é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Forget and Rewire: Enhancing the Resilience of
Transformer-based Models against Bit-Flip Attacks

Najmeh Nazari, Hosein Mohammadi Makrani, and Chongzhou Fang, University
of California, Davis; Hossein Sayadi, California State University, Long Beach;
Setareh Rafatirad, University of California, Davis; Khaled N. Khasawneh,
George Mason University; Houman Homayoun, University of California, Davis

https://www.usenix.org/conference/usenixsecurity24/presentation/nazari

This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium
is sponsored by USENIX.

Forget and Rewire: Enhancing the Resilience of Transformer-based
Models against Bit-Flip Attacks

Najmeh Nazari
University of California, Davis

Chongzhou Fang
University of California, Davis

Setareh Rafatirad
University of California, Davis

Abstract

Bit-Flip Attacks (BFAs) involve adversaries manipulating a
model’s parameter bits to undermine its accuracy significantly.
They typically target the most vulnerable parameters, caus-
ing maximal damage with minimal bit-flips. While BFAs’
impact on Deep Neural Networks (DNNs) is well-studied,
their effects on Large Language Models (LLMs) and Vision
Transformers (ViTs) have not received the same attention.
Inspired by "brain rewiring," we explore enhancing Trans-
formers’ resilience against such attacks. This potential lies in
the unique architecture of transformer-based models, particu-
larly their Linear layers. Our novel approach, called Forget
and Rewire (FaR), strategically applies rewiring to Linear
layers to obfuscate neuron connections. By redistributing
tasks from critical to non-essential neurons, we reduce the
model’s sensitivity to specific parameters while preserving
its core functionality. This strategy thwarts adversaries’ at-
tempts to identify and target crucial parameters using gradient-
based algorithms. Our approach conceals pivotal parameters
and enhances robustness against random attacks. Comprehen-
sive evaluations across widely used datasets and Transformer
frameworks show that the FaR mechanism significantly re-
duces BFA success rates by 1.4 to 4.2 times with minimal
accuracy loss (less than 2%).

1 Introduction

LLMs [33] and ViTs [10] have transformed tasks in natural
language processing and computer vision, demonstrating im-
pressive capabilities in text understanding and generation, and
image classification [4,9, 11, 15]. However, these models are
vulnerable to hardware-induced adversaries, such as Bit-Flip
Attacks (BFAs) [7, 18]. BFAs exploit the hardware layer to
introduce errors in the memory regions storing a model’s
weight parameters, compromising the model’s integrity and
performance. Techniques like DeepHammer [49] target spe-
cific bits within a DRAM page, altering sensitive weights and
degrading model performance.

Khaled N. Khasawneh
George Mason University

Hosein Mohammadi Makrani
University of California, Davis

Hossein Sayadi

California State University, Long Beach

Houman Homayoun
University of California, Davis

Despite advances in memory technology, new methods
can still remotely influence memory content without direct
physical access [26]. Defending against BFAs is complex
due to the gradient-based Progressive Bit Search algorithm,
which identifies the most sensitive bits within the model’s
weights. Therefore, understanding and mitigating these at-
tacks is crucial for ensuring the robustness and reliability of
these advanced models in real-world applications.

Although modern memory technologies have enhanced
resilience to BFAs, researchers continue to uncover novel
methodologies capable of influencing the content of memory
remotely, without the necessity of direct physical access [26].
Mounting a defense against BFAs is inherently a complex
task. This complexity arises from the BFA’s utilization of
a gradient-based Progressive Bit Search algorithm, which
meticulously identifies and modifies bits within the model’s
most sensitive weights.

Inspired by the renowned neuropsychologist Donald Hebb,
who coined the well-known phrase “Neurons that fire together,
wire together” [29], we discover parallels in the adaptability
and resilience of the human brain in the face of challenges.
This popular statement underscores the brain’s capacity for on-
going reorganization and rewiring, adapting to our activities,
thoughts, and emotions in a dynamic process. Similarly, if
certain thought patterns no longer serve our best interests, our
brains have the ability to rewire to adopt alternative thoughts,
showcasing a remarkable capacity for change.

In this study, we draw inspiration from the brain’s adap-
tive mechanisms to address analogous vulnerabilities in
transformer-based architectures [42]. Our proposition centers
on the reallocation of redundant parameters in transformer-
based models such as LLM and ViT, redirecting them to aug-
ment more crucial parameters. This strategy ensures the col-
lective operation of lesser-used parameters with pivotal ones,
enhancing the model’s resilience against hardware-induced
adversaries such as BFAs [35,36], while maintaining accuracy
with negligible loss.

Taking cues from the tactics employed by attackers, this
work introduces a novel defense mechanism aiming to obfus-

USENIX Association

33rd USENIX Security Symposium 1349

cate the transformer-based models’ most sensitive weights.
The proposed methodology identifies the most and least sen-
sitive parameters within the model, subsequently rewiring
the least sensitive parameters to those deemed most crucial.
This redistribution of task responsibility across the parame-
ters effectively diminishes the sensitivity gradient, rendering
gradient-based search algorithms less effective in identifying
key parameters. Essentially, this approach aims to cloak these
important parameters, ensuring that any bit-flip injections
target less pivotal parameters.

We present a thorough exploration of the theoretical and
practical aspects of BFAs, specifically, considering the real-
world constraints of LLMs and ViTs. Building on these in-
sights, we introduce a framework (Forget and Rewire: FaR)
dedicated to pinpointing sensitive parameters and bolstering
their resilience against adaptive attacks.

Our comprehensive evaluations reveal that our proposed
approach, while minimally affecting model accuracy (-1.97%
on ImageNet without the need for retraining), significantly
obfuscates critical weights by up to 84% and 91% from po-
tential expert and basic attackers, respectively. Concurrently,
FaR compels Oracle and basic attackers to execute 1.6x up to
4x more bit-flips to achieve the same level of disruption (over
10% accuracy degradation) as they would in the absence of
FaR enhancement. To achieve acceptable robustness against
BFAs by obfuscating 15% of parameters per layer, FaR incurs
up to 4.5% and 9.3% overhead in inference time and model
storage, respectively.

It is worth noting that our proposed defense mechanism
exhibits considerable compatibility, allowing it to synergize
with other defensive strategies, such as NeuroPots [25] and
Aegis [43]. This compatibility is attributed to FaR’s primary
focus on enhancing the overall robustness of models rather
than solely on attack detection and recovery.

To the best of our knowledge, this is the first work that
adopts a rewiring method to conceal important parameters of
transformer-based models, improving their resilience against
the challenging model-centric bit-flip attacks. These attacks
pose a significant challenge with an attack surface potentially
too extensive for existing solutions to comprehensively cover.
Last but not least, the FaR library is open-sourced and publicly
available to the community for development and evaluation'.
We hope that our results could provide a new perspective for
defending against emerging attacks in deep learning, fostering
further in-depth research in this direction.

2 Background

In this section, we present a concise overview of the essential
preliminary knowledge, especially on Transformers, floating
points representation in modern hardware, and bit-flip attacks.

! Access at: http://tinyurl.com/farusenixsecurity

2.1 Transformer-based Models

The Transformer architecture forms the backbone of Large
Language Models and Vision Transformers, playing a pivotal
role in contemporary, cutting-edge pipelines for natural lan-
guage processing and image classification [1]. In this section,
we provide details of the Transformer architecture, underscor-
ing the compatibility and effectiveness of our approach when
applied to this class of models.

The Transformer model has two main parts [42]: the en-
coder and the decoder, as shown in Figure 1. The encoder
takes an input and turns it into a representation (features).
This helps the model understand the input. On the other hand,
the decoder uses the representation from the encoder and
some other information to create an output sequence. Either
of these two blocks can be employed independently based on
the nature of the task at hand:

* Encoder-only: Suitable for tasks that require an under-
standing of the input, such as text classification and
named entity recognition (NER).

* Decoder-only: Suitable for generative tasks.

* Encoder-decoder: Suitable for generative tasks that re-
quire input, such as summarization or translation.

A key characteristic of Transformer models lies in their
incorporation of specialized layers known as attention layers.
These layers instruct the model to give particular emphasis
to specific words within a sentence, effectively prioritizing
them while de-emphasizing others when constructing the
representation of each word. The attention mask can also be
used in the encoder/decoder to prevent the model from paying
attention to some special words.

Delving into the multi-head attention layer, It is comprised
of several Linear modules, each with its own set of weights
[42]. Within the attention layer, there are three essential pa-
rameters: Query, Key, and Value. These three distinct Linear
layers, which share a similar structure, treat each word in the
sequence as a vector. The encoded input representation is
passed through all three parameters. This process results in an
updated encoded representation that includes attention scores
for each word.

Within the Transformer architecture, the Attention mod-
ule carries out its computations in parallel multiple times.
Each of these parallel computations is referred to as an At-
tention Head. The Attention module divides its Query, Key,
and Value parameters into N separate parts, processing each
of these splits independently through its own dedicated Head.
After these individual Attention calculations, which share a
similar structure, are completed, their results are combined to
generate a final Attention score. This approach is known as
Multihead attention, and it empowers the Transformer to cap-
ture a broader range of relationships and subtleties associated
with each word, enhancing its overall capacity.

1350 33rd USENIX Security Symposium

USENIX Association

Outputs Probabilities

Softmax
_i
Scaled Dot-Product '

Attention 4
Add & Norm

\ y v Y Feed forward
77777777777 Linear

(
|
|
|
|
|
|
|
|

Multi-Head
Attention

Masked
Multi-Head
Attention

Multi-Head
Attention

L
._)_6) Positional
§ Encoding

Embeddin,

Inputs

Figure 1: Architecture of Transformers.

