
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Enhancing Network Attack Detection with
Distributed and In-Network Data Collection System

Seyed Mohammad Mehdi Mirnajafizadeh and Ashwin Raam Sethuram,
Wayne State University; David Mohaisen, University of Central Florida;

DaeHun Nyang, Ewha Womans University; Rhongho Jang, Wayne State University
https://www.usenix.org/conference/usenixsecurity24/presentation/mirnajafizadeh

Enhancing Network Attack Detection with Distributed and
In-Network Data Collection System

Seyed Mohammad Mehdi Mirnajafizadeh
Wayne State University

Ashwin Raam Sethuram
Wayne State University

David Mohaisen
University of Central Florida

DaeHun Nyang
Ewha Womans University

Rhongho Jang
Wayne State University

Abstract
The collection of network data poses a significant challenge
for machine/deep learning-driven network defense systems.
This paper proposes a new paradigm, namely In-network
Serverless Data Collection (ISDC), to eliminate the bottle-
neck between network infrastructure (where data is generated)
and security application servers (where data is consumed).
Considering the extremely mismatched scale between traf-
fic volume and in-network resources, we stress the need to
prioritize flows based on the application’s interests, and a sub-
linear prediction algorithm is proposed to prioritize specific
flows to optimize resource consumption effectively. Addi-
tionally, a negotiation-free task migration mechanism with
task-data isolation is introduced to allocate tasks dynamically
across the network to enhance resource efficiency. Further-
more, ISDC incorporates a serverless data migration and ag-
gregation mechanism to ensure data integrity and serves as a
reliable and distributed data source for network defense sys-
tems. We present two use cases to demonstrate the feasibility
of ISDC, namely covert channel detection and DoS/DDoS at-
tack detection. In both scenarios, ISDC achieves significantly
higher flow coverage and feature accuracy compared to exist-
ing schemes, leading to improved attack detection accuracy.
Remarkably, ISDC’s data integrity addresses a model self-
poisoning issue caused by duplicated and fragmented flow
measurements generated during collaborative measurements.

1 Introduction

Network traffic measurement system is an essential source
of data for diverse northbound security applications, includ-
ing fingerprinting [1, 2], network provisioning [3–5], and
anomaly detection [6–17]. Notably, many security applica-
tions leverage machine/deep learning (ML/DL) technologies
to boost performance [6, 8, 18–22], raising the demands of
richer data representations, namely per-flow distribution fea-
tures [6,12,23–26]. However, the measurement and migration
of such features come at a high cost, leading to a unique chal-
lenge, namely data availability for security (see section 2.1).

Emerging In-Network Computing (INC) technologies en-
abled flow feature measurements within onsite switches [27,
28] for real-time data collection and in-network defenses [6,
12,15–17,29–31]. Recent efforts realized measurement of per-
flow distribution features using standalone switches [6, 12],
focusing on single-point measurement by optimizing resource
utilization of data plane functions. Naturally, one can ex-
tend single-point measurement solutions [6, 12] to multiple
switches to form a distributed flow measurement. Considering
imbalanced and dynamic network traffic patterns, a collabo-
rative flow measurement is essential to balance the workload
and consolidate resources across the network. Unfortunately,
existing collaboration mechanisms [32–34] encounter severe
resource inefficiency issues owing to the slow reaction of
remote decision-making (i.e., control loop) or limited view of
local decision-making (i.e., duplicated tasks).

For learning-based security applications, data migration
from distributed switches to a centralized server is the norm,
since data aggregation is essential to address data integrity
issues (i.e., fragmentation) caused by collaborative flow mea-
surements. However, the data migration triggers unacceptable
overheads for northbound links [35–37], which is a critical
resource for network operations, but also discourages the col-
laboration of different network parties due to privacy concerns
during raw data sharing. Recent discussions on data migration
pay more attention to in-network and real-time convergence
of simple counting-based volume measures for the collabora-
tive defense of link flooding attacks (LFA) [13, 14], but not
for establishing a data source for ML/DL-based security.

In this paper, we introduce a new paradigm, namely In-
network and Serverless Data Collection (ISDC). As shown
in Figure 1, ISDC is a middleware that resides in distributed
switches’ network operating system (NOS), forming a data
layer, with the main mission of eliminating the bottleneck
between the infrastructure layer and application layer. Interact-
ing with its data plane functions, ISDC is responsible for task
allocation and migration to effectively and efficiently utilize
in-network resources. Meanwhile, ISDC performs serverless
data migration and aggregation for data integrity to serve as a

USENIX Association 33rd USENIX Security Symposium 5161

reliable and distributed data source for ML/DL-based security
applications.

Our security use cases combine ISDC with the distributed
learning concept, delivering various benefits, including elim-
inating the burden of data migration toward the northbound
and opening a possibility for privacy-preserved collaboration
among different network organizations. With these insights,
we tackle multiple technical challenges to improve ISDC’s
data collection scalability and quality for security.
Contributions. Our main contributions are as follows:

1. We introduce an in-network data collection framework
to enable switch-wise collaboration and engagement of
distributed learning techniques for network defense.

2. We propose a sublinear flow size prediction resource-
efficient algorithm to prioritize flow measurement.

3. We introduce a negotiation-free task migration mecha-
nism with task-data isolation design to reduce the burden
in dynamic task reallocation for efficient utilization of
resources across the network.

4. We unveil a data fragmentation issue caused by dis-
tributed and collaborative flow measurement, which fur-
ther triggers a model self-poisoning issue in distributed
learning scenarios. Then, we design a data migration and
aggregation mechanism for data integrity.

5. We deployed ISDC1 in a commercial programmable
switch and conducted extensive simulations to assess the
enhanced data scalability and quality by ISDC.

Two use cases are demonstrated: covert channels and
DoS/DDoS attack detection. For covert channel detection,
ISDC achieved 94.1% (50.6% higher) flow coverage and 7.8x
better feature accuracy compared to state-of-the-art schemes
on average, leading to boosted covert attack detection accu-
racy, F1 0.960 (0.117 higher) and AUC 0.938 (0.176 higher).
In DoS/DDoS detection, we unveiled a model poisoning is-
sue caused by duplicated and fragmented measurements. We
showed ISDC with data integrity outperforms the state-of-the-
art scheme, yielding an AUC of 0.945.
Organization. The rest of the paper is organized as follows.
In section 2, we discuss the motivation and challenge for
ISDC. Next, we present the ISDC’s working flow, functions,
and protocols throughout sections 3–5. Then, in section 6, we
evaluate system performance and demonstrate security use
cases, followed by discussions of system design choices in
section 7. Lastly, we discuss related works and conclude our
work in sections 8 and 9, respectively.

2 Motivation and Challenges

In this section, we motivate ISDC from a new perspective:
data availability (DA) for security. Then, we discuss the tech-
nical challenges and design goals of ISDC.

1The source code is at https://github.com/NIDS-LAB/ISDC

Figure 1: Architecture: ISDC is network storage distributed in
network switches. It archives data measured by the switch’s
data plane functions and performs serverless data migration
and aggregation to provide a reliable data source foundation
for northbound security applications.

2.1 Data Availability for Security

Cloud Computing-based Defense. The network defense is
more challenging than ever. The advance of recent attacks
neutralizes signature-based defenses [38], raising demands of
advanced ML/DL technologies for defense guidance [22, 35].
Moreover, advanced network devices improve data transmis-
sion capacity and empower malicious network parties. There-
fore, cloud-based attack mitigation is widely believed to be
practical due to the resource availability for high-volume
traffic processing and heavy ML/DL functions. However, we
stress that a crucial factor of the success is more of its data
availability (DA) in the cloud. As illustrated in Figure 2 (a),
cloud-based defenses leverage the Border Gateway Protocol
(BGP) or Domain Name System (DNS) to direct inbound net-
work traffic to a scrubbing center, which enables continuous
data collection for security functions (i.e., DA for security).
Nevertheless, the data availability of cloud defense vanishes
easily by moving the attack target from endpoints to interme-
diate infrastructures, e.g., critical network links [13,39,40] or
Internet Exchange Points (IXPs) [41].

Internet Service Provider (ISP)-level Defense. The weak-
ened data availability of the cloud framework naturally brings
our attention to network infrastructure-layer (or ISP-level)
solutions. As shown in Figure 2 (b), an ISP with direct access
to the in-network switches has the strongest data availability
at the infrastructure layer, simply because switches are carri-
ers of network raw data (i.e., packets). However, the major
challenge for ISP-level data collection is the data migration
from the infrastructure layer to the application layer (i.e., the
venue of data consumption) for the following reasons. First,
unlike the cloud-based approaches that have a narrow interest
in network traffic (i.e., traffic towards customers), the ISP is
responsible for the full population of traffic coming through
the network with a mission of data transmission, but not com-
plex security due to the vast amount. Second, the northbound
bandwidth is reserved for latency-sensitive network operation
functions (i.e., policy updates). Continuous data migration
towards the northbound adds tremendous burdens to such a

5162 33rd USENIX Security Symposium USENIX Association

https://github.com/NIDS-LAB/ISDC

Figure 2: Motivation: data availability (DA) for security. (a)
The cloud-based defense has narrow interests in network traf-
fic, (b) ISP traffic migration towards the application layer is
challenging, and (c) ISDC resides in the infrastructure layer
and has direct access to network data.

crucial resource and great uncertainties to network control.
To these ends, the ISP-level solution with a centralized data
collection strategy has weak DA at the application layer.

Vision: In-network Serverless Data Collection (ISDC). The
lessons are that 1) the infrastructure layer has the strongest
data availability for security by nature and 2) data migration
toward the application layer is challenging because of either
the inherent nature of weak data availability of the cloud or
the large overhead of northbound traffic of ISP, which ne-
cessitates a paradigm change of data collection for security
applications. With these insights, we propose the concept of
in-network serverless data collection (ISDC) with the essen-
tial argument that raw data migration towards the northbound
is unnecessary. As shown in Figure 2 (c), ISDC resides in
the infrastructure layer (i.e., distributed switches) to enjoy
strong data availability (DA). Furthermore, instead of migrat-
ing raw data towards the northbound, our vision is to migrate
partial security functionality from the application layer to the
infrastructure layer,e.g., data prepossessing and even local
model training. The intuition is that this paradigm change
is aligned with the distributed learning paradigm addressing
overhead and privacy challenges in terms of data communi-
cation [42, 43], as shown in Figure 2 (c). However, multiple
technical challenges have to be addressed to achieve ISDC.

