on an offline server preprocess-
ing step (the same as that in SimplePIR). In Section 4.1, we
describe a simple approach to improve the server preprocess-
ing throughput by a factor of 10-15x. For instance, while
preprocessing a 32 GB database in SimplePIR requires two
hours, it just requires 11 minutes with the YPIR approach.
Asymptotically, our approach reduces the offline preprocess-
ing cost by a factor of n/logn, where n is the lattice dimen-
sion (in SimplePIR-based systems, n > 1024). Our technique
can be used to reduce the preprocessing costs of any of the
protocols in the SimplePIR family.

Cross-client batching. The throughput of protocols like Sim-
plePIR is bounded by the memory bandwidth of the system.
Since the server throughput is memory-bounded rather than
CPU-bounded, we can achieve higher effective throughput by

2The Y in YPIR is to reflect the fact that the protocol design combines the
high-throughput capabilities of PIR based on integer lattices (i.e., the LWE
assumption [80]) with the response compression techniques from PIR based
on ideal lattices (i.e., the RLWE assumption [62]).

5986 33rd USENIX Security Symposium

USENIX Association

increasing the number of CPU operations per byte of memory
read. In Section 4.1, we describe a simple cross-client batch-
ing approach where the PIR server uses a single scan over the
database to answer multiple queries from non-coordinating
clients.? In this work, we show that it is straightforward to
tweak SimplePIR (and generalizations like DoublePIR and
YPIR) to allow the server to answer a small batch of k queries
using a single linear scan through memory. While cross-client
batching does not reduce the raw number of instructions per-
formed by the CPU, it achieves better utilization of the CPU.
With just 4 clients, cross-client batching improves the effec-
tive server throughput for a protocol like SimplePIR by a
factor of 1.4x to 17 GB/s; applied to YPIR, we achieve an
effective throughput of 16 GB/s. In typical applications where
servers routinely process queries from multiple clients simul-
taneously, cross-client batching provides a way to increase
the effective throughput for the server and make better use of
the available computing resources on the server.

Application to Certificate Transparency. In Section 4.4,
we compare the server-side costs of using YPIR to realize
an application to private SCT auditing in Certificate Trans-
parency [52, 53]. In this setting, a log server holds a set of
SCTs and a client (e.g., a web browser) periodically checks
that the SCTs it received from web servers are contained
in the log. In private SCT auditing, the goal is to perform
these audits without requiring clients to reveal their browsing
history to the log server. Henzinger et al. [43] designed an
elegant solution for private SCT auditing by combining PIR
with Bloom filters. In their protocol, an SCT audit translates
to a single PIR query to the log server. A major challenge in
this setting is that Certificate Transparency logs update on a
daily basis (with millions of certificates added daily). When
built from protocols like DoublePIR, clients will frequently
need to download hint updates when performing an audit. To
mitigate these communication costs, the work of [43] com-
promises by updating the database on a weekly basis. Thus,
their approach does not support real-time auditing.

Based on current AWS computation and communication
costs, YPIR has 8x lower server costs compared to the Dou-
blePIR system that could only support weekly updates to the
log server (i.e., the cost drops from $1822 per million clients
for DoublePIR to $228 per million clients for YPIR). The
cost of YPIR further drops to $183 per million clients if we
leverage cross-client batching with a batch size of 4 (i.e., as-
sume that the server always has a saturated queue of at least 4
queries). Moreover, with YPIR, the client always audits the lat-
est version of the log server. In fact, the fotal communication
incurred by YPIR each week is smaller than the total commu-

3We contrast this with single-client batching [9, 46, 38, 4], which seeks to
amortize the cost over multiple queries from a single client. Our cross-client
batching applies even if each client makes a single query and is entirely
transparent to the client (i.e., requires no client-side changes). Cross-client
batching was also used in [60] to improve the effective throughput of PIR
in the multi-server setting.

nication of the DoublePIR approach. In other words, YPIR
reduces the total communication even after accounting for the
fact that the cost of downloading the DoublePIR hint can be
amortized over the course of a week. Conversely, if we were to
use DoublePIR to support daily log updates, the weekly server
cost balloons to over $10,000 per million clients, which is
48 x higher than using YPIR. Compared to other hintless PIR
schemes such as Tiptoe and HintlessPIR, we estimate YPIR
achieves a cost savings of 16-84x for private SCT auditing
(see Table 6).

Limitations. The main limitation of YPIR is the larger query
sizes compared to SimplePIR and DoublePIR. Specifically, a
YPIR query is 1.8-3x larger than a DoublePIR query (for
an 8 GB database, YPIR queries are 1.5 MB while Dou-
blePIR queries are 724 KB) and 3-7x larger than a Sim-
plePIR query. If the application setting has a small, fixed
communication budget, YPIR may not be appropriate; for ex-
ample, for a 32 GB database, the minimum YPIR query size
is 1.1 MB. We refer to Section 4.2 for more details on the
communication-computation trade-offs in YPIR, HintlessPIR,
SimplePIR, and DoublePIR.

1.2 Overview of YPIR

The starting point for this work is the SimplePIR/DoublePIR
schemes from [43] based on the learning with errors (LWE)
problem [80]. First, an LWE encryption of u € Z, is a pair
ct = (a,b) € ZI"" where b =s"a+e+A-u. Here, n is the
lattice dimension, s € Z is the secret key, e € Z is a (small)
error term, and A is a scaling factor (typically, |g/p]). Given
ct and the secret key s, the user can compute b —s'a = A-
p+e mod gq. If e is small relative to the scaling factor A (i.e.,
le| < A/2), the user can recover u € Z, from ct by rounding.

In SimplePIR and DoublePIR, the database is represented
by a matrix D € Zf’,‘ “%2 and records are indexed by a row-
column pair (i, j). The query consists of LWE encryptions of
the components of the indicator vectors u; and u; (i.e., u; is the
vector that is 0 everywhere and 1 in index 7). In SimplePIR, the
response consists of ¢, ciphertexts cty,...,cty, € Zg“ which
encrypt the ¢, entries of row i of the database. In DoublePIR,
the response is an LWE encryption of ct;, which is itself an
encryption of the element in row i, column j of D.

An LWE encryption of an element of Z, consists of (n+1)
Z4 elements. Since ct; € ZZ“ is a vector over Zg, an encryp-
tion of ct; (i.e., the DoublePIR response) contains k(n+ 1)?
elements over Z,, where ¥ = logg/log p. The extra factor of
k comes from the fact that the plaintext space for the LWE
encryption scheme is Z, so to encrypt the components of ct;
over Zq, DoublePIR first decomposes each Zq element into
its base-p representation (consisting of K digits in Zj). For
security, the lattice dimension 7 is around 2'° = 1024, so the
response is very large. The insight in [43] is that most of the
components in the response only depend on the database and
not the query. Thus, these can be prefeteched as a hint in the

USENIX Association

33rd USENIX Security Symposium 5987

offline phase. For example, for an 8 GB database with 236
1-bit records, the query-independent portion of the response
is 16 MB while the query-dependent portion is just 32 KB.

Packing the DoublePIR responses. The YPIR protocol elim-
inates the offline hint from DoublePIR by compressing the
full DoublePIR response using ring LWE [62]. Specifically,
we work over the polynomial ring R = Z[x]/(x? 4 1) where
d is a power-of-two. RLWE ciphertexts have the advantage
of having a much smaller ciphertext expansion factor. With
vanilla LWE, encoding a single value y € Z, requires a vector
of (n+ 1) elements over Z, whereas encoding a ring element
U € R, only requires two elements in R, (where R, := R/qR).
If we consider the ciphertext expansion factor (i.e., the ratio
of the ciphertext size to the plaintext size), RLWE decreases
the expansion factor from (rn+ 1)logq/logp to 2logq/log p.
For concrete values of n ~ 219, this is a 1000x reduction in
ciphertext expansion factor.

In YPIR, we use the LWE-to-RLWE packing technique
from [21]. This transformation takes a collection of d
LWE ciphertexts cty,...,cty € Z4"" that encode messages
U1,-..,Hq € Zp (under a secret key s) and packs them into
an RLWE ciphertext that encrypts the polynomial f(x) :=
Yicld] ux—le R, (under a key s € R, derived from s). Note
that we assume the lattice dimension n in LWE coincides with
the ring dimension d in RLWE. Critically, the transformation
takes d(d + 1) elements over Z, and compresses them into
just 2d elements over Z,. This yields a factor (d + 1) /2 reduc-
tion in ciphertext size.* For an 8 GB database, this packing
approach compresses the full 16 MB DoublePIR response
into a 12 KB response (see Table 1). The cost is that the query
must now include a “packing key” for the transformation
from [21] (which essentially consists of RLWE key-switching
matrices). This increases the query size from 724 KB in Dou-
blePIR by a factor of 2x to 1.5 MB. We additionally note
that most of the computational costs of the [21] transforma-
tion can actually be moved to an offline preprocessing phase
(because it is applied to query-independent components). In
our experiments, we observed a 9x reduction in the online
computational cost by having the server perform a modest
amount of additional work in the offline phase. We describe
this approach in Section 4.1.

Supporting large records. A limitation of DoublePIR is that
it only supports retrieving small records (i.e., a single element
of the plaintext space Z,). This is sufficient for some appli-
cations like private SCT auditing (see Section 4.4), but other
PIR applications may require support for large records. In
Section 4.3, we show that we can also apply the same packing

“It is also possible to pack LWE encodings (e.g., using the SPIRAL approach
for response compression [67]) into a packed LWE ciphertext [79], but this
requires O(d) key-switching matrices. Since these key-switching matri-
ces must now be communicated with the query, this does not help reduce
communication. The LWE-to-RLWE transformation only requires O(logd)
key-switching matrices, which can be included as part of the query with
only modest communication overhead.

approach to SimplePIR to obtain a PIR protocol (YPIR+-SP)
that supports queries to databases with large records. This is
a similar setting considered in HintlessPIR (i.e., composing
SimplePIR with a LWE-to-RLWE transformation) [55]. As
we describe in Section 4.3, our YPIR+SP protocol achieves a
2.2x reduction in total communication with only a 5% reduc-
tion in throughput compared to HintlessPIR when considering
databases with 32—64 KB records.

