
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

SHiFT: Semi-hosted Fuzz Testing for
Embedded Applications

Alejandro Mera and Changming Liu, Northeastern University; Ruimin Sun,
Florida International University; Engin Kirda and Long Lu, Northeastern University

https://www.usenix.org/conference/usenixsecurity24/presentation/mera

SHiFT: Semi-hosted Fuzz Testing for Embedded Applications

Alejandro Mera
Northeastern University

Changming Liu
Northeastern University

Ruimin Sun
Florida International University

Engin Kirda
Northeastern University

Long Lu
Northeastern University

Abstract
Modern microcontrollers (MCU)s are ubiquitous on critical
embedded applications in the IoT era. Therefore, securing
MCU firmware is fundamental. To analyze MCU firmware
security, existing works mostly adopt re-hosting based tech-
niques. These techniques transplant firmware to an engineered
platform and require tailored hardware or emulation of differ-
ent parts of the MCU. As a result, security practitioners have
observed low-fidelity, false positives, and reduced compatibil-
ity with real and complex hardware.

This paper presents SHiFT, a framework that leverages
the industry semihosting philosophy to provide a brand-
new method that analyzes firmware natively in MCUs. This
novel method provides high fidelity, reduces false positives,
and grants compatibility with complex peripherals, asyn-
chronous events, real-time operations, and direct memory ac-
cess (DMA). We verified compatibility of SHiFT with thirteen
popular embedded architectures, and fully evaluated proto-
types for ARMv7-M, ARMv8-M and Xtensa architectures.
Our evaluation shows that SHiFT can detect a wide range of
firmware faults with instrumentation running natively in the
MCU. In terms of performance, SHiFT is up to two orders of
magnitude faster (i.e., ×100) than software-based emulation,
and even comparable to fuzz testing native applications in a
workstation. Thanks to SHiFT’s unique characteristics, we
discovered five previously unknown vulnerabilities, including
a zero-day on the popular FreeRTOS kernel, with no false pos-
itives. Our prototypes and source code are publicly available
at https://github.com/RiS3-Lab/SHiFT.

1 Introduction

Embedded devices are of paramount importance for the mod-
ern world. They control critical systems in many domains
with real-time responsiveness and low power consumption
(e.g., Internet-of-Things, Cyber-Physical Systems, etc.). Mi-
crocontrollers, the primary functional component of deeply
embedded devices, are becoming increasingly powerful, and

rich in network connectivity [20], thus facing threats that
pullulate in the cyberspace [40]. MCU security, therefore, is
critical to users and the operators of these devices.

In recent years, we have seen a significant rise in attacks
targeting embedded and IoT devices [27, 40], where attack-
ers can steal private and critical information of the infected
devices, or even manipulate the behavior of the connected
physical infrastructure. Such attacks have been studied [68]
and reported in smart homes [21], connected vehicles [24,56],
intelligent factories [49], power grids [45], and more.

The attacks usually result from bugs and vulnerabilities
rooted in the MCU firmware in production environments.
Therefore, detecting and eliminating MCU firmware bugs be-
fore deployment is critical because vendors may fail to patch
firmware once a vulnerability is known, and is being exploited.
A notable example is the unfixable firmware bug affecting a
DMA buffer in the first generation of the Nintendo Switch.
This bug compromises an early boot stage of the console’s
system on a chip (SoC) and the whole system security [60].
Even when patching after deployment is possible, a complete
shutdown and reboot of the physical infrastructure might be
needed, hence leading to high financial and operative costs.
Thus, firmware developers must find bugs as early as possible
at the source code level, leveraging in-house testing [46].

Researchers have explored various approaches to improve
the security of embedded devices, including remote attesta-
tion [69], compartmentalization [38, 53], and dynamic and
static firmware analysis [6,34,58]. Notably, dynamic analysis
has elicited the interest of security practitioners because it
is less prone to producing false positives, adds no runtime
overhead, and it is more practical in identifying bugs before
deployment. However, contrary to software running in a work-
station, firmware is not directly compatible with the majority
of traditional security approaches because of various hardware
and software constraints of the MCU platform [18, 46, 62].

To solve these limitations and specifically enable dynamic
analysis, previous works have explored several re-hosting
techniques, such as pure software-based emulation [25, 26],
hardware-in-the-loop (HiL) [43, 44], and symbolic abstrac-

USENIX Association 33rd USENIX Security Symposium 5323

tions [23,30]. Despite these efforts, these solutions are limited
in terms of fidelity, which describes how well the behavior of
an emulation system mirrors its physical counterpart (i.e., the
real hardware [33, 71]). Low fidelity reflects many issues in
firmware analysis, such as limited compatibility with complex
peripherals, asynchronous events, real-time operations and
DMA. As a result, critical bugs may not be found, or bugs
that are reported may not be easy to reproduce nor observed
on real hardware (i.e., false positives).

In this work, we propose SHiFT, a fuzz testing framework
that introduces “semihosting” as a new re-hosting technique.
SHiFT allows the firmware running natively in an MCU to
consume fuzzing services in a workstation. SHiFT is novel in
the sense that it runs most of the fuzzer’s infrastructure and
the target firmware entirely in the MCU, without requiring
software-based emulation of peripherals, and providing high
fidelity.

SHiFT maintains flexibility and practicality in detecting
bugs and vulnerabilities early in firmware development. This
characteristics benefits first-party developers that have access
to source code and functional testing tools, but do not have au-
tomated methods to test firmware–from a security perspective–
directly on hardware. Consequently, developers can integrate
SHiFT in existing development pipelines that embrace contin-
uous integration and continuous delivery (CI/CD) maintaining
short development cycles with speed, reliability and security.

SHiFT’s implementation involves two components: an
MCU fuzzing cluster running FreeRTOS-MPU tailored to sup-
port coverage-guided fuzzing and sanitizer instrumentation,
and a workstation running a mutation engine. SHiFT’s im-
plementation is vendor-agnostic, and portable to many MCU
development platforms. We evaluated SHiFT’s compatibil-
ity with relevant embedded architectures, its fuzzing perfor-
mance, and fault detection capabilities. The results show that
SHiFT is compatible with popular embedded architectures.
Its performance is vastly superior to the software-based state-
of-the-art emulation, and even comparable to native fuzzing
in a workstation. In our work, the unique characteristics of
SHiFT allowed the detection of previously-unknown bugs
(that we reported responsibly to the vendors) that are easily
verifiable in real hardware.

In summary, this work makes the following contributions:

• We propose a novel re-hosting technique based on the
semihosting philosophy that, contrary to software-based
emulation or HIL, executes the firmware under test en-
tirely in an MCU with high fidelity.

• We implement, evaluate and will make public SHiFT
prototypes for various popular embedded architectures.

• We demonstrate that by systematically lifting specific
limitations of an MCU, it is possible to use MCU devices
to build practical security tools, which helped to identify
five previously-unknown vulnerabilities.

Debugger/Programmer

JTAG UART

UARTJTAG

USB Ethernet

Ex
pa

ns
io

n
C

on
ne

ct
or

 A

IO
 P

er
ip

he
ra

ls

IO
 P

er
ip

he
ra

ls

USB
Conn. B

RJ45
Connector

USB
Conn. A

Ex
pa

ns
io

n
C

on
ne

ct
or

 B

Se
ns

or
s/

Ac
tu

at
or

s

Se
ns

or
s/

Ac
tu

at
or

s

W
or

ks
ta

tio
n

Inter-peripheral connection

Core

DMA

MMIO

RAM/FLASH

INT

Figure 1: Reference MCU development board architecture. Dashed lines de-
note external wiring connections, sensors, actuators, and off-chip peripherals
added by developers for developing and testing. Adapted from [55].

2 Background

Previous work [59] has classified embedded systems accord-
ing to the type of OS that they run, and their specific hardware
requirements. Our work focuses on devices based on MCUs
that implement a specialized RTOS, or a bare-metal design
(i.e., Type II, and III, respectively). Devices that have a mem-
ory management unit (MMU), and that support a general OS
such as Linux (i.e, Type I) are not considered in this work
because of their similarity to traditional computers, and the
vast availability of security tools.

2.1 The MCU ecosystem

MCUs are tiny self-contained1 computers that are con-
strained in computing power, hardware features and data stor-
age. Nevertheless, these devices are unique in undertaking
mission-critical tasks, satisfying real-time constraints, and
being energy-efficient for battery-powered scenarios [53].
MCUs usually implement a single address space with spe-
cific physical addresses mapped to RAM, FLASH and periph-
erals. The core processor accesses and interacts with these
components using three main methods: memory-mapped IO
(MMIO), DMA and interrupts (INT) as depicted in Figure 1.

The software executed by an MCU is a monolithic binary
(i.e., firmware) that contains the complete software stack in-
cluding drivers, communication protocols, user applications,
and optionally, a scheduler library or RTOS. Firmware is
usually developed on workstations equipped with a cross-
compiler that generates a binary file. The binary file is then
flashed and debugged on a development board. Figure 1 de-
picts a generic MCU development board that includes a target
MCU, expansion connectors to access on-chip peripherals, a
terminal connection (USART), and a debugger/programmer.

1Processor core, RAM, FLASH and I/O hardware are integrated in a
single die.

5324 33rd USENIX Security Symposium USENIX Association

2.2 Firmware security analysis

Firmware analysis is a challenging endeavor because the se-
curity tools and methods—used on standard software and
computers—are not directly compatible with firmware and
the operative conditions of MCUs. This incompatibility is a
consequence of the following embedded devices’ characteris-
tics: 1) strong coupling among firmware, sensors and periph-
erals that requires non-standardized inputs interfaces [34];
2) diversity of software and hardware that precludes general-
ization of methods that either rely on specific instruction set
architecture (ISA) tooling, or assume the existence of specific
software abstractions provided by a common OS [33]; 3) the
absence of specialized instrumentation and run-times that can
work in bare-metal, or RTOS designs [18,46,59]; and 4) MCU
hardware limitations, or minimalistic firmware designs that
simply hide crashes and memory corruptions without proper
exception management [46, 59, 62].

Security practitioners have embraced re-hosting as the
mainstream technique to iron the incompatibility issues of
firmware security analysis. “Re-hosting specifies that a bi-
nary that would run on a specific hardware is instead run on
a host system using system emulation” [71]. Conceptually,
re-hosting aims to enable dynamic firmware testing by trans-
planting firmware from the actual device into an engineered
environment that model the original hardware behavior, and
executes firmware with visibility and control.

Fasano, et al. [33] classified re-hosting techniques into three
non-exclusive categories: pure software-based emulation2

that emulates or replaces all necessary components to run
a particular firmware; HiL that partially emulates the MCU
components and forwards interactions to the actual device
when the emulator lacks component models that firmware
needs to interact with; and symbolic abstraction that replaces
interactions between firmware and hardware with symbolic
values.

2.3 Open challenges and limitations

Despite the efforts made by the re-hosting community to
enable firmware analysis, developers face challenges and lim-
itations when using their SoTA solutions. In the following
subsections we systematically describe these issues and how
they affect dynamic firmware analysis.