2.2 Challenges

Data-Plane Resource Constraint. With adversarial attack
patterns, existing in-network security with volume feature [13–
15, 17, 44] has shown limitations in identifying application-
layer attacks. Therefore, recent works prefer richer data rep-
resentations, namely per-flow distribution features, for robust
attack detection. FlowLens [6] showed the potential of per-
flow distribution features in various application-layer attack
detections. To accommodate the hardware constraint (i.e.,
memory and computation) of in-network switches, FlowLens
quantized the distribution data leading to fewer per-flow data

points, but still showed its feasibility with ML technologies.
Nevertheless, the hash table data structure used for per-flow
measurement becomes a barrier due to scarce memory space
in the switch. Netwarden [12] also uses per-flow distribution
data for covert channel detections. It adopted a sketch ap-
proach [45] with memory random sharing to scale up per-flow
measurement. Unfortunately, the sketch also suffers saturation
issues, vanishing its error-bound guarantee. As such, although
it is clear that per-flow distribution data is a viable feature, a
single-point (switch) measurement encounters severe scala-
bility issues limited by hardware resources.

Resource Wasting during Collaboration. A body of re-
search has explored collaborative and distributed flow mea-
surement leveraging distributed network devices. Coordinated
Sampling (CSAMP) [32] and Network-wide Switch Probabil-
ity Assignment (NSPA) [33] are representative and state-of-
the-art works empowered by the global view of the network
for optimizing resource utilization. The downside of such
approaches is slow adaptation to dynamic shifts in network
traffic. Especially considering the massive amount of short-
living and mice flows existing in modern networks, massive
memory resources will be wasted intermittently during the
remote decision-making process (i.e., control loop). Orthogo-
nal to the central management approach, Cooperative Flow
Selection (CFS) [34] performs onsite decision-making based
on the local view at each switch. Such a strategy eliminates
the control loop issue and adapts to dynamic traffic changes
timely. However, the limited view causes duplicated measure-
ment tasks launched at multiple switches, triggering memory-
wasting issues, as shown in Table 1. The memory inefficiency
hurts the data collection scalability, resulting in poor attack
detection performance (see section 6.3 for the covert channel
detection case study and the associated performance).

Data Fragmentation caused Model Poisoning. Addition-
ally, we report a model poisoning issue when employing a
local view-based dynamic task allocation approach [34] as a
data source of distributed learning. That is, a single flow can
be measured on inclusive or exclusive timelines at different
switches on its routing path, which results in the generation
of multiple feature fragmentation (i.e., partially measured or
overlapped flow features), as shown in Table 1. Especially
in a distributed learning system, the presence of such frag-
mented and inconsistent data can lead to biased local model
training and eventually generate a poorly aggregated model
(see section 6.4 for DoS/DDoS attack detection performance).

2.3 Design Goals

Table 1 compares the design of existing data collection sys-
tems with ISDC. The drawbacks of previous approaches mo-
tivated us to design our system with the following goals:

Optimizing Network Resource Usage. Given the finite com-
putational and memory resources in the distributed switches

USENIX Association 33rd USENIX Security Symposium 5163

Measurement Task Coordination
CSAMP [32] NSPA [33] CFS [34] ISDC

Decision Remote Remote Onsite Onsite
Task Duplication ✗ ✗ ✓ ✗

Task Priority ✗ ✗ ✓ ✓

Task Migration ✗ ✗ ✗ ✓

Overhead High Medium Very High Low
Flow Coverage 35.4% 36.9% 58.1% 94.1%

Data Collection
CSAMP [32] NSPA [33] CFS [34] ISDC

Data Migration Central Central Central Serverless
Fragmentation ✗ ✗ ✓ ✗

Overhead High High High Low
Detection AUC 0.718 0.709 0.857 0.938

Table 1: Comparison of designs. The experimental results of
our security use case, namely covert channel detection, are
shown with two metrics (flow coverage and AUC) to compare
the data collection efficiency and quality.

for the flow feature measurement (i.e., tens of Megabyte mem-
ory space and tight processing deadline [27, 28]), optimizing
the resource utilization is crucial. To do so, we first aim to
prioritize flow measurement tasks with security applications’
requirements to relax the resource competition in the data
plane. Next, we encourage active task migration to address
the traffic imbalance and dynamicity in different network
nodes to maximize resource usage. Lastly, we target a coordi-
nated task migration to prevent duplicated tasks and resource
wastes, as shown in Table 1.
Reliable Data Source for Security. Data integrity is cru-
cial for any data-driven security applications. The traditional
approach is to migrate data from the data plane, where the
data is generated, to the application servers, where the data is
consumed, for data aggregation. However, this decision adds
burdens to the northbound links. To overcome this bottleneck,
we aim to build a distributed network storage to form a data
layer to serve northbound applications with pre-processed
data. For data quality, we design a data-layer communica-
tion protocol for serverless and in-network data migration to
aggregate data fragmentation, as shown in Table 1.
Low-overhead Task/Data Migration. Task and data migra-
tion are the primitive functions of ISDC for resource optimiza-
tion and data integrity. However, the more active these actions
are, the more overhead is added to the network links; i.e.,
trade-off. To tackle this issue, our design goal is to minimize
the footprint of task migration and data migration to reduce
the burden added to network links, as shown in Table 1.

3 System Design: ISDC

3.1 Framework
As shown in Figure 3, IDSC’s data plane functions, namely
Flow Identifier (FI) and Feature Meter (FM), are placed in
each switch’s packet processing pipeline, namely Application-
Specific Integrated Circuit (ASIC). IDSC’s storage is inte-
grated into the network operating system (NOS) running with

offline resources, i.e., general CPU and large DRAM. The
communication between data plane functions and storage uti-
lizes a high-bandwidth Peripheral Component Interconnect
Express (PCIe) for data archiving. We highlight that ISDC’s
distributed storage forms a data layer and serves northbound
applications.

3.2 End-to-End Design
ISDC system is built on top of distributed network switches
with the following essential functions:

1 Flow Identification. As shown in Figure 3, ISDC’s first
step is identifying targeted flows. Here, we prioritize flows
with their sizes, with the key insight that super mice flow, with
one or two packets, contains sparse data points of distribution
feature is disfavored by ML/DL applications due to difficulty
in learning. The flow size is not known beforehand, but the
flow feature measurement must start instantly from the first
packet. However, predicting flow size in an ad-hoc manner
is challenging, especially with a resource constraint. In this
work, we propose a Flow Identifier (FI), a simple but effi-
cient flow size prediction algorithm leveraging the burstiness
feature to prioritize flows for task allocation (see §4.1).

2 Feature Measurement. Once FI identifies a flow, the flow
feature measurement task will be performed at a separate
data structure, Feature Meter (FM), a simple hash table. We
stress that it is essential for distributed and collaborative flow
measurement systems to use a general hash table structure for
flow feature measurement since flows must be evictable for
task and data migration, for collaborations, and to avoid task
duplication (see section 4.2 for details).

3 Task Migration. We stress that narrowing the scope to the
targeted flows is insufficient to optimize resource utilization
in network switches. Upon collision in FM’s hash table, tasks
must be handed over (i.e., task migration) to the follow-up
switches on a flow’s routing path, not to miss feature measure-
ment, as shown in Figure 3. Dynamic task migration allows
ISDC to utilize idle resources of switches on flows’ routing
paths for a collaborative measurement. ISDC’s task migration
event is triggered by a hybrid eviction policy integrated into
FM (see section 5.1 for details).

4 Data Archive. We note that the migrated tasks are often
handed over along with the data for an accumulated and con-
tinuous measurement [13], which triggers extra in-band (i.e.,
network link) overhead with frequent task migrations. Our de-
sign choice is called task migration with data isolation, which
archives data at the present switch and then migrates tasks
only with negligible overhead (see section 5.2 for details).

5 Data Migration. An issue triggered by task-data isolation
is that a flow may be measured at multiple locations exclu-
sively, namely flow feature fragmentation. For data aggrega-
tion, ISDC migrates all distributed flow features back to their
edge switch (i.e., a flow’s entry point of the network) [13],

5164 33rd USENIX Security Symposium USENIX Association

Figure 3: ISDC’s workflow: (1) Flow Identifier (FI) is active for local flows only for flow prioritization and target flow
identification. (2) Feature Meter (FM) is a simple hash table for per-flow feature measurement of identified flows. (3) FM evicts a
task upon collision and migrates the task for collaborative measurement. (4) Data archive is a task-data isolation design to reduce
task migration overhead. (5) Data migration is offline towards each flow’s edge switch.

combined with the greedy task allocation strategy [34], for
minimizing data migration footprints, as shown in Figure 3.
Furthermore, we design a novel data migration mechanism,
a simple source routing function, to return the flow features
to their edge switches. Our data migration is lightweight and
works without prior knowledge of network topology (see sec-
tion 5.3 for further details).

3.3 Distributed Learning/Detection of Attacks

The same processes 1∼5 repeat independently at all edge
switches and consistently maintain local flow feature data.
With ISDC, network operators can either perform distributed
learning of up-to-date traffic or conduct in-network attack
detection [6] and mitigation [46], empowered by a feder-
ated model with up-to-date knowledge. Furthermore, with the
greedy and edge-centered task allocation strategy, attack flows
can be detected and mitigated at the network’s border (i.e.,
early intervention), which can help reduce the network link
flooding [13]. Our use case combined ISDC with a standard
federated learning scheme [43] for covert channel detection
and DoS/DDoS attack detection for evaluating the feasibility
of our ISDC as a data source for security applications. ISDC
data collection and aggregation are performed in the data
plane. In our security use cases (see §6.3 and 6.4), ISDC
communicates model parameters with a data center but not
raw data. However, raw feature data can also be migrated to
the northbound for aggregation-free and centralized learning.

4 Function Design

In this section, we describe ISDC’s core function designs,
including flow size prediction sketch (i.e., Flow Identifier)
and feature measurement data structure (i.e., Feature Meter).

4.1 Flow Identifier (FI)

FI addresses a real-time top-K prediction challenge, operating
within a very narrow time window and with O(1) memory and
computational complexity. Particularly, FI exploits the bursty
nature of larger flows occurring within short timeframes, as
observed in literature such as [47, 48], to forecast determinis-
tic top-K flows for immediate task allocation, which typically
demands O(K) counters for post-hoc analysis [44,49]. Bursti-
ness is defined as the continuous arrival of packets with a
small inter-arrival interval time (e.g., less than 1 ms).

Data Structure and Algorithm. Figure 4 illustrates FI’s
data structure and Algorithm 1 outlines its operations. FI
maintains a hash table with w slots, each maintaining three
variables: a 32-bit Flow ID (key), a 4-bit burst counter (B),
and a 4-bit burst counter combining other concurrent flows
(B̂). As shown in Figure 4, FI distributes flows to w slots
permanently for relaxing collisions of concurrent flows, and
the follow-up operations fall into five cases. First, when a slot
is empty, FI serves in a first-come-first-serve manner, and the
first flow is treated as a top-K by recording its Flow ID in the
slot (see f1 in Figure 4). Next, in the event of a flow match,
B is increased by one (see f2). However, if B overflows, B
is reset to one, and B̂ is reset to zero (see f3). The packet
will be tagged as “targeted” in both events and passed to the
feature meter (FM) for feature measurement. Lastly, when
a flow is mismatched, B̂ is increased by one, and then the
packet is tagged as “untargeted”, which will not be measured
by FM. Instead, a competition will be triggered in the event
of B̂ update. If B̂ > λ ·B (see f4) or B̂ is saturated (see f5), the
new flow evicts the old flow and becomes a new target.