Faster preprocessing. YPIR relies on the same preprocess-
ing as SimplePIR (and DoublePIR). The main cost of this
preprocessing is computing a product of the form AD where
Ae ZZXZ‘ is a (random) matrix and D € Zf,l *%2 i the database.
While this process only needs to be performed once, it is a
very expensive process for large databases: on a single core,
this precomputation has a throughput of under 4 MB/s; for
a 32 GB database, the SimplePIR preprocessing takes over
two hours. In this work, we observe that we can replace A
with a structured matrix and use number-theoretic transforms
(NTTs) to compute the matrix-vector product. Asymptoti-
cally, this yields a n/logn improvement to preprocessing, and
concretely, we observe a 10-15x increase in the throughput.
The only cost of this is that security of the scheme now rests
on the ring LWE assumption rather than the LWE assumption.
Note that this optimization only changes the preprocessing
and not the online server computation. In particular, the online
server computation is still over Z, (and not over a polynomial
ring). We describe our approach in more detail in Section 4.1.
We also stress that our approach is not just lifting SimplePIR
to work over polynomial rings. While this works in theory, the
performance bottleneck in practice is the memory bandwidth
of the system. As we discuss in Section 4.1, a ring-based Sim-
plePIR has higher memory requirements, which is enough to
reduce throughput from 11.5 GB/s to just 3.2 GB/s.

2 Preliminaries

We write A for the security parameter. For a positive integer
n € N, we write [n] for the set {1,...,n}. For integers a,b €
Z, we write [a,b] for the set {a,a+1,...,b}. For a positive
integer g € N, we write Z, to denote the integers modulo g.
We use bold uppercase letters to denote matrices (e.g., A, B)
and bold lowercase letters to denote vectors (e.g., u, v).

We write poly(A) to denote a function that is O(A¢) for
some ¢ € N and negl() to denote a function that is o(A™)
for all ¢ € N. We say an algorithm is efficient if it runs in
probabilistic polynomial time in its input length.

Rounding. For an input x € R, we write |x] to denote the
rounding function; that is |x] outputs the nearest integer to
x (rounding up in case of ties). For integers ¢ > p, we write
|-1g.,p: Zg — Zp to denote the rounding function that first
takes the input x € Z,, lifts it to an integer in the interval
x' € (—q/2,q/2], and outputs | p/q-x"] as an element of Z,.
Here, the division and the rounding are performed over the

5988 33rd USENIX Security Symposium

USENIX Association

rationals. We extend |-], , to operate component-wise on
vector-valued and matrix-valued inputs.

Polynomial rings. Our construction will use the cyclotomic

ring R = Z[x] /(x4 + 1) where d is a power of two. For a posi-

tive integer ¢ € N, we write R, := R/qR. We now define the

Coeffs and NCyclicMat functions over R (and by extension,

R,). Let g =Y oux' € R be aring element.

» Let Coeffs: R — Z? be the mapping g + [0, ..., 0z _1]"
that outputs the vector of coefficients of g.

* Let NCyclicMat: R — Z4*¢ be the linear transformation
over Z¢ associated with multiplication by g € R. Namely,
for all f € R, it holds that Coeffs(f)T - NCyclicMat(g) =
Coeffs(fg)". Specifically,

Clo o Oz -+ Oy
) —0g—1 o o o Qg2
NCyclicMat(g) :=
—0 —0p —03 oo

We extend NCyclicMat to operate on vectors in a
component-wise manner. In particular, this means that for
all feRandg=(g1,...,8m) ER",

Coeffs(f-g)" = [Coeffs(fg1)" | --- | Coeffs(fgm)"]

= Coeffs(f)" - NCyclicMat(g").
2.1

We define both operators over R, in the identical manner.
When g = 1 mod 2d, we say that g is “NTT-friendly;” in this
case, polynomial multiplication in R, can be implemented
using a negacyclic convolution [61, 59], which can in turn
be computed using fast radix-2 number-theoretic transforms
(NTTs). For f € R, we write || f||- to denote the {. norm of
the vector of coefficients Coeffs(f).

Gadget matrices. Next, we recall the notion of the gadget
matrix from [70]. For a modulus g € N and a decomposition
base z € N, we write g, = [1,z,2%,...,77 '] € Zi, where t =
[logg/logz]. For a dimension n € N, we define G,,; :=1,®
gl € Z*" to be the gadget matrix. We write G, I Ly —
7™ to denote the base-z digit decomposition operator that
expands each component of the input vector into its base-z
representation (where each output component is an integer
between —z/2 and z/2). We write g_': Z, — Z' for the 1-
dimensional operator szl We extend G, Z' to operate on
matrices M € ZZXk by independently applying G, Z‘ to each
column of M.

Ring learning with errors. Like many lattice-based PIR
schemes [66, 4, 33, 72, 67, 55], the security of our protocol
relies on the ring learning with errors (RLWE) problem [80,
62]. We state the “normal form” of the assumption where
the RLWE secret is sampled from the error distribution; this
version reduces to the one where the secret key is uniform [6].

Definition 2.1 (Ring Learning with Errors [62]). Let A be
a security parameter, d = d(A) be a power-of-two, and R =
Z[x]/(x* 4-1). Let m = m(\) be the number of samples, g =
¢(A) be a modulus, and %, = % (A) be an error distribution
over R. The ring learning with errors (RLWE) assumption
RLWE .4, in Hermite normal form states that for a & R,
s, e+ x™ and v & R7, the following two distributions
are computationally indistinguishable: (a,sa+e) and (a,v).

LWE and RLWE encodings. We say that a vector ¢ € Zg* !
is an “LWE encoding” of a value u € Z, with respect to a
secret key s € Zj and error e € Z if [—s" | 1]- ¢ = p+e. For
aring R = Z[x]/(x + 1), we say that ¢ € R; is an “RLWE
encoding” of a value u € R, with respect to a secretkey s € R,
and error e € R if [—s | 1]-¢ = u+e. In our setting, it will
typically be the case that u = |g/p|v for some v € Z,, (or
v € Rp). Given u+ e for sufficiently small e, it is then possible
to recover the value of v by rounding.

Packing LWE encodings. Observe that RLWE encodings
have better rate: namely, an encoding of u € R, consists
of just two elements of R,, whereas an LWE encoding of
U € Zg requires a vector of (n+ 1) elements, where n is the
lattice dimension (i.e., the security parameter). Chen, Dai,
Kim, and Song [21] described a general transformation to
“pack” multiple LWE encodings into a single RLWE encod-
ing. This is the main technique we use to remove the hint
from DoublePIR. We give an informal overview of the trans-
formation here and defer the formal description to the full
version of this paper [68]. Informally, there are two algorithms
(CDKS.Setup, CDKS.Pack) with the following properties:

+ CDKS.Setup(1,s,z) — pk: On input the security parame-
ter A, a secret key s € R,, and a decomposition base z € N,
the setup algorithm outputs a packing key pk.

» CDKS.Pack(pk,C) — ¢’: On input the packing key pk and

LWE encodings C € Z,(]dﬂ)x‘[, the packing algorithm out-

puts an RLWE encoding ¢ € Ré.

Correctness says that if the columns ¢y,...,¢; € ZZ“ of C
are LWE encodings of uy,...,us € Z, with respect to the
secret key s = Coeffs(s) € Z¢, then the ¢’ € R; output by
CDKS.Pack is an RLWE encoding of Yicld] uxi—le R, (with
respect to the secret key s € R,;). Namely, the transformation
takes d(d + 1) elements over Z, and packs them into just 2d
elements over Z, (which encode a polynomial with uy,...,us
as its coefficients). We do assume that the lattice dimension
of the LWE encodings coincide with the ring dimension.

Modulus switching. A standard technique to reduce the size
of lattice-based encodings after performing homomorphic op-
erations on them is to use modulus switching [17, 16]. Modu-
lus switching takes an (R)LWE encoding mod g and rescales
it to an encoding mod ¢; where g1 < ¢. This reduces the size
of the encoding. Here, we describe a more fine-grained variant
from [67] where two different moduli are used. We describe

USENIX Association

33rd USENIX Security Symposium 5989

the approach for encodings over any ring R = Z[x]/(x? +1);
the case where d = 1 corresponds to the case of the integers.

* ModReduce,, 4,(¢): For integers ¢ > g1 > ¢» and on
input an encoding ¢ € RZ*! where ¢ = [¢}] for ¢; € R}
and c1 € Ry, output ([€1]4.4,,[2]4.4,) € Ry, X Ry,

When there is a single modulus ¢, we write ModReduce,, (¢)
to denote ModReducey, 4, (¢). We extend ModReduce, 4,
to matrices by column-wise evaluation. We give the formal
correctness property in the full version of this paper [68].

Private information retrieval. We now recall the formal
definition of a (two-message) single-server PIR protocol [50].
We work in the model where there is an initial database-
dependent preprocessing algorithm that outputs a set of public
parameters (assumed to be known to the client and to the
server) and an internal server state.

Definition 2.2 (Private Information Retrieval [50, adapted]).
Let N € N be an integer. A (two-message) single-server pri-
vate information retrieval (PIR) scheme Ilpgr = (DBSetup,
Query, Answer, Extract) with message space Zy is a tuple of
efficient algorithms with the following properties:

« DBSetup(1*,D) — (pp,dbp): On input the security param-
eter A and a database D, the setup algorithm outputs a set
of public parameters pp and database parameters dbp.

* Query(pp,idx) — (q,qk): On input the public parameters
pp and an index idx, the query algorithm outputs a query q
and a query key gk.

* Answer(dbp,q) — resp: On input the database parameters
dbp, a query g, the answer algorithm outputs a response
resp.

* Extract(qk,resp) — D;: On input the client state gk and

a response resp, the extract algorithm outputs a database
record D; € Zy.

The PIR scheme is correct if for all A € N, all databases D, and
all indices idx, if we sample (pp,dbp) <— DBSetup(1*,D),
(q,9k) < Query(pp,idx), and resp < Answer(dbp,q), then

Pr[Extract(qgk, resp) = DJ[idx]] > 1 —3§,

where D[idx] denotes the element of D indexed by idx. Here,
d denotes a correctness error. The scheme satisfies query
privacy if no efficient adversary can distinguish a query to
an index idxg from a query to an index idx;. We provide the
formal correctness and security definitions for PIR in the full
version of this paper [68].

3 The YPIR Protocol

In this section, we describe the YPIR protocol. As described
in Section 1.2, the YPIR protocol first invokes DoublePIR [43]
over the database, and then packs the DoublePIR response (a
collection of LWE encodings) into a small number of RLWE
encodings.

