
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

ChainPatrol: Balancing Attack Detection and
Classification with Performance Overhead for
Service Function Chains Using Virtual Trailers

Momen Oqaily and Hinddeep Purohit, CIISE, Concordia University;
Yosr Jarraya, Ericsson Security Research; Lingyu Wang, CIISE,
Concordia University; Boubakr Nour and Makan Pourzandi,

Ericsson Security Research; Mourad Debbabi, CIISE, Concordia University
https://www.usenix.org/conference/usenixsecurity24/presentation/oqaily

ChainPatrol: Balancing Attack Detection and Classification with Performance

Overhead for Service Function Chains Using Virtual Trailers

Momen Oqaily* �, Hinddeep Purohit*, Yosr Jarraya†, Lingyu Wang* �, Boubakr Nour†,

Makan Pourzandi†, Mourad Debbabi*

* CIISE, Concordia University, Montreal, Canada, {momen.oqaily, hinddeep.purohit,

lingyu.wang, mourad.debbabi}@concordia.ca
† Ericsson Security Research, Montreal, Canada, {yosr.jarraya, boubakr.nour,

makan.pourzandi}@ericsson.com,

Abstract

Network functions virtualization enables tenants to out-

source their service function chains (SFCs) to third-party

clouds for better agility and cost-effectiveness. However,

outsourcing may limit tenants’ ability to directly inspect

cloud-level deployments to detect attacks on SFC forward-

ing paths, such as network function bypass or traffic injec-

tion. Existing solutions requiring direct cloud access are un-

suitable for outsourcing, and adding a cryptographic trailer

to every packet may incur significant performance over-

head over large flows. In this paper, we propose ChainPa-

trol, a lightweight solution for tenants to continuously de-

tect and classify cloud-level attacks on SFCs. Our main idea

is to “virtualize” cryptographic trailers by encoding them as

side-channel watermarks, such that they can be transmitted

without adding extra bits to packets. We tackle several key

challenges like encoding virtual trailers within the limited

side channel capacity, minimizing packet delay, and tolerat-

ing unexpected network jitters. We implement our solution

on Amazon EC2, and our experiments with real-life data

and applications demonstrate that ChainPatrol can achieve

a better balance between security (e.g., 100% detection ac-

curacy and 70% classification accuracy) and overhead (e.g.,

almost zero increased traffic and negligible end-to-end de-

lay) than existing works (e.g., up to 45% overhead reduction

compared to a state-of-the-art solution).

1 Introduction

By decoupling network functions from proprietary physical

boxes, Network Functions Virtualization (NFV) [1] allows

tenants to host their network services on top of existing

clouds managed by third-party cloud providers [2–4]. For in-

stance, Amazon AWS Cloud is reportedly used to deploy an

entire cloud-native 5G network [2] and VMware Telco Cloud

platform is also designed for similar purposes [4]. However,

outsourcing network services to third-party clouds may also

� Corresponding authors

bring novel security challenges. Since tenants typically have

limited visibility into the underlying cloud infrastructure,

they cannot directly inspect the cloud-level deployment

of Service Function Chains (SFCs) to ensure their deploy-

ment matches the specification. Therefore, cloud-level in-

tegrity breaches may silently arise and stay invisible to ten-

ants [5]. For instance, an attacker can exploit a vulnerability

or a misconfiguration in cloud-level resources (e.g., virtual

switches) either to attack the SFC forwarding path (e.g., skip-

ping a firewall inside the SFC [6]), or to attack the traffic (e.g.,

packet/flow injection, dropping, and reordering [7]).