2.3.1 Reduced Fidelity

Re-hosting based on soft-emulation inevitably approximates
the behavior of real hardware at its best. This approximation
compromises the fidelity of the firmware-hardware interac-
tions and precludes the identification of firmware issues that
are closely associated with hardware behavior [51, 76]. A

2In the following sections, we will refer to “pure software-based emula-
tion” as soft-emulation for clarity and brevity.

non-exhaustive categorization of these bugs that are hardly
observable on soft-emulation platforms includes:

• Post-silicon and peripheral interfacing bugs: these
bugs are rooted in the silicon implementation [57] or
in the integration of an MCU with peripherals due to
faulty designs or electrical connections. While impossi-
ble to observe on emulators, these issues can compro-
mise firmware execution on the actual device and require
vendor-specific firmware "work-arounds" or silicon revi-
sions to be solved [67].

• Timing and synchronization issues: this category is
related to race conditions, time drifting, time constraint
violations, RTOS priority inversions, and wrong han-
dling of interrupts. Current solutions use the number
of executed basic blocks as a heuristic to trigger inter-
rupts in a round-robin fashion [34, 63]. This method
lacks granularity and does not reflect the concatenation
of asynchronous events observed on an actual device.

• Multi-master violations: these issues are associated
with DMA operations performed by dedicated con-
trollers and peripherals with DMA capabilities. Besides
the notable effort made by the authors of DICE [54],
most re-hosting works do not support DMA or require
non-scalable manual assistance to provide limited sup-
port for these operations. Thus, current solutions cannot
exercise and analyze several code sections that depend
on DMA.

2.3.2 Reduced observability

The fault detection techniques of current re-hosted solutions
are based on experimental-only methods [35,50], require con-
siderable engineering effort [26, 46], or only provide coarse-
grained detection capabilities [17, 34]. This last method is
widely adopted and relies on major memory segment viola-
tions (i.e., when reading or writing operations occur on re-
served memory areas). Unfortunately, these major violations
usually do not occur, or they occur later during firmware exe-
cution [59]. Potentially observing a fault later during execu-
tion is still valuable for firmware analysis, but it demonstrates
the re-hosting limitations on detecting specific faults when
they occur.

2.3.3 Limited compatibility

This limitation has two dimensions: First, for soft-emulation
approaches the current solutions are not compatible with com-
plex peripherals since these solutions can only model simple
peripheral-processor interactions [76]; and second, the meth-
ods used by re-hosting under the HiL category, with excep-
tion of GDBFuzz [31], usually require custom hardware only
available for academic use [28, 44], or proprietary commer-
cial libraries and expensive debugging dongles [47]. These

USENIX Association 33rd USENIX Security Symposium 5325

exclusive requirements make these methods far from being
used in practice due to hardware and software unavailability,
cost and complexity.

3 System Design

SHiFT addresses the aforementioned challenges based on
a novel re-hosting technique that borrows the semihosting3

industry philosophy. Semihosting enables firmware, running
natively in an MCU, to use facilities available in a workstation
[2]. In the context of dynamic firmware analysis, SHiFT is a
fuzz testing framework running on MCUs that uses fuzzing
facilities provided by a workstation (i.e., a semi-hosted fuzz
testing framework).

3.1 Design assumptions and scope
Our design uses the popular ARM Cortex-M architecture and
the FreeRTOS-MPU [7] as a basis. However, the principles
and design considerations are non-exclusive, and are applica-
ble to other RTOS, bare-metal designs and architectures as
shown in §5.

We assume the tester is a first-party developer of embed-
ded devices who has access to a development board, and the
source code of the complete firmware, or at least the software
components that will be dynamically analyzed. Having ac-
cess to the development board and source code is a realistic
assumption considering that our method is meant to be in-
tegrated as part of the development, and in-house testing of
an embedded device. It is worth noting that having access
to source code does not solve various challenges associated
with the MCU constraints and re-hosting that we summa-
rized earlier. Further, previous works [18,46,59,63] have also
identified and discussed these remaining challenges, and have
agreed with our observation.

We also assume the tester has access to a GCC compiler
that supports coverage-guided fuzzing (SANCOV), Address
Sanitizer (ASAN) [65], and optionally Undefined Behavior
Sanitizer (UBSAN) instrumentation. We assume the run-time
of the instrumentation is not available. These assumptions are
reasonable and realistic because GCC mainstream supports
ASAN and UBSAN since version 4.8 and SANCOV since
version 6.3 [5,8]. Further, the instrumentation run-time is OS-
specific, and unavailable for Type II and III devices [18, 46].
We validate our assumptions and extend the compatibility
analysis of our solution in §5.

3.2 SHiFT overview and workflow
SHiFT is delivered as a framework that includes ready-to-use
components to implement a semihosted fuzzer in an MCU.

3Originally termed by ARM [15], semihosting has been used in embedded
devices for decades [12].

Fork Server

A. Fuzzing engine

Mutation
Engine

Fork

entry:
 bb0: Inst. routine
exit

Feedback

Sync

Input

Shared
Feedback

Seed
Input

B. Target program

Inst. Runtime

Figure 2: Canonical fuzzer. A. and B. are processes of the same host.

This framework is accompanied by exemplary templates (i.e.,
projects that integrate all SHiFT’s components in a compil-
able firmware), a tailored compiler, and a proxy running in a
workstation.

SHiFT’s workflow can be summarized in four steps done
by the tester: integration, configuration, compilation, and fuzz
testing.

Integration: the tester combines all the source code to
build a semihosted fuzzer and a target application in a single
binary. For a given firmware codebase, the tester can choose
between porting the complete target firmware to any of the ex-
emplary templates, adding the SHiFT framework components
to the existing firmware codebase, or porting only specific
functions or libraries to the exemplary templates.

Configuration: the tester configures SHiFT components
to deliver the fuzzing input to the target application accord-
ing to the integration method and the portions of the target
application to be tested.

Compilation: the tester adds the corresponding compila-
tion flags to instrument the files that will be tested and compile
the firmware into a single binary using our tailored compiler.

Fuzz testing: the tester flashes the binary into the devel-
opment board, or a cluster of them, and launches the fuzzing
campaign using the proxy provided by our framework.

3.3 Decoupling a canonical fuzzer
A canonical fuzzer contains a fuzzing engine and a target
program running in the same host as mutually-isolated pro-
cesses (A and B in Figure 2, respectively). The fuzzing engine
uses communication primitives (e.g., pipes or shared memory)
to synchronize execution, feed input, and retrieve feedback
from the target. The target program leverages OS facilities
(e.g., syscalls, vitual memory, and error handling), compiler
instrumentation, and runtimes to fork, execute, and record
feedback of instrumented routines. We call collectively these
OS facilities the fuzzer’s infrastructure.

SHiFT instantiates a semi-hosted fuzzer design by decou-
pling a canonical fuzzer, and defining two major components:
a fuzzing workstation, and an MCU fuzzing cluster (A and
B in Figure 3, respectively). In the following sections, we
describe our design considerations for each of these major
components, and describe how we tackle the unique chal-
lenges that the MCU platform pose in terms of constrained

5326 33rd USENIX Security Symposium USENIX Association

input

Sync
channel

A. Fuzzing workstation B. MCU fuzzing cluster

feedbackSerial
Port

Proxy

generated
input

feedback

USB CDC/
UART

Target Task/Core

Monitor Task/Core

Shadow Mem Feedback
MPU

Input Buffer

Peripheral

MPU

DMA

INT1 2
3 4

DebuggerSeed
Input

crash triage

Mutation
Engine

Figure 3: SHiFT framework architecture. Dashed line denotes optional com-
ponent not needed during the fuzzing campaign.

computing power and memory, lack of OS and hardware fa-
cilities, and lack of specialized sanitizer runtimes.

3.4 The fuzzing workstation

We designed the workstation to generate the fuzzing input
because it has enough computing power and storage capacity
to execute SoTA genetic algorithms and mutation strategies.
Thus, the fuzzing workstation integrates a classic feedback-
based fuzzing engine as a drop-in component. It also includes
a proxy that mimics the target program of the canonical fuzzer.
This proxy abstracts the same communication primitives of
the original target. However, the proxy merely delivers input,
and awaits feedback. It does not control any of the aspects of
the target firmware execution and fuzzer’s infrastructure.

This independence of the firmware execution has two con-
sequences: first, it instantiates the semihosting philosophy by
implementing the fuzzer’s infrastructure in the MCU and con-
suming the fuzzing input from the workstation; and second,
it drastically reduces the communication bandwidth between
the workstation and the MCU cluster. This last point is a
significant advantage of our design compared with classic
HiL approaches. HiL, such as Avatar [58] or uAFL [47], uses
a debugging dongle to control the MCU from the worksta-
tion to mimic the functionality of the fuzzer’s infrastructure.
This synchronization is complex and requires huge band-
width, which is mitigated by proprietary debugging dongles.
Nonetheless, it reduces the throughput of the fuzzing cam-
paign [59].

3.5 The MCU fuzzing cluster

The MCU fuzzing cluster component implements a fully-
functional fuzzer (i.e., the fuzzer’s infrastructure) except for
the input generator, which we deemed better fits the charac-
teristics of a workstation, as we described earlier. The fuzzing
cluster consumes the mutated input from the fuzzing worksta-
tion, controls and executes the target program (i.e., firmware),
collects coverage, manages errors or faults, and provides feed-
back to the mutation engine. The cluster’s elements (MCUs)

are mutually-independent. That is, they do not share any in-
formation of the fuzzing process. The fuzzing engine in the
workstation, however, can leverage the feedback from the
cluster in its own way, taking advantage of the workstation’s
plentiful computing resources.

Next, we describe how SHiFT supports the fuzz testing
process, and our reasoning to solve specific challenges that
the MCU platform poses for this novel approach.

3.5.1 Architecting firmware for fuzzing

SHiFT supports single (S-C) and dual-core (D-C) configu-
rations to take advantage of modern MCUs’ heterogeneous
architectures. For each configuration, our design defines two
mutually-isolated components in the MCU to provide high
flexibility, and maintain a robust fuzzing platform.

The first component (Monitor in Figure 3) is the entry point
of the semihosted fuzzer. This component manages the com-
munication channel (input and feedback), MPU configuration,
fault exceptions, and the initialization of the target. The sec-
ond component (Target in Figure 3) executes the code under
test, and collects coverage information. Monitor and Target
are either tasks or cores. That is, they depend on SHiFT’s
configuration—whether it operates in S-C or D-C, respec-
tively.

In S-C configuration, SHiFT uses RTOS primitives to cre-
ate a monitor task, which in turn manages the target task. This
target task can be deleted and recreated by the monitor task to
exercise every testing input (standard mode), or can be reused
for a configurable number of input tests, and later refreshed
to improve performance (persistent mode) [14]. The S-C con-
figuration is meant to test specific parts of the firmware, for
example, user applications, libraries and drivers. This configu-
ration is restricted in that the tested code must be compatible,
or ported to run in a RTOS task (i.e., the target task).

In dual-core configuration, SHiFT maintains the same roles
for the Monitor and the Target, but each one runs on a distinct
core. This configuration is compatible exclusively with MCUs
that implement two or more cores. This is a more flexible
configuration in terms of testing because the Monitor and the
Target are independent firmware running different libraries,
RTOS, or even bare-metal designs. This configuration also
supports the standard and persistent modes, but instead of
deleting and recreating the target task, SHiFT reboots the
target core to refresh it.

3.5.2 Delivering fuzzing input

SHiFT is highly-flexible in supporting various methods to
deliver the fuzzing input to the target. The specific method is
defined configuring small harness functions that extend the
monitor and the target (i.e., configuration in §3.2). The sim-
plest method, which resembles AFL running in a workstation,
is by sharing the monitor’s input buffer with the target (i.e.,

USENIX Association 33rd USENIX Security Symposium 5327

M2S

RO DataFl
as

h
R

AM Data

Shadow

R
es

.