Construction 3.1 (YPIR Protocol). Let A be a security pa-

rameter. We model the database as a matrix D € Zf\} “2 1n the

scheme, we associate the records in D with its integer repre-

sentative in the interval (—N/2,N/2]. We index records by a

row-column pair (i1,i2) € [¢1] X [(2]. YPIR uses different sets

of lattice parameters for the initial pass (i.e., the linear scan
over the database—*“SimplePIR”’) and for the second pass

(i.e., recursing on the output of the first step—“DoublePIR”).

This is because the parameters for the second pass must be

compatible with the LWE-to-RLWE packing transformation.

We define the parameters below:

* Letd; =d;i(A),d2 = d2(\) be ring dimensions, where each
is a power of two. We write Ry, := Z[x]/(x? + 1) and
Ry, :=Z[x]/(x* +1). For j € {1,2} and a modulus ¢, we
write Rdj,q = Rd‘f/quj .

Let g1 = q1(A),q2 = g2(A) be the encoding modulus and
g1 =q1(M), G213 = G221 (), and G22 = G22(A) be a set of
reduced modulus (for modulus switching). We require that
ged(da, q2) = 1.

Let %1 = %1(A), %2 = X2(A) be error distributions over Ry,
and Ry,, respectively.

¢ Let z = z(A) be a decomposition parameter (for the LWE-
to-RLWE packing).

e Let p = p(A) be an intermediate modulus and let x =

[loggi/log p].

Let (CDKS.Setup,CDKS.Pack) be the LWE-to-RLWE

packing algorithms (see the full version of this paper [68]
for the precise parameter instantiation).

The YPIR = (DBSetup, Query, Answer, Extract) scheme is
defined as follows:

« DBSetup(1*,D): On input the security parameter A and a
database D € Zf\} *2 \where ¢, = md; and £ = mod, for
integers my,my € N, the setup algorithm samples a; &
R ’q and sets A; = NCyclicMat(a]) € Z4 ’ Y Where JjE€
{1,2}. Finally, the setup algorithm computes

Hi =G, ([AD],g) € Z% "

3.1
H, = Ay -Hj € 22,

The setup algorithm then outputs the public parameters

pp = (1*,41,6,,N,a;,a,) together with the server state

dbp = (lkaDaH17H2)’

Query(pp,idx): On input the public parameters pp =
(1*,4y,0,N,a;1,a3) and an index idx = (i1,i2) € [(1] X [(2
the query algorithm proceeds as follows:

b}

SFor ease of exposition, we describe our construction for the setting where
the database dimensions are a multiple of the ring dimensions d; and d>.
This can be ensured by padding the database with dummy rows and columns.
It is straightforward to extend the scheme to support arbitrary dimensions
without padding, but this introduces additional notational burden. We defer
the description of the modified scheme to the full version of this paper [68].

5990 33rd USENIX Security Symposium

USENIX Association

1. Key generation: Sample two secret keys s; <
x1 and s, < %». Compute the packing key pk «+
CDKS.Setup(1*, 57, 72).

2. Query encoding: Define the scaling factors A; =
|g1/N] and Ay = |g2/p]. The query encodings are then
constructed as follows:

(a) For j € {1,2},let m; = {;/d; and i; = o;d; + B;
where o; € [m;] and B; € [d;]. Let p; = xB!’uaj €
n;
Rajqp
vector (of the appropriate dimension).
(b) For j € {1,2}, sample e; x';.l’ and construct the

where u; denotes the j elementary basis

encoding ¢; = Coeffs(s;a; +e; +A;u;) € Z;j

Output the query q = (pk, ¢, cz) and the query key gk =
(S17S2).

 Answer(dbp,q): On input the database parameters dbp =
(1*,D,H;,H,) and the query q = (pk,¢;,¢3), where D €
Zy " Hy € 250 <0 Hy € Z@ " ¢ € Zy),and ¢ € Z,
the answer algorithm proceeds as follows:

1. Compute the SimplePIR response: Let T =
g, ([e[D]g,q,) € Z5.
2. Compute the DoublePIR response: Let

Z(d2+l)><1<(d1+l)_

q2

.
C=(d," mod g»)- [e, A]

cH] oTT
(3.2)

3. Pack encodings: Let p = [k(d; +1)/d>] and parse
[C ‘ 0(d2+1)><(d2p_K<d1+1))] = [C] | e | Cp] where each

C; e Zé‘zizH)Xdz. Namely, Cy,...,C, are the blocks of
C and C, is padded to the required dimension with
columns of all-zeroes. Then, for each i € [p], compute

& < CDKS.Pack(pk,Ci) € R, .

4. Apply (split) modulus switching: For each i € [p], let
(Ci71 ,Cig) = ModRed uce,h1 22 (éi).

Output resp = ((6‘171,0172), R (Cp71,Cp)2)).

* Extract(gk,resp): On input the client state gk = (s1,52)
and the response resp = ((c1,1,¢12),---,(cp,1,¢p2)) Where
¢ii € Rypg,, and c;2 € Ry, 4,,, the extract algorithm
computes V; = | —52¢i11g,,.42, + Ci2 € Ray gy, and v; =
[Vilg22.p € Ray,p for eachi € [p]. Let

Coeffs(vy)
W= : € 72p.
Coeffs(vp)
Parse W = [‘\H where w € Z;wlﬂ) and W € ZZzp_K(le).

Compute

G Od1><l<

/__ dy,p _ di+1
Cc = |:01><Kd1 T W—Gdﬁ.]ypwezq]
gp

and the scaled message y/ = [—Coeffs(s;) | 1]-¢' € Zg,.
Compute u = |1/, v € Zy and output the representative
of uin Zy.

Remark 3.2 (Silent Preprocessing). As described, the public
parameters pp in Construction 3.1 are very long (specifically,
the vectors and a; and a;). However, the vectors a; and a, are
uniformly random, and could be derived from a random oracle.
This is a standard technique used in lattice-based PIR [72,
67, 43, 26]. With this modification, the public parameters in
Construction 3.1 only consist of the meta-parameters for the
database itself (i.e., the database dimensions and the record
size). Thus, we say YPIR supports silent preprocessing (in the
random oracle model).

Supporting arbitrary dimension. Construction 3.1 assumes
that the database dimensions are multiples of the ring dimen-
sions d; and d>. We describe in the full version of this pa-
per [68] a straightforward way to adapt the scheme to support
databases with arbitrary dimensions (and without padding).

Correctness and security. We now give the formal correct-
ness and security theorems for the YPIR protocol, but defer
their proofs to the full version of this paper [68]. To summa-
rize, the security of YPIR relies on the hardness of the RLWE
assumption as well as a standard circular security assump-
tion (for the use of key-switching matrices in the LWE-to-
RLWE packing). The circular-security assumption is common
when working with lattice-based homomorphic encryption
schemes [32, 17, 16, 15] and also used in many previous
RLWE-based PIR schemes [4, 1, 72, 67, 55].

Theorem 3.3 (Correctness). Let N € N be the record size
and 01,0y € N be the database dimensions. Let dy, d3, q1,
g2, 41, §2.1, G422, %1, X2, 2 p be the scheme parameters from
Construction 3.1. Suppose Y1 and Y are subgaussian with
parameters G| and Gy, respectively. Let K = [logg;/logp],
p = [x(di+1)/d>], and t = |log_ q>]| + 1. Then, under the
independence heuristic, Construction 3.1 has correctness er-
ror

2 2 2 2
3 < 2d2pexp(_ntdouble/cdouble) + 2exp(_’]m:simple/Gsimple)7

where the parameters Tgoubles Odoubles Tsimples A7d Osimple are
given in Fig. 1.

Theorem 3.4 (Security). Under the RIWEy, ,n, 4,4, as-
sumption and assuming the LWE-to-RLWE packing scheme
(CDKS.Setup, CDKS.Pack) satisfies pseudorandomness
given the packing key (see the full version of this paper [68]),
then Construction 3.1 satisfies query privacy.

4 Implementation and Evaluation

In this section, we describe our implementation and experi-
mental evaluation of the YPIR protocol (Construction 3.1).

USENIX Association

33rd USENIX Security Symposium 5991

2

Q2 . 1 - -
Tdouble = 5 (§22 mod p) — = (24 (G2,2 mod p) +(§22/42) (g2 mod p))
Ogouble < (42,2/G2,1)°d203 /4 + (G22/42)*(63/4) (2 p® + (d5 — 1)(tdr2*) /3
double < (§2,2/G2,1)"d203 G22/92)7 (03 2p p hz%)/3)
_— .)]
Timple = 37 — (1 mod N) = = (2+G1 mod N+ (d1/41)(q1 mod N)) /2

Caimple < d161/4+ (G1/91)*(1N*G1 /4

Figure 1: Parameters for Theorem 3.3 (Correctness of YPIR).

Parameter selection. Theorem 3.3 bounds the correctness
error & of YPIR as function of the scheme parameters. We
now describe how we instantiate the different parameters to
achieve a correctness error § < 2740 and 128-bits of security
(as estimated by the Lattice Estimator [2]°). We select a single
parameter set for YPIR using the following procedure:

+ Like SimplePIR [43], we set d] = 2! = 1024 and ¢; =
232 We set) to be a discrete Gaussian distribution’ with
parameter s; = 1127 (to achieve 128-bits of security for
this choice of ring dimension and modulus).

* For the DoublePIR and LWE-to-RLWE packing steps, we
work over a larger ring, to allow for the extra noise added
by the LWE-to-RLWE transformation. Here, we choose
dr =21 =2048 and g> to be a 56-bit modulus that splits
into a product of two (28-bit) NTT-friendly modulus (specif-
ically, o = (228 — 216 4-1) - (228 —22% — 221 1 1)). Using
two 28-bit NTT-friendly modulus allows us to use native
64-bit integer arithmetic to implement arithmetic opera-
tions modulo each of the prime factors of ¢,.® We choose
X2 to be a discrete Gaussian distribution with parameter
s = 6.44/27 (to achieve 128-bits of security for this choice
of ring dimension and modulus).

+ We choose parameters to support any choice of ¢, ¢, < 2'3
(recall that the database in YPIR is represented as an ¢-by-
¢> matrix). This is sufficient to support databases with up to
236 records (and for our choice of N, up to 64 GB in size).

* We choose the largest value for the gadget decomposition
base z € N that achieves correctness error at most & < 2740,
This allows for faster computation.

* We choose the largest value of N and the largest intermedi-
ate decomposition base p that achieves correctness error at
most & when §; = ¢ and §2,1 = §2,2 = ¢g2. This minimizes
the communication overhead of the scheme. We constrain N
and p to be powers-of-two so elements can be represented
by a single machine word.