2.2 IEEE 754 Floating Point Arithmetic

Weight parameters are typically represented using IEEE-754
32-bit single-precision floating-point numbers. This format
exploits exponential notation but sacrifices precision for a
broader range of possible values. For example, the value
0.34375 in exponential notation is expressed as 1.375 x 272,
where 1.375 is the mantissa, and -2 is the exponent. The
IEEE754 single-precision floating-point format allocates 23
bits for the mantissa, 8 bits for the exponent, and one bit for
the value’s sign. What makes this format intriguing from an
adversarial standpoint is the varying impact of different bits
on the represented value. For instance, consider flipping the
20th bit in the mantissa, which results in a slight increase from
0.34375 to 0.359375, constituting a typically inconsequential
perturbation. Conversely, flipping the highest exponent bit
transforms the value into 1.375 x 2!26. Although both sce-
narios involve a single-bit manipulation, they produce two
different outcomes.

2.3 Bit-Flip Attacks

The robustness, security, and safety of a modern comput-
ing system depend on the memory isolation enforced at the
software and hardware level [12]. However, even in modern
DRAM chips, memory isolation can be compromised by read
disturbance. A notable instance of this is RowHammer [30],
an extensively researched read-disturbance phenomenon. In
RowHammer, the act of repetitively accessing and closing
(hammering) a DRAM row numerous times results in bitflips

[7 Adversary & Success! S; —

Batch of Model Gradient Sort & Bit Flip
inputs o%e calculation ranking Attack

x’ Desired
Ve . % > () — T: , BEEE @ accuracy
= N - o> drop?

No

Yes

Figure 2: Bit-Flip Attack overview.

occurring in rows that are physically close by. Another exam-
ple is RowPress [26], the most recent memory fault injection
attack targeting DDR4-based systems that are hardened by
RowHammer protection hardware. RowPress showed that
even a user-level program can still breach memory isolation
by maintaining an open state in a DRAM row for an extended
duration, leading to disruptions in physically adjacent rows
significant enough to induce bitflips.

The primary objective of bit-flip attacks is to use any prac-
tical memory fault injection attack to reduce the accuracy of
a model while minimizing the number of bit-flips performed.
A stealthy attacker’s aim is to reclassify inputs originally be-
longing to source category p into a different target category ¢
(where ¢ is not equal to p) while ensuring that the remaining
inputs maintain their original categories, thereby preserving
their accuracy and ensuring the attack remains stealthy.

One of the most successful BFAs is the DeepHammer at-
tack [49] which enhances BFAs by refining the algorithm
used to search for vulnerable bits. DeepHammer also uses
gradient-based Progressive Bit Search (PBS) to find vulner-
able bits, as shown in Figure 2. In this attack, during the k"
iteration, DeepHammer first selects n vulnerable bits based on
a gradient ranking of the model’s parameters. Subsequently,
DeepHammer individually flips each of these bits, generating
a loss set denoted as L. This process is repeated for each layer,
resulting in a total of n x [candidate bits and their correspond-
ing loss set. DeepHammer identifies the most vulnerable bit
as the one with the highest loss. Bit-flip is repetitively done
until the desired outcome is achieved. While DeepHammer is
limited to flipping just one bit per page, we are assuming that
the adversary has the capability to flip any number of bits per
DRAM page.

3 Motivation

3.1 Unveiling Security Challenges and Threats
on LLMs and ViTs

The prevalence of transformer-based models such as LLMs
and ViTs has surged dramatically, marking a significant shift
in the landscape of machine learning. These sophisticated
models, exemplified by transformer architectures, have found

USENIX Association

33rd USENIX Security Symposium 1351

extensive application across numerous domains, from ma-
chine translation [44] and content generation [50] to virtual
assistants [21] and data analysis [13]. However, this prolif-
eration has brought to the forefront a range of security con-
cerns [5,54]. The immense power of LLMs to generate coher-
ent and contextually appropriate text can be harnessed by ma-
licious actors for purposes such as misinformation dissemina-
tion, automated phishing, and even the creation of convincing
fake content [53]. Additionally, LLMs and ViTs are not im-
mune to adversarial attacks, where subtle input modifications
can manipulate their output or compromise their decision-
making processes [45]. As LLMs and ViTs become more
deeply integrated into critical systems, the potential impact of
these security vulnerabilities becomes more pronounced. Ad-
dressing these concerns is crucial to ensure that the benefits of
transformer-based models are harnessed without undermining
data integrity, and privacy in the digital landscape.

Security attacks on machine learning models can be cat-
egorized as follows: 1) evasion attacks [8], which involve
perturbing inputs during testing to deceive the classification
model; 2) poisoning attacks [47], aimed at manipulating train-
ing datasets to yield poorly-trained ML models; and 3) fault
injection attacks [6], which modify ML parameters to alter
the classifications of specific inputs towards target labels. Ir-
respective of the attack category, the overarching objective of
adversarial attacks is to induce misclassifications in certain
inputs, while maintaining a high model accuracy for others to
remain stealthy.

3.2 Addressing the Research Gap

While numerous studies have explored the vulnerabilities of
DNN:ss to fault attacks [32] or the susceptibility of LLMs and
ViTs to evasion attacks [27], a significant gap in research
remains unaddressed: the investigation of fault injection at-
tacks specifically targeting transformer-based models. Fault
attacks on DNNs have focused on exploiting vulnerabilities in
their hardware implementations or manipulating their parame-
ters to induce misclassifications. Similarly, evasion attacks on
LLMs and ViTs have delved into generating adversarial inputs
to deceive the models’ decision-making processes. However,
the distinct realm of fault injection attacks on LLMs [7] and
ViTs [52], which involves introducing controlled memory
corruptions or parameter perturbations to manipulate their
output, has remained less explored. This uncharted territory
presents a unique challenge, given the complex nature of
transformer-based architecture and its diverse applications.
Fault injection attacks on LLMs and ViTs could potentially
result in unintended or biased text generation, or misclassi-
fication, undermine their coherence, or even enable subtle
manipulations that are difficult to detect.

With the aim of uncovering the susceptibility of LLMs
and ViTs to fault attacks, we embarked on an investigation.
Our primary objective was to evaluate the resilience of these

—e—query key value dense

lay_norm dense2 —e—dense3 —e—lay_norm2
4
s 0.6
2
© 0.5
8 —
2 04
[
2 03
E]
>
5 0.2
% o
€ 01
8
s 9 = =
a
L1 L5 L9 L13 L17 L21

Layers of roberta-large-mnli model

Figure 3: Vulnerability analysis of transformer layers and
modules to single-BFA.

models by analyzing the manipulating individual model com-
ponents and parameters through the introduction of bit-flips.
We sought to understand how these induced faults could po-
tentially compromise classification outputs, remaining im-
perceptible to human observers. In pursuit of this goal, we
exposed transformer parameters to the latest BFAs.

Our analysis unveiled a critical observation: within LLMs
and ViTs, certain parameters emerged as Achilles’ heels.
These select parameters represented singular points of failure
within the model, where even a single bit-flip (SBF) could
inflict severe performance degradation. This observation is
supported by findings from Reference [7], which noted that
single-bit-flips in certain non-Wquery and Wkey parameters
could severely disrupt translation output, reducing BLEU
scores to near zero. Single-bit-flip attacks, if successful, would
lead to a complete model failure (e.g., accuracy drops to 0), of-
ten indicated by “NaN” values in PyTorch tensors. Since this
behavior is easily detectable, it is not a favorite approach
for attackers. It is important to emphasize that BFAs are
more stealthy adversaries capable of flipping multiple bits per
DRAM page to degrade the performance without being de-
tected. Figure 3 shows an example of our analysis of SBF on
roberta-large-mnli model from the hugging-face library. We
randomly selected 100 parameters per layer of the transformer
encoder and investigated if SBF can change the text classi-
fication output. The observation illustrates that dense3 and
dense2 are the most vulnerable modules while normalization
modules do not show any vulnerability.

Conversely, we also observed the existence of numerous
neurons and parameters within the model that remained dor-
mant, generating negligible activations without impacting
model sensitivity. This observation led us to contemplate an
innovative approach aimed at leveraging these non-essential
parameters to enhance the model’s robustness against BFAs.

3.3 Design Intuition

Consider a pre-trained ML model with parameter set P. In the
presence of any input x, adversaries aim to find a universal set
of weight bit-flips that result in misclassification, changing the
correct label y to an incorrect label. In practice, adversaries

1352 33rd USENIX Security Symposium

USENIX Association

L1 L2 L3 L4

Attack chain B

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Attack chain A }
I

Normal neuron
connection

Forgotten neuron Rewired neuron

connection connection

Figure 4: Comparison of the normal model and hardened model under BFAs. (a) The left diagram shows the position of bit-flips
of 2 attack chains in a normal model. (b) The right diagram shows the position of bit-flips of 2 attack chains in a hardened model
with FaR that demonstrates the increase in BFAs to achieve the same results.

are searching for a systematic misclassification of any valid
input x by altering the fewest number of bits in the model
parameter set P.

Drawing inspiration from concepts such as brain rewiring
and guided by gradient-based search algorithms, we are driven
to propose a methodology to reconfigure linear layer parame-
ters. Our motivation is to diminish the model’s sensitivity to a
few critical parameters by redistributing their responsibilities
to less crucial counterparts. In essence, our objective is to
increase the model’s resilience against BFAs by strategically
rewiring its neural connections and optimizing its parameter
utilization.

Figures 4 (a) and (b) illustrate the distribution of bit-flips
in an attack chain within a linear model, both before and after
rewiring. In the absence of rewiring (Figure 4(a)), the bit-flips
within the attack chains can affect important weights across
all layers. In Figure 4(b), we introduce a rewiring technique,
where non-important parameters are interconnected with im-
portant ones in each layer. This serves to reduce the sensitivity
of important parameters and conceal their significance. Conse-
quently, if an attacker attempts to identify crucial parameters
using gradient search, they will primarily discover less sig-
nificant parameters that have minimal impact on the model’s
outputs. As a result, the attacker would need to flip a larger
number of bits, rendering their efforts impractical.