Many existing solutions for verifying forwarding paths

(e.g., ICING [8], OPT [9], and EPIC [10]) are not directly ap-

plicable to SFCs as they are incompatible with the inherent

characteristics of SFCs (i.e., paths dynamicity and packets

mutability) [6,11]). Later works [6,7,12] address this through

adding a cryptographic trailer to every packet, which can

guarantee the integrity and detect various attacks. However,

such capabilities come at a cost, i.e., the added communi-

cation overhead is usually proportional to the flow size (e.g.,

three times increase of the packet size [9] and 1.69 times

increase of the network traffic size [10]). Such an overhead

may be prohibitive for applications with large flow sizes,

e.g., music streaming, video conferencing, and virtual real-

ity, which have become increasingly popular today.

Benefit: NO increase to the packet size

Pm

VNF1 VNF2

Existing solutions: crypto trailers

P2TrailerP3Trailer P1Trailer

Limitation: Adding a crypto trailer to

every packet introduces significant
overhead especially for large flows

Tenant

Cloud

VNF1 VNF2

Our ideas: “virtual” trailers

Secure channel

P1P2P4

1 0

Pm

0

P3

VirtualTrailer

VirtualTrailer

Larger delay for “1” smaller for “0”

Mismatched virtual trailer

Challenges: Limited capacity for encoding, service

delay, and less trailers for detection/classification

MAC 0

MAC

Figure 1: Example of crypto/virtual trailers

Example 1. Figure 1 shows an example to further illus-

trate the limitation of existing solutions (left), and our ideas

(right). For simplicity, we consider a toy example of SFC con-

USENIX Association 33rd USENIX Security Symposium 3441

sisting of two Virtual Network Functions (VNFs) connected

through three cloud-level virtual switches, among which

the middle one is compromised.

The Research Problem: The left side of Figure 1 illustrates

a packet injection attack against the SFC. By exploiting ei-

ther a vulnerability [13, 14] or misconfiguration [15] in the

middle virtual switch, an attacker can inject a crafted packet

(Pm) into the flow of normal packets (P1, P2, and P3) be-

tween VNF1 and VNF2. Since the tenant has no direct access

to cloud-level resources, it cannot easily uncover this attack.

The protection provided by the cloud provider may also be

limited since it is not necessarily aware of all tenants’ SFCs

and forwarding policies. Therefore, such attacks may fall

into the gap and go undetected.

Existing solutions: The left side of Figure 1 also shows

how existing cryptographic solutions (e.g., [6, 7, 12]) can

detect the aforementioned attacks. Specifically, such solu-

tions would modify VNF1 to append a verifiable crypto-

graphic trailer (including a Message Authentication Code

(MAC) value computed over the packet and other trailer

fields) to every packet before it leaves VNF1. VNF2 is also

modified to verify the trailer when the packet arrives. The

malicious packet Pm can be reliably detected by VNF2 since

adversaries cannot forge such a trailer. However, as those

solutions add a trailer to every single packet, they imply an

overhead that is proportional to the flow size.

Our ideas: As shown on the right side of Figure 1, we “vir-

tualize” the physical trailers as side channel watermarks,

e.g., encoding a “virtual" trailer of ‘10’ by slightly delay-

ing packets P1 and P4 before they leave VNF1, such that

the inter-packet delay between P1 and P2 becomes slightly

smaller than usual, representing a ‘0’ bit, while the delay

between P3 and P4 becomes slightly larger than usual, rep-

resenting a ‘1’ bit. The injection of a malicious packet Pm

can be detected as it will partially destroy our virtual trailer

(there will now be two ‘0’ bits after the injection, as shown

in the figure). Moreover, as adversaries cannot forge the

MAC (whose encoding is not shown in the figure and will

be detailed in Section 3.2), they could not evade the detec-

tion with a fake trailer mimicking the expected inter-packet

delays. Finally, the way the trailer is destroyed would also

provide us additional information to not only detect the

attack, but also to classify its type (detailed in Section 4).