SWe use commit 4195¢66 (2024/02/06) from https://github.com/mal
b/lattice-estimator for our security estimates.

"We refer to the full version of this paper [68] for a definition of the discrete
Gaussian distribution.

8Since we use 64-bit integer arithmetic to implement arithmetic operations
with respect to a 28-bit modulus, we do not need to perform a modulus
reduction after every arithmetic operation. In our implementation, we reduce
only when the computation might “overflow” the 64-bit integer.

» After fixing N and p, we choose the smallest modulus
switching parameters G1,42.1,§> that achieve correctness
error at most 8. This minimizes the size of the responses.

We summarize the lattice parameters we select in the full
version of this paper [68]. When the database consists of ¢

one-bit records, we let £/ = [¢/logN], and set ¢} = 2 [logt'/2]
and £, = 2[1oe/2]

4.1 Additional Optimizations

In the full version of this paper [68], we describe some addi-
tional techniques to improve the concrete efficiency of YPIR.
We provide a brief overview of these here.

NTT-based hint computation. First, we show that using
structured matrices (specifically, negacyclic matrices; see Sec-
tion 2), we can significantly reduce the computational cost of
computing the hints H; and H; in Eq. (3.1) of YPIR. Specifi-
cally, in YPIR, the matrices A| and A, are defined to be A; :=
NCyclicMat(a). In SimplePIR/FrodoPIR, the correspond-
ing matrices A; and A, were uniformly random. By using a
structured matrix, we can leverage NTTs to more efficiently
compute the hints Hy and H; in Eq. (3.1). In particular, the
YPIR approach is asymptotically faster (by a factor d/logd,
where d is the lattice dimension) and concretely faster (10—
15x) compared to the preprocessing approaches of protocols
like SimplePIR [43] or FrodoPIR [26]. Our approach directly
applies to reduce the preprocessing cost in any system that
builds on SimplePIR/FrodoPIR (e.g., [24, 41, 55, 27]) with
zero impact to the online costs of the protocol (the online
server processing is unchanged). The only difference is se-
curity now relies on RLWE (due to the use of structured A;)
rather than LWE.

Preprocessing the CDKS transformation. We show how to
speed up the [21] LWE-to-RLWE packing transformation by
moving a large portion of the online packing computation to
the offline preprocessing stage (i.e., from Answer to Setup).
Specifically, our approach reduces the number of NTTs that
must be performed in Answer from O(kd; +logd,) to O(k+
logd,). Concretely, this reduces the online cost of the packing
transformation by 9x (see Table 4).

Cross-client batching. Protocols like SimplePIR and YPIR
are ultimately constrained by the memory bandwidth of the

5992 33rd USENIX Security Symposium

USENIX Association

https://github.com/malb/lattice-estimator/commit/4195c66c729319f9e866ad0951fff06f720a7fd4
https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator

system (see Section 4) and not the cost of evaluating the un-
derlying arithmetic operations during query processing. One
approach to increase the effective throughput in these pro-
tocols is to perform additional computation for each byte
of memory accessed. A natural approach to overcome the
memory bandwidth barrier is to support “cross-client batch-
ing” [60] where the server uses a single scan through memory
to answer requests from multiple independent clients.

The structure of SimplePIR makes it amenable for cross-
client batching as the core computation is a matrix-vector
product q"D between the query q and the database D. If a
batch of k queries qy, ..., qx arrive simultaneously, then the
computation becomes a matrix-vector product QD, where the
rows of Q are the queries q,...,qx. In this way, the server
performs more arithmetic operations per byte of memory
fetched, which in turn increases the effective throughput of
the protocol. We provide the full details in Section 4.1. As
we show in Section 4.2, cross-client batching can increase
the effective server throughput of many PIR schemes by 1.5—
1.7 x. A benefit of our approach is that it is entirely transparent
to the client (i.e., requires no changes client-side) and applies
even if the clients are each making a single query.

Our technique is similar to the cross-client batching tech-
nique of Lueks and Goldberg [60] who used faster matrix-
vector multiplication algorithms to obtains asymptotic and
concrete server speed-ups. In our setting, we leverage batch-
ing as a means to improve CPU utilization and as such, our
approach only provides a concrete (but not asymptotic) im-
provement to server throughput.

4.2 Experimental Evaluation

In this section, we describe our experimental evaluation of
the YPIR protocol and compare it against other PIR proto-
cols. We compare against the state-of-the-art high-throughput
single-server PIR schemes: SimplePIR/DoublePIR [43] as
well as the hintless schemes proposed in Tiptoe [41] and Hint-
lessPIR [55]. We refer to the full version of this paper [68]
for a more detailed summary of the design of the PIR scheme
from Tiptoe as well as the HintlessPIR scheme. We do not
benchmark schemes in alternative models such as the sublin-
ear schemes that require streaming the database in the offline
phase [86, 74, 35] or the RLWE-based schemes that require
maintaining client-specific keys [4, 1, 3, 72, 67].

Experimental setup. We implement YPIR in 3000 lines of
Rust, with a 1000 line C++ kernel for fast 32-bit matrix-
multiplication adapted from the public SimplePIR implemen-
tation [43].° We use the approach from Section 4.1 to imple-
ment the server hint precomputation, and use the approach
from Section 4.1 to speed up the LWE-to-RLWE packing
transformation. As discussed in Remark 3.2, we compress the
vectors a; and a; in the public parameters pp as well as the

0ur code is available at https://github.con/menonsamir/ypir.

pseudorandom components of the packing key pk using the
output of a stream cipher (ChaCha20 in counter mode). We
benchmark YPIR against the public implementations of Sim-
plePIR, DoublePIR [43] (commit €9020b0), the PIR scheme
from Tiptoe [41] (commit £053a81), and HintlessPIR [55]
(commit 4be2ae8). When relevant, we compile each scheme
with support for the Intel HEXL [11] acceleration library. We
use an Amazon EC2 r6i.16xlarge instance running Ubuntu
22.04, with 64 vCPUs (Intel Xeon Platinum 8375C CPU @
2.9 GHz) and 512 GB of RAM. We use the same (single-
threaded)'” benchmarking environment for all experiments,
and compile all of the implementations using GCC 11. The
processor supports the AVX?2 and AVX-512 instruction sets,
and we enable SIMD instruction set support for all schemes.
We write KB, MB, and GB to denote 29, 229 and 2% bytes,
respectively. All of our runtime measurements are averaged
from a minimum of 5 sample runs and have a standard devia-
tion of at most 5%.

Server throughput. In Table 1, we report the different compu-
tational and communication costs for retrieving a 1-bit record
from databases of varying sizes. We focus on single-bit re-
trieval since this is the setting of interest in private SCT audit-
ing and provides a common baseline for comparing different
schemes. Each YPIR response actually encodes an element of
Zy (for our parameters, each record is 8 bits long).

For small databases (e.g., | GB), the throughput of YPIR is
43% slower than SimplePIR and 26% slower than DoublePIR.
This is because a significant portion of the query-processing
time is spent on the LWE-to-RLWE transformation (30%;
see Table 2). However, since the cost of this transformation
is essentially independent of the size of the database, the
throughput of YPIR quickly approaches that of DoublePIR
as the size of database increases. With an 8 GB database, the
throughput is 3—-18% faster than the reference implementa-
tions of SimplePIR and DoublePIR and 79% of the memory
bandwidth of the system. The efficiency gain over SimplePIR
and DoublePIR is due both to a different choice of parameters
in YPIR compared to the reference implementation [44] and to
a more optimized implementation. To compare the schemes
on an even footing, we include measurements against our
implementation of these protocols (denoted SimplePIR* and
DoublePIR*) with our lattice parameters. Compared to our
SimplePIR* and DoublePIR* implementations, the through-
put of YPIR on a 8 GB database is only 10% slower, and for
a 32 GB database, only 1% slower. Thus, for moderate-size
databases, YPIR achieves similar throughput to SimplePIR/-
DoublePIR without any offline hints. We provide more details
in Fig. 2.

Compared to the Tiptoe approach [41], YPIR achieves 8-

10The primary computational cost in the SimplePIR-family of protocols
(including YPIR and HintlessPIR) is computing a matrix-vector product.
This is a highly parallelizable operation. However, for ease of comparison,
we focus on a single-threaded execution in our evaluation.

USENIX Association

33rd USENIX Security Symposium 5993

https://github.com/menonsamir/ypir
https://github.com/ahenzinger/simplepir/commit/e9020b03bf2872c75b8954e749e32408b5db87ed
https://github.com/ahenzinger/underhood/commit/f053a81c63855e452fe0129302a6644b2d46d3ed
https://github.com/google/hintless_pir/commit/4be2ae81a2a7999cd53f92a2c80f036ea3f7ab26

Database Metric SimplePIR DoublePIR Tiptoe HintlessPIR YPIR
Prep. Throughput 3.7 MB/s 3.4 MB/s 1.6 MB/s 4.8 MB/s 39 MB/s
Off. Download 121 MB 16 MB — — —
1GB Upload 120 KB 312 KB 33 MB 488 KB 846 KB
Download 120 KB 32 KB 2.1 MB 1.7 MB 12 KB
Server Time 74 ms 94 ms 247 s 743 ms 129 ms
Throughput 13.6 GB/s 10.6 GB/s 415 MB/s 1.3 GB/s 7.8 GB/s
Prep. Throughput 3.1 MB/s 2.9 MB/s 1.6 MB/s 5.2 MB/s 46 MB/s
Off. Download 362 MB 16 MB — — —
8 GB Upload 362 KB 724 KB 33 MB 1.4 MB 1.5 MB
Download 362 KB 32 KB 8.6 MB 1.7 MB 12 KB
Server Time 708 ms 845 ms 9.75s 1.62s 687 ms
Throughput 11.3 GB/s 9.5 GB/s 840 MB/s 4.9 GB/s 11.6 GB/s
Prep. Throughput 3.3 MB/s 3.3 MB/s 1.4 MB/s 5.7 MB/s 48 MB/s
Off. Download 724 MB 16 MB — — —
32GB Upload 724 KB 1.4 MB 34 MB 2.4 MB 2.5MB
Download 724 KB 32 KB 17 MB 3.2MB 12 KB
Server Time 3.08 s 3.22s 21.00 s 5.00s 2.64s
Throughput 10.4 GB/s 9.9 GB/s 1.5 GB/s 6.4 GB/s 12.1 GB/s

Table 1: Communication and computation needed to retrieve a single bit for databases of varying sizes. For each scheme, we also
measure the speed of the preprocessing algorithm (“Prep. Throughput™) that the server must run upon each database update, and
if applicable, the size of the hint that the client must download in the offline phase (“Off. Download”). The measurements for
SimplePIR, DoublePIR, [43], Tiptoe [41], and HintlessPIR [55] are all obtained by running their official reference implementations
on our test system [44, 42, 56]. We refer to the full version of this paper [68] for a direct comparison with our implementations
of SimplePIR and DoublePIR (derived from the subprotocols of YPIR), which achieve higher throughput than the provided

reference implementation.