M2S

RO Data

Fl
as

h
R

AM

Data

Shadow

R
es

.

a) Standard Mapping

Data

Shadow

RO Data

Fl
as

h
R

AM
R

es
.

RO Data

Data

Shadow

Fl
as

h
R

AM
R

es
.

b) SHiFT Mapping

Figure 4: ASAN Mem-to-Shadow (M2S) computation in a MCU, a) shows
an illegal mapping to a reserved memory area (Res.), and b) shows a valid
mapping compatible with MCUs.

1⃝ in Figure 3). The most complex method, and key aspect
of SHiFT’s contributions, is by using real peripherals to send
the fuzzing input from the monitor, and receive the fuzzing
input in the target. This method supports and executes all the
peripheral’s MMIO, interrupts and DMA (i.e., 2⃝, 3⃝, and 4⃝
in Figure 3) handled directly by the MCU hardware with high
fidelity. For this method, the harness function in the monitor
includes peripheral drivers to write the fuzzing input, and the
target includes the original application’s drivers and routines
to read data from peripherals. Also, the tester needs to phys-
ically interconnect peripherals leveraging the development
board (Figures 1 and 10). The reader is referred to our case
study in §5.6.3 for a practical example.

3.5.3 Detecting and managing faults

SHiFT leverages the FreeRTOS-MPU kernel to detect out-
of-bounds accesses and privilege mismatches. SHiFT also
controls the Cortex-M traps for integer division-by-zero and
unaligned accesses. For MCUs that integrate a floating-point
unit (FPU), our design also handles exceptions derived from
division-by-zero and invalid floating-point operations. SHiFT
detects hangs by using RTOS primitives or watchdog timers,
for S-C and D-C configurations, respectively.

Our design masters the Cortex-M exception model by defin-
ing specialized RTOS-independent handlers to systematically
manage faults. This model differentiates exception conditions
from usage faults (division-by-zero, unaligned accesses, and
undefined instructions), hangs or timeouts, memory faults
(MPU mismatches) and bus faults (e.g., illegal fetches) [48].
SHiFT uses the exception handlers to stop the target, and
notify the monitor with the corresponding exit code using
RTOS primitives. Notice that this exception model is a com-
modity on standard computers, but non-existing in embedded
devices [59].

3.5.4 Supporting compiler instrumentation

SHiFT supports SANCOV, ASAN and optionally UBSAN
run-time libraries for bare-metal and RTOS-based firmware.
From a high-level perspective, the run-time library constitutes
the implementation of callbacks that the compiler inserts into

the code to trace the program counter on every basic block
(BB), or to add memory checks on load and store operations
to detect memory errors. To support the run-time libraries,
our design tackles two fundamental constraints of the MCU:
limited memory RAM, and the lack of MMU.

For SANCOV, our run-time design is inspired, but not lim-
ited, by AFL [1] with two particular optimizations in coping
with the limited RAM, and returning the coverage feedback
to the fuzzing workstation.

The first optimization reduces the size of the bitmap (i.e.,
RAM) that holds the number of hits of every edge4. We reduce
it up to 1/8 of the original bitmap size (i.e., 64kB/8). This is
feasible since MCU firmware is typically much smaller than
regular software.

The second optimization adds an extra level of indirection
into the bitmap to build the feedback dynamically. This is due
to the observation that the bitmap hits are very sparse, making
it highly inefficient to send the entire bitmap back for every
fuzzing input. Thus, we only send back to the workstation
the exercised edges and their hit counts instead of the entire
bitmap.

For ASAN, the original algorithm assumes it is running on
a Type I device, or a regular computer that supports virtual
memory. Concretely, ASAN uses 1/8 of the virtual space for
shadow memory, which is used to check whether a byte is safe
to access [65]. This method is incompatible with MCUs, be-
cause these devices do not have an MMU to translate arbitrary
addresses from the virtual space into the physical location
of the shadow in RAM. Figure 4 explains this issue. This
figure shows that the computation M2S for the Data segment
is correct pointing to the shadow in RAM. However, for the
Read-Only (RO) Data segment, the computation M2S points
to a reserved area.

In our design, we solve this issue by relocating the RO
Data segment into RAM (i.e., Figure 4.b), reserving 1/8 of the
available RAM for shadow, and systematically choosing an
Offset value for ASAN M2S. Without the assistance of an
MMU, the modified instrumentation computes valid physical
addresses for the shadow of Data and RO Data segments.

The addition of ASAN extends MPU protections to allow
SHiFT to detect errors, including out-of-bounds on the heap
and in global variables, use after free, illegal free, and double
free. In the case of the stack, ASAN increases MPU protection
granularity by adding checks for internal structures allocated
in the stack region.

3.5.5 Selecting a communication channel

We analyzed multiple commodity interfaces of commercial
MCUs. Table 1 summarizes the results of writing and reading
operations for various interfaces. We also conducted a survey
(Appendix §A) and determined that USART and USB are
the most popular interfaces in commercial MCUS. Upon our

4We omit and adapt some AFL details to simplify our description.

5328 33rd USENIX Security Symposium USENIX Association

Interface Native Speed Write [MB/s] Read [MB/s]
Ethernet 100 Mbps 11.71 5.86
USB ST-Link 12 Mbps 0.57 0.49
USB-CDC 12 Mbps 1.06 0.97
UART 7.5 Mbaud 0.72 0.74

Table 1: Average speed for read and write operations on different interfaces
of the NUCLEO-H743 development board

analysis, we selected the serial communication USB-CDC
because it assures a trade-off between throughput and avail-
ability. Also, it is universally-accessible by the fuzzing work-
station because drivers for serial ports are already available
in every major OS.

4 Implementation

SHiFT’s implementation includes, FreeRTOS-MPU exten-
sions, run-times for SANCOV, ASAN and UBSAN, GCC
compiler modifications, templates for S-C and D-C configura-
tions including harness prototypes, a communication protocol
and a customized serial proxy. The changes for GCC com-
piler are 2 LoC. The rest of our implementation constitutes
of 2,140 LoC distributed on different SHiFT’s components,
which does not take into account the target firmware code. The
proxy includes 600 lines of code (LoC) that we implemented
exclusively on the fuzzing workstation.

4.1 FreeRTOS-MPU and kernel extensions

We selected FreeRTOS-MPU (V10.4.2) because it is arguably
the most popular RTOS for Type II devices [20]. However, we
used exclusively primitives available on any RTOS to make
SHiFT easily portable. These primitives include methods to
spawn and stop tasks, semaphores and notifications. Further,
supporting the Cortex-M MPU is not mandatory, but highly
desirable for better fault detection and robustness.

We extended the FreeRTOS-MPU kernel using the
application_defined_privileged_functions.h file.
This header file is used to define functions that the application
writer wants to execute in privileged mode (i.e., syscalls).
Thus, we defined wrappers for malloc, free, and watchdog
handlers, which are used by the ASAN run-time and fuzzing
templates. If the RTOS does not support the MPU, all
the firmware is executed in the privileged mode and these
wrappers are not necessary.

4.2 SANCOV and ASAN run-times

We used the GNU ARM Embedded Toolchain 10.3-2021.10
release [9], including the source code of the GCC compiler,
libraries and run-times in the same package.

Our SANCOV run-time implements coverage measure-
ments based on a modified version of AFL’s edge tracking

Configuration Mem. area Base Addr. Size [kB] Offset

Single-Core
Monitor & Target

RAM 0x24000000 512
SHADOW 0x20000000 64 0x1B800000
FLASH 0x08000000 1024

Dual-Core
Target

RAM 0x24000000 256
SHADOW 0x10000000 32 0x0B800000
FLASH 0x08100000 512

Dual-Core
Monitor

RAM 0x24060000 128
FLASH 0x08000000 512

Table 2: Memory layout to support ASAN instrumentation for the
STM32H74x MCU family.

algorithm [36]. Our modifications account for the optimiza-
tions described in §3.5.4, which are mostly implemented in
the __sanitizer_cov_trace_pc callback inserted by SAN-
COV to trace the program counter.

Our ASAN run-time is based on the libsanitizer source
code. We make it compatible with RTOS-based and bare-
metal designs by refactoring the run-time callbacks and re-
moving the support for thread details and advanced memory
allocators, which are OS-specific. The refactored callbacks
include functions for (de-)initialization of the run-time and
poisoned areas, reporting load and store violations, and
memory (de-)allocators helpers. To support ASAN instrumen-
tation, we re-compiled GCC with a custom Offset defined in
asan_mapping.h and arm.c of GCC source code5. We also
modified the firmware linker script, as described in Table 2,
to accommodate the shadow, and relocate the data segments,
according to the details in §3.5.4.

4.3 Communication protocol
We implemented a robust 2-message protocol to send the
fuzzing input to the MCU, and to send back the feedback from
the MCU. This protocol also includes a cyclic redundancy
check (CRC) for error detection. On the MCU side, we built
the protocol on top of a generic USB communication device
class (CDC) example provided by the MCU vendor.

4.4 Serial proxy
The serial proxy abstracts the communication between the
fuzzing engine and the MCU connected through a serial port
(Figure 3). It acts as the target program maintaining compati-
bility with AFL, AFL++, and any other SoTA fuzzing engine
that uses the same communication primitives (i.e., pipes and
shared memory). We use libserialport [16], a cross-platform
library, for communication between the proxy and the serial
port in the fuzzing workstation.

5 Evaluation

We evaluated SHiFT to answer the following questions:

5GCC supports Offset as a command line option for KASAN, but not
for ASAN. [22]

USENIX Association 33rd USENIX Security Symposium 5329

1. What is the compatibility of SHiFT with relevant embed-
ded architectures? What are the requirements of SHiFT
in terms of FLASH and RAM?

2. How does SHiFT’s observability and fault detection ca-
pabilities compare to the SoTA?

3. How does SHiFT’s fidelity compare to other solutions?,
and How does reduced fidelity affect fuzz testing?

4. What is the fuzzing performance of SHiFT?, and how
does SHiFT’s unique characteristics support fuzz testing
of complex hardware settings?

To answer 1), we empirically evaluated the compatibility of
thirteen embedded architectures in §5.1, and analyzed the
memory footprint of SHiFT in §5.2. To answer 2), we per-
formed a fault detection analysis and compared to the SoTA
in §5.3. To answer 3), we conducted a qualitative analysis
of SHiFT fidelity comparing to the SoTA, and empirically
analyzed the effects of low fidelity in fuzz testing in §5.4.1
and §5.4.2, respectively. Finally, to answer 4) we conducted
a performance analysis in §5.5, and describe case studies in
§5.6.

The default setting for our experiments includes a worksta-
tion equipped with an AMD Ryzen 3700x CPU, 32 GB of
RAM, and Ubuntu 22.04. We used a wide range of develop-
ment boards from ST-Microelectronics, Adafruit Industries,
NXP, Microchip Semiconductors, Gigadevice, and Espressif
Systems. Collectively, we evaluated 13 embedded architec-
tures, including complete fuzzing campaigns on 6 different
development boards from different vendors, and three archi-
tectures (i.e., ARMv7-M, ARMv8-M and Xtensa). Please
refer to Table 3.