Analysis. We start with an observation that recent real-world
trace CAIDA [50] follows the Zipf distribution, with 87%
of flows being mice (i.e., <10 packets). Figure 5 shows the
analysis of burst size and flow size using the CAIDA dataset
with real timestamps, varying intervals from 100 us to 100
ms. As shown in Figure 5 (a), with the interval set to 10 ms,

USENIX Association 33rd USENIX Security Symposium 5165

Algorithm 1: Flow Identifier (FI)

1 Function Flow Identifier(Packet pkt):
2 key←H (pkt), idx← key mod w;
3 item←{KEY,B, B̂}← HashTableFI [idx];
4 if item == null then
5 item←{key,1,0}; ▷ See f1 in Figure 4
6 end
7 else if item.KEY == key then
8 if item.B<15 then
9 item.B← item.B+1; ▷ See f2 in Figure 4

10 end
11 else
12 item←{key,1,0}; ▷ See f3 in Figure 4
13 end
14 Tag_Targeted (pkt,Tag(102));
15 Feature_Meter (pkt);
16 end
17 else if item.KEY != key then
18 if item.B̂<15 then
19 item.B̂← item.B̂+1;

20 if item.B̂
λ

== item.B then
21 item←{key,1,0}; ▷ See f4 in Figure 4
22 end
23 end
24 else
25 item←{key,1,0}; ▷ See f5 in Figure 4
26 end
27 Tag_Untargeted (pkt,Tag(002));
28 end

96% of bursts contain only 1 or 2 packets. Among flows with
a small burst size (i.e., ≤ 2 packets), 91% of flows’ sizes are
smaller than 10 packets and 67% are smaller than 4 packets,
as shown in Figure 5 (b). Also can be seen in Figure 5 (a),
only 4% of flows have a larger burst size (i.e., > 2 packets).
Among these bursty flows, however, only 5% of flows’ sizes
are smaller than 10 packets, as shown in Figure 5 (b). The
results support our assumption that larger flows tend to be
more bursty than smaller flows.

Intuition 1: Small λ for Fast Prediction of New Top-K.
Based on the above observations, FI’s design is grounded on
two fundamental assumptions. First, according to our real-
world trace analysis, B is filled with super mice in most cases.
Second, based on the first assumption, the number of packets
of combined counter B̂ is approximately the total number
of concurrent flows. Therefore, our empirical parameter λ

represents the number of flows sharing a counter for averaging
combined burstiness (i.e., averaged burstiness B̂/λ), which
approximates the 1-on-1 competition with the current top-K
candidate. With this insight, we can expect that FI terminates
the burstiness competition within a very small time window
by using a small λ=4 (see f4 in Figure 4).

Intuition 2: Small Counters for Fast Eviction of Old Top-K.
Our design takes advantage of small counters for fast takeover
and retention of a competing counter B by an active top-K
candidate. For example, a new burst flow can quickly build up
the B̂ to evict inactive flows with a larger burstiness, or a still
bursty flow can retain its counter value in B (see f5 in Fig-

Figure 4: FI operations fall into five cases: a flow takes an
empty slot (f1), the active targeted flow keeps occupying the
slot (f2 and f3), and concurrent flows evict old flows and
become new targeted flows (f4 and f5).

0 5 10 15 20
0.85

0.90

0.95

1.00

Average burst (pkts)

 100 us
 1 ms
 10 ms
 100 ms

(a) CDF of avg. burst

0 5 10 15 20

256

512

768

1024

1280

Average burst (pkts)

 100 us
 1 ms
 10 ms
 100 ms

(b) Flow size vs. avg. burst

Figure 5: Real-world trace analysis indicates small flows tend
to be less bursty than large flows: (a) CDF of averaged flow
burst sizes and (b) relationship between flow and burst size.

ure 4). The reduced counter size also allows FI to enlarge w,
reducing the collision of burst flows.

4.2 Feature Meter (FM)

FM performs per-flow feature measurement tasks for identi-
fied flows by FI. We note that the flow feature measurement
algorithm is not the main focus of this work. However, we note
that it is crucial to employ a scheme based on a general hash
table for flow entry eviction and migration, which is essential
and straightforward for collaborative flow measurement. In
this work, we utilize the feature collection solution of a state-
of-the-art scheme, called FlowLens [6], as an add-on module
of ISDC system for covert channel detection and DoS/DDoS
attack detection. As illustrated in Figure 6, ISDC’s FM main-
tains a simple hash table for per-flow packet size distribution
(feature) measurement. According to FlowLens, we quantify
the packet size with an interval of 16, resulting in 94 bins.
Then, FM records the frequency quantified bins for each flow
to represent the packet size distribution (PSD) feature. Each
slot (row) in the table records the Flow ID (32-bit), feature
distribution, and time-to-live (TTL) value (8-bit).

FM collects features for the FI-predicted top-K flows only,
saving scarce memory by ignoring untargeted super mice
flows. When a packet of a flow arrives at a slot, FM records
the flow feature for the matched flows. If miss-matched, the
packet’s TTL value is used, with a hybrid eviction policy,
to determine which flow to evict for task migration. The
evicted flow will be handed over to other switches for collabo-

5166 33rd USENIX Security Symposium USENIX Association

Figure 6: Feature Meter (FM): task migration with a hybrid
eviction policy (red) and data archiving event (blue).

rative measurement. In all cases, the eviction policy enforces
a higher priority for local over non-local flows, which ensures
a flow is measured closer to its edge node to reduce foot-
print and missing risk when the routing path is short (see
section 5.1). Furthermore, a task-data isolation design is pro-
posed for a lightweight task migration (see section 5.2). Even-
tually, data migration is performed towards edge switches for
in-network data aggregation (see section 5.3).

5 Protocol Design

Next, we explain our task migration and data migration mech-
anism and protocol designs, including the task-data isolation
design. Figure 7 shows the customized headers attached to the
network packets, namely Tag and Stack, for task migration
and data migration, respectively.

5.1 Task Migration

Event Trigger. To maximize resources utility, we design a
task migration (handover) logic based on a simple hash table
for collaborative flow feature measurement, as shown in Fig-
ure 6. The task migration event is triggered by FM’s eviction
function with a hybrid policy where FM also has a constant
number of slots, and flows are permanently distributed to each
slot for resource competition. Our eviction function applies
two opposing policies depending on local and non-local flows.
Policy 1 (Local Flow First): Local flows with T T L = 255
win the competition and evict non-local flows (i.e., T T L <
255). If the existing and newly incoming flows are both local,
this policy evicts (handovers) the incoming one to avoid the
context switch-caused overhead. This policy aims to retain
most flow measurement tasks at the edge switch.
Policy 2 (Lower TTL First for Non-local Flows): When non-
local flows compete for the same slot, FM gives a higher
priority to lower TTL flows, which is the opposite of Policy 1;
i.e., more flows measured before reaching the end of the path.

Protocol. For task migration, ISDC requires only 2-bit tags at-
tached to each packet header, thanks to programmability [51],
where the first bit is for FI to tag the targeted flows and the
second is for FM to indicate the measured packets and prevent

Figure 7: An illustration of task migration with 2-bit tagging.
The stack header is only active for packets of unmeasured
target flows, with task handover, to record the routing path
to the flow’s origin (edge) switch for collecting results of
migrated tasks (i.e., data migration of fragmentation).

duplicated flow measurement. Figure 7 shows the combina-
tion of the 2-bit tags and corresponding taken actions.
(1) Tag(0x)→ Untargeted Flows (no action): For untargeted
flows tagged by FI, all switches on the flow’s path bypass the
feature measurement and forward to the flow’s destination.
(2) Tag(11)→ Targeted Flows (measured): If a targeted flow
has been measured by any FM, no additional action is required
for the rest of the switches on the flow’s path.
(3) Tag(10)→ Targeted Flows (handover): If a targeted flow
is not measured by its local FM, a task migration event occurs
and Tag(10) is attached. All switches that observe the tag
will allow the flow to compete at their local FM.

To sum up, with the hybrid policy, ISDC aims to maximize
the resource utilization of the network while minimizing the
footprint of task migrations. With the simple and lightweight
tagging mechanism, ISDC’s task migration bypasses packets
of untargeted flows and measured flows to reduce data plane
overhead. Meanwhile, it prevents the duplicated recording of
packets from eliminating the overlapping of features for the
same flow, which makes data aggregation easier through data
migration (see section 6.5 for system evaluation).

5.2 Task-Data Isolation Design

To further reduce task migration overhead, we introduce a
task-data isolation design. Upon a task migration event, if
the evicted flow has a flow feature measured in FM, the data
will not be migrated along with the task but is archived in lo-
cal and offline DRAM storage through PCIe communication,
which significantly saves network bandwidth caused by task
migrations (see section 6.5.3 for overhead analysis). Our task
migration logic is that once a local flow finds a room at its
edge-switch’s FM for measurement, it is unlikely to be evicted
by other flows and handed over to other switches (i.e., Policy
1). However, as shown in Figure 8 (t2), if a flow is measured
at a non-edge switch (i.e., migrated task), the measurement
task can be interrupted and migrated again (i.e., Policy 2),
which leads to the fragmentation of flow features distributed

USENIX Association 33rd USENIX Security Symposium 5167

among multiple switches of the flow’s routing path, as can
be seen in Figure 8 (t2 and t4). We note that the distributed
and fragmented features for the same flow may trigger model
self-pointing issues in the distributed learning scenario (see
section 6 for use cases). Therefore, data migration for aggre-
gation is crucial. Lastly, even if a flow is active in the data
plane, the flow’s data in the control plane can be sent to its
edge node immediately due to the task-data isolation design.

5.3 Data Migration

Recall that ISDC aims to be a reliable foundation (data source)
with serverless data collection for security applications. To
address the feature fragmentation issue, we propose a stack-
based source routing to migrate the fragmentation back to the
flows’ edge switches for data aggregation, namely serverless
data collection for data integrity, as demonstrated in Figure 8.
The unique challenge posed here is that data migration to
the edge often relies on the heavy IP protocol and a strong
assumption that every switch has prior knowledge of the entire
network topology and routing path [13, 14].

Stack Header for Source Route Tracing. For data migra-
tion towards flows’ edge switches, ISDC uses stack structure
attached to the packet header, which is realized by the built-in
function of data plane programming language (i.e., P4 [52])
and supported by commercial programmable switches [53].
Therefore, no extra accommodation is needed to realize the
stack function. As shown in Figure 7, the stack header is
attached only when a switch observes a packet with unmea-
sured targeted flows (Tag(10)). The functional goal of the
stack is to identify the source routing path of a flow at any
switch on the flow’s path for later data migration towards
flows’ edge switches (i.e., serverless data aggregation). As
shown, whenever a packet reaches a new switch, the switch
pushes the packet’s incoming port into the stack. As a result,
every switch is aware of the physical layer routing path back
to the flow’s edge (origin) switch by referring to the stacked
port numbers. For data migration, as shown in Figure 8, when
a switch measures non-local flows, it archives the stack into
the local DRAM storage. Therefore, the data migration can
be easily achieved by reusing the stack information.