The compatibility between our methodology and other de-
tection and recovery techniques such as NeuroPots further
enhances the overall resilience of the system, creating a more
robust and comprehensive defense against a broader spectrum
of potential threats and adversarial scenarios. NeuroPots oper-
ates by designating certain non-critical parameters as bait to
detect attacks, and it checks them for any alteration to restore
the original weights. In contrast, FaR is designed to enhance
the robustness of the model against BFA. By redistributing
critical parameter influence, FaR increases the number of bit-
flips an attacker must execute to significantly degrade model
performance. FaR focuses on preventing effective attacks by
diluting parameter sensitivity.

Figure 5 illustrates our Forget and Rewire scheme. In Fig-
ure 5(a), we have a standard linear model where three neurons
in layer / — 1 are connected to one neuron in layer /. Sup-
pose we perform sensitivity analysis on three parameters of
W using a batch of input data. In this analysis, we find that
X», the activation from neuron m,, is predominantly close to
0, making W, the least important. Similarly, because X is
larger than X3, the gradient of the output with respect to W
surpasses that of W3. Furthermore, the output of neuron Y
depends solely on X; W) + X3Ws.

In Figure 5(b), we showcase the layer following the applica-
tion of our Forget and Rewire scheme. Since m is considered
a dead neuron, its connection to n; becomes a candidate for
the “Forget” operation. Recognizing that W; holds the utmost
importance in the network, we opt to hide it from potential
attackers. Conversely, we select W, for the “Rewiring” oper-
ation and replace its value with that of W; as W, no longer
affects the output of neuron n;. To achieve this, we divide
the activation from neuron m; by 2 (the division factor). Half
of this division is passed to the same parameter Wy, and the
other half replaces the activation of the dead neuron, going
to W, (which now holds the value of Wp). This way, when
attackers employ gradient search and loss backpropagation,
they discover that the weight ranking has changed. With X;
now reduced by half, it is smaller than X3 making W3 the
most important parameter in the layer. It’s worth noting that
despite modifying a weight’s value and rewiring activations,
the output of neuron n; remains consistent, and the layer’s
functionality undergoes minimal change.

If an attacker arbitrarily targets a critical parameter (known
to the developer, such as Wp), the attack is not as effective
as in the non-FaR model. This is because W>, to which the
importance of W, has been redistributed, also needs to be
targeted. Consequently, the model’s resilience against random
attacks is enhanced as well. We provide a comprehensive
evaluation of the impact of our proposed strategy on Bit-Flip
Attacks in the section 6.

USENIX Association

33rd USENIX Security Symposium 1353

Normal linear layer Forget & Rewire

oo o N/)
®

Y = f(EXW, + b)
f(x) = ReLU

Y = f(EXW, + b)
f(x) = ReLU

X3> (X1/2) = (X,/2)
Y = f((X/2) W1+ (X;/2)W1 + X;W, + b)

SV = (X, W, + W+ b) > V= W+ X W+ b)

K Sensitive weight : W, j K Sensitive weight : Wy /

Figure 5: Forget and rewire example on a simple linear model.

4 Threat Model

X1>X3>X,=0
Y = f(X;W; + X, W, + XsW3+ b)

In this work, our goal is tailored for defense against BFAs.
BFA involves direct manipulation of the model’s parameters
at the deployment stage. This type of attack assumes that the
attacker has the capability to alter the model directly, such
as inducing bit-flips in the model’s memory, which changes
its behavior without needing to modify the input. Unlike
BFAs, Adversarial Example Attacks primarily manipulate the
input to the model without altering the model’s parameters
directly. The attackers’ goal is to deceive the model into incor-
rect predictions while they may have complete knowledge of
the model’s architecture (white-box scenario). However, the
model itself remains unaltered. Hence, the proposed FaR tech-
nique is specifically designed to mitigate the risks posed by
BFAs, where the model’s parameters are directly vulnerable
to manipulation.

4.1 Assumptions

We assume the adversary possesses the capability to execute
Bit-Flip Attacks against the models after their deployment.
This involves the precise manipulation of multiple bits of
multiple parameters to influence the prediction results of the
model, not just single-bit-flips. This threat model represents
a significantly stronger attack scenario. The feasibility and
practicality of such threats have been previously validated
and assessed in prior research [6,25,34,37]. Additionally, the
adversary has the potential to run their malicious program on
the same machine as the victim model (on resource-sharing
platforms such as ML-as-a-service) and employs methods
such as DeepHammer to carry out BFAs.

Aligned with prior research [25,43] focusing on DNNs, we
adopt the white-box assumption, assuming that the adversary
possesses the knowledge and capabilities necessary to execute
a potent attack. More precisely, the adversary is presumed to
have in-depth knowledge of the victim model, its parameters,
and relevant details. Moreover, we extend this assumption
to encompass the adversary’s familiarity with every facet
of any conceivable defense mechanism implemented within

the system. This understanding involves the mechanism’s
operation, algorithms, parameters, and other relevant aspects.
This knowledge can be acquired through methods like side-
channel attacks [48].

We categorize attackers into three types based on their
knowledge levels:

1. Basic Adversary: This attacker has no knowledge about
the FaR defense strategy, and has no access to obtain
the gradient values on the deployed model. However, the
attacker has access to an equivalent model without FaR
capability to evaluate its BFA on its local station.

2. Expert Adversary: This attacker is aware of FaR and is
able to obtain the gradient values on the deployed model.
However, the FaR configuration is not available to the
attacker.

3. Oracle Adversary: This attacker is aware of FaR and not
only is able to obtain the gradient values on the deployed
model, the attacker has access to the FaR configuration.

While the Oracle attack is a very rare scenario, it is the
strongest type of attack. It is important to note that the FaR
configuration is not publicly available and will be stored se-
curely, only to be applied during deployment. Obtaining such
configurations would require an attacker to have an excep-
tionally high level of access, such as that of a malicious cloud
provider [28]. Conversely, a model’s architecture and param-
eters are often easily accessible to the public, as seen with
models available on platforms like Hugging Face. Our ob-
jective is to enhance the model’s robustness against more
prevalent threats, such as RowPress and Deephammer, which
attackers with varying levels of expertise (basic/expert) may
exploit.

4.2 Defence Requirements

As mentioned before, in this work we seek to establish a de-
fensive strategy to harden Transformers against a range of
BFAs and potential adaptive threats. It’s important to empha-
size that our objective is not to completely eliminate BFAs but
rather to increase the difficulty and cost associated with these
attacks. Even with a robust defense in place, adversaries may
still attempt to manipulate more parameter bits. Therefore,
our aim is to significantly raise the number of bit-flips needed
for adversaries to achieve their malicious goals, making the
attack less practical and inconspicuous. The specific criteria
for our defense strategy are as follows:

1. Our defense solution should have a minimal impact on
the model’s inference process. It must maintain the us-
ability of the original model, ensuring that it retains its
prediction accuracy to a significant extent without sig-
nificant degradation.

1354 33rd USENIX Security Symposium

USENIX Association

2. Our defense approach should be easily applicable to stan-
dard, off-the-shelf Transformers. It should not require
significant alterations to the original model’s parameters,
such as retraining the model from scratch, which can be
computationally expensive.

3. Our goal is to implement a solution at the application
level that is effective across various hardware architec-
tures, operating systems, and deep learning libraries. In
contrast to previous works that have proposed hardware
or system-level measures to counteract fault injection
attacks, our solution should not be limited to specific
platforms.

S Forget and Rewire

In this section, we introduce both the theoretical principles
and practical implementation guidelines for our rewiring strat-
egy. These principles ensure the effectiveness of our proposed
approach in countering adversarial bit-flips and establish a
robust foundation for the detailed defense implementation
covered in the subsequent section.

5.1 Theoretical Basis

To thwart an attacker attempting to flip weight bits on im-
portant parameters, we analyze the attacker’s strategy, which
often involves a greedy approach to identify the most vulner-
able weight bits in the model. While the attacker’s choice of
bit-flip sequence may be influenced by the input, the initial
crucial step is to identify a bit with the highest gradient based
on the loss function, on a batch of input data, for each layer.
Subsequently, the attacker assesses the impact of individual
bit-flips on the loss function and iteratively selects the most
influential bit to flip in each iteration.

In essence, if we deliberately distribute the importance of
critical weights among others, we can enhance the likelihood
of preventing bit-flips to those crucial weights, rendering the
attacker’s bit-flip sequence ineffective. Therefore, we delve
into the backpropagation rule for computing the gradient of
the loss/cost function C with respect to weight W,,,,. This
weight connects neuron m at layer [— 1 to neuron # at layer /.
The training is the process of minimizing error/cost (which
originates from the difference between the output of the model
and the desired output). The model’s output is determined by
the activation produced by the last layer neuron, which is a
function of the neuron’s parameters (weights): a = f(W). The
relationship between activation and weight is linear, computed
as a weighted sum of inputs plus a constant bias. In the context
of gradient descent training, the goal is to minimize the error
by moving along the cost function, in the direction of the slope
of C (the derivative of the cost function). Since the formula
for the cost function is typically available (with the simplest
form being Mean Squared Error), we can readily calculate 3—5.
However, during the attack, the attacker is interested in the

weights W. Therefore, we require an expression for the rate of
change of the cost function concerning W, which necessitates
the application of the chain rule of differentiation: % Sflg(x)
YD)

The attackers’ objective is to determine the extent to which
they can maximize the error by corrupting the weights W. To
achieve this, we need to realize how changes in W impact
the output activation, and subsequently, how alterations in
the output activation influence the cost function. This can be
elucidated as follows: g—‘f, = g—‘jf, g—g

Building upon the preceding discussion, % is readily ac-
cessible, and the derivative of activation w.r.t. W is simply
the input to the parameter. This approach remains consistent
for the hidden layers, as illustrated in Figure 6. aa—g, likewise
signifies how responsive (sensitive) the output is to the pa-
rameter W. Through this method, we can discern the degree
of influence each parameter in the model has on the output.