Specifically, this paper presents ChainPatrol, a solution

that applies the virtual trailer concept to SFCs for balancing

security (i.e., attack detection and classification) with per-

formance overhead (i.e., increased traffic and end-to-end

delay). First, ChainPatrol offers a much lighter-weight solu-

tion than existing works based on physical trailers [6, 7, 12],

since no extra bit needs to be added to packets (virtual

trailers are encoded as side channel watermarks). Second,

since virtual trailers contain similar information as in their

physical counterparts, ChainPatrol can still guarantee the

integrity of SFCs when the trailers are intact, and provide

useful information for detecting and classifying attacks

when the trailers are compromised (note these cannot be

achieved by directly applying existing watermarking tech-

niques [16–18], because the watermarks lack the semantics

of a cryptographic trailer, e.g., sequence numbers of pack-

ets or flows and MAC values). Finally, unlike many existing

works (which either require direct access to the underly-

ing cloud infrastructure [19] or require modifications to

the VNFs [20]), ChainPatrol provides a tenant-level solu-

tion that can be transparently integrated with existing SFCs,

since IPDs are directly observable and mutable at tenant

level and outside the VNFs. In summary, our main contri-

butions are as follows.

• We propose the novel concept of virtual trailer, which

inherits the advantages of both cryptographic trailer-

based solutions (i.e., verifiable attack detection) and

side-channel watermarking (i.e., lightweight). To re-

alize this, we address several key challenges such as

encoding virtual trailers within the limited capacity of

a side channel, minimizing packet delay while comput-

ing virtual trailers, and handling unexpected network

jitters. We believe this concept may potentially find

other applications in a broader context.

• We apply the concept of the virtual trailer to design

a tenant-based solution, ChainPatrol, for lightweight

attack detection and classification in SFCs hosted on

third-party clouds. First, ChainPatrol performs fast at-

tack detection by identifying destroyed virtual trail-

ers. Second, it performs in-depth attack classification

through partial reconstruction of destroyed virtual

trailers to match the expected ones. Finally, it verifies

classification results through sharing a limited amount

of information between the source and destination.

• We implement and deploy ChainPatrol based on Ama-

zon EC2 and perform extensive experiments using

both public datasets and an in-house 5G testbed. Our

experimental results demonstrate the effectiveness

(e.g., 100% detection accuracy and 70% classification

accuracy) and efficiency (e.g., close to zero increased

traffic and negligible end-to-end delay) of ChainPatrol.

Our comparison of ChainPatrol to an existing physical

trailer-based approach under real-world applications

shows a significant reduction of communication over-

head (up to 45%).

2 Background

This section provides background and our threat model.

2.1 SFC Forwarding Path Verification

Existing cryptographic solutions for forwarding path ver-

ification [6, 7] adapt traditional forwarding path verifica-

3442 33rd USENIX Security Symposium USENIX Association

Packet
Verifier

P1P1SeqNumFlowIDSrcIDDstIDMAC

MAC= hmac(key, P1, SeqNum, FlowID, SrcID, DstID)

Packet
Tagger

P1 SeqNum FlowID SrcID DstID MACP1

Trailer

Figure 2: Example of a packet with cryptographic trailer [6]

tion protocols [8–10] to the NFV setting in order to meet

its unique characteristics: (i) path dynamicity and unpre-

dictability, (ii) packet modification by VNFs, and (iii) SFC

migration and autoscaling. Specifically, those solutions in-

tercept each egress packet at a source VNF to append a cus-

tom trailer to the packet, which consists of additional data

fields along with a MAC computed over the entire packet

content (including the trailer) using a secret key. A valid

MAC extracted at the destination VNF (under the same key)

would attest to the integrity of the packet content. This al-

lows the traffic between VNFs to be verified for correctness.