19 x higher throughput. This is because over 85% of the server
processing time in Tiptoe is spent on the LWE-to-RLWE
conversion algorithm (based on homomorphic decryption). In
YPIR, for large databases, the LWE-to-RLWE packing is only
1-10% of the total server processing time (see Table 2).
Compared to HintlessPIR, YPIR achieves 2—-6x higher
server throughput. Notably, the HintlessPIR reference im-
plementation peaks at 6.4 GB/s while YPIR peaks at 12.1
GB/s. One reason underlying this performance gap is because
HintlessPIR applies the LWE-to-RLWE transformation to
pack O(v/N) encodings, where N is the number of records
in the database. In contrast, YPIR only needs to pack a fixed
number of LWE encodings (independent of the number of
records). For a 32 GB database, HintlessPIR spends roughly
50% of its time performing packing (because it packs O(v/N)
encodings), whereas YPIR spends only 1% of its time packing.

Communication. Comparing the communication require-
ments of YPIR to hint-based schemes, the queries in YPIR
are about 1.8-2.7x larger than DoublePIR and 3.5-7 x larger
than SimplePIR (with smaller overheads for larger databases).
The larger queries are due to the key-switching matrices
needed for the LWE-to-RLWE packing. On the flip side, the
response size for YPIR is 2.7 x smaller than DoublePIR and
10-60x smaller than SimplePIR. This is due to the better rate

of RLWE encodings compared to LWE encodings, as well
as the use of modulus switching in our implementation. The
response size of YPIR and DoublePIR depend only on the
lattice parameters and not the database size. If we look at total
online communication (both upload and download), the cost
of YPIR is only 1.8-3.6x larger compared to SimplePIR and
1.8-2.5x larger compared to DoublePIR. The key advantage,
of course, is that YPIR does not require the client to download
a hint. In the case of a 32 GB database, the size of the hint is
724 MB for SimplePIR and 16 MB for DoublePIR.

Compared to HintlessPIR, YPIR queries are 1.7-3x larger
and responses are 125x smaller. The YPIR response size is
significantly smaller because the HintlessPIR response size
scales with the square root of the database size (like Sim-
plePIR). On the other hand, YPIR queries are larger than in
HintlessPIR due to needing more key-switching matrices for
the LWE-to-RLWE packing. Compared to Tiptoe, YPIR has
13-39x smaller queries and 175-1417 x smaller responses.
The total communication cost for a issuing a single query for
an 8 GB database is 1.5 MB for YPIR, 2 MB for HintlessPIR,
and 42 MB for Tiptoe.

Preprocessing cost. Our NTT-based precomputation (Sec-
tion 4.1) is about 10-15x faster than that of SimplePIR or
DoublePIR and 8x faster than HintlessPIR. For a 32 GB

5994 33rd USENIX Security Symposium

USENIX Association

L e e s ey B
— i

b
v B
T 4 O I

4 8 12 16 20 24 28 32
Database Size (GB)

Throughput (GB/s/core)
ORI R o

(e}

--- Memory band. —@— SimplePIR* —e— DoublePIR*
—— Tiptoe HintlessPIR YPIR

Figure 2: Server throughput for retrieving a single bit from
different databases. For SimplePIR and DoublePIR, we report
throughput using our reference implementation and param-
eter choices (denoted SimplePIR* and DoublePIR*), since
these were faster than those of the reference implementa-
tion [44] in our test setup. For HintlessPIR [55], we report
the bandwidth measured on our system with the reference
implementation [56]. We measure the memory bandwidth of
the system using STREAM [65].

database, the offline precomputation of YPIR would take
about 11 CPU-minutes, whereas for SimplePIR/DoublePIR,
it would take roughly 144 CPU-minutes, and for HintlessPIR,
it would take 95 CPU-minutes.

Server microbenchmarks. Table 2 provides a fine-grained
breakdown of the server computation costs of YPIR (i.e., the
Answer algorithm in Construction 3.1). First, we observe
that the packing transformation essentially incurs a fixed cost
to the server processing time. This is because the LWE-to-
RLWE packing transformation in YPIR is applied to the Dou-
blePIR responses, which does not scale with the size of the
database. For small databases (e.g., 1 GB), the packing trans-

Size SimplePIR ~ DoublePIR Packing Total
1GB 0.07s5(59%) 14ms(11%) 39ms(30%) 0.13s
4GB 030s(82%) 27ms(7%) 38ms(10%) 0.37s
16GB 1.21s(93%) 57 ms (4%) 39ms 3%) 1.31s
32GB 2.56s5(96%) 58 ms (2%) 39ms (1%) 2.665s

Table 2: Breakdown of YPIR server computation time for
retrieving a single bit from databases of varying sizes. For
each database size, we report the time spent in the SimplePIR
step (Step 1), the DoublePIR step (Step 2), and the LWE-
to-RLWE packing step (Step 3) for the Answer algorithm in
Construction 3.1. In parentheses, we report the percentage of
the total time spent on the associated step.

TQ
3 20 .
2 F - |
2 L - o |
& l-- :/{ 1
<) | |
2 100 i
=
eh L |
=)
e |- -
': | -
E 0o | ! I I

0 2 4 6 8

Batch Size k
- - - Conjectured max throughput --- Memory bandwidth

—e— SimplePIR* —e— DoublePIR*

YPIR

Figure 3: Effective per-query server throughput for retrieving
a single bit from a 32 GB database with cross-client batching.
As in Fig. 2, we use our implementation of SimplePIR and
DoublePIR (i.e., SimplePIR* and DoublePIR*) for the com-
parisons. We measure the memory bandwidth of the system
using STREAM [65]. We compute the conjectured maximum
possible throughput for these schemes based on the assump-
tion that processing each database byte requires a minimum
of two 32-bit arithmetic operations and using the clocks-per-
instruction values provided by the CPU vendor [45].

formation represents 30% of the server processing time, but
as the size of the database grows, the cost of the linear scan
over the database (i.e., the SimplePIR step) dominates. With
a 32 GB database, the packing transformation is only 1%
of the overall cost of the server processing. In this case, the
throughput of YPIR quickly approaches that of DoublePIR.

Query size breakdown. In Table 3, we provide a breakdown
of the different components of the YPIR query. From Con-
struction 3.1, the YPIR query consists of two sets of LWE
encodings ¢1,c¢y (that encode indicator vectors of the row
and column of the desired database record) as well as the
packing parameters pk (i.e., the key-switching matrices) for
the LWE-to-RLWE packing transformation. The size of the
packing parameters matrices are fixed (concretely, these are
462 KB), while the encodings of the indicator vectors for
the row and the column scale with the number of rows and
columns, respectively. In our experiments, the database is ar-
ranged as a square with an equal number of rows and columns.
As such, the number of LWE encodings needed to encode
the indicator vectors for the row (c¢;) and for the column
(o) are the same. However, we use larger parameters for the
second set of encodings ¢, (to support the LWE-to-RLWE
packing transformation). As such, the encoding ¢, is roughly
(logga/logq) ~ 2x larger than the encoding c;.

Cross-client batching. We modify SimplePIR, DoublePIR,

and YPIR to support cross-client batching as described in
Section 4.1. For a database of size ¢, we define the effective

USENIX Association

33rd USENIX Security Symposium 5995

Database Size e | o] Ipk| Total Size
1 GB 128 KB (15%) 256 KB (30%) 462 KB (55%) 846 KB
4 GB 256 KB (21%) 512 KB (42%) 462 KB (38%) 1.2 MB
16 GB 512KB (26%) 1.0MB (51%) 462 KB (23%) 2.0MB

Table 3: Breakdown of YPIR query size for retrieving a single bit from databases of varying sizes. Recall from Construction 3.1
that the query consists of three components: (1) the LWE encoding ¢; of the row of interest (processed in the initial SimplePIR
step), (2) the LWE encoding ¢; of the column of interest (processed in the DoublePIR step), and (3) the key-switching parameters
pk for the LWE-to-RLWE packing. We report the size of each of these components. In parenthesis, we report the percentage of

the total query size associated with each component.

(per-query) server throughput to process a batch of k queries to
be k¢/T, where T is the time it takes to answer all k queries.
We consider batch sizes ranging from k =1 to k = 8 and
measure the effective throughput of the scheme for retrieving
a single bit from a 32 GB database in Fig. 3. In all cases, using
cross-client batching increases the effective throughput by a
factor of up to 1.4 x. In the case of SimplePIR and DoublePIR,
processing a batch of 4 queries yields a 1.4x improvement
(an effective throughput of over 17 GB/s). This is higher
than the memory throughput of the machine. With YPIR, the
effective throughput for a batch size of 4 is over 16 GB/s,
which is 1.3 x larger than the single-query throughput. The
gap in effective throughput between YPIR and SimplePIR
widens as we increase k, since the fixed cost of the LWE-
to-RLWE packing (see Table 2) does not benefit from cross-
client batching. These results show that for setting where
a server needs to process concurrent queries from different
clients, it is advantageous to process them in a batch rather
than sequentially, even though there is no reduction in the
total number of arithmetic operations the server performs.

LWE-to-RLWE translation. Tiptoe [41], HintlessPIR [55],
and YPIR all apply some form of LWE-to-RLWE translation
to compress the SimplePIR/DoublePIR hints and eliminate
the need for an offline hint download. Here, we provide a
more detailed discussion of the different approaches.

Tiptoe and HintlessPIR rely on a bootstrapping-like ap-
proach where the client provides an RLWE encoding of the
secret key in its query. The server then treats the LWE en-
codings in the SimplePIR hint as a vector of plaintexts. Then,
using the RLWE encoding of the LWE secret key, it homomor-
phically evaluates the inner product between the encodings in
the SimplePIR hint and the secret key. This yields an RLWE
encoding of the desired database record. Since both of these
approaches essentially implement homomorphic decryption,
they set the plaintext modulus of the RLWE encoding scheme
to be at least as large as the LWE encoding modulus. This
results in needing to use a much larger RLWE encoding mod-
ulus to achieve correctness. For example, HintlessPIR uses a
90-bit RLWE modulus to implement this step (whereas the
LWE encoding modulus in the SimplePIR hint is just 32 bits).