5.1 Compatibility analysis

For this analysis, we selected 13 popular embedded architec-
tures according to market studies [4, 20]. Then, we verified
their characteristics, toolchain and documentation considering
SHiFT’s design assumptions detailed in §3.1. Finally, we ob-
tained the latest public toolchain, ported, compiled and tested
SHiFT prototypes (eleven in total) considering the character-
istics of each architecture, and the hardware that we have for
validation.

The results in Table 3 demonstrate that our design has
excellent compatibility since 100% (13) of the architectures
support SANCOV, 92% (12) support software-based error
detectors, and 77% (10) support hardware-based protections.
The only exception is the 8bit AVR architecture which does
not support software or hardware methods to detect faults. We
estimate that porting SHiFT to another architecture requires
on average 4 hours of effort for a single engineer, which
includes the recompilation of GCC (about 90 minutes).

Architecture MPU GCC SANCOV ASAN UBSAN Port MCU
ARMv7-M 9.3.1 SMT32H745/H743

SAMD51, K66F
ARMv8-M 9.3.1 STM32L552
Xtensa 8.4.0 ESP32 WROM
MIPS M4K MMU 8.3.1 PIC32MX795
MIPS MK64F MMU 8.3.1 PIC32MZ2048
RISC-V optional 9.2.0 GD32VF103CBT6
Renesas RX 8.3 RSF562N8BDFP
Renesas RL 11.1* –
AVR 7.3.0 Atmega2560
MSP430 optional 9.3.1 –
ARC optional 11.2.0 –
Coldfire 9.3.0 –
Power PC 400 9.3.0 –

Table 3: Architecture compatibility with security hardware and instrumenta-
tion options. *only LLVM toolchain available for this architecture.

Configuration M. area 1/4 bmp 1/8 bmp 1/16 bmp
kBytes % kBytes % kBytes %

Single-Core RAM 237.0 23.2 173.0 16.9 157.0 15.3
FLASH 150.2 14.7 150.2 14.7 150.2 14.7

Dual-Core RAM 189.2 18.5 157.2 15.4 141.2 13.8
Flash 178.8 17.5 178.8 17.5 178.8 17.5

Table 4: Flash and RAM requirements for different fractions of the original
(64k) AFL bitmap (bmp). % represents the usage of available Flash and
RAM for the STM32H74x MCU.

5.2 Footprint analysis
In this section, we analyze the sizes of RAM and FLASH
needed by SHiFT under single-core (S-C) and dual-core (D-C)
configurations as well as different AFL bitmap size settings.
The results in Table 4 demonstrate that SHiFT’s footprint
is moderate. It uses at most 23.2% and 17.5% of RAM and
FLASH, respectively, out of the 1024kB provided by the MCU
for each section. The moderate requirements make SHiFT
compatible with actual embedded (i.e., constrained), or even
more memory-limited scenarios. Also, note that the bitmap
size is highly-adjustable to fit various characteristics of the
fuzzing target.

5.3 Fault detection analysis
For this experiment, we configured SHiFT in S-C mode using
the synthetic benchmark detailed in Appendix C as the target
program. This benchmark contains artificial errors (detailed
in Table 5) that the target executes upon a simple verifica-
tion of conditional statements evaluated on a testing input.
The goal of this test is to verify that SHiFT’s hardware and
software-based protections can detect, and report the firmware
errors detailed in Table 5 according to our design. Simultane-
ously, we compared these results and notable SHiFT’s testing
features with re-hosting SoTA works according to their re-
spective conceptual designs. For this particular analysis, we
did not run our synthetic benchmark on each tool to avoid
biased results due to wrong configurations, or assumptions
not fulfilled by our benchmark.

Table 5 demonstrates that SHiFT provides comprehensive
fault detection features, which collectively, cannot be sup-

5330 33rd USENIX Security Symposium USENIX Association

ported by any SoTA tool. Note that the fault detection capabil-
ities of each tool are not directly related to the vulnerabilities
reported by them. This is because some reported vulnerabili-
ties were identified and interpreted upon manually debugging
general crashes that are observed later during firmware exe-
cution, but not when the actual fault happened.

5.4 Fidelity analysis

Fidelity is arguably the most important and difficult prop-
erty to quantify in re-hosting and emulation-based scenar-
ios [51, 52, 71]. There are works that propose tailored fidelity
metrics to favor particular designs [76], or benchmarks meant
to evaluate how well the soft-emulation technique mimics the
real hardware (e.g., the unit test of P2IM [34]). However, all
of those metrics or benchmarks are not applicable to SHiFT
because we use the real hardware, thus comparing to soft-
emulation would be unfair. Instead, we present a qualitative
analysis inspired by Wright et al. [71], and we empirically ex-
plain the effects of low fidelity on dynamic firmware analysis.

5.4.1 Qualitative analysis

The qualitative analysis defines a 2-dimensional plane for
the conceptual axes of memory and execution fidelity. The
memory axis represents the state of any addressable resource
of the MCU (i.e., RAM, FLASH, and peripherals). This axis
increases granularity from black box to register. For black box,
granularity is coarse, and the memory state is only verifiable
externally. On the other hand, register means that the state
of both, internal memory and registers, is similar to the real
device. Execution fidelity axis denotes how close the emulated
execution mirrors the behavior when firmware runs on the
actual device. In black box, the external behavior is similar
to the real device, but internally, there is no warranty of the
functions or instructions that are executed. On the other end,
cycle means that the emulated platform mimics the behavior
of the real device at the CPU cycle level. For both axes, the
perfect level is only achieved by the real device. Also, there is
a blur between classification points since specific parts of the
firmware can be executed at different levels of fidelity due to
particular design considerations of each tool [71].

SHiFT achieves higher fidelity than emulation-based ap-
proaches, and slightly lower fidelity than GDBFuzz and uAFL.
These tools, similar to SHiFT, use real hardware, and do not
require instrumentation that can affect execution fidelity (Fig-
ure 5). We also consider that a perfect solution does not exist
yet because, for example, GDBFuzz halts the processor con-
tinuously, and uAFL adds harnesses in the firmware to hold
and provide fuzzing input. Thus, both tools cannot achieve
cycle execution accuracy. 6

6We updated Wright’s work [71], with the SoTA and corrected a miss.
The author confused the fuzzing phase of P2IM with its model instantiation.

Exec.
fidelity

Perfect

Register

Mem.

Black Box

Black Box
Module

Function

Basic Block

Instruction
Cycle

Perfect

Memory Fidelity

Pretender

WYCINWYC

P2IM/DICE

HALucinator

Para-Rehosting

Non-existing

uEmu

SEmu

GDBFuzz

uAFL

SHiFT

Fuzzware

Figure 5: SHiFT’s fidelity compared with the SoTA.

5.4.2 Impact of fidelity on dynamic analysis

For this analysis, we selected P2IM and Fuzzware, two promi-
nent re-hosting solutions, to explain the fidelity effects on
dynamic analysis when compared to hardware-based solu-
tions such as SHiFT. We used the synthetic benchmark as a
control test, and we specifically concentrate on the coverage
tracking and false path exploration effects.

We observed that fuzzing engines struggle in tracking code
coverage when the firmware is forced to consume input with
sophisticated, but low-fidelity, methods. For example, for the
synthetic benchmark, SHiFT identified all the bugs in less
than 6 minutes, whereas P2IM identified only three in 24
hours (Table 8). We verified this effect by coverage, and not
by fault detection capability. A similar effect was observed
by the authors of Fuzzware. They found their sophisticated
“bit-granular input overhead reduction” ineffective because it
“conflicts with the byte-level heuristics that drive the fuzzer’s
input mutation process” [63].

We also observed that aggressive strategies to increase code
coverage can violate hardware invariants, increase false pos-
itives, and put additional burden on the tester. For example,
Fuzzware is optimized for code coverage by providing “opti-
mized” fuzzing input when firmware reads from peripheral’s
registers that are determined to affect firmware state. On the
other hand, P2IM maps primitive models that mimics the pe-
ripheral’s register behavior, and exclusively provide fuzzing
input for Data Register (DR) read operations.

We observed that the conservative P2IM approach–in this
particular case–honors the expected hardware invariant by re-
turning a previously written value on a Configuration Register
(CR), which is evaluated in a critical conditional statement.
Fuzzware, however, violates this hardware invariant by as-
signing a "Bitextract" model (i.e., a masked fuzzing input)
to mutate specific bits of the CR and increase coverage fac-
titiously. This violation makes Fuzzware perform poorly by
majorly exploring false paths, reporting false positives and
not reaching the target function of the synthetic benchmark.
Nevertheless, we need to mention that for different firmware
images and conditions, P2IM heuristic approach can also mis-

USENIX Association 33rd USENIX Security Symposium 5331

Error detection/Feature SHiFT GDBFuzz Wycinwyc P2IM/ uAFL HALucinator Fuzzware Para-rehosting PretenderHW SW Combined DICE
Time Out
NULL dereference
Div By Zero
Unaligned Access
Use After Free
Double Free
Seg. Fault
Stack Overflow
Glb Var Overflow
Heap Overflow
Undefined instruction
DMA
Complex Peripherals
Real-time Operations
Interrupts

: full support : partial support

Table 5: Details and comparison of error detection and testing features according to hardware and software-based characteristics of SHiFT’s design.

Fuzzing mode Native AFL++ SHiFT S-C SHiFT D-C
Standard 4.9 4.8 0.41
Persistent 23.5 5.9 5.1
Standard With ASAN 1.9 4.6 0.32
Persistent With ASAN 22.7 5.7 4.1

Table 6: End-to-end fuzzing performance in [kRun/s] of (1) vanilla AFL++
running in the workstation, a single instance of SHiFT for (2) single-core
(S-C) and (3) dual-core (D-C) configurations.

classify peripheral registers, violate hardware invariants, and
reflect similar issues as Fuzzware. These limitations has been
already acknowledged by P2IM’s authors [34].

5.5 Performance analysis

For this analysis, we used the same synthetic benchmark run-
ning on SHiFT as an end-to-end fuzzing framework to mea-
sure its raw performance in terms of runs/sec on different
configurations, including the cluster setup.

Despite the huge computing power advantage of the work-
station, the results show that SHiFT performance is compara-
ble and, in some cases, superior to our workstation running
AFL++ natively (i.e., without emulation). Specifically, SHiFT
is 2.42 times faster than the workstation in standard mode
(i.e., creating a new target for every fuzzing input) when run-
ning with ASAN instrumentation, as detailed in Table 6. This
impressive result is obtained mainly thanks to the FreeRTOS
spawning process, and our MCU-specific ASAN run-time.
These two components are leaner and lighter than their work-
station counterparts without sacrificing equivalent functional-
ity for real embedded applications.

In the case of the D-C operation, the results are merely
informative since there is no equivalent operation mode of
AFL++ in a workstation. Nevertheless, note that in this mode,
SHiFT’s performance is still significant since it can fuzz and
reboot a complete core more than 410 times per second. Also,
note that performance decreases significantly in this mode
compared with the S-C mode because the target runs in the
slower CM4 core of our MCU.

1 2 3 4
MCUs

0

4000

8000

12000

16000

[R
un

s/
s]

Standard
Persistent

Figure 6: SHiFT’s cluster test for S-C configuration.

For the cluster performance, we analyzed the S-C in the
standard and persistent mode for the settings of one to four
development boards connected simultaneously. SHiFT boosts
performance linearly with two or more MCUs, whereas a
single board performs relatively better when working alone,
as depicted in Figure 6. We attribute this result to the nature
of the USB protocol whose low-level analysis we considered
out-of-the-scope of this work.