Now, we can put it all together in the following equation:

oC
oW/,

K1

= xmnf/(ai)zﬁl Wlf;rl

where X, is the input to the parameter connected to neuron
n from neuron m at layer [— 1. a, is the neuron n’s output
before passing to its activation function f (such as ReLU). £
term is the weighted summation of loss of all neurons at layer
[+1.

The derivative %€

oW/,
to the weight paraméntyér W. A higher value suggests that this
parameter can induce more significant changes in the out-
put (resulting in model loss), which makes it an attractive
target for attackers. The goal is to diminish this sensitivity
while preserving the layer’s functionality. To achieve this,
we need to identify which term plays a crucial role in de-
termining the magnitude of this derivative. Typically, f'(a)
remains a constant value (0 or 1), especially with widely used
ReLU functions. The summation term (X) doesn’t necessarily
decrease the absolute value because weight values and loss
terms can be either negative or positive. However, the acti-
vation value from neuron m to neuron n can have the most
significant impact. Simply put, by reducing x,,,, we can de-
crease the gradient magnitude of all weights originating from
source neuron m to any destination neuron n. This principle
also applies to the output layer.

In this section, we detailed our method for identifying criti-
cal parameters within a model, emphasizing that the activation
from the preceding layer influences neuron activation more
than the weight of the parameters themselves. This approach
leads us to rank parameters based on their gradients, as illus-
trated in the simple example in Figure 6. The type of activa-
tion function, whether ReLU or GELU, does not affect this
process. It is notable that our analysis does not imply linear-
ity in neural networks; rather, it highlights how Transformer
models’ linear layers facilitate the FaR operation.

indicates how sensitive the output is

USENIX Association

33rd USENIX Security Symposium 1355

a, = wy.az

a; = w;.a, Ay = Wy.ay

Y Y Y Y
ws 4 w, ~ wy - Wo - C = Loss(ag,y)
003 08,94, 0ay 0C . 00, 00,009 0C Ja; 9a 9C 0% 0C upposes = (an—y?
ow, da, da, da, ow; day day da, da,

N IWs daz day da; dag

Ay . Wy . w1 .Wo.2(ap —y)

Figure 6: Calculating the sensitivity of output to weights.

5.2 Strategy Principles

Our proposed approach revolves around two key actions: For-
get and Rewire. Additionally, we introduce a hyperparameter
known as the division factor. The Forget operation involves
disengaging an activation generated by a dead neuron, mean-
ing it will not be transmitted to other neurons, and its weight
parameter will be replaced with a new value. A dead neu-
ron, in this context, is one whose activation hovers around
zero or is very close to it when assessed using a batch of
input data. Such neurons have minimal impact on the model’s
functionality. This concept aligns with the well-established
“Pruning technique” which typically disregards around 10 to
15% of neurons in a linear layer without compromising model
accuracy.

On the other hand, the Rewire action redirects an activation
that contributes to a parameter’s importance to another pa-
rameter. During this process, the magnitude of the activation
is divided by the division factor. The division factor plays an
important role in determining the complexity and effective-
ness of our strategy. An increase in this factor may lead to
the utilization of multiple neurons for redundancy, potentially
diminishing the model’s generalizability and risking a reduc-
tion in accuracy. Conversely, a smaller division factor may
not adequately achieve the concealing objective, thus lacking
sufficient robustness. We will assess the impact of this factor
in detail in the Evaluation Section.

To implement our strategy, as shown in Figure 7, we first
need to identify the crucial weight parameters within the lin-
ear layers of the model and devise a plan to conceal them from
potential attackers. To achieve this, we utilize a batch of input
data and perform loss backpropagation to compute gradients,
subsequently sorting them to rank the parameters. Once an
important parameter is identified in a layer, our next step is to
locate one or more dead neurons (based on a division factor)
within that same layer. When a dead neuron is pinpointed,
we subject its activation to the Forget operation, effectively
disconnecting it from the neural network. Simultaneously, we
select its connection to the neuron containing the important
parameter for the Rewiring operation. In this process, the ac-
tivation directed toward the important parameter is divided
by the division factor before being rerouted to the forgotten
parameter. Consequently, the value of the forgotten parameter
is overwritten by that of the important parameter. This pro-

cess can be iterated until a sufficient number of parameters
are obfuscated, consequently raising the number of bit-flips
required to significantly degrade the model’s accuracy. It’s
important to emphasize that after each forgetting and rewiring
step, the entire gradient calculation process must be repeated.

5.3 Algorithm for Application

Algorithm | outlines a systematic procedure aimed at aug-
menting the resilience of Transformer-based models against
Bit-Flip Attacks. Initially, the model iterates through a prede-
fined number of steps, each representing a single FaR opera-
tion. In each iteration, the algorithm first identifies the most
crucial parameter within the model by computing and analyz-
ing gradients with respect to the input data. This parameter,
deemed significant due to its gradient value, is marked for
protection against potential attacks.

Subsequently, the algorithm seeks out dead neurons that
contribute minimally to the model’s output due to their neg-
ligible activation levels. These neurons are pinpointed by
inversely sorting the computed gradients, thereby revealing
the least impactful parameters in the model’s architecture.

Once the critical and dead parameters are identified, the
algorithm devises a Forget and Rewire (FaR) configuration.
This configuration essentially outlines a strategy for each layer
of the model, determining how the activations of dead neurons
should be rerouted and their associated weights adjusted to
shield the important parameters. Since this configuration is
small and does not include all parameters, it can be stored
securely on-chip and not be available to public users.

The final step involves applying this FaR configuration to
the model during the deployment. This is achieved by locat-
ing the specific neurons and layers as per the configuration,
and then overloading its customized linear layer with the FaR
configuration and weigh replacement. During runtime, the
custom linear layer itself adjusts the neural connections ac-
cordingly. Notably, the activation directed towards a crucial
parameter is rerouted to a previously inactive (dead) neuron,
and its magnitude is moderated by a predefined division factor.
This step not only camouflages the important parameters but
also ensures the model’s functional integrity by redistributing
activations.

The entire process is iterative, with each cycle further forti-
fying the model’s defense by obfuscating additional parame-

1356 33rd USENIX Security Symposium

USENIX Association

Sort &
ranking

Gradient
calculation

Developer Batch of

inputs

& @

Model

—-1=—

Forget & Rewire BFA Desired Hardened Model
simulation robustness?
%,
Yes o‘_’,‘LLE°
A 3 { NS B
o 2
\ C——3 oITCo
) -
No

Figure 7: Forget and Rewire hardening framework.

Algorithm 1: Forget and Rewire Pseudo Code

Input: model, sample_data, labels, max_far
QOutput: Enhanced model

for i = I to max_far do
Step 1: Identify Important Parameter

important_param_d <
compute_gradient_wrt_input(model,
sample_data, labels)

Step 2: Locate Dead Neurons

dead_param_d < get_dead_params(model,
sample_data, labels, important_param_d)

Step 3: Generate Forget and Rewire Configuration

far_cfg d +
get_forget_rewire_cfg(important_param_d,
dead_param_d, model)

Step 4: Apply Forget and Rewire Configuration

model < apply_far_cfg_to_model(model,
far_cfg_d)

ters. Post each FaR operation, the model undergoes a reassess-
ment of accuracy and BFA resistance. As soon as the accuracy
is dropped or BFA resilience is achieved, the operation can
be stopped.

In a network comprising millions of parameters, the divi-
sion of activations assigned to weights has a substantial im-
pact on the weights ranking within the model. Consequently,
an attacker will only identify less important parameters as
critical. As a result, they must perform a greater number of bit-
flips to achieve the same level of accuracy reduction compared
to a network lacking the forget and rewire defense strategy.

5.4 Security Analysis

To enhance the efficiency and efficacy of our strategy, we
must explore several key aspects:

1. FaR Placement: It is required to investigate where to
position the Forget and Rewire neurons, including deter-
mining the appropriate layer and specific neuron within
a layer.

2. Activation Ranking Strategy: It is essential to develop

a robust activation ranking strategy, which may involve
ranking at different levels or stages within the model
architecture.

3. Hyperparameter Tuning: Fine-tuning the hyperparame-
ters is crucial, including selecting the optimal number
of important parameters and determining the division
factor.

Optimizing these elements will contribute to the overall per-
formance of our strategy in mitigating Bit-Flip Attacks.

6 Evaluation

In this section, we provide overarching recommendations for
the selection of pivotal hyperparameters within the Forget
and Rewire defense strategy. Specifically, we explore the
effects of these parameters, namely the choice of layer, the
number of parameters, and the division factor, on our model’s
performance. We analyze the inference time, accuracy, size
overhead, and BFA efforts.

6.1 Experimental setup

Our BFA analysis framework systematically flips individual
bits within a model and quantifies the resulting impact using
predefined metrics. The implementation of this framework
is conducted in Python 3.11 and Torch 2.0.1, which supports
CUDA 11.7 for GPU acceleration of computations. The ex-
periments are conducted on an AMD EPYC 7302 CPU (16
physical cores), running at 3.0 GHz. This platform is equipped
with four NVIDIA GeForce RTX 3070 GPUs.

We utilize the Yelp Open Dataset, which is available in
JSON format for LLM analysis. Specifically, we focus on the
review.json file, which contains comprehensive review text
data.We also evaluate the effectiveness of our FaR-enabled
defense framework with MNIST, CIFAR-10, CIFAR-100, and
a subset of ImageNet (50 samples per class from validation
set) for image classification [2].