Event Trigger. The data migration is initiated by ISDC ac-
tively from the switch’s user space of its network operating
system. The non-blocking function runs periodically to 1)
scan the local DRAM storage, 2) identify inactive non-local
flows’ data, 3) craft a special packet with the stack as header
and data as payload, and 4) eventually inject the packet into
the switch’s data plane for the source routing.

Understanding the Costs. It is worth mentioning that both
source route tracing and data migration are not free but in-
crease network link utilization. The stack size varies accord-
ing to 1) the number of physical ports available for the switch
and 2) the number of task migrations (i.e., hops). For instance,

Figure 8: An illustration of data migration using stack-based
source routing. A flow f1 is measured at time t2 and t4 by two
switches, and each generates a feature fragmentation. The
data migration is an active process that sends fragmentation
back to the flow’s origin (edge) switch for aggregation. The
routing path (i.e., incoming switch ports) is collected during
task migration with the tag and stack headers.

the widely used switch has 32 ports. Thus, 8-bit is required for
each stack slot to distinguish the ports. Moreover, the amount
of ports pushed into the stack is determined by the distance
of task migration from the flow’s edge switch and the non-
edge switch that measures the handed-over flow, as shown
in Figure 7. However, we reemphasize that the stack is only
attached to the unmeasured packets of targeted flows from
other switches and eliminated once the packet is measured
by any switches. Moreover, combined with the edge-centric
task allocation strategy (i.e., Policy 1), ISDC minimizes the
network-link overhead of source route tracing for data migra-
tion (see section 6.5.3 for overhead analysis).

6 Evaluation

This section shows experimental results of ISDC, including
security use cases and system performance.

6.1 Experimental Setup

Hardware and Software Implementations. We deployed
ISDC prototype on a commercial switch [53] with Intel
Tofino-1 Fabric [27] to show the feasibility of ISDC and for
function evaluation. The used switch equips 120 MB SRAM
and 6.2 MB TCAM memory. Furthermore, we implemented
a software version of ISDC with 733 lines of P4 code (P4-16
language [52]) for the data plane and 839 lines of Python code
for the control plane. We used bmv2 model [54] for Mininet
simulation [55]. Our simulations were conducted on a server
with two 3.2 GHz 20-core CPUs and 512 GB of memory.
Topology. Figure 9 visualizes three network topologies used
with Dijkstra routing algorithm [56]. ASN [57] is the small-
est topology containing nodes and 25 links and is featured
by short but balanced network paths. Vlt Wavenet [57] is a
medium-sized topology with 92 nodes and 96 links, featuring
significantly imbalanced path lengths. Tiscali [58] is a back-
bone topology consisting of 161 nodes and 328 links, which
is large and complex.

5168 33rd USENIX Security Symposium USENIX Association

(a) ASN [57] (b) Vlt Wavenet [57] (c) Tiscali (AS 3257) [58]

Figure 9: Real-world topologies used in the experiments.

Dataset and Traffic Generation. We used Facet [59],
DeltaShaper [60], and CovertCast [61] for covert channel
attacks. We also used CIC-IDS-{2017-2018} [62, 63] and
CIC-DDoS-2019 [64] for DoS/DDoS attacks. Moreover, we
used an eight-minute CAIDA [50] trace as background traffic
from benign clients to add noise during attack data collec-
tions. The attack and benign traffic were balanced with the
total number of packets. For flawless ML settings, particularly
to avoid temporal snooping issues [65], we preserved the or-
der of flows/packets when processing the dataset. Lastly, each
network node is attached to a traffic generator for generating
traffic using Tcpreplay [66], where all generators send the
same number of flows simultaneously without duplication.
Parameters. For fairness, we allocated the same amount
of memory space to ISDC and compared schemes [32–34].
Moreover, the total memory budget was equally divided and
allocated to each network node. We followed the work guide-
lines for each switch to configure memory within each net-
work node (switch). Per the guidance, the packet size distribu-
tion (PSD) feature is quantized with interval 16 (Quantization
Level 4 in FlowLens [6]); thus, 94 bins per flow considering
the maximum packet size of 1504 Bytes.
Learning Models. We utilized the Federated Averaging (Fe-
dAvg) algorithm [67] to aggregate local models from each
node. FedAvg is designed to lessen the impact of training
loss on multi-layer neural network [68] in federated learning,
where the training data in each node exhibit heterogeneous dis-
tributions. Our binary classifier, a simple neural network [69],
consists of two hidden layers with 64 and 32 neurons, respec-
tively. These layers utilize the Rectified Linear Unit (ReLU)
activation function and incorporate a dropout rate of 20% to
prevent overfitting. For decision-making, the network’s output
layer employs the sigmoid activation function with a threshold
of 0.5. Finally, the global model was tested with over 50 runs
with an imbalanced ratio of 10/90 for attack/benign samples
to reflect real-world settings and reliable results.

6.2 Metrics

Metrics for system and security evaluations are as follows:
Flow Coverage. The coverage quantifies data collection scal-
ability, as N̂/N, where N̂ is the total number of measured
top-K flows and N is the total number of actual top-K flows.
Fragmentation Ratio. Fragmentation ratio is the number
of flows measured more than once at different switches

(duplicate flows) over the total number of distinct flows.
Frag = ∑i #duplicate flows

∑i #distinct flows for all node i.
Memory Waste. The memory waste is used to quantify the
amount of memory wasted for measuring untargeted flows
(non-top-K flow in this work). It is defined by U/M, where U
is the total number of untargeted flows measured, and M is the
total number of slots allocated for the per-flow measurement.
Weighted Mean Relative Error (WMRE). WMRE quanti-
fies data collection quality for per-flow packet size distribution
(PSD) features. Accordingly, WMRE in our setting is defined
as ∑

b
i=1 |ni− n̂i{∑b

i=1(
ni+n̂i

2), where b is the largest bin, n̂i is
the observed frequency of each bin, and ni is the ground truth.
F1 Score. We used the F1 score to evaluate attack detec-
tion models’ performance in our security use cases. It is a
harmonic mean of precision and recall to denote the trade-off.
Area Under the ROC Curve (AUC). We further evaluate
attack detection models with AUC for a comprehensive mea-
sure. The metric summarizes the model performance with
various classification thresholds in the ROC curve.

6.3 Use Case 1: Covert Channel Detection
In this experiment, we examine the ISDC’s performance with
a covert channel detection use case. We first compare ISDC
with a strawman approach, a naive extension of FlowLens [6]
to a distributed setting, to explain the importance of collab-
orative and application-focused flow measurement under re-
source constraints. Then, various state-of-the-art collaboration
schemes, such as CSAMP [32], NSPA [33], and CFS [34],
were compared to show ISDC’s data collection quality. In
all use cases, we let each edge switch train a local model
independently using locally collected per-flow features, fol-
lowed by a standard federated learning setting to build a single
global model without sending the feature data. Lastly, we con-
ducted an offline evaluation of the global model to measure
the impact of the data quality for learning-based covert chan-
nel detection. For fairness, we allocated the same amount
of memory resources and workloads to all schemes, noting
that NSPA, CSAMP, and CFS are real-time decision-making
schemes that are directly comparable with ISDC.
Preprocessing. We used 1.1k covert channel attack flows
from three datasets [59–61], where 0.88k attack flows were
used for data collection simulation and attack model train-
ing. Then, the remaining 0.22k attack flows were mixed with
1.98k benign flows to create an imbalanced testing dataset (i.e.,
10/90 for attack/benign) to reflect a real-world setting. We
note that the model testing is performed offline to measure the
impact of data quality in attack detections. Since covert chan-
nel attacks are independent, a temporal snooping issue [65] is
not a major concern when splitting the flows. Also, we note
that these flows have a relatively larger size (e.g., > 1,000
packets). For the background traffic, we matched the packet
number with our attack trace from CAIDA benign trace (i.e.,
6.5 M packets, 479k flows) with preserved order of packets

USENIX Association 33rd USENIX Security Symposium 5169

and flows. For network topology and traffic generation, we
used ANS [57] with 18 nodes, and the mixed attack/benign
flows are evenly assigned to all generators without duplica-
tion; thus, the traffic imbalance is negligible.
Setting. The memory configuration of all security use cases
is determined by the smallest attack flow size in the dataset.
In covert channel detection, 76k flows out of 480k total flows
are larger than the smallest covert channel flow in size; thus,
76k slots equivalent memory space (i.e., 14.7 Megabyte) was
assigned to the entire network. With ANS topology, each node
used 836.8 Kilobyte (KB) of memory space. We note that
the memory setting is identical for all schemes within the
same use case. For ISDC only, 12.2 KB of memory space was
taken by FI (1.4% of memory space) for target flow predic-
tion and the remaining was used by FM for per-flow feature
data collection. After traffic generation, we used the collected
feature data in each node to train a local model and then built
a global model from all 18 local models using the standard
federated learning framework FedAvg [67]. To analyze the
impact of data quality in model training, we conducted exper-
iments with two settings: 1) a single round of training with
all nodes involved for a model aggregation and 2) ten rounds
of training with 50% nodes randomly selected.
Strawman (Naive) Approach. To enable distributed per-
flow feature collection, one naive approach is to deploy
FlowLens [6] in a distributed manner, with each switch work-
ing independently. We start by showing that this naive de-
ployment, which lacks collaboration and optimization mech-
anisms, is impractical for overcoming the imbalance of traf-
fic distribution. Table 2 demonstrates the result of the naive
approach compared with ISDC. As shown, the strawman ap-
proach covers 30.6% flows only among top-76k flows, and
52.5% of memory space was wasted by super mouse flows
consisting of one or two packets. Accordingly, the straw-
man approach achieved a poor F1 score of 0.295 and AUC
of 0.246 in the single-round training setting, which is much
lower than the ISDC archived F1 score of 0.960 and AUC of
0.938. We noticed that ISDC-based model training converges
even with one training round because of the excellent feature
engineered in the original work FlowLens (used as FM of
ISDC). However, efficient training is unachievable without
ISDC’s scalable and high-quality data collection. However,
we can observe that the naive approach-based model’s per-
formance also converges with more training rounds. Still,
computation power costs remain inefficient compared to high-
quality data-based training.
Compared with Collaboration Schemes. In the following,
we used FlowLens [6] feature measurement function as an
add-on module to all schemes. Table 2 summarizes the perfor-
mance of models varying schemes. With a centralized collab-
oration for task balancing, CSAMP and NSPA improved the
flow coverage slightly to 35.4% and 36.9%, respectively, with
similar amounts of memory waste. Although unsatisfiable,
the central coordination partially addressed the traffic imbal-

Schemes Cov. Frag. Mem.
Waste

Avg.
WMRE

F1 AUC
1 rd. 10 rd. 1 rd. 10 rd.