In contrast to the previous approaches, YPIR applies the
Chen-Dai-Kim-Song packing transformation [21]. While this

Tiptoe HintlessPIR Chen et al.
log (n.q,p) (10,32,8) (10,32,8) (11,56,15)
Param. Size 32 MB 360 KB 528 KB
Output Size 514 KB 180 KB 24 KB
Output Rate 0.01 0.02 0.31
Offline Comp. — 2012 ms 1029 ms
Online Comp. 594 ms 141 ms 52 ms

Table 4: Concrete costs of packing 2!'? input LWE encodings
into RLWE encodings using the Tiptoe [41], HintlessPIR [55],
and the Chen et al. [21] approach used in YPIR. We report the
lattice parameters for the input LWE encodings considered in
each construction: is the lattice dimension, g is the encoding
modulus, and p is the plaintext modulus. We also report the
size of the parameters the client must upload to the server,
and the size of the output RLWE encodings. To normalize for
the differences in the lattice parameters, we also report the
rate (the ratio of the plaintext size in the packed encoding to
the size of the encoding). Finally, we measure the offline and
online server computation times. We report the Chen et al.
packing approach with the preprocessing technique described
in Section 4.1.

could also be viewed as a type of “bootstrapping” (since
the transformation relies on key-switching, which is in some
sense a homomorphic decryption operation), it does not re-
quire us to “re-encode” the LWE encodings under RLWE.
Like most key-switching transformations, the Chen et al. trans-
formation allows us to use the same modulus for the LWE
encoding and for the RLWE encodings. Moreover, the noise
introduced by key-switching is additive and is not scaled up
by the magnitude of the LWE encoding modulus. A downside
of this approach is that the LWE and RLWE encodings share a
common modulus, so we cannot use a power-of-two modulus,
as such moduli are not NTT-friendly.

In Table 4, we provide microbenchmarks for packing 4096
LWE encodings (of dimension n) into RLWE encodings (of
dimension d > n) using the different approaches. HintlessPIR
has the smallest public parameters because it only requires a
single key-switching matrix. The Chen et al. approach uses
logd key-switching matrices. Tiptoe uses a separate RLWE

5996 33rd USENIX Security Symposium

USENIX Association

encoding for each component of the LWE secret, so its pa-
rameters have size O(nd) and are concretely larger than both
approaches. The size of the packed encodings is 7.5 x smaller
using our approach than HintlessPIR (and 21 x smaller than
Tiptoe). The reduction in size is because the Chen et al. ap-
proach can use a smaller RLWE modulus and ring dimension
(concretely, a 56-bit modulus and d = 2048, compared to a 90-
bit modulus and d = 4096 in HintlessPIR). We can also apply
modulus reduction to further reduce the size of the encodings.
If we factor in the different lattice parameters considered in
each construction and focus on the rate (i.e., the ratio of the
size of the plaintext in the packed encoding to the size of the
packed encoding), the Chen et al. approach is over 15 x higher
than the approach from HintlessPIR. In terms of computation,
the Chen et al. procedure with preprocessing is roughly 2.7 x
faster than the approach taken in HintlessPIR and 11 x faster
than the approach in Tiptoe.

4.3 Supporting Larger Records

The basic YPIR protocol is tailored for retrieving a single bit
(or byte) from a database. To support larger database records,
we consider a variant of YPIR where we apply the LWE-to-
RLWE packing procedure to the SimplePIR output rather
than the DoublePIR output. Recall that the SimplePIR output
encodes an entire column of the database (as opposed to
just a single record). Thus, the SimplePIR output is already
naturally encoding a “large record.” Note that this version of
YPIR is similar to the approach taken in HintlessPIR, where
they apply bootstrapping to pack the SimplePIR hint into a
small number of RLWE encodings.

In Table 5, we compare the performance of our YPIR with
SimplePIR (denoted YPIR+SP) approach with SimplePIR
and HintlessPIR for retrieving large records from various
databases. For sake of comparison, we consider the database
configurations from [55]. Overall, YPIR with SimplePIR has
a similar query size to HintlessPIR, but 7-14x smaller re-
sponses. As discussed in Section 4.2, HintlessPIR has larger
responses because the bootstrapping approach requires it to
embed the SimplePIR encoding modulus (32 bits) within the
plaintext space of the output RLWE encodings. This leads to
a much larger RLWE encoding modulus (and thus, response
size). In contrast, the approach used by YPIR applies packing
directly to the input LWE encodings, rather than treating them
as plaintexts; this allows the RLWE ciphertext modulus to be
the same as the LWE ciphertext modulus.

The throughput of YPIR+SP is similar to that of Hint-
lessPIR, ranging from 1.8 x faster for small databases, to 5%
slower for large databases. YPIR is faster for small databases
because it uses a lighterweight LWE-to-RLWE packing pro-
cedure (see Section 4.2 and Table 4). However, the conversion
step is only applied to an input of size O(v/N) whereas the
SimplePIR step is applied to an input of size O(N), where

N is the size of the database. This makes the difference in
overall throughput less substantial when N is large but notice-
able when N is small. Because YPIR+SP performs packing
directly on the result of the SimplePIR step, it uses an NTT-
friendly modulus that is not a power-of-two in the SimplePIR
step. This makes the SimplePIR step of YPIR+SP about 1.4 x
slower than the SimplePIR reference implementation. Since
HintlessPIR can be directly applied to SimplePIR, it is able to
achieve higher throughput than YPIR+SP when the database
is large (e.g., HintlessPIR is 5% faster for a 32 GB database).
Thus, for large databases with big records, YPIR+SP has sub-
stantially smaller total communication, but comes at a small
reduction in throughput relative to HintlessPIR.

4.4 Application to Private SCT Auditing

Certificate Transparency (CT) [52, 53] is a standard for mon-
itoring and auditing the issuance of digital certificates by
maintaining a public append-only log of every certificate is-
sued by every certificate authority. In this model, whenever a
certificate authority (CA) issues a certificate, it also deposits
the certificate into one or more CT logs. The log operator
responds with a signed certificate timestamp (SCT). The SCT
is embedded within the certificate and represents a commit-
ment from the log operator to include the certificate in its log
within a certain timeframe (e.g., typically 24 hours). When-
ever a client receives a certificate with an embedded SCT,
the client can verify the SCT with the log server to confirm
that the server has indeed received the associated certificate.
In turn, domain owners can check with log servers to obtain
the certificates that have been issued for their domain, and
identify any fraudulent certificates.

To defend against log operators falsifying SCTs (i.e., is-
suing an SCT but not depositing the certificate into the log),
clients must regularly verify that (a subset of) the SCTs they
receive from web servers are actually contained in the CT log.
A naive implementation of this would have the client simply
reveal the SCTs they are auditing to the log operator, which
in turn, reveals the client’s browsing habits to the log oper-
ator. Several methods for privacy-preserving SCT auditing
are based on matching hash prefixes [28] or accessing the log
server via an anonymizing proxy [25], but these approaches
do not provide formal cryptographic guarantees to privacy.

Private SCT auditing. Several works have proposed to use
PIR for private SCT auditing [60, 48, 43]. In this work, we
focus on the recent approach of Henzinger et al. [43] that
leverages single-server PIR to construct a private SCT audit-
ing protocol. In their approach, each log operator prepares a
data structure (based on Bloom filters) representing the set
of active SCTs in the log. To test whether a particular SCT
is contained in the log, the client privately reads a single bit
from this data structure using PIR.

To represent the set of 5 billion currently-active SCTs, the
Henzinger et al. approach encodes the SCTs as a database of

USENIX Association

33rd USENIX Security Symposium 5997

Database Metric SimplePIR HintlessPIR YPIR+SP
Prep. Throughput 3.7 MB/s 4.8 MB/s 63 MB/s
Off. Download 121 MB — —
215 %32 KB Upload 120 KB 488 KB 686 KB
(1GB) Download 120 KB 1.7 MB 120 KB
Server Time 74 ms 743 ms 415 ms
Throughput 13.6 GB/s 1.3 GB/s 2.4 GB/s
Prep. Throughput 3.1 MB/s 5.2 MB/s 101 MB/s
Off. Download 362 MB — —
2!8x32KB Upload 362 KB 1.4 MB 1.3 MB
8 GB) Download 362 KB 1.7 MB 228 KB
Server Time 708 ms 1.62's 1.56 s
Throughput 11.3 GB/s 4.9 GB/s 5.1 GB/s
Prep. Throughput 3.3 MB/s 5.7 MB/s 115 MB/s
Off. Download 724 MB — —
21964 KB Upload 724 KB 2.4 MB 2.2 MB
32 GB) Download 724 KB 3.2 MB 444 KB
Server Time 3.08s 5.00s 5.24s
Throughput 10.4 GB/s 6.4 GB/s 6.1 GB/s

Table 5: Communication and computation needed to retrieve larger records from databases of varying configurations.

size 239 bits (8 GB). Each SCT audit in turn corresponds to a
single PIR query to this database. In [43], the underlying PIR
protocol is instantiated using DoublePIR.

Cost of private SCT auditing. A limitation of using Dou-
blePIR for private SCT auditing is the need to download (and
store) the large hint. SCT databases are constantly updated,
with roughly 10 million certificates issued each day [69]. To
audit against the latest version of the log, the clients must first
download the hint for the current log state.'' To mitigate this,
the approach in [43] is to have clients download the hints on a
weekly basis and wait to test an SCT if its validity falls outside
the time window associated with the current hint. While this
reduces the protocol’s communication costs, it also introduces
delays in detecting malicious log behavior. The log server
must also maintain multiple copies of the SCT database to
support PIR queries for hints issued at different times.

A PIR scheme with silent preprocessing avoids these de-
ployment issues. Following [43], we assume a client makes
10* TLS connections each week and performs two audits
for a 1/1000-fraction of connections (this is also the setting
Chrome uses [28]). In Table 6, we report the monetary costs
of the outbound communication'” and the server computation
based on current AWS pricing when instantiating the [43]

nstead of downloading the full hint each time, the client could download
an update instead. The size of the update scales roughly with the number
of rows in the database that has changed. Since the bits of the database
correspond to the bits of a Bloom filter, updates will typically occur in
random positions. Since the number of insertions each day is significantly
larger than the number of rows, the size of a daily hint update is comparable
to the size of the entire hint.