For this study, we utilize the ¢transformers package from
Hugging Face [1] and its pre-trained models. We selected
two machine learning models suitable for image and text clas-
sification tasks. Our selection is based on the most commonly
used models (google/vit — base — patch16 — 224 on Ima-
geNet with 86.56M parameters, and dbmdz/bert — large —
cased — finetuned — conll03 — english on Yelp with 334M
parameters). It should be noted that the dbmdz model is only

USENIX Association

33rd USENIX Security Symposium 1357

used for the token classification task. Three more custom
ViT structures were also developed and trained on MNIST,
CIFAR-10, and CIFAR-100 datasets. A comparison of custom
models is presented in Table 1.

6.2 Model Integrity Evaluation

A paramount criterion for any effective hardening method is
preserving the model’s original functionality, ensuring min-
imal deviation from its trained objectives, and safeguarding
against significant accuracy loss. The redistribution of critical
weights to dead neurons is critical to maintaining accuracy.
FaR ensures that essential information still traverses through
both original and newly established detour pathways to the
output layer, preserving critical data. Hence careful selection
of dead neurons via gradient search to avoid data loss is an
important step in FaR. Moreover, FaR is a one-shot process
that does not necessitate retraining.

Table 2 presents a comparative analysis of the impact of
FaR on various models and datasets. It’s noteworthy that the
amount of degradation is comparable with Aegis, incurring a
reduction of 2% [43] on CIFAR-10/100. In contrast, alterna-
tive approaches like BIN [16] and RA-BN [38] exhibit more
pronounced accuracy degradations, approximately ranging be-
tween 2 to 4%. It’s also observed that the NeuroPots method
demonstrates an accuracy comparable to our FaR approach, re-
inforcing the notion that the FaR mechanism maintains model
integrity without substantially compromising its accuracy.

Our proposed mitigation strategy stands apart from
retraining-based methodologies that necessitate complex and
resource-intensive fine-tuning processes. Such fine-tuning is
typically accessible to defenders with ample resources and ac-
cess to large training datasets, especially for LLMs and ViTs.
In contrast, our strategy offers a one-shot model modification
approach that effectively addresses these challenges through
straightforward computations, incurring minimal cost. No-
tably, it is observed that this approach has only a marginal im-
pact on model accuracy, particularly when it involves rewiring
critical parameters.

6.3 Model Size Evaluation

While the FaR configuration is securely stored separately
from the model’s parameters, applying its configuration can
lead to an increment in the model’s size during deployment.
This increase has been systematically assessed across var-
ious datasets and model architectures utilized in our study,
as shown in Table 3. Notably, this augmentation in size is
predominantly influenced by the model’s architecture and
the quantity of parameters designated for the FaR operation,
rather than by the datasets themselves. In particular, FaR’s
memory usage increases linearly with the number of FaR-
enabled parameters.

It is important to underscore that such increments in size

Table 1: Custom ViTs for evaluation on selected Datasets

ViT Params | MNIST | CIFAR-10 | CIFAR-100
image size 28 32 32

channel size 1 3 3
patch size 7 8 8
embed size 512 512 512
num heads 8 8 8

classes 10 10 100

num layers 1 3 6
hidden size 256 256 256
Model size 3.19M 9.57TM 19.07M

Table 2: The accuracy (%) of models (w/o and w/ FaR) on
various validation datasets and transformer structures

Dataset w/o FaR | wFaR | Ageis | NeuroPots
MNIST 98.3 -0.1 — —
CIFAR-10 96.1 -1.14 | -1.26 -1.0
CIFAR-100 92.8 -1.35 -1.96 —
ImaegNet 88.4 -1.97 — -1.3
Yelp review Base -1.82 — —

generally are not a bottleneck for the practical deployment of
models even on embedded devices. Common embedded de-
vices, such as the Nvidia Jetson Nano, are typically equipped
with memory capacities at the GB scale, amply sufficient
to accommodate the FaR enhancement. Moreover, the FaR
technique significantly bolsters robustness while maintaining
accuracy levels, rendering the trade-off of a modest size in-
crease highly beneficial, especially for edge-based inference
applications.

To corroborate these assertions, we deployed our FaR-
enhanced ViT model on a widely utilized edge device, the
Nvidia Jetson Nano, equipped with 4GB of memory. The
model’s size increment proved manageable for this device
since the average inference time increased only 4 to 6%. This
underlines the practical viability and efficiency of the FaR
approach on embedded devices.

6.4 Performance and Time Overhead

One of the key objectives of our design is to guarantee that the
implementation of the FaR mechanism introduces minimal
overhead to the operational framework of the model. Table 3
presents the timing metrics associated with model inference,
both with and without the integration of FaR. It is evident
that the time increment attributable to our approach remains
marginal, primarily due to the incorporation of forget and
rewire operations within the inference process. This addi-
tional time demonstrates a linear correlation with the volume
of parameters earmarked for the FaR process.

The process of parameter selection for FaR is conducted
offline, post-training. The duration of this process varies de-
pending on several factors, including model size, computing
resources (CPU/GPU), FaR configuration, and the desired

1358 33rd USENIX Security Symposium

USENIX Association

Table 3: Storage and Time overhead of FaR-based hardening
on different Transformer architectures and datasets.

MNIST CIFAR-10 CIFAR-100 Yelp ImageNet
ViTl ViT2 ViT3 dbmdz google
Inference
Time (%) +0.0 +0.3 +0.1 +1.1 +2.5
Model
Size (%) +2.7 +3.3 +5.1 +8.9 +9.3
Offline FaR
Calculation 9 22 65 237 184
Time (H)

level of robustness against BFA. For instance, the time re-
quired to find FaR settings for a ViT trained on ImageNet can
range from a few hours to several days as shown in Table 3.

Currently, the most significant contributor to the inference
time overhead is the fact that our customized linear layer, in-
fused with FaR configurations, lacks optimization with binary
libraries and operates solely within a Python environment.
This contrasts with the conventional linear layers in PyTorch,
which benefit from optimized matrix multiplication opera-
tions. Addressing this, we aim to explore Python bindings in
C++ for FaR, aspiring to expedite the FaR operations within
the linear layer in future endeavors. While principles under-
lying FaR suggest its theoretical scalability to larger models,
including LLMs with multi-billion parameter configurations,
in practice, as the results show in Figure 13, an optimized FaR
library is a must to achieve acceptable inference overhead for
such enormous models.

6.5 Concealing Efficiency

The attack chain refers to the set of parameters targeted in a
BFA, indicating which parameters were considered highly im-
portant from the attacker’s perspective. Concealing Efficiency
is the rate at which these parameters are concealed (rewired)
within the attack chain.

Table 4 demonstrates the proficiency of our hardening tech-
nique in obfuscating pivotal parameters that are typically
targeted in bit-flip chains orchestrated by BFA strategies. For
instance, our fortified model successfully identifies and con-
ceals 92%, 83%, and 77% of parameters in the basic, expert,
and oracle attack chains, averaging a concealing rate of 84%
in total. While it’s acknowledged that our defense mechanism
may not obscure every parameter from potential attackers,
the FaR-enabled model retains its core functionality and re-
silience against attacks. This resilience is underpinned by our
method’s strategic focus on shielding the most critical pa-
rameters along the attack’s critical path—parameters whose
alteration could lead to significant compromise if included in
a bit-flip attack chain.

Figure 8 further explores the influence of hyperparameters
(elaborated upon in Section 6.9) on the concealing rate. The
observations from increasing the number of layers in our
experiments show a diminished effect on the concealing rate,

Table 4: Example of BFA chains generated on the model w
and w/o FaR and conceal rate

of Coverage | Accuracy
Dataset Attack | FaR bit-flips (%) drop (%)
Basic No 75 — -32.3

MNIST Yes 282 97 -31.4
Expert No 38 - -31.7

Yes 99 92 -32.2

Bsic |yt ||

es -35.

CIFAR-10 Exper No 36 — 364
Yes 210 82 -36.0

Boic |y S0 T w7

es -27.

CIFAR-100 Expen No 39 — 333
Yes 370 78 -28.4

(%) @384 buljeadU0D

Figure 8: The impact of the number of FaR parameters per
layer, and the number of selected layers on the concealing
rate of important parameters in basic BFA’s critical path.

contrasting with the effect observed when altering the number
of FaR parameters per layer. This pattern implies that the
majority of critical parameters, which affect the concealing
rate, are located within the last few layers of the model.

6.6 Mitigation Effectiveness

Another notable advantage of our proposed strategy is its
resilience even against an Oracle attacker with knowledge
about the hardened model.

Figure 9 shows our analysis of the number of bit-flips re-
quired to degrade the accuracy of the FaR model by more than
10% when the decision factor is changed. The normalization
is grounded on the bit-flips required for Oracle attacks on non-
FaR models. A division factor of 1 indicates that each critical
parameter is rewired with one dead neuron. Figure 9 depicts
that even Oracle attackers require 1.68 times more bit-flips
(division factor 5). Under the same configuration, the model’s
accuracy decreases by 1.83% when 10% of parameters per
layer are selected for rewiring (Figure 10).

In contrast to NeuroPots, where an attacker aware of the
honey neurons can bypass them by avoiding highly sensi-

USENIX Association

33rd USENIX Security Symposium 1359

a5 —e—Basic —s—Expert —s—Oracle

3.5

2.5
2 1,68

Normalized #BFAs

1.5

o
-
N
w
N
o
(2]

Division Factor

Figure 9: The impact of the division factor on the normalized
number of bit-flips required to degrade the accuracy by 10%
when 15% of parameters per layer are selected for FaR .

tive parameters, our approach presents a more robust defense.
Even if the attacker is informed about the obfuscation of criti-
cal parameters through the forget and rewiring schemes, they
cannot exploit this knowledge effectively. This is because
the critical parameter is no longer the single point of failure,
and the model’s critical path has been diversified, with tasks
distributed among other neurons. This redistribution creates
alternative pathways or spare paths via rewired neurons, al-
lowing crucial information to continue propagating through
the model even if the original vital parameters are compro-
mised. Consequently, the attacker is still compelled to execute
additional bit-flips to degrade the model’s accuracy, making
the attack considerably more challenging, resource-intensive,
and exposed to detection.