5.6 Case studies

This section presents case studies of SHiFT performing fuzz
testing campaigns on firmware used in industrial and commer-
cial devices. The tested firmware includes samples previously
tested by other works, and new firmware collected from open-
source projects. Each firmware was tested 10 times for 24
hours using a fixed seed input7, and a single development
board for the hardware-based solutions, i.e., SHiFT and GDB-
Fuzz. We used the AFL++ mutation engine for all tools, ex-
cept for P2IM because it is tightly-coupled with a customized
AFL. Porting P2IM to AFL++ is a non-trivial task, thus we
consider it out of the scope of this work. Thanks to SHiFT’s
unique characteristics, we identified five previously unknown
vulnerabilities as shown in Table 7.

7We used the UTF-8 encoded string “testinput”.

5332 33rd USENIX Security Symposium USENIX Association

100 101 102 103 104 105
0

100

200

300

400
PLC

100 101 102 103 104 105
0

10

20

30

40

50

60

70
ModbusDMA

100 101 102 103 104 105
0

25

50

75

100

125

150

175
MIDI

100 101 102 103 104 105
0

10

20

30

40

50

Synthetic

101 102 103 104 105
0

5

10

15

20

25

30

GPS Receiver

100 101 102 103 104 105
0

10

20

30

40

50

60
AT Parser

100 101 102 103 104 105
0

10

20

30

40

50

60

70
Commandline

101 102 103 104 105
0

5

10

15

20
Shelly Dimmer

101 102 103 104 105

10

15

20

25

Bootloader

101 102 103 104 105
0

10

20

30

40

50
FreeRTOS Kernel

Time [s]

Nu
m

be
r o

f B
Bs

P2IM/DICE Fuzzware SHiFT GDBfuzz

Figure 7: Basic block (BB) coverage over 24-hour campaigns for SHiFT compared to P2IM/DICE, Fuzzware and GDBFuzz. Shown are the median and 95%
confidence intervals.

Firmware Vulnerability CWE Instances
Shelly Dimmer Divide by zero 369 3
Bootloader Buffer overflow 120 1
FreeRTOS K. Improper handling of insufficient privileges 274 1

Table 7: Vulnerabilities identified by SHiFT. Each instance is categorized
according to the Common Weakness Enumeration (CWE).

5.6.1 Fuzzing libraries and full-stack firmware

SHiFT is highly flexible in that it allows exercising specific
functions of the firmware (i.e., cases #1, and #4 to #7 in Table
8) by delivering the fuzzing input through a shared memory
area. SHiFT can also exercise the complete software stack
including, drivers, ISR, and the user application, which uses
DMA operations to get data from peripherals (i.e., cases #2
and #3).

For the aforementioned test cases, SHiFT outperforms the
SoTA8 by up to two orders of magnitude in speed, while
detecting all the previously reported vulnerabilities (i.e., nine
in total on firmware #1, #2 and #3) with no false positives.

In terms of basic blocks coverage, SHiFT outperforms
GDBFuzz in all cases, except underperforming slightly for
the CommandLine firmware. In comparison, the performance
of soft-emulation solutions widely fluctuate between outper-
forming (e.g., case #7 for P2IM) and totally falling short (e.g.,
cases #4 and 7 for Fuzzware), when compared with SHiFT.
We consider this result as expected because of different design
choices of soft-emulation approaches that affect fidelity and
the fuzzing performance. The reader is also referred to §5.4
for more details about this phenomenon.

Note that all our observations demonstrated statistical sig-
nificance through the Mann-Whitney U test (p<0.05). Also,
the reported basic blocks were filtered according to the tar-
get functions instrumented by SHiFT. This procedure can
slightly benefit SHiFT and GDBFuzz, but allows comparabil-

8We exclude from the SoTA High-level emulation (HLE) approaches
[26, 64] because they require considerable engineering effort and do not
execute the whole firmware.

ity by “normalizing” the code sections under analysis. This is
necessary due to the slightly different targets under analysis
for hardware-based and soft-emulation approaches (i.e., soft-
emulation usually consider the whole binary, while GDBFuzz
relies on a user-specified entry function, and SHiFT is based
on source-code instrumentation).

5.6.2 Finding insecure conditions and post-silicon bugs

We fuzz tested the full-stack of the dimmer depicted in Figure
8. This firmware (#8 in Table 8) uses communication pe-
ripherals, GPIOs, real-time events and interrupts. Under this
configuration, SHiFT identified three previously unknown
vulnerabilities that can be realistically observed in a deployed
device. The three vulnerabilities are similar in nature to the
code in Listing 1. Specifically, function get_active_power,
which is accessible remotely, is vulnerable to a division-by-
zero in line #7, under these specific conditions: 1) the dimmer
receives a command to report the active power, 2) condi-
tion in line #3 is false because of ADC operation, and 3)
voltage_max_period is zero.

1 static uint32_t get_active_power(void)
2 {
3 if ((adc_data[0] == 0) || (adc_data[1] == 0))
4 return 0;
5 else
6 return (880373 * 15.5 * 556) /
7 voltage_max_period *
8 current_total_mag_period;
9 }

Listing 1: Vulnerable code fragment of the dimmer firmware

Conditions 1) and 2) are easily satisfied by SHiFT features
because it supports firmware reading the ADC through DMA,
receiving a remote command through the USART, and trig-
gering the corresponding interrupt service routine. Condition
3) occurs only when the dimmer receives a command before
the zero crossing routine is executed at least once. We verified
this condition is met only on the actual device on two sce-
narios: a) when a command is received on the first 8.3 [ms]
of operation of the dimmer (i.e., a time sensitive operation),
or b) when the zero-crossing module is disconnected or fails

USENIX Association 33rd USENIX Security Symposium 5333

Ref # Firmware Method Board SHiFT P2IM/DICE Fuzware GDBFuzz
[r/s] TP FP [r/s] SU TP FP [r/s] SU TP FP [r/s] SU TP FP

P2IM 1 PLC Function call H743 3100 4 0 32.7 ×95 4 4 30.9 ×100 4 2 70 ×44 4 0

DICE 2 Modbus Full-stack DMA H743 1800 3 0 41.6 ×43 3 2 NB - - - 327 ×6 0 0
3 Midi Full-stack DMA H743 1200 2 0 59.9 ×20 2 0 208 ×6 0 0 37 ×32 0 0

SHiFT

4 Synthetic Function call H743 4800 11 0 94.5 ×51 3 1 85.9 ×55 0 10 32.1 ×150 2 0
5 GPS Receiver Function call ESP32 380 0 0 NB - - - NB - - - 170 ×2 0 0
6 AT parser Function call SAMD51 276 0 0 44.1 ×6 0 1 53.5 ×5 0 1 55 ×5 0 1
7 Command line Function call K66F 233 0 0 63.5 ×4 0 1 321.9 ×1 0 1 245 ×1 0 1
8 Shelly Dimmer Real-time DMA H743 1148 3 0 NB - - - 321.3 ×4 0 1 24.5 ×25 0 4
9 Bootloader Baremetal H745 170 1 0 NB - - - 89 ×2 0 0 NB - - -
10 FreeRTOS K. Function call L552 3750 1 0 NB - - - NB - - - 43 ×86 0 0

Table 8: 24-hour fuzzing campaigns of SHiFT on real firmware and a Synthetic benchmark compared to the SoTA. SU: SHiFT SpeedUp (average), TP: True
Positives (median), FP: False Positives (median), NB: No Bootstrap. New TPs observed on firmware # 8, 9, 10.

Zero-crossing Power meter

MCU

ADCGPIO

USARTRemote
Control

AC
Power

Light

Figure 8: Simplified architecture of an IoT dimmer fuzz tested with SHiFT.

(i.e., a peripheral interface issue). Thanks to SHiFT unique
characteristics a tester can fuzz test firmware combined with
specific hardware scenarios (e.g., a disconnected cable), and
reason about unsafe/insecure conditions that can happen in a
deployed device, but cannot be observed in an emulator.

Also, further analysis demonstrated that SHiFT helped to
identify a documented post-silicon bug that we were not aware
of beforehand. In particular, we observed that the division by
zero is only caught by SHiFT’s UBSAN instrumentation, but
not by the real FPU when configured to trigger exceptions
on this type of errors. Thus, GDBFuzz and SHiFT, this last
configured without UBSAN, were not able to identify the
division by zero. The reason for this unexpected behavior
is that the FPU’s interrupt line is not present on the NVIC
silicon of the MCUs STM32h743 and 745 [67]. Notice, that
post-silicon issues like this cannot be identified by emulated
platforms either, because this issue only affects the real FPU
of a particular MCU family.

5.6.3 Fuzzing bare-metal firmware

The bootloader firmware (#9 in Table 8) demonstrates the flex-
ibility of SHiFT for testing firmware that implement baremetal
designs and uses complex peripherals. The bootloader imple-
ments a full-state protocol that remotely manages the flashing
and execution of the main MCU’s application through the
CAN bus.

We used the D-C configuration of SHiFT to test the boot-
loader. We interconnected the monitor (Cortex-M7) and the
target (Cortex-M4) using two on-chip CAN bus peripherals
and external CAN bus transceivers as detailed in Appendix B.
The fuzzing setup operates strictly under the CAN bus spec-

ifications (i.e., frame format, payload size, and speed), and
supports all the asynchronous events derived from this bus
operation. We commented out the bootloader’s operations that
write into the MCU’s flash to avoid wearing out this memory
during the fuzzing campaign.

Thanks to SHiFT unique setup, we discovered a vulnerabil-
ity with security implications in the communication protocol
of the bootloader. Specifically, this protocol temporarily accu-
mulates in RAM chunks of data up to the size of a flash page
before writing it into the MCU’s flash. Unfortunately, this rou-
tine uses the data length code (DLC) embedded into the CAN
bus frame to weakly verify the length of the received data
chunks (i.e., the routine assumes the DLC is always a submul-
tiple of the flash page’s size). If the DLC is not a submultiple
of the flash page’s size, the bootloader routine keeps storing
the incoming chunks of data overflowing the temporal buffer,
and potentially compromising critical memory sections of the
firmware.

5.6.4 Finding a zero-day in the FreeRTOS kernel

This bug was identified when we ported SHiFT to the
NUCLEO-L552 board, which implements a Cortex-M33
MCU (#10 in Table 8). We used our synthetic benchmark
as a control test on this board and observed that the FreeR-
TOS TaskYield syscall triggered a systematic MPU viola-
tion. This syscall is used by SHiFT’s monitor to switch context
when fuzzing a target. Upon analysis, we identified that the
FreeRTOS port for the entire ARMv8-M architecture, includ-
ing the Cortex-M33, fails to obtain privileged execution level
before writing the ARM Interrupt Control and State
Register [3]. This register is only writable on privileged
mode, and is used to trigger a PendSV interrupt that handles a
request to switch context. We consider that this vulnerability
has security implications because when triggered causes a
denial-of-service. We responsibly reported this issue to the
FreeRTOS developers, who acknowledged and patched it.