Strawman 30.6% 0% 52.5% 1.37 0.295 0.927 0.246 0.869
CSAMP 35.4% 0% 51.8% 1.27 0.824 0.923 0.718 0.862
NSPA 36.9% 0% 51.3% 1.25 0.816 0.927 0.709 0.868
CFS 58.1% 53% 62.1% 1.67 0.887 0.942 0.857 0.894

ISDC 94.1% 0% 8.02% 0.18 0.960 0.970 0.938 0.967
Table 2: Comparing ISDC with a strawman and collaboration
schemes in covert channel detection. ISDC, with higher flow
coverage (Cov.), superior feature accuracy (averaged WMRE
of all flows), and without data fragmentation (Frag.), achieved
the best model performance among all schemes.

ance issue in the network and led CSAMP and NSPA to cover
more attack flows in the collected data. As a result, the trained
attack detection model achieved higher F1 scores (0.824 and
0.816) and AUCs (0.718 and 0.709), compared to the naive
approach (F1 score of 0.295 and AUC of 0.246), in a single-
round federated learning setting. As expected, CFS with local
but more reactive decision-making achieved a higher cover-
age up to 58.1% but suffered from low feature accuracy (i.e.,
WMRE 1.67), mainly because 53% of flows are fragmented,
which will be explored more in section 6.4. However, CFS
still achieved a higher F1 score of 0.887 and AUC of 0.857,
compared to NSPA and CSAMP, in the single-round training
setting, which is mainly because of the high coverage of CFS.

Lastly, the proposed ISDC achieved the highest flow cover-
age of 94%, thanks to FI’s precise flow size prediction. With
a dynamic but duplication-free (fragmentation-free) task mi-
gration, ISDC achieved the highest feature quality of WMRE
0.18, as shown in Table 2. Accordingly, ISDC achieved a
much higher F1 score of 0.960 and AUC of 0.938, with the
same feature and single-round training. An interesting obser-
vation is that with a multi-round training setting, the model
performance of all schemes improved more or less but was
still worse than the ISDC-based model in single-round train-
ing, which proves the importance of data quality for training.

6.4 Use Case 2: DoS/DDoS Attack Detection

We further explore ISDC’s performance in DoS/DDoS attack
detection using CIC-{2017-2019} attack datasets [62–64].
Unlike covert channel trace which mainly consists of large
flows, the average flow size in CIC datasets is much smaller
(e.g., < 20 packets), requiring more precise feature measure-
ment since missing even one packet may affect overall flow
feature quality significantly. With this characteristic, we un-
veil a model self-poisoning issue caused by a dynamic task
allocation [34] and report that data inconsistency for small-
sized flows is more critical in model training due to the sparse
data points. To verify, we compared ISDC with the state-of-
the-art CFS [34], which allocates flow measurement tasks
dynamically with local decision-making and achieves the
highest flow coverage among existing schemes.

5170 33rd USENIX Security Symposium USENIX Association

Preprocessing. We randomly selected 10k attack flows from
three categories, namely reflection, flooding, and brute force
(see appendix B for more details). We used 8k attack flows
for simulation and federated learning of attacks. Then, the
remaining 2k attack flows were mixed with 18k benign flows
to create an imbalanced testing dataset (i.e., 10/90 for at-
tack/benign) to reflect real-world settings. When we split the
attack dataset, we preserved time order to avoid a temporal
snooping issue [65]. For the background noise, we matched
attack traffic with the same number of packets from the benign
CAIDA trace (i.e., 2.5 M packets and 232k flows).
Setting. In the mixed dataset, 36k flows are larger than the
smallest CIC attack flows in size; thus, 36k slots equivalent
memory space was assigned for both ISDC and CFS. With
the ASN topology (18 nodes) [57], each node was assigned
395 KB of memory space. For ISDC only, 12.2 KB (3% of
memory space) was assigned to FI and the remaining to FM.
We used the same federated learning setting as in use case 1.
Compared with Dynamic Decision-Making Scheme. As
can be seen in Table 3, CFS achieved a coverage of 49.9%,
however, 62% of them are fragmented flow features. To ana-
lyze the impact of fragmentation on the model performance,
we manually removed the feature fragmentation and retrained
the model, denoted as CFS-clean in Table 3. As shown, with-
out fragmentation, the F1 score was improved slightly from
0.617 to 0.620 with the one-round training. Moreover, with
ten-round training, the model performance increases signifi-
cantly in terms of F1 score from 0.613 to 0.756, which infers
the model self-poisoning issue is caused by the inconsistency
of flow features (i.e., fragmentation) during collaborative flow
measurement. An interesting observation is that with the
fragmentation elimination, the AUC decreases from 0.828
to 0.777 in the one-round training, which proves our assump-
tion that the fragmentation is more critical for smaller flows;
recall that CIC attack flows are mostly less than 20 packets.
The results also support ISDC’s design of data aggregation,
which played an important role in efficient model training. Al-
though the AUC of CFS-clean improves slightly compared to
CFS with fragmentation, with ten-round training, the training
cost becomes a critical downside.

Lastly, ISDC’s fragmentation-free collaboration with flaw-
less aggregation led to a high-quality and scalable feature data
collection (see averaged WMREs in Tables 2 and 3), which
allows the model to improve the F1 score from 0.730 to 0.809
and AUC from 0.860 to 0.945, with ten-round training setting.

6.5 System Performance

In the following, we use a large topology, namely Tiscali (AS
3257) [58] with 161 switch nodes and 328 links, to evaluate
the ISDC’s system performance. We first analyze the key func-
tion FI in terms of flow prioritization. Next, we verify the data
scalability and integrity of ISDC at scale and compare it with
other schemes. Then, we systematically evaluate overheads

Schemes Cov. Frag. Mem.
Waste

Avg.
WMRE

F1 AUC
1 rd. 10 rd. 1 rd. 10 rd.

CFS 49.9% 62% 67.6% 0.989 0.617 0.613 0.828 0.891
CFS-clean 49.9% 0% 67.6% 0.868 0.620 0.756 0.777 0.892

ISDC 93.1% 0% 3.5% 0.297 0.730 0.809 0.860 0.945
Table 3: Comparing ISDC with CFS [34], the state-of-the-art
dynamic task distribution approach, in DoS/DDoS attack de-
tection. Data duplication and fragmentation in CFS degraded
the model’s performance, whereas ISDC, with the in-network
data aggregation mechanism, boosted the data quality and
achieved better model performance.

of ISDC, including task/data migration and data archive, to
support the feasibility of ISDC. Lastly, we measure the impact
of topology by involving two more real-world topologies with
different sizes and characteristics (see Figure 9). Worth noting
that we show the performance snapshot for all schemes in the
progress of the simulation for varied workloads (i.e., from
idle to heavy) to compare all schemes fairly.

6.5.1 Flow Prioritization with FI

Recall that FI works with two parameters (w,λ): w is assigned
a number of slots and λ is a threshold for prediction. For anal-
ysis, we mixed 140k attack flows from CIC datasets [62–64]
with ≈1.8 million benign flows from CAIDA [50]. We use
true and false positive rates (TPR and FPR) to show FI’s reli-
ability in flow size prediction but not attack detection. TPR
correctly predicts top-K flows over the ground truth of top-
K, whereas FPR incorrectly predicts top-K flows over the
ground truth of non-top-K. Figure 10 shows top-K prediction
performance varying w from 0.1k to 100k with λ = 2. As
shown, the TPR grows quickly as w increases and achieves
TPR rates of 81%, 85%, and 87% with 10k, 50k, and 100k
slots, respectively. Remarkably, the TPR of 81% is extraor-
dinary, considering the massive amount of mice flows in the
CAIDA trace and the large K = 350k targeted (i.e., the small-
est top-K flow has 10 packets only). Moreover, even with a
small number of counters (i.e., w = 10k), FI shows low FPR,
as shown in Figure 10 (a). Furthermore, FI shows stable per-
formance varying λ from 2 to 4, as shown in Figure 10 (b).
It is important to note that FI’s flow prediction consumes a
few packets for burst measure (see appendix A for details),
which becomes an inevitable cost for feature measurement
in FM. The impact, however, is negligible, as proven by the
high feature accuracy in the following section.

6.5.2 Data Collection Performance

Setting. We used an eight-minute CAIDA benign trace con-
taining around 14.5 million flows. For all compared schemes,
we assign 1.1 MB of memory space for each node, which is
enough to measure half of the CAIDA trace’s flow features.
For ISDC, we assign 5 KB of memory space to FI for target

USENIX Association 33rd USENIX Security Symposium 5171

0 20k 40k 60k 80k 100k0.0

0.2

0.4

0.6

0.8

1.0

Slots

 TPR FPR

(a) Top-K Prediction varying w

0 70k 140k 210k 280k 350k0.5

0.6

0.7

0.8

0.9

1.0

Top-K Flows

 λ = 2 λ = 3
 λ = 4 λ = 5

(b) Top-K Prediction varying λ

Figure 10: FI Top-K prediction accuracy with CAIDA trace.

flow prediction and the remaining memory to FM for per-
flow feature measurement. For FM, we follow FlowLens [6]
standard configuration that measures the most significant ten
bins. The system performance snapshots are given at each
minute; thus, before the four-minute checking point, data
plane resources are enough to measure all flow for all com-
pared schemes. This is to eliminate the impact of FI and show
the effectiveness of ISDC’s collaboration strategy.
Flow Coverage. Figure 11 shows the coverage of flow feature
measurement targeting top-100k and top-500k flows, varying
the amount of traffic from 1 to 8 minutes of CAIDA. Notably,
ISDC stands out as the top performer, achieving a remarkable
full coverage at all times and across all Ks. These results ver-
ify the superior performance of FI and ISDC’s task migration
strategy, which effectively scales up the measurement capac-
ity. On the contrary, the absence of a dynamic collaboration
of CSAMP and NSPA on flow measurement resulted in flow
omissions when a collision occurs. As can be seen, with dy-
namic task prioritization, CFS could measure more per-flow
features than CSAMP and NSPA. However, the presence of
fragmented flows in CFS contributed to approximately 50%
of the duplication and inconsistency of flow measurements,
further diminishing feature measurement accuracy.
Feature Accuracy. Figure 12 shows the cumulative distribu-
tion function (CDF) of WMRE (lower is better) for per-flow
feature measurement for top-100k and top-500k flows in the
eight minutes of traffic. As illustrated in Figure 11, ISDC
easily outperformed other methods by capturing up to 70%
more flows in all top-K while achieving WMRE 0 for 60%
in top-100k and 80% for top-500k flow feature measurement.
Remarkably, 95% of the flows measured by ISDC showed
WMRE less than 0.5 among all the top-K, which is clear evi-
dence of the closeness of the measured flow features to ground
truth. In contrast, CFS encountering fragmentation issues mea-
sured only 35% of the flows with WMRE 0, with a majority
exhibiting higher WMRE values. NSPA outperformed CFS
in capturing more flows without loss in the top-100k and
top-500k flows (see Figure 12). However, both CSAMP and
NSPA exhibited high error rates due to flow missing (i.e.,
WMRE 2), accounting for 50% of flows. To sum up, among
all the top-K flows, ISDC achieved an average WMRE of
0.05, while CFS scored 0.54, NSPA 1.04, and CSAMP 1.38.
Topology Impact. We measured the impact of network