Our hardening strategy can seamlessly integrate with var-
ious online fault detection and model recovery techniques.
One straightforward detection mechanism involves checksum-
based detection, applied selectively to a subset of parameters
within each model. Following the implementation of the for-
get and rewire technique on the model, the parameter rank-
ings shift compared to the original model. Less important
parameters now assume higher ranks, rendering them more
vulnerable to potential attacks by adversaries. Consequently,
within each critical layer of the modified model, we can desig-
nate a subset of the highest-ranked parameters for checksum
calculation, saving the results in a secure zone. During run-
time, if the sum of the selected weights deviates from the
original sum, it signals potential tampering with the model.
Once faults are detected, we can promptly replace the weights
of the affected layer with a clean copy in real-time. This in-
tegrated approach enhances the model’s robustness against
both attacks and faults.

6.7 Regularization and Pruning

Dropout [46] is a regularization technique used during the
training phase, and randomly deactivates a subset of neurons
to prevent the network from becoming overly dependent on
specific neurons, thus enhancing generalization. However,

(%) $507 AdeINddY SBeIANY

Figure 10: The impact of the number of FaR parameters and
division factor per layer on the accuracy loss.

Table 5: Number of bit-flips (Mean and SD) required to de-
grade 10% of the accuracy of clean models and FaR models
(10% per layer) under 20% Dropout (DO) during training and
20% Pruning (PR) post-training

FaR Regularization | MNIST | CIFAR-10 | CIFAR-100
No DO - No PR 13 +4 15 +7 19 £5
w/o FaR DO - No PR 13 £5 16 £5 20 +4
DO - PR 11 £2 14 £4 17 £3
NoDO-NoPR | 46 £11 51 +8 58 +6
w FaR DO - No PR 47 £10 53 £13 61 £9
DO - PR 39 +6 48 £9 56 £8

during the inference phase, dropout is not active, and all neu-
rons contribute to the output. Pruning [17] involves removing
less significant neurons or connections either during or post-
training. This process streamlines the network for inference,
making it leaner and potentially faster but does not inherently
protect against adversarial threats such as bit-flip attacks.

Table 5 presents a detailed comparison of pruning, dropout,
and FaR on robustness against BFAs. Neither dropout nor
pruning is designed to obscure or protect critical parameters
from adversarial discovery and attacks. Pruning inadvertently
makes critical parameters more discernible by simplifying
the network, easing BFA by 11% on average. Dropout aims
to prevent overfitting and does not offer specific protections
against gradient-based adversarial attacks during inference.
However, it could slightly enhance and increase the number
of bit-flips by 4% on average.

6.8 Adversarial Examples

Although adversarial example attacks are not within the scope
of our threat model [31], examining the impact of the FaR
strategy on model robustness against such attacks offers valu-
able insights. To this end, we evaluated the resilience of FaR-
hardened models against a well-known adversarial example at-
tack, iterative FGSM (epsilon is set to 0.01) [20]. We analyzed

1360 33rd USENIX Security Symposium

USENIX Association

——MNIST —-CIFAR-10 ——CIFAR-100

FGSM iteration change (%)

0 2 4 6 8 10 12 14 16 18 20 22
Percentage of FaR parameters per layer (%)

Figure 11: The impact of the number of FaR parameters per
layer on the number of iterations required to generate an
adversarial example to fool the model.

how reconfiguring model parameters through FaR influences
the generation and effectiveness of adversarial examples on
ViT models trained on MNIST, CIFAR-10, and CIFAR-100.
We randomly selected 100 images from the validation dataset
and applied the attack on FaR models. The results, presented
in Figure 11, show that limited FaR operations can slightly in-
crease robustness against adversarial perturbations. However,
as the number of FaR operations per layer increases, we ob-
served a reduction in the number of iterations required to fool
the model. This finding indicates a delicate trade-off between
resilience to BFA and susceptibility to adversarial examples.
While a higher number of FaR operations enhances resilience
against BFA, it can also increase vulnerability to adversarial
examples, likely because rewiring parameters may exacerbate
the propagation of perturbations within the model. Another
observation is that by increasing the model size (from MNIST
to CIFAR-100), the impact of FaR on adversarial examples’
strength is reduced.

6.9 Ablation Study

In this section, we examine the effects of FaR’s hyperpa-
rameters (particularly the number of parameters selected for
FaR per layer and the division factor) on the performance of
Transformer models, specifically focusing on our custom ViT
trained on the CIFAR-100 dataset.

Figure 10 illustrates the effect of FaR hyperparameters on
the accuracy degradation of our custom ViT. In this study,
we varied the percentage of parameters considered for FaR
operations per layer from 1% to 30% of the total parameters
in a layer. We also incrementally adjusted the division factor
from 1 to 10.

The findings reveal that an increase in both the number of
parameters involved in FaR operations and the division factor
leads to a reduction in accuracy. This outcome is attributed
to the fact that rewiring a larger number of parameters com-
promises the model’s generalizability. Essentially, the model
becomes overly optimized for resisting BFAs specific to the
classes of inputs used in gradient calculation, at the expense
of its broader applicability.

sy4g # P3z!|eWIoN

14 -
10 12 el \B/O\
- e(\aﬂ

6 a‘(\‘i

1.0 2 *éa"* pa(

Figure 12: The impact of the number of FaR parameters and
division factor per layer on the normalized number of bit-flips
(using basic attack) required to degrade the accuracy by 10%.

The accuracy also proves to be highly dependent on the
selection of input batches for gradient computation to identify
critical parameters. Varying the classes of input samples used
in this process would likely alter the parameters deemed most
important, thereby affecting the model’s validation set accu-
racy. Our experiments show that diversifying the input batches
used to determine significant parameters mitigates the adverse
effect on accuracy. However, this strategy may not necessar-
ily enhance the model’s overall resilience to generic BFAs
but could reduce its defense against targeted BFAs aimed at
specific output classes.

Initially, an increase in the division factor does not ad-
versely affect accuracy due to the strategic selection of dead
neurons for rewiring. Nonetheless, a notable decrease in ac-
curacy is observed when expanding the scope of parameters
classified as dead neurons, particularly when such expansion
causes the FaR mechanism to contradict its intended function.
This analysis shows that there is a delicate trade-off between
FaR parameters and the accuracy of the model.

Figure 12 illustrates the role of FaR hyperparameters in
strengthening models against basic BFAs. The findings reveal
that an increase in the number of parameters involved in the
FaR process leads to a quadratic rise in the number of bit-
flips necessary to reduce the model’s accuracy to the level of
random guesses (representing a 10% loss, with the baseline
being the count of BFAs in scenarios not employing FaR).

Furthermore, Figure 13 depicts the influence of the number
of FaR parameters and division factor per layer on the infer-
ence time overhead. It reveals an anticipated trend: a rise in
inference time correlating with an increase in the number of
FaR parameters and division factors. It is notable that this ad-
ditional time overhead is potentially reducible through the im-
plementation of an improved and optimized linear layer. Such
a layer would facilitate FaR operations via quicker C/C++
bindings within PyTorch, a modification we aim to explore in
our forthcoming research efforts.

USENIX Association

33rd USENIX Security Symposium 1361

(%) PeaUYIIA0 SWIL

Dj,;.. 3 2
IV/S/O,,) fe 2 : 10 99
Cto,.

Figure 13: The impact of the number of FaR parameters and
division factor per layer on the inference time overhead.

7 Discussion

7.1 Efficacy Against Sophisticated Attacks

Attacks Adapted against Gradient-based Defense: BFA
aims to minimize the number of bit-flips required to degrade
model accuracy, by targeting the most influential parameters
that invariably exhibit high activation levels, making them
detectable by gradient-based search. Consequently, our de-
fense mechanism’s effectiveness remains intact across differ-
ent strategies for targeting critical parameters.

Attacks Adapted against Redistribution Strategy: Our
defensive strategy, by design, increases the computational
and operational cost for an attacker by necessitating a higher
number of bit-flips. Should an attacker become aware of our
rewiring scheme and attempt to target the original critical
parameters, they would face the challenge of having to com-
promise all or most of the parameters that have been redis-
tributed to a particular neuron. This is because attacking only
the originally important parameter would not result in the
expected performance degradation, as the activation is now
also being propagated through other rewired parameters. This
scenario forces the attacker to commit more bit-flips to effec-
tively disrupt the model, aligning with our primary objective
of enhancing resilience.

7.2 Using encryption to enhance security

Use of Authenticated Encryption: By applying authenti-
cated encryption techniques to LLM memory, any tampering
or bit-flips, such as those caused by row hammer attacks, be-
come immediately apparent upon decryption. This ensures
that any unauthorized alteration of the encrypted data can be
detected, thus adding a robust layer of security.

Integration of ECC with Encryption: Extending the secu-
rity measures, the incorporation of Error Correcting Code

(ECC) alongside encryption can correct multiple-bit-flips.
This is particularly beneficial in environments where data
integrity and accuracy are critical. Although ECC can effec-
tively manage multi-bit corrections, the scalability of this
approach in the context of LLMs, which utilize billions of
parameters, presents substantial challenges.

Resource Intensity and Feasibility: While the combined use
of authenticated encryption and ECC offers a high level of
security, the resource demands of implementing such com-
prehensive protection for billions of parameters are immense.
Given the current technological and economic landscape, this
solution might not be the preferred choice due to its signifi-
cant resource consumption and associated costs that require
further investigation.

7.3 Limitation and Future Research Directions

The current research has focused primarily on the application
of our Forget and Rewire technique to linear layers within
transformer-based models. However, there remain several
promising avenues for future exploration and expansion of
this work.