12AWS only charges for outbound communication.

approach with DoublePIR, Tiptoe, HintlessPIR, and YPIR.

When the client downloads weekly hints, the DoublePIR
approach [43] has a weekly server cost of $1822 per 1 million
clients. Over 80% of this cost is from clients downloading the
16 MB hint. If we consider daily updates,'® and have clients
audit the most recent version of the log, the weekly cost of
DoublePIR balloons to $10,863 per 1 million clients.

A system based on YPIR would have a weekly cost of
$228 per 1 million clients. This is 8 x cheaper than using
DoublePIR with weekly updates and over 48 x cheaper than
using DoublePIR with daily updates. Most of YPIR’s costs
are from server computation, not communication. If we apply
cross-client batching with a queue of size 4, YPIR’s estimated
weekly server cost drops to just $183 per 1 million clients.

Scheme likes HintlessPIR, Tiptoe, and YPIR that do not re-
quire hints are unaffected by update frequency. The upload in
YPIR is just 1.07x larger than HintlessPIR, and 23 x smaller
than Tiptoe. Since AWS only charges for outgoing commu-
nication, and Tiptoe and HintlessPIR have larger responses
than YPIR, they have substantially higher AWS costs (84 x
and 16 x, respectively). Overall, the total communication re-
quired by YPIR is 2x lower than HintlessPIR, 28 x lower
than Tiptoe, and 4.3 x lower than DoublePIR with daily up-
dates. In fact, YPIR’s total communication with daily updates
is smaller even compared to DoublePIR’s total communi-
cation with weekly updates. So even if the client amortizes
the DoublePIR hint across multiple queries over the course
of the week, YPIR still achieves smaller end-to-end commu-

13Since SCTs are promises to include certificates in logs within a 24-hour
period, the maximum useful frequency of database updates is daily.

5998 33rd USENIX Security Symposium

USENIX Association

DoublePIR DoublePIR Tiptoe HintlessPIR YPIR
Update Frequency Weekly Daily — — —
Offline Download 16 MB 112 MB — — —
Upload 14 MB 14 MB 659 MB 27 MB 29 MB
Download 640 KB 640 KB 172 MB 34 MB 240 KB
Computation 16.90 s 16.90 s 194.96 s 32.40s 13.74 s
Communication Cost $0.001569 $0.010610 $0.016215 $0.003222 $0.000022
Computation Cost $0.000253 $0.000253 $0.002924 $0.000486 $0.000206
Total Cost $0.001822 $0.010863 $0.019139 $0.003708 $0.000228

Table 6: Weekly server costs per client needed to support private SCT auditing using the PIR-based approach of Hen-
zinger et al. [43]. Following [43, 28], we assume the client performs 20 SCT audits each week, where each audit corresponds
to retrieving a single bit using a PIR query over an 8 GB database. For DoublePIR [43], the client needs to download a hint
associated with the current state of the SCT database. We consider the setting where the client downloads the hint once each week
and the case where the client downloads the hint (or a hint update) each day. The other schemes (Tiptoe [41], HintlessPIR [55]
and YPIR) do not require hints. We measure the cost of running such a service based on current AWS costs: ($0.09 per outbound
GB and $1.5- 10~°/core-second; inbound communication is free) [43].

nication costs. Compared to the communication needed by
Chrome’s k-anonymity-based approach for private SCT audit-
ing [28], (which does not provide cryptographic privacy), the
communication requirement using YPIR is only 12.6x higher.
Concretely, the weekly communication costs are 2.3 MB for
the k-anonymity approach, and 29 MB for YPIR.

5 Related Work

Private information retrieval was first introduced in [23]. The
original construction considered the multi-server model where
the database is replicated across multiple (non-colluding)
servers. The reliance on non-colluding servers enables
lightweight constructions (based on symmetric cryptography
or even no cryptography at all) [85, 31, 8, 36, 13, 40].
Kushilevitz and Ostrovsky [50] gave the first single-server
PIR scheme based on additively homomorphic encryption.
Subsequently, single-server PIR has been constructed from
many number-theoretic assumptions [18, 34, 30, 20, 12]. Of
particular note are the lattice-based constructions, which yield
the most (concretely)-efficient constructions of single-server
PIR [66, 5, 4, 33,76, 3, 1, 72,73, 67, 26, 43, 41, 55].
Reducing the computational cost of PIR. There are many
techniques to reduce the computational burden of PIR. Batch
PIR [9, 46, 38, 4, 73] allows a client to retrieve many elements
from the database with low overhead relative to the cost of
a single query. In stateful PIR [77, 49, 72, 63], the client
retrieves private state from the server in an offline phase in
order to reduce the cost of the online phase. Recently, several
works have also shown how to construct single-server PIR
protocols with amortized sublinear online computation [54,
74, 84, 86]. Notably, several of these constructions only rely
on symmetric cryptography [74, 84, 86] and can plausibly
handle queries to extremely large databases (on the order of
hundreds of GB). However, these systems have the limitation

that the client has to stream the entire database in the offline
phase, which may be infeasible for large databases.

In doubly-efficient PIR [19, 14], the server locally prepro-
cesses the database in a way that allows it to answer queries
in sublinear time. Notably, no communication is needed in the
offline phase. A recent breakthrough [58] gives a construction
of doubly-efficient PIR from the RLWE assumption; however,
the concrete costs of this protocol still seem too high to be
practically viable for realistic database sizes [75].

PIR variations. A number of recent works have also sought
to strengthen PIR to provide security in the presence of ma-
licious servers [83, 10, 24, 29, 27]. Other extensions of PIR
include retrieving records by keyword instead of index [22];
this case can be reduced to standard PIR [22, 3, 64, 78].

Acknowledgments. We thank Alexandra Henzinger for help-
ful pointers on the Tiptoe implementation, Baiyu Li for
advice on parameter selection and benchmarking for Hint-
lessPIR, and Kevin Yeo for suggestions related to keyword
PIR. We thank the Usenix Security reviewers for their helpful
comments. David J. Wu is supported in part by NSF CNS-
2140975, CNS-2318701, a Microsoft Research Faculty Fel-
lowship, a Google Research Scholar award, and a grant from
Protocol Labs.

References

[1] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal,
Amr El Abbadi, and Trinabh Gupta. Addra: Metadata-
private voice communication over fully untrusted infras-
tructure. In OSDI, 2021.

[2] Martin R Albrecht, Rachel Player, and Sam Scott. On
the concrete hardness of Learning with Errors. Journal
of Mathematical Cryptology, 9(3), 2015.

USENIX Association

33rd USENIX Security Symposium 5999

(3]

(4]

(51

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Asra Ali, Tancrede Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication-computation trade-offs in PIR. In
USENIX Security, 2021.

Sebastian Angel, Hao Chen, Kim Laine, and Srinath
T. V. Setty. PIR with compressed queries and amortized
query processing. In IEEE S&P, 2018.

Sebastian Angel and Srinath T. V. Setty. Unobservable
communication over fully untrusted infrastructure. In
OSDI, 2016.

Benny Applebaum, David Cash, Chris Peikert, and Amit
Sahai. Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In
CRYPTO, 2009.

Michael Backes, Aniket Kate, Matteo Maffei, and Kim
Pecina. Obliviad: Provably secure and practical online
behavioral advertising. In IEEE S&P, 2012.

Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan
Orlov. Share conversion and private information re-
trieval. In CCC, 2012.

Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing
the servers computation in private information retrieval:
PIR with preprocessing. In CRYPTO, 2000.

Shany Ben-David, Yael Tauman Kalai, and Omer Paneth.
Verifiable private information retrieval. In TCC (3),
volume 13749, 2022.

Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM
de Souza, Vinodh Gopal, et al. Intel HEXL (release 1.2).
https://github.com/intel/hexl, September 2021.

Elette Boyle, Geoffroy Couteau, and Pierre Meyer. Sub-
linear secure computation from new assumptions. In
TCC, 2022.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing: Improvements and extensions. In ACM
CCS, 2016.

Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Woot-
ters. Can we access a database both locally and pri-
vately? In TCC, 2017.

Zvika Brakerski. Fully homomorphic encryption with-
out modulus switching from classical GapSVP. In
CRYPTO, 2012.

Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (Leveled) fully homomorphic encryption with-
out bootstrapping. In ITCS, 2012.

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

Zvika Brakerski and Vinod Vaikuntanathan. Efficient
fully homomorphic encryption from (standard) LWE.
In FOCS, 2011.

Christian Cachin, Silvio Micali, and Markus Stadler.
Computationally private information retrieval with poly-
logarithmic communication. In EUROCRYPT, 1999.

Ran Canetti, Justin Holmgren, and Silas Richelson. To-
wards doubly efficient private information retrieval. In
TCC,2017.

Melissa Chase, Sanjam Garg, Mohammad Hajiabadi,
Jialin Li, and Peihan Miao. Amortizing rate-1 OT and
applications to PIR and PSI. In TCC, 2021.

Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song.
Efficient homomorphic conversion between (ring) LWE
ciphertexts. In ACNS, 2021.

Benny Chor, Niv Gilboa, and Moni Naor. Private in-
formation retrieval by keywords. JACR Cryptol. ePrint
Arch., 1998. https://eprint.iacr.org/1998/003.

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In FOCS,
1995.

Simone Colombo, Kirill Nikitin, Henry Corrigan-Gibbs,
David J. Wu, and Bryan Ford. Authenticated private
information retrieval. In USENIX Security Symposium,
2023.

Rasmus Dahlberg, Tobias Pulls, Tom Ritter, and Paul
Syverson. Privacy-preserving & incrementally-

deployable support for certificate transparency in tor.
Proc. Priv. Enhancing Technol., 2021(2), 2021.

Alex Davidson, Gongalo Pestana, and Sofia Celi.
FrodoPIR: Simple, scalable, single-server private infor-
mation retrieval. IACR Cryptol. ePrint Arch., 2022.
https://eprint.iacr.orqg/2022/981.

Leo de Castro and Keewoo Lee. VeriSimplePIR: Verifi-
ability in SimplePIR at no online cost for honest servers.
In USENIX Security, 2024.

Joe DeBlasio. Opt-out SCT auditing in chrome. https:
//docs.google.com/document /d/16G-Q7iN3kB46
GSW5b-sfH5MO3nKSYyEL77YsM7TMZGE /edit, January
2024.

Marian Dietz and Stefano Tessaro. Fully malicious
authenticated PIR. In CRYPTO, 2024.

Nico Dottling, Sanjam Garg, Yuval Ishai, Giulio Mala-
volta, Tamer Mour, and Rafail Ostrovsky. Trapdoor hash
functions and their applications. In CRYPTO, 2019.