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Time (minutes)

 ISDC CFS
 NSPA CSAMP

≈2M Flows/minute

(a) Top-100k

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Time (minutes)

 ISDC CFS
 NSPA CSAMP

≈2M Flows/minute

(b) Top-500k

Figure 11: Comparing flow coverage varying amount of traffic
from 1 to 8 minutes of CAIDA traffic. Flow coverage of top-
100k and top-500k flows are shown in varying schemes.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

WMRE

 ISDC CFS
 NSPA CSAMP

(a) Top-100k

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

WMRE

 ISDC CFS
 NSPA CSAMP

(b) Top-500k

Figure 12: Comparing feature accuracy of top-K flows vary-
ing schemes using Weighted Mean Relative Error (WMRE).

topologies on ISDC performance. To do so, we conducted ex-
periments using three different real-world network topologies
with varied sizes and characteristics (see Figure 9). Figure 13
shows the coverage and the feature quality of top-500k tar-
geted flows for three topologies. ISDC achieved near full
coverage consistently across all topologies of more than 99%,
which indicates the impact of topologies in ISDC scalability is
negligible, as shown in Figure 13 (a). For feature quality, we
also observe exceptional accuracy of ISDC across the three
topologies, as shown in Figure 13 (b). Even under Vlt topol-
ogy with extremely imbalanced network path length, ISDC
achieved a WMRE of 0 for over 70% flows. In all topologies,
over 92% of flows achieved WMREs under 0.5. Therefore,
we conclude that ISDC suppresses topology impact well on
its stable performance.

6.5.3 Overhead Analysis

Task and Data Migrations (Network Link). Figure 14 (a)
shows the overheads of data and task migrations normalized
by the total amount of traffic used for the simulation. The in-
band overhead refers to the in-network bandwidth consump-
tion caused by the data and task migrations. The overheads
can be categorized into three types: tagging header, stack
header, and feature data, where the tagging is for task migra-
tion, stack header, and data are for data migration. As shown,
ISDC’s in-band overhead is negligible compared to the to-
tal amount of traffic, considering the tag header is attached
to all the packets. Moreover, considering 17% of flow frag-
mentation generated by ISDC, the overhead triggered by data

5172 33rd USENIX Security Symposium USENIX Association

1 2 3 4 5 6 7 8
0.95

0.96

0.97

0.98

0.99

1.00

Time (minutes)

 Tiscali Vlt ASN

(a) Coverage

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

WMRE

 Tiscali Vlt ASN

(b) Feature Accuracy

Figure 13: ISDC coverage and feature accuracy comparison
for top-500k flow measurement in three real-world topologies.

migration (i.e., 0.01% for stack header and 0.05% for data) is
also negligible. We can conclude that ISDC adds insignificant
overhead to in-network bandwidth resources while eliminat-
ing the need for a central collector for data aggregation and
saving northbound bandwidth significantly (see appendix A
for northbound overhead).
Data Archive (PCIe Bandwidth). Figure 14 (b) illustrates
the in-switch communication overhead of ISDC for data
archiving from the switch’s data plane to the switch’s control
plane via PCIe. The graph depicts the PCIe utilization of all
161 switches in our large-scale simulation. This overhead
arises during the eviction process triggered in the data plane
(active data archive) when tasks are transferred to the next
switch or when the control plane (passive data archive) re-
leases the data plane memory occupied by those small but
bursty flows (short-lived flows). Our analysis revealed that
this overhead is minimal compared to the gigabyte capacity
of PCIe channels in programmable switches [27,28]. Remark-
ably, 90% of switches transfer less than 358 MB during the
data archiving process for the eight minutes of CAIDA traffic.
This negligible overhead is attributed to the narrowed scope
of feature measurement realized by FI’s design.
Data Plane Complexity (ASIC). Next, we evaluated the
overhead introduced by ISDC on the data plane. Figure 15
depicts ISDC’s data plane complexity, comprising per-packet
processing tasks such as hash operations and memory access.
The computational load in a measurement system is influ-
enced by two key factors: the complexity of data structures
in the data plane and the number of hops a packet must tra-
verse to reach the monitoring point. CFS exhibited the highest
computational load due to its intricate data plane structure,
requiring 11 memory accesses per switch in the worst-case
scenario. Although CSAMP and NSPA have less complex
data plane designs, they still incur memory access and com-
putation for nearly every packet as it traverses each switch
in the path. In contrast, our local eviction policy ensures that
most flows are measured at the edge switches. Moreover, our
FI design and the tagging mechanism reduce hash computa-
tions in subsequent FM switches by bypassing flow feature
measurement for all untargeted flows. Consequently, ISDC
significantly reduced complexity, resulting in an average of
2.3 hash computations and 5.8 memory accesses.

Traffic Tag Stack Data
10−4

10−3

10−2

10−1

100

(a) Task-Data Migration

240 320 400 480 560
0.0

0.2

0.4

0.6

0.8

1.0

MegaByte

(b) Data Archive

Figure 14: Overhead analysis: (a) ISDC’s in-network band-
width consumption for task and data migrations (tag, stack,
and data as blue bars), compared with the total amount of net-
work traffic as a reference. (b) CDF of data communication
volume through PCIe at all 161 switches for data archiving.

46.84

9.8 7.93
2.39

CFS CSAMP NSPA ISDC
0

10

20

30

40

50

(a) Hash Operation (per-packet)

72.07

12.02
7.28 5.81

CFS CSAMP NSPA ISDC
0

15

30

45

60

75

(b) Memory Access (per-packet)

Figure 15: Data plane complexity: (a) hash operation and (b)
memory access required per-packet processing in data plane.

6.5.4 P4 Implementation

We deployed FI and FM into a hardware switch’s data
plane for feasibility validation. Besides, we used the stan-
dard BFRuntime API of Tofino [27] in the switch’s control
plane to interact with our data plane functions, especially for
ISDC’s data archiving. We highlight that FI and FM used
SRAM memory only and advanced Ternary Content Address-
able Memory (TCAM) is not required.
Implementation Issues. We encountered two issues with FI
implementation. The first issue is that the hardware switch
does not support multiple variables in the same logical struc-
ture. Particularly, each slot of FI has three variables, namely
the Flow ID (key), burst count (B), and combined burst count
(B̂). To workaround, we adopted the same approach outlined
in [44] by approximating B̂ with Ball . By doing so, Ball tracks
both B and B̂ and counting them simultaneously. Accordingly,
the eviction policy will change when the condition Ball

λ
== B.

The second issue is that the length of variables cannot be var-
ied. Recall that three variables of FI maintain two different bit
lengths; thus, we had to match the bit length with the largest
variable (key). Although this hardware limitation causes some
bit waste and is not being used, the total unused memory is
negligible, considering the small size of FI.
Hardware Resource Utilization. Table 4 shows the hard-
ware resource utilization of ISDC breakdown with compo-
nents. Notably, FM that is based on FlowLens [6] exhibits the
highest resource utilization, consuming 6.25% of SRAM and

USENIX Association 33rd USENIX Security Symposium 5173

Resources Flow Identifier Feature Meter Protocol ALL
Stages 3 11 4 12

VLIWs (%) 6.25 3.12 6.25 7.03
ALU (%) 16.67 20.45 0.00 22.92

SRAM (%) 2.50 6.25 0.31 7.19

Table 4: Hardware switch resource utilization of ISDC.

20.45% of Arithmetic Logical Units (ALUs), making it the
most resource-intensive element in the system. Conversely, FI
primarily relies on computational resources, including Very
Long Instruction Words (VLIWs) and ALUs, with minimal
SRAM memory and zero TCAM usage. The protocol com-
ponent also handles header computations for reporting and
measurement processes, utilizing 6.25% VLIWs. In summary,
ISDC utilizes 7.19% of SRAM, with the majority allocated to
FM, along with 2.50% SRAM for FI, in total 22.92% ALUs
and 7.03% VLIWs. All these components are successfully
fitted into 12 stages of the switch, which infers the line-rate
packet processing capacity of ISDC’s data plane.

7 Discussions

Impact of Attack Characteristics. We consider two types
of attacks: bursty and slow attacks. Bursty attacks exploit the
resource constraints of hardware switches by sending numer-
ous burst flows to saturate the data plane. Thanks to ISDC’s
collaborative and application-focused measurement, saturat-
ing all switches across the flow routing path is not trivial.
A potential downside is that, with FI design, ISDC mainly
considers large and bursty flows. Therefore, adversaries may
launch a slow or less bursty attack to evade FI’s identification
as targeted flows, which we will explore in future research.
Feature and ML Algorithm Selection. The proposed ISDC
aims for a scalable and high-quality data collection of richer
flow distribution features concerning the resource scarcity of
measurement systems but not feature engineering. We opted
for FlowLens [6] as our feature extraction module (FM) due
to its generalizable hash table-based approach and versatility
capable of capturing per-flow features, such as packet size
distribution (PSD) and inter-packet delay (IPD). Recently,
such distribution features received much attention due to their
ability to catch application layer behavior reflected in higher-
dimension representation, which benefits attack detections
significantly [6, 12, 23, 25, 26]. With the high-quality and
rich feature support by ISDC, various advanced ML/DL algo-
rithms [6, 8, 18–22] can be integrated for advanced detection
of more sophisticated attacks without a compatibility issue.

8 Related Work

Programmable switches have been used for various applica-
tions such as network traffic measurement [29, 44, 70–77]
and attack detection [6, 12–17, 25, 30, 46]. Typically, these
works concentrate on the switch’s inner functionality but of-

ten face scalability challenges. Software-defined network-
ing (SDN) is one of the viable approaches for distributed
traffic measurement and has been widely discussed [78–83].
However, despite the dynamic nature of SDN solutions, these
works suffer from bandwidth overhead and latency issues for
measurement tasks [17]. Recent efforts in distributed traffic
measurements leveraging programmable switches have been
explored for tailored security applications, namely mitigating
link flooding attacks [13,14]. These works focused on consol-
idating in-network resources for collaborative measurement
for fast attack mitigation, focusing on the fast convergence
of distributively measured volume data for instant decision-
making. Unfortunately, the aim is mismatched with the recent
trend of using machine learning technologies with complex
features to defeat advanced work. Notably, a large body of
research has used ML/DL for network security. These works
[8, 23, 26, 84–86] primarily focus on feature engineering and
the construction of dedicated models for identifying malicious
traffic. Our work is closely related to network-wide task distri-
bution and resource allocation schemes, such as CSAMP [32],
NSPA [33], and CFS [34], which aim to achieve full flow
measurement coverage by maximizing resource utilization.