Potential Impact on Model Interpretability: The FaR
technique, by design, involves redistributing critical weights
across a broader spectrum of neurons, which inherently in-
volves more parts of the network in performing similar tasks.
This redistribution could potentially obscure the clarity with
which specific network decisions can be attributed to partic-
ular neurons or layers. As a result, the effectiveness of tech-
niques like Grad-CAM [40] and Saliency Maps [3], which
rely on clear, localized activation patterns to interpret model
decisions, might be diminished. While the potential impact on
interpretability is valuable, it is important to note that the cur-
rent scope of our evaluation does not include a comprehensive
analysis of interpretability changes due to the implementa-
tion of FaR. Investigating the trade-offs between enhanced
security and interpretability could provide valuable insights
into the design and optimization of secure machine learning
systems further studies could explore this dimension.
Extension to Convolutional and Recurrent Layers: One
notable direction for future research involves adapting our
Forget and Rewire strategy to convolutional layers (CNNs)
and recurrent layers. While our current study centered on
transformers, the applicability and potential benefits of our
techniques in conventional deep neural networks (DNNs) like
ResNet and AlexNet warrant investigation. Exploring how
Forget and Rewire can enhance the robustness and security
of these widely-used architectures is an important next step.
Integration with Other Defensive Techniques: Another
intriguing avenue is the integration of Forget and Rewire with
existing defensive techniques such as NeuroPots and Aegis.
Combining these methods could lead to synergistic effects,
bolstering the model’s resilience against a broader spectrum of
attacks. NeuroPots, serving as a detection mechanism, could

1362 33rd USENIX Security Symposium

USENIX Association

complement Forget and Rewire’s protective capabilities, while
Aegis, with its randomization approach, could add an extra
layer of hardening to the model. Evaluating the effectiveness
of these integrated defenses would be an insightful research
direction.

Exploration of Non-Gradient-Based Attacks: While our
work has primarily focused on gradient-based attacks, future
research could explore the development of new fault injec-
tion attack methods that do not rely on gradient information.
Investigating how Forget and Rewire stands up against such
non-gradient-based attacks would provide a more comprehen-
sive assessment of its security benefits.

Transferability and Prompt Tuning: Additionally, it would
be valuable to analyze the transferability of our Forget and
Rewire approach in the context of large language models
(LLMs). Prompt tuning techniques have gained prominence
in fine-tuning LLMs for specific tasks. Evaluating how Forget
and Rewire can be adapted and integrated into prompt-based
fine-tuning processes to enhance LLM security would be an
intriguing research avenue.

8 Related Work

Machine learning models are susceptible to various types of at-
tacks, including those focused on manipulating the data or the
model itself [7,39,41,52]. Defenses against these attacks have
been extensively studied for Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), including
evasion, poisoning, backdoor/trojan attacks, and hardware-
based fault injection techniques. However, the same level of
attention and research for defense has not been devoted to
transformer-based models. In the case of BFAs, which are a
specific type of model-centric attack, studies proposing miti-
gation strategies in DNNs can be divided into two categories:

1. Hardening the Model: These approaches aim to make
the model more robust and resistant to BFAs. They often
involve architectural modifications or training techniques
to fortify the model against potential attacks.

2. Detecting the Attack: These strategies focus on iden-
tifying when a BFA is occurring. They seek to create
mechanisms or algorithms that can detect and alert when
the model is under attack, allowing for a timely response
to mitigate the damage.

In the first category of defenses, we can highlight the work
of Li et al. [23], which employs a weight reconstruction
method. This method helps neutralize the altered values in sev-
eral model parameters, thereby reducing the impact of BFAs.
Another notable contribution is from Zhan et al. [51], who
modified the rectified linear unit (ReLU), a commonly used
activation function in DNNs, to make it more resilient to faults
caused by bit-flipping in weights. Additionally, there are bina-
rization strategies such as BIN [16] and RA-BNN [38], which

have been shown to be more effective than the aforementioned
methods. These strategies involve retraining a binarization
model from scratch to mitigate the effects of BFAs. However,
it’s important to note that these methods still require retraining
the model, incurring substantial computational costs. More-
over, aggressive quantization, as seen in these approaches,
can impact the model’s accuracy.

The most recent work falling within the model harden-
ing category is Aegis [43]. Aegis addresses targeted attacks,
which aim to flip crucial bits in specific model layers. To
thwart this, the authors introduce a dynamic exit mechanism
with additional internal classifiers (ICs) in hidden layers. This
disrupts attackers by allowing input samples to exit layers
prematurely. The dynamic exit mechanism randomly selects
ICs for predictions during each inference, making adaptive
attacks more costly. They also propose robustness training for
ICs, increasing model resilience by BFAs during IC training.

The second category operates independently of model im-
provement and offers an additional layer of protection. This
category for defending against BFAs involves integrity verifi-
cation [14,19,22,24]. In this approach, the defender generates
a reference signature from the model before it is deployed.
After deployment, new signatures are generated during infer-
ence and compared to the reference signature to detect any
discrepancies.

The latest work that proposed a checksum-based BFA detec-
tion is NeuroPots [25]. NeuroPots introduces honey neurons
as intentional vulnerabilities in DNN models, strategically
placed to lure attackers into injecting faults by increasing the
sensitivity of the model to less important parameters. This
forms the basis for a defense framework with trapdoor capabil-
ities. To efficiently detect faults, a checksum-based approach
is used, focusing on the trapdoors where most bit-flips occur.
Model accuracy is restored by refreshing these faulty trap-
doors. A potential weakness of this approach arises when the
attacker is aware of its implementation. In such cases, the
attacker could circumvent trapdoors by disregarding sensitive
parameters with sensitivity exceeding a predefined threshold.

The challenge at hand was to create robust defenses and de-
tection methods uniquely suited to transformer-based models,
which have distinctive architecture and traits. Our work distin-
guishes itself from previous research in three key aspects: 1)
We introduce the concept of rewiring in a novel manner that
eliminates the need for retraining. 2) Instead of exposing less
crucial parameters as bait for attackers, we not only conceal
important parameters but also enhance the model’s resilience
against BFAs by rewiring them to other parameters. 3) Our ap-
proach complements existing methods and can be employed
alongside them, offering an additional layer of protection.

USENIX Association

33rd USENIX Security Symposium 1363

9 Conclusion

In addressing the imperative challenge of Bit-Flip Attacks
(BFAs), this study illuminates a critical gap in research about
the impact of BFAs on Large Language Models (LLMs) and
Vision Transformers (ViTs). Inspired by the concept of “brain
rewiring”, we have proposed an innovative defense mecha-
nism, Forget and Rewire (FaR), specialized to enhance the
resilience of Transformers against bit-flip attacks. FaR entails
redistributing tasks from critical to non-essential neurons, ef-
fectively diminishing the model’s sensitivity to specific param-
eters while preserving its core functionality. Despite BFAs’
complexity, our proposed defense effectively shields sensitive
weights, with minimal time and storage overhead while main-
taining the model accuracy. The experimental results indicate
the efficacy of our proposed approach, greatly decreasing the
success rate of BFA attacks and obtaining a reduction factor
ranging between 1.4 and 4.2 times, with minimal accuracy
loss below 2%. Our novel FaR defense stands as a promising
direction in confronting evolving digital threats, potentially
steering the future of deep learning security solutions.

Acknowledgments

The work in this paper is partially supported by the National
Science Foundation grants CNS-2155002, CNS-2155029, and
CCF-22124217.

References

[1] https://huggingface.com.
[2] https://pytorch.org/vision/stable/datasets. html.

[3] Ahmed Algaraawi, Martin Schuessler, Philipp Weil3, En-
rico Costanza, and Nadia Berthouze. Evaluating saliency
map explanations for convolutional neural networks: a
user study. In Proceedings of the 25th international con-

ference on intelligent user interfaces, pages 275-285,
2020.

[4] Asmita Asmita, Yaroslav Oliinyk, Michael Scott, Ryan
Tsang, Chongzhou Fang, Houman Homayoun, et al.
Fuzzing busybox: Leveraging 1lm and crash reuse for
embedded bug unearthing. In 33th USENIX Security
Symposium, 2024.

[5] Yutong Bai, Jieru Mei, Alan L Yuille, and Cihang Xie.
Are transformers more robust than cnns? Advances
in neural information processing systems, 34:26831—
26843, 2021.

[6] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma,
Shivam Bhasin, and Yang Liu. Practical fault attack
on deep neural networks. In Proceedings of the 2018

(7]

(8]

[10]

(1]

(12]

[13]

[14]

[15]

ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2204-2206, 2018.

Kunbei Cai, Md Hafizul Islam Chowdhuryy, Zhenkai
Zhang, and Fan Yao. Seeds of seed: Nmt-stroke: Divert-
ing neural machine translation through hardware-based
faults. In 2021 International Symposium on Secure and
Private Execution Environment Design (SEED), pages
76-82. IEEE, 2021.

Nicholas Carlini and David Wagner. Towards evaluating
the robustness of neural networks. In 2017 ieee sympo-
sium on security and privacy (sp), pages 39-57. leee,
2017.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunx-
iang Wang, Yidong Wang, et al. A survey on evaluation
of large language models. ACM Transactions on Intelli-
gent Systems and Technology, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin
Liu, Ruoyu Zhang, Ruijie Fang, Asmita Asmita, Ryan
Tsang, Najmeh Nazari, Han Wang, et al. Large language
models for code analysis: Do llms really do their job?
In 33th USENIX Security Symposium, 2024.

Tommaso Frassetto, Patrick Jauernig, Christopher
Liebchen, and Ahmad-Reza Sadeghi. Imix:in-process
memory isolation extension. In 27th USENIX Security
Symposium (USENIX Security 18), pages 83-97, 2018.