This zero-day highlights the benefits of automated testing
on real hardware even when (FreeRTOS-)developers have
access to source code and traditional debugging tools. Notice
that soft-emulated platforms can potentially help to detect this
bug as well. However, until the time of this writing, P2IM,

5334 33rd USENIX Security Symposium USENIX Association

Fuzzware and other tools based on QEMU or the Unicorn
engine do not fully support the Cortex-M33 or the Xtensa
architectures, just to mention a few. This issue can be consid-
ered only an engineering limitation, but in reality, it exposes a
fundamental challenge (i.e., hardware diversity) of embedded
platforms that is not easily addressed by soft-emulation.

6 Discussion

Can SHiFT replace soft-emulation? The answer to this
question is no. Soft-emulation is well-known for its indepen-
dence from the physical platform, which in turn facilitates
advanced analysis with much flexibility and scalability. For
instance, SHiFT provides high fidelity in exchange for a rela-
tively less scalable cluster-based design. Soft-emulation, on
the other hand, can leverage multiple instances (e.g., taking
advantage of cloud computing) to reduce the time needed to
explore the input space. However, it cannot improve fidelity.
Consequently, we argue that soft-emulation and hardware-
based solutions like SHiFT are rather complementary than
competing approaches.

Testing on hardware caveats: Fuzz testing on embed-
ded development boards needs extra precaution. This process
stresses the hardware, can damage the system, or force it into
unsafe states. Therefore, the tester has to implement mitiga-
tions to, for example, prevent wearing-out the MCU’s FLASH
by repetitive writing operations or avoid testing devices con-
nected to physical actuators that can behave unsafely.

Binary-only scenarios: SHiFT’s design assumes access
to the firmware’s source code. However, testing firmware in
a binary-only form is always valuable when the embedded
application cannot tolerate instrumentation, when developers
link first-party source code with third-party blobs, or simply
when source code is not available. In this scenario, SHiFT can
borrow design ideas from previous works (e.g., [31], and [47])
to acquire coverage information from blobs using debugging
or tracing components provided by the Cortex-M architec-
ture (e.g., the ARM-embedded trace macrocell (ETM), or the
embedded trace buffer (ETB) [19]). We consider supporting
these hardware facilities out of the scope for this work.

Semihosting beyond fuzz testing: SHiFT provides strong
evidence and a reference design that future work can leverage
to perform dynamic analysis in MCUs. We envision appli-
cations where semihosting catalyzes other verification tech-
niques that benefit from high fidelity (e.g., concolic execu-
tion). In this scenario, executing the firmware in an actual
device provides accurate concrete values to mitigate state
explosion and false positives (i.e., two common pitfalls of
concolic techniques). Meanwhile, workstations can perform
computing-intensive, but generic, operations (e.g., constraint
solvers) on behalf of the MCU.

7 Related Work

Soft-emulation and HLE: These approaches eliminate the
hardware and physical layers through using emulated models
or High-level Emulation (HLE). For example, Firmadyne [25]
uses QEMU to emulate a generic kernel with the filesystem
of the firmware to perform user space analysis. FirmAE [73],
FIRM-AFL [74] and Costin’s work [29] adopted a similar
approach. These works are only applicable to firmware using
a specific kernel or filesystem since they rely on the Linux
kernel abstractions. To analyze monolithic firmware, other
works leverage emulated models of peripheral behavior at
different abstraction layers [26, 29, 34, 54].

HALucinator [26] hooks calls into vendor-specific Hard-
ware Abstraction Layer functions to implement the HLE
paradigm within a generic emulator. Safirefuzz [64] proposes
a similar approach but removes emulation by near-native exe-
cution of binaries as Linux user space processes in an ARM
exclusive design. Para-rehosting [46] also executes firmware
natively in Linux using HLE principles and source code. This
last approach supports instrumentation-based sanitizers, but
contrary to SHiFT that executes the entire firmware in the
MCU, Para-rehosting executes sections of the firmware in a
workstation with reduced fidelity.

P2IM [34] and µEMU [75] model MMIO access patterns.
DICE [54] extends emulators to support basic DMA oper-
ations, and SEmu [76] uses NLP to process documentation
and improve models. Unlike SHiFT, soft-emulation analy-
sis suffers from false positives during the emulation. It is
also limited in real-time analysis, precise interrupt handling,
and advanced DMA support. Except DICE [54], and partially
HALucinator [26], DMA support is considered orthogonal,
or out of scope by most of the re-hosting works.

HiL: These approaches avoid the need for hardware ab-
stractions by forwarding hardware accesses to a physical
device during the emulation. In particular, AVATAR [72] or-
chestrates the execution of an emulator and implements an
expensive synchronization to forward the I/O accesses from
the emulator to the real device. SURROGATES [44] improves
the forwarding performance through an FPGA-based inter-
face and enables near-real-time analysis. PROSPECT [43]
adopts a similar design with AVATAR and SURROGATES,
but extends to Linux-based systems. It forwards system calls
that are likely to access peripherals to the physical device to
achieve a partial emulation during the fuzzing process.

Compared with SHiFT, HiL approaches are limited in flex-
ibility. Specific debugging interface, or tailored hardware
might be needed. It is also difficult to synchronize asyn-
chronous or real-time events between the device and the emu-
lation environment because these solutions halt the processor
while synchronizing.

To improve performance and reduce the I/O forwarding
latency, later works adopt similar design with different op-
timizations [32, 37, 58, 61, 70]. Charm [70] uses USB 3.0

USENIX Association 33rd USENIX Security Symposium 5335

to forward MMIO to a physical device to analyze Android
device drivers for ARM in a virtualized environment. PRE-
TENDER [32] records hardware behavior to automate the
modeling of MMIO and interrupt-driven hardware peripher-
als. Kammerstetter [42] caches peripheral device communi-
cation and provides run-time program state approximation.
Frankenstein [61] captures live snapshots of the physical hard-
ware states during normal operation and integrates them to the
emulated environment to analyze Bluetooth firmware. FIRM-
CORN [37] optimizes the virtual execution environment by
hooking hardware-specific functions to avoid program halts
and crashes.

These works sacrifice a complete real-time analysis, and
can only support a specific type of hardware and software.
Alternatively, SHiFT solves these problems executing the
firmware entirely in an MCU, removing complex synchro-
nization and dependencies on tailored hardware.

Similar to SHiFT, GDBFuzz and uAFL [31,47] are fuzzing
frameworks that execute the code on the MCU. However, for
collecting coverage SHiFT uses SANCOV instrumentation,
whereas GDBFuzz uses breakpoints, and uAFL uses the ARM
ETM. Their dependency on specific debugging facilities lim-
its their applicability (e.g., uAFL only works for ARM). Also,
GDBFuzz and uAFL do not support software sanitizers as
SHiFT does, and they implement the fuzzing “manager” (i.e.,
SHiFT’s Monitor in Figure 3) in the workstation. Thus, uAFL
and GDBFuzz are classic HiL with reduced fault detection
capabilities and slower performance.

Symbolic abstraction: These approaches emulate soft-
ware layers and consider all the values from hardware to
be symbolic. For example, FIE [30] uses KLEE to symbol-
ically execute the firmware. It assumes every peripheral is
capable of returning the full range of possible values, which
over-approximates the hardware capabilities. This leads to
false positive and can cause state explosion even for a small
firmware.

To increase scalability, later works explored different tech-
niques [39, 66]. Firmalice [66] leverages program slicing and
aims at automatic analysis of binary firmware. FirmUSB [39]
develops targeting algorithms and uses domain knowledge
to speed up the unconstrained symbolic execution for USB
firmware. Fuzzware [63] uses symbolic execution to deter-
mine the meaningful parts of the hardware-generated value.
Lealaps [23] calculates the expected values for peripheral
registers using symbolic execution, and steers the concrete
execution on the fly. Jetset [41] uses guided symbolic execu-
tion to create peripheral models that make firmware to boot
and execute till a particular point of interest.

Symbolic abstraction based analysis may also involve
hardware-in-the-loop. Inception [28] performs symbolic exe-
cution to handle different levels of memory abstractions, in-
teraction with peripherals, and interrupts. It then uses a JTAG
debugger to redirect memory accesses to the real hardware.
While this design reduces differences with real execution,

collecting the interrupts from the real hardware suffers from
inconsistencies. Compared to SHiFT, the above analysis is
computation intensive and limited to small size firmware.

8 Conclusion

In this paper, we presented SHiFT, a semi-hosted fuzz testing
framework to enable dynamic analysis of MCU firmware with
high fidelity and support for complex peripherals, interrupts,
real-time operations, and DMA. SHiFT can detect faults that
previous rehosting approaches have overlooked or lack sup-
port. We demonstrated empirically that boosting coverage
without maintaining fidelity is not enough, or even worse for
firmware fuzzing. Our evaluation shows that SHiFT is compat-
ible with multiple embedded architectures, and requires only
moderate memory resources. SHiFT achieved a high-speed
performance comparable with a workstation running AFL++
natively, and superior to that in some cases. When testing real
firmware, our framework exposed five previously-unknown
vulnerabilities. We deeply discussed SHiFT’s novel charac-
teristics, and fairly compared to soft-emulation approaches.
Finally, this work lifted the constraints of running security
analysis natively in MCUs, and provided a reference design
for future dynamic analysis in resource-constrained devices.

Acknowledgments

The authors would like to thank the anonymous reviewers
and our shepherd for their insightful comments. This project
was partially-supported by the National Science Foundation
(Grant#: 2031390, “Rethinking Fuzzing for Security”). Any
opinions, findings, and conclusions or recommendations ex-
pressed in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

Availability

Prototypes and source code available at https://github.c
om/RiS3-Lab/SHiFT

References

[1] American fuzzy lop. https://lcamtuf.coredump.c
x/afl/.

[2] ARM Compiler toolchain Developing Software for
ARM Processors. https://developer.arm.com/
documentation/dui0471/i/semihosting/what-i
s-semihosting-?lang=en.

[3] Arm Cortex-M33 Devices Generic User Guide r0p4.
https://developer.arm.com/documentation/10
0235/0004/the-cortex-m33-peripherals/syste

5336 33rd USENIX Security Symposium USENIX Association

https://github.com/RiS3-Lab/SHiFT
https://github.com/RiS3-Lab/SHiFT
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://developer.arm.com/documentation/dui0471/i/semihosting/what-is-semihosting-?lang=en
https://developer.arm.com/documentation/dui0471/i/semihosting/what-is-semihosting-?lang=en
https://developer.arm.com/documentation/dui0471/i/semihosting/what-is-semihosting-?lang=en
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/system-control-block/interrupt-control-and-state-register?lang=en
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/system-control-block/interrupt-control-and-state-register?lang=en

m-control-block/interrupt-control-and-sta
te-register?lang=en.

[4] Arm’s market share targets 2028. https://www.stat
ista.com/statistics/1132112/arm-market-sha
re-targets/.

[5] Bernd Schmidt - Re: Add fuzzing coverage support.
https://gcc.gnu.org/legacy-ml/gcc-patches
/2015-12/msg00307.html.

[6] Clang Static Analyzer. https://clang-analyzer.
llvm.org/.

[7] FreeRTOS-MPU - ARM Cortex-M3 and ARM Cortex-
M4 Memory Protection Unit support in FreeRTOS. ht
tps://www.freertos.org/FreeRTOS-MPU-memor
y-protection-unit.html.

[8] GCC 4.8 Release Series — Changes, New Features, and
Fixes - GNU Project. https://gcc.gnu.org/gcc-4
.8/changes.html.

[9] GNU Arm Embedded Toolchain 10.3-2021.10 : GNU
Arm Embedded Toolchain. https://launchpad.ne
t/gcc-arm-embedded/+announcement/30539/+i
ndex.