9 Conclusion

This paper introduces ISDC, an in-network serverless data col-
lection system for enhancing network defense. ISDC’s goal
is to serve as a data layer setting in the middle of infrastruc-
ture and application layers, aiming to alleviate the bottleneck
associated with data flow towards security applications in the
northbound. With this objective, we introduced various de-
signs to enhance distributed and collaborative measurement
flow features, specifically focusing on consolidating and effi-
ciently utilizing distributed in-network resources. We propose
a serverless data migration approach to enable in-network
data aggregation, ensuring data integrity for more resilient
security applications. Through ISDC, we aim to inspire re-
searchers to integrate advanced machine learning and deep
learning technologies into large-scale network attack defense.

Acknowledgements

The authors thank the anonymous shepherd and reviewers
for their valuable feedback. This work is supported by the
National Science Foundation (NSF) under grant IIS-2211897,
by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) No. RS-2023-
00222385 and No. 2023R1A2C2006373, and generously by
the College of Engineering and Computer Science at UCF.

5174 33rd USENIX Security Symposium USENIX Association

References

[1] T. Pan, X. Guo, C. Zhang, J. Jiang, H. Wu, and B. Liu,
“Tracking millions of flows in high speed networks for
application identification,” in Proc. of IEEE INFOCOM,
2012.

[2] M. Liberatore and B. N. Levine, “Inferring the source
of encrypted HTTP connections,” in Proc. of ACM CCS,
2006.

[3] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. D. Klein-
berg, E. G. Sirer, and N. Foster, “Merlin: A language
for provisioning network resources,” in Proc. of ACM
CoNeXT, 2014.

[4] A. Gupta, J. M. Kleinberg, A. Kumar, R. Rastogi, and
B. Yener, “Provisioning a virtual private network: a net-
work design problem for multicommodity flow,” in Proc.
of ACM STOC, 2001.

[5] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and M. T.
Vechev, “Nethide: Secure and practical network topol-
ogy obfuscation,” in Proc. of USENIX Security, 2018.

[6] D. Barradas, N. Santos, L. Rodrigues, S. Signorello,
F. M. V. Ramos, and A. Madeira, “Flowlens: Enabling
efficient flow classification for ml-based network secu-
rity applications,” in Proc. of ISOC NDSS, 2021.

[7] R. Trimananda, J. Varmarken, A. Markopoulou, and
B. Demsky, “Pingpong: Packet-level signatures for
smart home device events,” arXiv:1907.11797, 2019.

[8] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai,
“Kitsune: An ensemble of autoencoders for online net-
work intrusion detection,” in Proc. of ISOC NDSS, 2018.

[9] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and
H. Zhang, “Worm origin identification using random
moonwalks,” in Proc. of IEEE S&P, 2005.

[10] B. Anderson and D. A. McGrew, “Identifying encrypted
malware traffic with contextual flow data,” in Proc. of
ACM AISec@CCS, 2016.

[11] P. Narang, S. Ray, C. Hota, and V. Venkatakrishnan,
“Peershark: Detecting peer-to-peer botnets by tracking
conversations,” in Proc. of IEEE SPW, 2014.

[12] J. Xing, Q. Kang, and A. Chen, “Netwarden: Mitigating
network covert channels while preserving performance,”
in Proc. of USENIX Security, 2020.

[13] H. Zhou, S. Hong, Y. Liu, X. Luo, W. Li, and G. Gu,
“Mew: Enabling large-scale and dynamic link-flooding
defenses on programmable switches,” in Proc. of IEEE
S&P, 2023.

[14] J. Xing, W. Wu, and A. Chen, “Ripple: A programmable,
decentralized link-flooding defense against adaptive ad-
versaries,” in Proc. of USENIX Security, 2021.

[15] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu,
G. Gu, Q. Li, M. Xu, and J. Wu, “Poseidon: Mitigating
volumetric ddos attacks with programmable switches,”
in Proc. of ISOC NDSS, 2020.

[16] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and
X. Luo, “Programmable in-network security for context-
aware byod policies,” in Proc. of USENIX Security,
2020.

[17] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim,
X. Jin, V. Braverman, M. Yu, and V. Sekar, “Jaqen: A
high-performance switch-native approach for detect-
ing and mitigating volumetric ddos attacks with pro-
grammable switches,” in Proc. of USENIX Security,
2021.

[18] A. Abusnaina, A. Khormali, D. Nyang, M. Yuksel, and
A. Mohaisen, “Examining the robustness of learning-
based ddos detection in software defined networks,” in
Proc. of IEEE DSC, 2019.

[19] R. Doshi, N. Apthorpe, and N. Feamster, “Machine
learning ddos detection for consumer internet of things
devices,” in Proc. of IEEE SPW, 2018.

[20] X. Yuan, C. Li, and X. Li, “Deepdefense: identifying
ddos attack via deep learning,” in Proc. of IEEE SMART-
COMP, 2017.

[21] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “To-
ward generating a new intrusion detection dataset and
intrusion traffic characterization,” in Proc. of ICISSP,
2018.

[22] G. Andresini, F. Pendlebury, F. Pierazzi, C. Loglisci,
A. Appice, and L. Cavallaro, “INSOMNIA: towards
concept-drift robustness in network intrusion detection,”
in Proc. of AISec@CCS, 2021.

[23] C. Fu, Q. Li, and K. Xu, “Detecting unknown encrypted
malicious traffic in real time via flow interaction graph
analysis,” in Proc. of ISOC NDSS, 2023.

[24] M. Nasr, A. Houmansadr, and A. Mazumdar, “Compres-
sive traffic analysis: A new paradigm for scalable traffic
analysis,” in Proc. of ACM SIGSAC, 2017.

[25] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient
design of intelligent network data plane,” in Proc. of
USENIX Security, 2023.

[26] C. Fu, Q. Li, M. Shen, and K. Xu, “Realtime robust ma-
licious traffic detection via frequency domain analysis,”
in Proc. of ACM CCS, 2021.

USENIX Association 33rd USENIX Security Symposium 5175

[27] Intel, “Tofino-1.” [Online]. Available: https:
//www.intel.com/content/www/us/en/products/details/
network-io/intelligent-fabric-processors/tofino.html

[28] ——, “Tofino-2.” [Online]. Available: https://www.
intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-2-series.html

[29] X. Chen, S. L. Feibish, M. Braverman, and J. Rexford,
“Beaucoup: Answering many network traffic queries, one
memory update at a time,” in Proc. of ACM SIGCOMM,
2020.

[30] S. Kim, C. Jung, R. Jang, D. Mohaisen, and D. Nyang,
“A robust counting sketch for data plane intrusion detec-
tion,” in Proc. of ISOC NDSS, 2023.

[31] A. Agarwal, Z. Liu, and S. Seshan, “Heterosketch: Coor-
dinating network-wide monitoring in heterogeneous and
dynamic networks,” in Proc. of USENIX NSDI, 2022.

[32] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R.
Kompella, and D. G. Andersen, “cSamp: A system for
network-wide flow monitoring,” in Proc. of USENIX
NSDI, 2008.

[33] H. Xu, S. Chen, Q. Ma, and L. Huang, “Lightweight flow
distribution for collaborative traffic measurement in soft-
ware defined networks,” in Proc. of IEEE INFOCOM,
2019.

[34] R. B. Basat, G. Einziger, and B. Tayh, “Cooperative
network-wide flow selection,” in Proc. of IEEE ICNP,
2020.

[35] D. Han, Z. Wang, W. Chen, K. Wang, R. Yu, S. Wang,
H. Zhang, Z. Wang, M. Jin, J. Yang, X. Shi, and X. Yin,
“Anomaly detection in the open world: Normality shift
detection, explanation, and adaptation,” in Proc. of ISOC
NDSS, 2023.

[36] O. Gheibi and D. Weyns, “Lifelong self-adaptation: Self-
adaptation meets lifelong machine learning,” in Proc. of
ACM SEAMS, 2022.

[37] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh,
X. Xing, and G. Wang, “Cade: Detecting and explaining
concept drift samples for security applications.” in Proc.
of USENIX Security, 2021.

[38] C. Zhang, X. Costa-Pérez, and P. Patras, “Adversarial at-
tacks against deep learning-based network intrusion de-
tection systems and defense mechanisms,” IEEE/ACM
Trans. Netw., vol. 30, no. 3, pp. 1294–1311, 2022.

[39] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire
attack,” in Proc. of IEEE S&P, 2013.

[40] J. M. Smith and M. Schuchard, “Routing around con-
gestion: Defeating ddos attacks and adverse network
conditions via reactive BGP routing,” in Proc. of IEEE
S&P, 2018.

[41] Cloudflare, “The ddos that almost broke the inter-
net.” [Online]. Available: https://blog.cloudflare.com/
the-ddos-that-almost-broke-the-internet

[42] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Fed-
erated learning: Challenges, methods, and future direc-
tions,” IEEE Signal Processing Magazine, vol. 37, no. 3,
2020.

[43] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik,
A. T. Suresh, and D. Bacon, “Federated learning:
Strategies for improving communication efficiency,”
arXiv:1610.0549, 2016.

[44] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou,
R. Miao, X. Li, and S. Uhlig, “Elastic sketch: adaptive
and fast network-wide measurements,” in Proc. of ACM
SIGCOMM, 2018.

[45] G. Cormode and S. Muthukrishnan, “An improved data
stream summary: the count-min sketch and its applica-
tions,” Journal of Algorithms, vol. 55, no. 1, 2005.

[46] C. Jung, S. Kim, R. Jang, D. Mohaisen, and D. Nyang,
“A scalable and dynamic ACL system for in-network
defense,” in Proc. of ACM CCS, 2022.

[47] T. Benson, A. Akella, and D. A. Maltz, “Network traffic
characteristics of data centers in the wild,” in Proc. of
ACM IMC, 2010.

[48] S. Kandula, D. Katabi, S. Sinha, and A. W. Berger, “Dy-
namic load balancing without packet reordering,” Com-
put. Commun. Rev., vol. 37, no. 2, 2007.

[49] R. B. Basat, X. Chen, G. Einziger, R. Friedman, and
Y. Kassner, “Randomized admission policy for efficient
top-k, frequency, and volume estimation,” IEEE/ACM
Trans. Netw., vol. 27, no. 4, pp. 1432–1445, 2019.

[50] CAIDA, “The cooperative association for internet
data analysis, equinix chicago data center,” 2018,
[13:00-14:00, Apr 19 2018., from Sao Paulo to New
York]. [Online]. Available: https://www.caida.org

[51] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker, “P4: programming protocol-
independent packet processors,” Comput. Commun. Rev.,
vol. 44, no. 3, 2014.