6000 33rd USENIX Security Symposium

USENIX Association

https://github.com/intel/hexl
https://eprint.iacr.org/1998/003
https://eprint.iacr.org/2022/981
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit

[31] Klim Efremenko. 3-query locally decodable codes of
subexponential length. In STOC, 2009.

[32] Craig Gentry. Fully homomorphic encryption using
ideal lattices. In STOC, 2009.

[33] Craig Gentry and Shai Halevi. Compressible FHE with
applications to PIR. In TCC, 2019.

[34] Craig Gentry and Zulfikar Ramzan. Single-database pri-
vate information retrieval with constant communication
rate. In ICALP, 2005.

[35] Ashrujit Ghoshal, Mingxun Zhou, and Elaine Shi. Effi-
cient pre-processing PIR without public-key cryptogra-
phy. In EUROCRYPT, 2024.

[36] Niv Gilboa and Yuval Ishai. Distributed point functions
and their applications. In EUROCRYPT, 2014.

[37] Matthew Green, Watson Ladd, and Ian Miers. A proto-
col for privately reporting ad impressions at scale. In
ACM CCS, 2016.

[38] Jens Groth, Aggelos Kiayias, and Helger Lipmaa. Multi-
query computationally-private information retrieval with
constant communication rate. In PKC, 2010.

[39] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Sri-
nath T. V. Setty, Lorenzo Alvisi, and Michael Walfish.
Scalable and private media consumption with popcorn.
In NSDI, 2016.

[40] Syed Mahbub Hafiz and Ryan Henry. A bit more than a
bit is more than a bit better: Faster (essentially) optimal-
rate many-server PIR. Proc. Priv. Enhancing Technol.,
2019(4), 2019.

[41] Alexandra Henzinger, Emma Dauterman, Henry
Corrigan-Gibbs, and Nickolai Zeldovich. Private web
search with Tiptoe. In SOSP, 2023.

[42] Alexandra Henzinger, Emma Dauterman, Henry
Corrigan-Gibbs, and Nickolai Zeldovich. Private web
search with Tiptoe. In SOSP, 2023. https://github
.com/ahenzinger/underhood/commit/£f053a81.

[43] Alexandra Henzinger, Matthew M. Hong, Henry
Corrigan-Gibbs, Sarah Meiklejohn, and Vinod Vaikun-
tanathan. One server for the price of two: Simple and fast
single-server private information retrieval. In USENIX
Security Symposium, 2023.

[44] Alexandra Henzinger, Matthew M. Hong, Henry
Corrigan-Gibbs, Sarah Meiklejohn, and Vinod Vaikun-
tanathan. One server for the price of two: Simple and
fast single-server private information retrieval, 2023.
https://github.com/ahenzinger/simplepir/
commit/e9020b0.

[45] Intel® intrinsics guide v3.6.7. https://www.intel.
com/content/www/us/en/docs/intrinsics-qui
de/index.html, 2023. © Intel Corporation.

[46] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. Batch codes and their applications. In
STOC, 2004.

[47] Ari Juels. Targeted advertising ... and privacy too. In
CT-RSA, 2001.

[48] Daniel Kales, Olamide Omolola, and Sebastian Ra-
macher. Revisiting user privacy for certificate trans-
parency. In Euro S&P, 2019.

[49] Dmitry Kogan and Henry Corrigan-Gibbs. Private block-
list lookups with checklist. In USENIX Security, 2021.

[50] Eyal Kushilevitz and Rafail Ostrovsky. Replication is
not needed: Single database, computationally-private
information retrieval. In FOCS, 1997.

[51] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan
Ford. Riffle: An efficient communication system with
strong anonymity. Proc. Priv. Enhancing Technol.,
2016(2), 2016.

[52] Ben Laurie. Certificate transparency. Commun. ACM,
57(10), 2014.

[53] Ben Laurie, Adam Langley, and Emilia Késper. Certifi-
cate transparency. RFC, 6962, 2013.

[54] Arthur Lazzaretti and Charalampos Papamanthou.
TreePIR: Sublinear-time and polylog-bandwidth private
information retrieval from DDH. In CRYPTO, 2023.

[55] Baiyu Li, Daniele Micciancio, Mariana Raykova, and
Mark Schultz. Hintless single-server private information
retrieval. In CRYPTO, 2024.

[56] Baiyu Li, Daniele Micciancio, Mariana Raykova, and
Mark Schultz. Hintless single-server private information
retrieval. In CRYPTO, 2024. https://github.com/g
oogle/hintless_pir/commit/4belae8.

[57] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul
Chatterjee, and Thomas Ristenpart. Protocols for check-
ing compromised credentials. In ACM CCS, 2019.

[58] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly
efficient private information retrieval and fully homo-
morphic RAM computation from ring LWE. In STOC,
2023.

[59] Patrick Longa and Michael Naehrig. Speeding up the
number theoretic transform for faster ideal lattice-based
cryptography. In CANS, 2016.

USENIX Association

33rd USENIX Security Symposium 6001

https://github.com/ahenzinger/underhood/commit/f053a81
https://github.com/ahenzinger/underhood/commit/f053a81
https://github.com/ahenzinger/simplepir/commit/e9020b0
https://github.com/ahenzinger/simplepir/commit/e9020b0
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://github.com/google/hintless_pir/commit/4be2ae8
https://github.com/google/hintless_pir/commit/4be2ae8

[60] Wouter Lueks and Ian Goldberg. Sublinear scaling for
multi-client private information retrieval. In Financial
Cryptography and Data Security, 2015.

[61] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert,
and Alon Rosen. SWIFFT: A modest proposal for FFT
hashing. In FSE, 2008.

[62] Vadim Lyubashevsky, Chris Peikert, and Oded Regev.
On ideal lattices and learning with errors over rings. In
EUROCRYPT, 2010.

[63] Yiping Ma, Ke Zhong, Tal Rabin, and Sebastian Angel.
Incremental offline/online PIR (extended version). In
USENIX Security, 2022.

[64] Rasoul Akhavan Mahdavi and Florian Kerschbaum.
Constant-weight PIR: single-round keyword PIR via
constant-weight equality operators. In USENIX Security
Symposium, 2022.

[65] John D. McCalpin. Memory bandwidth and machine
balance in current high performance computers. /EEE
Computer Society Technical Committee on Computer
Architecture Newsletter, 1995.

[66] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse,
and Marc-Olivier Killijian. XPIR : Private information
retrieval for everyone. Proc. Priv. Enhancing Technol.,
2016(2), 2016.

[67] Samir Jordan Menon and David J. Wu. SPIRAL: Fast,
high-rate single-server PIR via FHE composition. In
IEEE S&P, 2022.

[68] Samir Jordan Menon and David J. Wu. YPIR: High-
throughput single-server PIR with silent preprocessing.
IACR Cryptol. ePrint Arch.,2024. https://eprint.i
acr.org/2024/270.

[69] Merkle town. https://ct.cloudflare.com, January
2024. Cloudflare, Inc.

[70] Daniele Micciancio and Chris Peikert. Trapdoors for lat-
tices: Simpler, tighter, faster, smaller. In EUROCRYPT,
2012.

[71] Prateek Mittal, Femi G. Olumofin, Carmela Troncoso,
Nikita Borisov, and Ian Goldberg. PIR-Tor: Scalable
anonymous communication using private information
retrieval. In USENIX Security, 2011.

[72] Muhammad Haris Mughees, Hao Chen, and Ling Ren.
OnionPIR: Response efficient single-server PIR. In
ACM CCS, 2021.

[73] Muhammad Haris Mughees and Ling Ren. Vectorized
batch private information retrieval. In IEEE S&P, 2023.

[74] Muhammad Haris Mughees, I Sun, and Ling Ren. Sim-
ple and practical amortized sublinear private information
retrieval. TACR Cryptol. ePrint Arch., 2023. https:
//eprint.iacr.org/2023/1072.

[75] Hiroki Okada, Rachel Player, Simon Pohmann, and
Christian Weinert. Towards practical doubly-efficient
private information retrieval. IACR Cryptol. ePrint
Arch., 2023. https://eprint.iacr.org/2023/1
510.

[76] Jeongeun Park and Mehdi Tibouchi. SHECS-PIR: some-
what homomorphic encryption-based compact and scal-
able private information retrieval. In ESORICS, 2020.

[77] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private
stateful information retrieval. In ACM CCS, 2018.

[78] Sarvar Patel, Joon Young Seo, and Kevin Yeo. Don’t be
dense: Efficient keyword PIR for sparse databases. In
USENIX Security Symposium, 2023.

[79] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters.
A framework for efficient and composable oblivious
transfer. In CRYPTO, 2008.

[80] Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. In STOC, 2005.

[81] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Bor-
bala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,
and Elie Bursztein. Protecting accounts from creden-
tial stuffing with password breach alerting. In USENIX
Security Symposium, 2019.

[82] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod
Vaikuntanathan, and Matei Zaharia. Splinter: Practical
private queries on public data. In NSDI, 2017.

[83] Xingfeng Wang and Liang Zhao. Verifiable single-
server private information retrieval. In ICICS, volume
11149, 2018.

[84] Yinghao Wang, Jiawen Zhang, Jian Liu, and Xiaohu
Yang. Crust: Verifiable and efficient private informa-
tion retrieval with sublinear online time. IJACR Cryptol.
ePrint Arch., 2023. https://eprint.iacr.org/20
23/1607.

[85] Sergey Yekhanin. Towards 3-query locally decodable
codes of subexponential length. In STOC, 2007.

[86] Mingxun Zhou, Andrew Park, Elaine Shi, and Wenting
Zheng. Piano: Extremely simple, single-server PIR with
sublinear server computation. In JEEE S&P, 2024.

6002 33rd USENIX Security Symposium

USENIX Association

https://eprint.iacr.org/2024/270
https://eprint.iacr.org/2024/270
https://ct.cloudflare.com
https://eprint.iacr.org/2023/1072
https://eprint.iacr.org/2023/1072
https://eprint.iacr.org/2023/1510
https://eprint.iacr.org/2023/1510
https://eprint.iacr.org/2023/1607
https://eprint.iacr.org/2023/1607

	Introduction
	Our Contributions
	Overview of YPIR

	Preliminaries
	The YPIR Protocol
	Implementation and Evaluation
	Additional Optimizations
	Experimental Evaluation
	Supporting Larger Records
	Application to Private SCT Auditing

	Related Work