[10] Product Selection Tools | Microchip Technology. http
s://www.microchip.com/en-us/products/selec
tion-tools.

[11] Product Selector | NXP Semiconductors. https://ww
w.nxp.com/products/product-selector:PRODUC
T-SELECTOR.

[12] Semihosting - SEGGER Wiki. https://wiki.segge
r.com/Semihosting.

[13] ST-MCU-FINDER-PC - STM32 and STM8 product
finder for desktops - STMicroelectronics. https://ww
w.st.com/en/development-tools/st-mcu-finde
r-pc.html.

[14] New in AFL: Persistent mode. https://lcamtuf.bl
ogspot.com/2015/06/new-in-afl-persistent-m
ode.html, June 2015.

[15] What is Semihosting? https://community.nxp.co
m/t5/LPCXpresso-IDE-FAQs/What-is-Semihosti
ng/m-p/475390#M143, April 2016.

[16] Sigrokproject/libserialport. sigrok, December 2021.

[17] Fuzzware Experiments. fuzzware-fuzzer, March 2023.

[18] Ali Abbasi, Jos Wetzels, Thorsten Holz, and Sandro
Etalle. Challenges in designing exploit mitigations for
deeply embedded systems. In 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), pages
31–46, 2019.

[19] ARM Ltd. Understanding Trace. https://develope
r.arm.com/-/media/Arm%20Developer%20Commun
ity/PDF/Learn%20the%20Architecture/Underst
anding%20Trace.pdf, March 2020.

[20] Aspencore. 2019 Embedded Markets Study. https:
//www.embedded.com/wp-content/uploads/2019/
11/EETimes_Embedded_2019_Embedded_Markets_
Study.pdf, March 2019.

[21] Katharina Bogad and Manuel Huber. Harzer Roller:
Linker-Based Instrumentation for Enhanced Embedded
Security Testing. In Proceedings of the 3rd Reversing
and Offensive-oriented Trends Symposium, ROOTS’19,
pages 1–9, New York, NY, USA, November 2019. As-
sociation for Computing Machinery.

[22] Julian Brown. KASAN should work even back-end not
porting anything. https://gcc.gnu.org/pipermai
l/gcc-cvs/2020-August/317709.html, Mon Aug 3
22:56:06 GMT 2020.

[23] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. Device-
Agnostic Firmware Execution is Possible: A Concolic
Execution Approach for Peripheral Emulation. In An-
nual Computer Security Applications Conference, AC-
SAC ’20, pages 746–759, New York, NY, USA, 2020.
Association for Computing Machinery.

[24] Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, Stefan Savage, Karl
Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi
Kohno, et al. Comprehensive experimental analyses of
automotive attack surfaces. In USENIX Security Sympo-
sium, volume 4, page 2021. San Francisco, 2011.

[25] Daming D. Chen, Manuel Egele, Maverick Woo, and
David Brumley. Towards Automated Dynamic Analysis
for Linux-based Embedded Firmware. In Proceedings
2016 Network and Distributed System Security Sympo-
sium, San Diego, CA, 2016. Internet Society.

[26] Abraham A. Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christopher
Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias
Payer. {HALucinator}: Firmware Re-hosting Through
Abstraction Layer Emulation. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1201–1218,
2020.

[27] Forrester Consulting. State Of Enterprise IoT Security
In North America: Unmanaged And Unsecured. Tech-
nical report, 2019.

[28] Nassim Corteggiani, Giovanni Camurati, and Aurélien
Francillon. Inception: System-wide security testing of
real-world embedded systems software. In 27th USENIX

USENIX Association 33rd USENIX Security Symposium 5337

https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/system-control-block/interrupt-control-and-state-register?lang=en
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/system-control-block/interrupt-control-and-state-register?lang=en
https://www.statista.com/statistics/1132112/arm-market-share-targets/
https://www.statista.com/statistics/1132112/arm-market-share-targets/
https://www.statista.com/statistics/1132112/arm-market-share-targets/
https://gcc.gnu.org/legacy-ml/gcc-patches/2015-12/msg00307.html
https://gcc.gnu.org/legacy-ml/gcc-patches/2015-12/msg00307.html
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
https://gcc.gnu.org/gcc-4.8/changes.html
https://gcc.gnu.org/gcc-4.8/changes.html
https://launchpad.net/gcc-arm-embedded/+announcement/30539/+index
https://launchpad.net/gcc-arm-embedded/+announcement/30539/+index
https://launchpad.net/gcc-arm-embedded/+announcement/30539/+index
https://www.microchip.com/en-us/products/selection-tools
https://www.microchip.com/en-us/products/selection-tools
https://www.microchip.com/en-us/products/selection-tools
https://www.nxp.com/products/product-selector:PRODUCT-SELECTOR
https://www.nxp.com/products/product-selector:PRODUCT-SELECTOR
https://www.nxp.com/products/product-selector:PRODUCT-SELECTOR
https://wiki.segger.com/Semihosting
https://wiki.segger.com/Semihosting
https://www.st.com/en/development-tools/st-mcu-finder-pc.html
https://www.st.com/en/development-tools/st-mcu-finder-pc.html
https://www.st.com/en/development-tools/st-mcu-finder-pc.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://community.nxp.com/t5/LPCXpresso-IDE-FAQs/What-is-Semihosting/m-p/475390#M143
https://community.nxp.com/t5/LPCXpresso-IDE-FAQs/What-is-Semihosting/m-p/475390#M143
https://community.nxp.com/t5/LPCXpresso-IDE-FAQs/What-is-Semihosting/m-p/475390#M143
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/Understanding%20Trace.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/Understanding%20Trace.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/Understanding%20Trace.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/Understanding%20Trace.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://gcc.gnu.org/pipermail/gcc-cvs/2020-August/317709.html
https://gcc.gnu.org/pipermail/gcc-cvs/2020-August/317709.html

Security Symposium (USENIX Security 18), pages 309–
326, 2018.

[29] Andrei Costin, Apostolis Zarras, and Aurélien Francil-
lon. Automated dynamic firmware analysis at scale: A
case study on embedded web interfaces. In Proceedings
of the 11th ACM on Asia Conference on Computer and
Communications Security, pages 437–448, 2016.

[30] Drew Davidson, Benjamin Moench, Thomas Ristenpart,
and Somesh Jha. FIE on firmware: Finding vulnera-
bilities in embedded systems using symbolic execution.
In 22nd USENIX Security Symposium, pages 463–478,
2013.

[31] Max Eisele, Daniel Ebert, Christopher Huth, and An-
dreas Zeller. Fuzzing Embedded Systems using Debug
Interfaces. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Anal-
ysis, pages 1031–1042, Seattle WA USA, July 2023.
ACM.

[32] Eric Gustafson, Marius Muench, Chad Spensky, Nilo
Redini, Aravind Machiry, Yanick Fratantonio, Davide
Balzarotti, Aurelien Francillon, Yung Ryn Choe, Christo-
pher Kruegel, and Giovanni Vigna. Toward the Analysis
of Embedded Firmware through Automated Re-hosting.
In 22nd International Symposium on Research in At-
tacks, Intrusions and Defenses (RAID 2019), Chaoyang
District, Beijing, China, 2019. USENIX Association.

[33] Andrew Fasano, Tiemoko Ballo, Marius Muench,
Tim Leek, Alexander Bulekov, Brendan Dolan-Gavitt,
Manuel Egele, Aurelien Francillon, Long Lu, Nick Gre-
gory, Davide Balzarotti, and William Robertson. SoK:
Enabling security analyses of embedded systems via
rehosting. In ACM ASIA Conference on Computer and
Communications Security (ASIACCS), 2021.

[34] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scal-
able and hardware-independent firmware testing via au-
tomatic peripheral interface modeling. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1237–
1254, 2020.

[35] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo
Querzoni. Fuzzing Binaries for Memory Safety Er-
rors with QASan. In 2020 IEEE Secure Development
(SecDev), pages 23–30, September 2020.

[36] Google. AFL Technical details. https://github.com
/google/AFL/blob/master/docs/technical_det
ails.txt, July 2019.

[37] Zhijie Gui, Hui Shu, Fei Kang, and Xiaobing Xiong.
FIRMCORN: Vulnerability-Oriented Fuzzing of IoT
Firmware via Optimized Virtual Execution. IEEE Ac-
cess, 8:29826–29841, 2020.

[38] Taylor Hardin, Ryan Scott, Patrick Proctor, Josiah Hes-
ter, Jacob Sorber, and David Kotz. Application memory
isolation on ultra-low-power MCUs. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
127–132, Boston, MA, July 2018. USENIX Association.

[39] Grant Hernandez, Farhaan Fowze, Dave Tian, Tuba
Yavuz, and Kevin RB Butler. Firmusb: Vetting usb
device firmware using domain informed symbolic ex-
ecution. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2245–2262, 2017.

[40] Ponemon Institute. The State of IoT/OT Cybersecurity
in the Enterprise. Technical report, 2021.

[41] Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Ma-
son, Stephen Checkoway, Stefan Savage, and Kirill
Levchenko. Jetset: Targeted Firmware Rehosting for
Embedded Systems. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 321–338, 2021.

[42] Markus Kammerstetter, Daniel Burian, and Wolfgang
Kastner. Embedded security testing with peripheral de-
vice caching and runtime program state approximation.
In 10th International Conference on Emerging Security
Information, Systems and Technologies (SECUWARE),
2016.

[43] Markus Kammerstetter, Christian Platzer, and Wolfgang
Kastner. Prospect: Peripheral proxying supported em-
bedded code testing. In Proceedings of the 9th ACM
Symposium on Information, Computer and Communica-
tions Security, pages 329–340, Kyoto Japan, June 2014.
ACM.

[44] Karl Koscher, Tadayoshi Kohno, and David Molnar.
SURROGATES: Enabling near-real-time dynamic anal-
yses of embedded systems. In Proceedings of the
9th USENIX Conference on Offensive Technologies,
WOOT’15, page 7, Washington, D.C., August 2015.
USENIX Association.

[45] Abraham Peedikayil Kuruvila, Ioannis Zografopoulos,
Kanad Basu, and Charalambos Konstantinou. Hardware-
assisted detection of firmware attacks in inverter-based
cyberphysical microgrids. International Journal of Elec-
trical Power & Energy Systems, 132:107150, 2021.

[46] Wenqiang Li, Le Guan, Jingqiang Lin, Jiameng Shi, and
Fengjun Li. From Library Portability to Para-rehosting:
Natively Executing Microcontroller Software on Com-
modity Hardware. Proceedings 2021 Network and Dis-
tributed System Security Symposium, 2021.

5338 33rd USENIX Security Symposium USENIX Association

https://github.com/google/AFL/blob/master/docs/technical_details.txt
https://github.com/google/AFL/blob/master/docs/technical_details.txt
https://github.com/google/AFL/blob/master/docs/technical_details.txt

[47] Wenqiang Li, Jiameng Shi, Fengjun Li, Jingqiang Lin,
Wei Wang, and Le Guan. uAFL: Non-intrusive feedback-
driven fuzzing for microcontroller firmware. In Pro-
ceedings of the 44th International Conference on Soft-
ware Engineering, ICSE ’22, pages 1–12, New York,
NY, USA, 2022. Association for Computing Machinery.

[48] Arm Ltd. ARM v7-M Architecture Reference Manual.
https://developer.arm.com/documentation/dd
i0403/latest/.