[52] O. N. Foundation, “P4 language and related specifica-
tions.” [Online]. Available: https://p4.org/specs

5176 33rd USENIX Security Symposium USENIX Association

https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
https://www.caida.org
https://p4.org/specs

[53] Edge-Core, “Wedge100s-32x data center switch.”
[Online]. Available: https://www.edge-core.com/
productsInfo.php?cls=1&cls2=5&cls3=181&id=382

[54] O. N. Foundation, “P4 behavioral model,” https://github.
com/p4lang/behavioral-model.

[55] Mininet, “An instant virtual network on your laptop (or
other pc).” [Online]. Available: http://mininet.org

[56] E. W. Dijkstra, “A note on two problems in connexion
with graphs,” Numerische Mathematik, vol. 1, 1959.

[57] “The internet topology zoo.” [Online]. Available:
http://www.topology-zoo.org/

[58] N. T. Spring, R. Mahajan, and D. Wetherall, “Measur-
ing ISP topologies with rocketfuel,” in Proc. of ACM
SIGCOMM, 2002.

[59] S. Li, M. Schliep, and N. Hopper, “Facet: Streaming
over videoconferencing for censorship circumvention,”
in Proc of ACM WPES, 2014.

[60] D. Barradas, N. Santos, and L. E. Rodrigues,
“Deltashaper: Enabling unobservable censorship-
resistant tcp tunneling over videoconferencing streams.”
Proc. Priv. Enhancing Technol., vol. 2017, no. 4, pp.
5–22, 2017.

[61] R. McPherson, A. Houmansadr, and V. Shmatikov,
“Covertcast,” Privacy Enhancing Technologies, vol. 3,
pp. 1–14, 2016.

[62] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani,
“Intrusion detection evaluation dataset (cic-ids2017),”
2017. [Online]. Available: https://www.unb.ca/cic/
datasets/ids-2017.html

[63] ——, “Toward generating a new intrusion detection
dataset and intrusion traffic characterization,” in Proc.
of ICISSP, 2018.

[64] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghor-
bani, “Developing realistic distributed denial of service
(ddos) attack dataset and taxonomy,” in Proc. of ICCST,
2019.

[65] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pier-
azzi, C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos
and don’ts of machine learning in computer security,” in
Proc. of USENIX Security, 2022.

[66] Appneta, “Tcpreplay.” [Online]. Available: https:
//tcpreplay.appneta.com/

[67] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-efficient learning of
deep networks from decentralized data,” in Proc. of
AISTATS, 2023.

[68] B. Song, P. Khanduri, X. Zhang, J. Yi, and M. Hong,
“FedAvg converges to zero training loss linearly for over-
parameterized multi-layer neural networks,” in Proc. of
ICML, 2023.

[69] M. Jiang, C. Hou, A. Zheng, S. Han, H. Huang, Q. Wen,
X. Hu, and Y. Zhao, “Adgym: Design choices for deep
anomaly detection,” arXiv:2309.15376, 2023.

[70] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rex-
ford, and W. Willinger, “Sonata: Query-driven streaming
network telemetry,” in Proc. of ACM SIGCOMM, 2018.

[71] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M.
Smith, “Scaling hardware accelerated network monitor-
ing to concurrent and dynamic queries with *flow,” in
Proc. of USENIX ATC, 2018.

[72] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,
M. Alizadeh, V. Jeyakumar, and C. Kim, “Language-
directed hardware design for network performance mon-
itoring,” in Proc. of ACM SIGCOMM, 2017.

[73] V. Sivaraman, S. Narayana, O. Rottenstreich,
S. Muthukrishnan, and J. Rexford, “Heavy-hitter
detection entirely in the data plane,” in Proc. of the
Symposium on SDN Research, 2017.

[74] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-
wide heavy hitter detection with commodity switches,”
in Proc. of the Symposium on SDN Research, 2018.

[75] Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu,
N. Zheng, R. Wang, H. Wu, Y. Wang, and N. Zhang,
“Lightguardian: A full-visibility, lightweight, in-band
telemetry system using sketchlets,” in Proc. of USENIX
NSDI, 2021.

[76] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste,
“SketchLib: Enabling efficient sketch-based monitoring
on programmable switches,” in Proc. of USENIX NSDI,
2022.

[77] D. Dao, R. Jang, C. Jung, D. Mohaisen, and D. Nyang,
“Minimizing noise in hyperloglog-based spread estima-
tion of multiple flows,” in Proc. of IEEE DSN, 2022.

[78] Y. Yu, C. Qian, and X. Li, “Distributed and collaborative
traffic monitoring in software defined networks,” in Proc.
of ACM HotSDN, 2014.

[79] X. Wang, X. Li, S. Pack, Z. Han, and V. C. M. Leung,
“STCS: spatial-temporal collaborative sampling in flow-
aware software defined networks,” IEEE J. Sel. Areas
Commun., vol. 38, no. 6, 2020.

[80] N. L. M. van Adrichem, C. Doerr, and F. A.
Kuipers, “Opennetmon: Network monitoring in open-
flow software-defined networks,” in Proc. of IEEE
NOMS, 2014.

USENIX Association 33rd USENIX Security Symposium 5177

https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=382
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=382
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
http://mininet.org
http://www.topology-zoo.org/
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://tcpreplay.appneta.com/
https://tcpreplay.appneta.com/

[81] X. Yu, H. Xu, D. Yao, H. Wang, and L. Huang, “Count-
max: A lightweight and cooperative sketch measure-
ment for software-defined networks,” IEEE/ACM Trans.
Netw., vol. 26, no. 6, 2018.

[82] M. Moshref, M. Yu, R. Govindan, and A. Vahdat,
“DREAM: dynamic resource allocation for software-
defined measurement,” in Proc. of ACM SIGCOMM,
2014.

[83] Y. Mi, D. Mohaisen, and A. Wang, “Autodefense: Rein-
forcement learning based autoreactive defense against
network attacks,” in Proc. of IEEE CNS, 2022.

[84] S. Garg, K. Kaur, N. Kumar, G. Kaddoum, A. Y. Zomaya,
and R. Ranjan, “A hybrid deep learning-based model
for anomaly detection in cloud datacenter networks,”
IEEE Transactions on Network and Service Manage-
ment, vol. 16, no. 3, pp. 924–935, 2019.

[85] L. Invernizzi, S. Miskovic, R. Torres, C. Kruegel,
S. Saha, G. Vigna, S. Lee, and M. Mellia, “Nazca: De-
tecting malware distribution in large-scale networks,” in
Proc. of ISOC NDSS, 2014.

[86] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad,
“Webwitness: Investigating, categorizing, and mitigating
malware download paths,” in Proc. of USENIX Security,
2015.

[87] L. Liu, G. Engelen, T. Lynar, D. Essam, and W. Joosen,
“Error prevalence in nids datasets: A case study on cic-
ids-2017 and cse-cic-ids-2018,” in Proc. of CNS, 2022.

Appendix A Other Issues

FI Overhead. For a better understanding of FI’s overhead, we
extend our FI flow prioritization analyses (see section 6.5.1)
and analyze the average packet loss across different attack
types, as shown in Figure 16 (a). The results indicate that
for most attack types, FI successfully predicts over 96% of
flows. However, reflection attack types (e.g., DNS attack)
exhibit relatively lower prediction coverage, 87% on average,
suggesting a decrease in the attack rate due to flow reflection.
On average, attack flows had a 23% packet loss which is
inevitable cost for flow size prediction. However, considering
the small size of attacks in the dataset (i.e., 34 packets on
average), the cost is negligible.
Northbound Overhead. The northbound overhead refers to
the amount of data communication towards security applica-
tions, essential for collecting and preprocessing data to facili-
tate the construction of a single model for learning network
traffic patterns. NSPA [33] and CSAMP [32] already rely on
a central controller for data collection and decision-making,
making it trivial to send the feature data to the collector as
well. In contrast, CFS [34] necessitates a central collector to

 SSH NTP LDAP SSDP DNS SNMP UDP
0.0

0.2

0.4

0.6

0.8

1.0
 Avg. pkt loss TPR

(a) FI Overhead

CFS NSPA CSAMP ISDC
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Full Coverage

(b) Northbound Overhead

Figure 16: Analyses of potential overheads of ISDC.

remove the fragmentation effect. On the other hand, ISDC
does not require data communication with a northbound server
but only local model parameters for model aggregation. With
the size of the model we employed in our simulation, ISDC
can save out-of-band (northbound) overhead up to 94% com-
pared to CFS, as shown in Figure 16 (b). For CFS, the amount
of data transmission is even higher than the full population
flow feature migration to the northbound server due to the
massive amount of fragmentation generated during the flow
feature measurement process.

Appendix B Dataset Description

We used three datasets from CIC for evaluations [62–64].
To preprocess and extract attack flows, we adopted Liu et
al.’s approach [87] for dataset sanitization. In our endeavor to
select attack traffic from various attack types, we encountered
three challenges that necessitated excluding certain attack
types from our evaluation. Firstly, sparse flows of layer-7 at-
tacks, like Slowloris, exhibit a slow nature. Secondly, several
attack types had an inadequate number of flows (less than
1k) or were small in size, with 5-tuple definition for meaning-
ful assessment. Lastly, certain attack traffic posed difficulty
differentiating from benign traffic when utilized in machine
learning models for training purposes. Given that the feature
and machine learning are not the focus of this work, we opted
to discard these attacks. After the aforementioned prepro-
cessing procedure, the selected attacks fall into three groups,
namely reflection (NTP, LDAP, SSDP, DNS, SNMP), brute-
force (SSH), and flooding (UDP, UDP-Lag). Table 5 shows
the number of flows selected for our evaluation.

Attack type # of packets # of flows Trace
LDAP 5.4M 2K CIC-DDoS2019 [64]
DNS 17M 161K CIC-DDoS2019 [64]
NTP 10M 131K CIC-DDoS2019 [64]

SSDP 1.3M 66K CIC-DDoS2019 [64]
SNMP 7.3M 28K CIC-DDoS2019 [64]

UDP-Lag 74K 2.5K CIC-DDoS2019 [64]
UDP 1.7M 86K CIC-DDoS2019 [64]
SSH 163K 5.9K CIC-IDS2017 [62]
SSH 4.3M 188K CSE-CIC-IDS2018 [63]

Benign 250M 14.5M CAIDA [50]
Table 5: Dataset used in the evaluation.

5178 33rd USENIX Security Symposium USENIX Association

	Introduction
	Motivation and Challenges
	Data Availability for Security
	Challenges
	Design Goals

	System Design: ISDC
	Framework
	End-to-End Design
	Distributed Learning/Detection of Attacks

	Function Design
	Flow Identifier (FI)
	Feature Meter (FM)

	Protocol Design
	Task Migration
	Task-Data Isolation Design
	Data Migration

	Evaluation
	Experimental Setup
	Metrics
	Use Case 1: Covert Channel Detection
	Use Case 2: DoS/DDoS Attack Detection
	System Performance
	Flow Prioritization with FI
	Data Collection Performance
	Overhead Analysis
	P4 Implementation

	Discussions
	Related Work
	Conclusion
	Other Issues
	Dataset Description