Rodney A Gabriel, Brian H Park, Soraya Mehdipour,
Dale N Bongbong, Sierra Simpson, and Ruth S Water-
man. Leveraging a natural language processing model
(transformers) on electronic medical record notes to clas-
sify persistent opioid use after surgery. Anesthesia &
Analgesia, pages 10-1213, 2023.

Yanan Guo, Liang Liu, Yueqiang Cheng, Youtao Zhang,
and Jun Yang. Modelshield: A generic and portable
framework extension for defending bit-flip based adver-
sarial weight attacks. In 2021 IEEE 39th International
Conference on Computer Design (ICCD), pages 559—
562. IEEE, 2021.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen,
Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, Chun-
jing Xu, Yixing Xu, et al. A survey on vision transformer.

1364 33rd USENIX Security Symposium

USENIX Association

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

IEEE transactions on pattern analysis and machine in-
telligence, 45(1):87-110, 2022.

Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali
Chakrabarti, and Deliang Fan. Defending and harness-
ing the bit-flip based adversarial weight attack. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14095-14103,
2020.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dry-
den, and Alexandra Peste. Sparsity in deep learning:
Pruning and growth for efficient inference and training
in neural networks. Journal of Machine Learning Re-
search, 22(241):1-124, 2021.

Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cristiano
Giuffrida, and Tudor Dumitras. Terminal brain damage:
Exposing the graceless degradation in deep neural net-
works under hardware fault attacks. In 28th USENIX
Security Symposium (USENIX Security 19), pages 497—
514, 2019.

Mojan Javaheripi and Farinaz Koushanfar. Hashtag:
Hash signatures for online detection of fault-injection
attacks on deep neural networks. In 2021 IEEE/ACM
International Conference On Computer Aided Design
(ICCAD), pages 1-9. IEEE, 2021.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

Khang Nhut Lam, Loc Huu Nguy, Jugal Kalita, et al.
A transformer-based educational virtual assistant using
diacriticized latin script. IEEE Access, 2023.

Jingtao Li, Adnan Siraj Rakin, Zhezhi He, Deliang Fan,
and Chaitali Chakrabarti. Radar: Run-time adversarial
weight attack detection and accuracy recovery. In 2021

Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 790-795. IEEE, 2021.

Jingtao Li, Adnan Siraj Rakin, Yan Xiong, Lian-
gliang Chang, Zhezhi He, Deliang Fan, and Chaitali
Chakrabarti. Defending bit-flip attack through dnn
weight reconstruction. In 2020 57th ACM/IEEE De-
sign Automation Conference (DAC), pages 1-6. IEEE,
2020.

Qi Liu, Wujie Wen, and Yanzhi Wang. Concurrent
weight encoding-based detection for bit-flip attack on
neural network accelerators. In IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD),
2020, 2020.

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Qi Liu, Jieming Yin, Wujie Wen, Chengmo Yang, and
Shi Sha. Neuropots: Realtime proactive defense against
bit-flip attacks in neural networks. In 32th USENIX
Security Symposium (USENIX Security 23), pages 1-18,
2023.

Haocong Luo, Ataberk Olgun, Abdullah Giray Yaglikei,
Yahya Can Tugrul, Steve Rhyner, Meryem Banu Cavlak,
Joél Lindegger, Mohammad Sadrosadati, and Onur
Mutlu. Rowpress: Amplifying read disturbance in mod-
ern dram chips. In Proceedings of the 50th Annual Inter-

national Symposium on Computer Architecture, pages
1-18, 2023.

Kaleel Mahmood, Rigel Mahmood, and Marten
Van Dijk. On the robustness of vision transformers to
adversarial examples. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages
7838-7847, 2021.

Hosein Mohammadi Makrani, Hossein Sayadi, Najmeh
Nazari, Khaled N Khasawneh, Avesta Sasan, Setareh
Rafatirad, and Houman Homayoun. Cloak & co-locate:
Adversarial railroading of resource sharing-based at-
tacks on the cloud. In 2021 International Symposium

on Secure and Private Execution Environment Design
(SEED), pages 1-13. IEEE, 2021.

Anna McLean. Neurons that fire together, wire together.
Coach & Mentor, page 2, 2020.

Onur Mutlu and Jeremie S Kim. Rowhammer: A retro-
spective. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(8):1555-1571,
2019.

Najmeh Nazari, Hosein Mohammadi Makrani,
Chongzhou Fang, Behnam Omidi, Setareh Rafatirad,
Hossein Sayadi, Khaled N Khasawneh, and Houman
Homayoun. Adversarial attacks against machine
learning-based resource provisioning systems. [EEE
Micro, 2023.

Cheng Qian, Ming Zhang, Yuanping Nie, Shuaibing
Lu, and Huayang Cao. A survey of bit-flip attacks on
deep neural network and corresponding defense meth-
ods. Electronics, 12(4):853, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by
generative pre-training. OpenAl, 2018.

Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan
Yao, and Deliang Fan. Deepsteal: Advanced model
extractions leveraging efficient weight stealing in mem-
ories. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 1157-1174. IEEE, 2022.

USENIX Association

33rd USENIX Security Symposium 1365

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-
flip attack: Crushing neural network with progressive
bit search. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1211—

1220, 2019.

Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao,
Chaitali Chakrabarti, and Deliang Fan. T-bfa: Targeted
bit-flip adversarial weight attack. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(11):7928—
7939, 2021.

Adnan Siraj Rakin, Yukui Luo, Xiaolin Xu, and Deliang
Fan. {Deep-Dup}: An adversarial weight duplication at-
tack framework to crush deep neural network in {Multi-
Tenant}{FPGA}. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1919-1936, 2021.

Adnan Siraj Rakin, Li Yang, Jingtao Li, Fan Yao,
Chaitali Chakrabarti, Yu Cao, Jae-sun Seo, and Deliang
Fan. Ra-bnn: Constructing robust & accurate binary
neural network to simultaneously defend adversarial
bit-flip attack and improve accuracy. arXiv preprint
arXiv:2103.13813, 2021.

Bita Darvish Rouani, Mohammad Samragh, Tara Javidi,
and Farinaz Koushanfar. Safe machine learning and
defeating adversarial attacks. IEEE Security & Privacy,
17(2):31-38, 2019.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv
Batra. Grad-cam: Visual explanations from deep net-
works via gradient-based localization. In Proceedings of
the IEEE international conference on computer vision,
pages 618-626, 2017.

Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea.
Explanation-guided backdoor poisoning attacks against
malware classifiers. In 30th USENIX security sympo-
sium (USENIX security 21), pages 1487-1504, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

Jialai Wang, Ziyuan Zhang, Meiqi Wang, Han Qiu, Tian-
wei Zhang, Qi Li, Zongpeng Li, Tao Wei, and Chao
Zhang. Aegis: Mitigating targeted bit-flip attacks against
deep neural networks. In 32nd USENIX Security Sym-
posium (USENIX Security 23), pages 1-18, 2023.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang
Li, Derek F Wong, and Lidia S Chao. Learning deep
transformer models for machine translation. arXiv
preprint arXiv:1906.01787, 2019.

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

Zhipeng Wei, Jingjing Chen, Micah Goldblum, Zuxuan
Wu, Tom Goldstein, and Yu-Gang Jiang. Towards trans-
ferable adversarial attacks on vision transformers. In
Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 36, pages 2668-2676, 2022.

Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei
Chen, Min Zhang, Tie-Yan Liu, et al. R-drop: Regu-
larized dropout for neural networks. Advances in Neu-
ral Information Processing Systems, 34:10890-10905,
2021.

Huang Xiao, Battista Biggio, Gavin Brown, Giorgio
Fumera, Claudia Eckert, and Fabio Roli. Is feature
selection secure against training data poisoning? In
international conference on machine learning, pages

1689-1698, 2015.

Mengjia Yan, Christopher W Fletcher, and Josep Torrel-
las. Cache telepathy: Leveraging shared resource attacks
to learn {DNN'} architectures. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2003-2020,
2020.

Fan Yao, Adnan Siraj Rakin, and Deliang Fan. Deepham-
mer: Depleting the intelligence of deep neural networks
through targeted chain of bit flips. In 29¢th USENIX Se-
curity Symposium (USENIX Security 20), pages 1-18,
2020.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong,
Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander
Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling au-
toregressive models for content-rich text-to-image gen-
eration. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Jinyu Zhan, Ruoxu Sun, Wei Jiang, Yucheng Jiang, Xun-
zhao Yin, and Cheng Zhuo. Improving fault tolerance
for reliable dnn using boundary-aware activation. /EEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41(10):3414-3425, 2021.

Mengxin Zheng, Qian Lou, and Lei Jiang. Trojvit: Tro-
jan insertion in vision transformers. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4025-4034, 2023.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen
Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei Ye,
Neil Zhengiang Gong, Yue Zhang, et al. Prompt-
bench: Towards evaluating the robustness of large lan-
guage models on adversarial prompts. arXiv preprint
arXiv:2306.04528, 2023.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt
Fredrikson. Universal and transferable adversarial at-
tacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

1366 33rd USENIX Security Symposium

USENIX Association

	Introduction
	Background
	Transformer-based Models
	IEEE 754 Floating Point Arithmetic
	Bit-Flip Attacks

	Motivation
	Unveiling Security Challenges and Threats on LLMs and ViTs
	Addressing the Research Gap
	Design Intuition

	 Threat Model
	Assumptions
	Defence Requirements

	Forget and Rewire
	Theoretical Basis
	Strategy Principles
	Algorithm for Application
	Security Analysis

	Evaluation
	Experimental setup
	Model Integrity Evaluation
	Model Size Evaluation
	Performance and Time Overhead
	Concealing Efficiency
	Mitigation Effectiveness
	Regularization and Pruning
	Adversarial Examples
	Ablation Study

	Discussion
	Efficacy Against Sophisticated Attacks
	Using encryption to enhance security
	Limitation and Future Research Directions

	Related Work
	Conclusion