[49] Federico Maggi, Marcello Pogliani, and P Milano. At-
tacks on Smart Manufacturing Systems. Trend Micro
Research: Shibuya, Japan, pages 1–60, 2020.

[50] Dominik Maier, Lukas Seidel, and Shinjo Park.
BaseSAFE: Baseband sanitized fuzzing through emu-
lation. In Proceedings of the 13th ACM Conference on
Security and Privacy in Wireless and Mobile Networks,
WiSec ’20, pages 122–132, New York, NY, USA, July
2020. Association for Computing Machinery.

[51] Lorenzo Martignoni, Stephen McCamant, Pongsin
Poosankam, Dawn Song, and Petros Maniatis. Path-
exploration lifting: Hi-fi tests for lo-fi emulators. In Pro-
ceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 337–348,
New York, NY, USA, 2012. Association for Computing
Machinery.

[52] Lorenzo Martignoni, Roberto Paleari, Alessandro Reina,
Giampaolo Fresi Roglia, and Danilo Bruschi. A method-
ology for testing CPU emulators. ACM Trans. Softw.
Eng. Methodol., 22(4), October 2013.

[53] Alejandro Mera, Yi Hui Chen, Ruimin Sun, Engin Kirda,
and Long Lu. D-Box: DMA-enabled Compartmentaliza-
tion for Embedded Applications. In Proceedings 2022
Network and Distributed System Security Symposium,
2022.

[54] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda.
DICE: Automatic emulation of dma input channels for
dynamic firmware analysis. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 1938–1954. IEEE,
2021.

[55] ST Microelectronics. STM32H7 Nucleo-144 boards
user manual. https://www.st.com/resource/en/u
ser_manual/um2408-stm32h7-nucleo144-board
s-mb1363-stmicroelectronics.pdf.

[56] Charlie Miller and Chris Valasek. Remote exploita-
tion of an unaltered passenger vehicle. Black Hat USA,
2015(S 91), 2015.

[57] Subhasish Mitra, Sanjit A. Seshia, and Nicola Nicolici.
Post-silicon validation opportunities, challenges and re-
cent advances. In Design Automation Conference, pages
12–17, June 2010.

[58] Marius Muench, Dario Nisi, Aurélien Francillon, and
Davide Balzarotti. Avatar 2 : A Multi-Target Orchestra-
tion Platform. In Proceedings 2018 Workshop on Binary
Analysis Research, San Diego, CA, 2018. Internet Soci-
ety.

[59] Marius Muench, Jan Stijohann, Frank Kargl, Aurelien
Francillon, and Davide Balzarotti. What You Corrupt Is
Not What You Crash: Challenges in Fuzzing Embedded
Devices. In Proceedings 2018 Network and Distributed
System Security Symposium, San Diego, CA, 2018. In-
ternet Society.

[60] Qyriad. Fusée Gelée. https://github.com/Qyriad/
fusee-launcher/blob/3b1b2bcca1b0e1f295e37
6b1dd8a1e582b18f41d/report/fusee_gelee.md,
December 2021.

[61] Jan Ruge, Jiska Classen, Francesco Gringoli, and
Matthias Hollick. Frankenstein: Advanced Wireless
Fuzzing to Exploit New Bluetooth Escalation Targets.
In 29th USENIX Security Symposium (USENIX Security
20), pages 19–36. USENIX Association, August 2020.

[62] Majid Salehi, Danny Hughes, and Bruno Crispo. µSBS:
Static Binary Sanitization of Bare-metal Embedded De-
vices for Fault Observability. In 23rd International Sym-
posium on Research in Attacks, Intrusions and Defenses
(RAID 2020), pages 381–395, 2020.

[63] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric
Gustafson, Marius Muench, Giovanni Vigna, Christo-
pher Kruegel, Thorsten Holz, and Ali Abbasi. Fuzzware:
Using Precise MMIO Modeling for Effective Firmware
Fuzzing. In 31st USENIX Security Symposium (USENIX
Security 22), 2022.

[64] Lukas Seidel, Dominik Maier, and Marius Muench.
Forming faster firmware fuzzers. In Proceedings of the
32nd USENIX Conference on Security Symposium, SEC
’23, pages 2903–2920, USA, August 2023. USENIX
Association.

[65] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. AddressSanitizer: A
fast address sanity checker. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference,
USENIX ATC’12, page 28, USA, June 2012. USENIX
Association.

USENIX Association 33rd USENIX Security Symposium 5339

https://developer.arm.com/documentation/ddi0403/latest/
https://developer.arm.com/documentation/ddi0403/latest/
https://www.st.com/resource/en/user_manual/um2408-stm32h7-nucleo144-boards-mb1363-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2408-stm32h7-nucleo144-boards-mb1363-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2408-stm32h7-nucleo144-boards-mb1363-stmicroelectronics.pdf
https://github.com/Qyriad/fusee-launcher/blob/3b1b2bcca1b0e1f295e376b1dd8a1e582b18f41d/report/fusee_gelee.md
https://github.com/Qyriad/fusee-launcher/blob/3b1b2bcca1b0e1f295e376b1dd8a1e582b18f41d/report/fusee_gelee.md
https://github.com/Qyriad/fusee-launcher/blob/3b1b2bcca1b0e1f295e376b1dd8a1e582b18f41d/report/fusee_gelee.md

[66] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,
Christopher Kruegel, and Giovanni Vigna. Firmalice-
Automatic Detection of Authentication Bypass Vulnera-
bilities in Binary Firmware. In NDSS, volume 1, pages
1–1, 2015.

[67] ST Microelectronics. STM32H7x errata sheet. https:
//www.st.com/resource/en/errata_sheet/es03
92-stm32h742x743xig-st32h750xb-and-stm32h7
53xi-device-errata-stmicroelectronics.pdf,
2023.

[68] Ruimin Sun, Alejandro Mera, Long Lu, and David
Choffnes. SoK: Attacks on industrial control logic and
formal verification-based defenses. In 2021 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P),
pages 385–402, Los Alamitos, CA, USA, September
2021. IEEE Computer Society.

[69] Zhichuang Sun, Bo Feng, L. Lu, and S. Jha. OAT: At-
testing operation integrity of embedded devices. 2020
IEEE Symposium on Security and Privacy (SP), pages
1433–1449, 2020.

[70] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli,
Hang Zhang, Zheng Zhang, Ardalan Amiri Sani, and
Zhiyun Qian. Charm: Facilitating dynamic analysis
of device drivers of mobile systems. In 27th USENIX
Security Symposium, pages 291–307, 2018.

[71] Christopher Wright, William A. Moeglein, Saurabh
Bagchi, Milind Kulkarni, and Abraham A. Clements.
Challenges in firmware re-hosting, emulation, and anal-
ysis. ACM Computing Surveys, 54(1), January 2021.

[72] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and
Davide Balzarotti. AVATAR: A Framework to Sup-
port Dynamic Security Analysis of Embedded Systems’
Firmwares. In NDSS, 2014.

[73] Hangwei Zhang, Kai Lu, Xu Zhou, Yin Qidi, Pengfei
Wang, and Tai Yue. SIoTFuzzer: Fuzzing Web Inter-
face in IoT Firmware via Stateful Message Generation.
Applied Sciences, 11:3120, April 2021.

[74] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song,
Hongsong Zhu, and Limin Sun. FIRM-AFL: High-
Throughput Greybox Fuzzing of IoT Firmware via Aug-
mented Process Emulation. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1099–1114,
2019.

[75] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Au-
tomatic Firmware Emulation through Invalidity-guided
Knowledge Inference. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 2007–2024, 2021.

Microchip NXP Stm
Vendor

0

250

500

750

1000

1250

1500

1750

2000

Nu
m

be
r o

f M
CU

s

878

1498

1843

878

1498

1843

559
695

1288

559

45

363

Total # of MCUs
MCUs with UART
MCUs with USB
MCUs with Ethernet

Figure 9: Communication interfaces availability on the MCU portfolio of top
MCU vendors [10, 11, 13] May 2022.

Figure 10: SHiFT setup for fuzz testing firmware with CAN bus.

[76] Wei Zhou, Lan Zhang, Le Guan, Peng Liu, and Yuqing
Zhang. What Your Firmware Tells You Is Not How You
Should Emulate It: A Specification-Guided Approach
for Firmware Emulation. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’22, pages 3269–3283, New York,
NY, USA, November 2022. Association for Computing
Machinery.

Appendix A Interface availability

Appendix B SHiFT fuzzing CAN bus

Appendix C Testing program

The following listing includes some examples of the synthetic
bugs of our benchmark.

1 uint32_t bufferGlobal [10];
2 int test(uint8_t *buf, uint32_t size)
3 {
4 uint8_t *localbuff;
5 uint32_t arr32[4];
6 uint16_t *ptr16;
7 if(size <7) return FAULT_NONE_RTOS; //normal execution
8 if(buf[0]==’H’ && buf[1]==’A’ && buf[2]==’N’ && buf[3]==’G’) {
9 buf[100]=’T’;

10 while(1); //Hang}
11 else if(buf[0]==’S’ && buf[1]==’E’ && buf[2]==’G’){
12 bufferGlobal [0]++; //Segmentation fault}
13 else if(buf[0]==’N’ && buf[1]==’U’ && buf[2]==’L’ && buf[2]==’L’){
14 localbuff = 0x00;
15 buf[0] = *localbuff; //Null dereference }
16 ..
17 return FAULT_NONE_RTOS;
18 }

5340 33rd USENIX Security Symposium USENIX Association

https://www.st.com/resource/en/errata_sheet/es0392-stm32h742x743xig-st32h750xb-and-stm32h753xi-device-errata-stmicroelectronics.pdf
https://www.st.com/resource/en/errata_sheet/es0392-stm32h742x743xig-st32h750xb-and-stm32h753xi-device-errata-stmicroelectronics.pdf
https://www.st.com/resource/en/errata_sheet/es0392-stm32h742x743xig-st32h750xb-and-stm32h753xi-device-errata-stmicroelectronics.pdf
https://www.st.com/resource/en/errata_sheet/es0392-stm32h742x743xig-st32h750xb-and-stm32h753xi-device-errata-stmicroelectronics.pdf

	Introduction
	Background
	The MCU ecosystem
	Firmware security analysis
	Open challenges and limitations
	Reduced Fidelity
	Reduced observability
	Limited compatibility

	System Design
	Design assumptions and scope
	SHiFT overview and workflow
	Decoupling a canonical fuzzer
	The fuzzing workstation
	The MCU fuzzing cluster
	Architecting firmware for fuzzing
	Delivering fuzzing input
	Detecting and managing faults
	Supporting compiler instrumentation
	Selecting a communication channel

	Implementation
	FreeRTOS-MPU and kernel extensions
	SANCOV and ASAN run-times
	Communication protocol
	Serial proxy

	Evaluation
	Compatibility analysis
	Footprint analysis
	Fault detection analysis
	Fidelity analysis
	Qualitative analysis
	Impact of fidelity on dynamic analysis

	Performance analysis
	Case studies
	Fuzzing libraries and full-stack firmware
	Finding insecure conditions and post-silicon bugs
	Fuzzing bare-metal firmware
	Finding a zero-day in the FreeRTOS kernel

	Discussion
	Related Work
	Conclusion
	Interface availability
	SHiFT fuzzing CAN bus
	Testing program