Example 2. As shown in Figure 2, a packet tagger at the

source VNF appends a packet trailer to each passing packet

(top), and a packet verifier at the destination VNF verifies

the packet and its trailer for integrity (bottom). First,SeqNum

is a sequential number representing the ordering of pack-

ets between each pair of VNFs for a given flow. Together

with FlowID, it is used to detect packet reordering and re-

play attacks within a given flow. Second, FlowID is uniquely

mapped to the classic 5-tuple 〈source IP address, destina-

tion IP address, source port, destination port, protocol〉, and

is used to detect flow-based attacks (e.g., flow injection and

flow dropping). Third, SrcID and DstID refer to the source

and destination VNFs, respectively, and are used to ensure

compliance with the forwarding policy between the two

VNFs. Finally, MAC is computed over both the packet con-

tent and above trailer fields and is used to authenticate the

integrity of the packet and its trailer by the destination VNF.

2.2 Blind Watermarking

In this work, we adopt a blind watermarking approach (i.e.,

the packet verifier does not require knowledge about the

original IPDs or watermarks). This choice was made for

the following two reasons: (i) As we leverage watermarks to

transmit virtual trailers without actually sending any bit, a

non-blind approach, which must send information about

the original IPDs and watermarks between the two VNFs,

would defy our purpose. (ii) Although a non-blind water-

marking approach is usually more resistant to network jit-

ters (since the packet verifier knows the original IPDs), a

blind approach is sufficient for our purpose, because the

network connection between two VNFs in a data center is

typically more stable (in contrast to the Internet for which

most existing watermarking approaches are designed) [21].

Example 3. Figure 3 shows how a two-bit watermark mes-

sage 〈1,0〉 is encoded into the IPDs between four packets

Delay

traffic

Watermark

message
0,1Original packets

6 ms 5 ms P

1

P

2

P

4

Watermarked packets

3 ms 7 ms P

1

P

2

P

4

Avg IPD,

Jitter
=5,2

Observe

traffic

Avg IPD,

Jitter
=5,2

Extracted

message

0,1

Watermarking (Source) Extracting (Destination)

P

3

P

3

Network

performance

Figure 3: Example of watermarking and extracting two bits

at the source (left), and decoded at the destination (right).

First, the average IPD (5 ms) and network jitter (2 ms) are

continuously measured and used for reference on both

sides. Second, the source encodes a bit 1 by increasing the

original IPD between packets P1 and P2 corresponding to

the summation of the average IPD and jitter (i.e., from 5

ms to 7 ms). Similarly, it encodes a bit 0 by decreasing the

IPD between P3 and P4 corresponding to the difference be-

tween the average IPD and jitter (i.e., from 6 ms to 3 ms).

Third, by comparing the observed IPD with the average IPD

and jitter, the destination decodes a bit 1 between P1 and

P2 as 7 ě (5+2), and a bit 0 between P3 and P4 as 3 ď (5´2).

Note a jitter no greater than 2 would not change this result.

2.3 Threat Model

We consider a similar threat model as in recent works on

crypto-based forwarding path verification [6, 7]. We also

make assumptions related to our watermarking scheme.

In-Scope threats. Our in-scope threats include integrity

breaches of the SFC forwarding paths or traffic caused by

either (i) a malicious attacker compromising an underly-

ing cloud-level forwarding device [14], or (ii) misconfigura-

tions (intentionally or mistakenly) introduced by a cloud

provider [15]. Specifically, we assume the network links be-

tween VNFs and the virtual switches used to steer traffic

between such VNFs are both subject to the following attacks.

First, a compromised cloud-level device may be used to skip

VNFs or append malicious VNFs to the forwarding path, or

to cause other unexpected forwarding decisions such as

redirecting traffic intended for one VNF to another [7]. Sec-

ond, a compromised cloud-level device may also be used

to disrupt SFC traffic, such as injecting fake packets and

dropping, modifying, reordering, or replaying packets. We

assume the adversary may attempt to evade the detection

through the so-called coward attack [9] (i.e., attacking se-

lected flows not subject to detection) or attacks on the wa-

termarking scheme used to encode virtual trailers (by de-

liberately altering the IPDs). A more detailed list of attacks

covered in our work is given later in Table 2.

Out-of-Scope threats. By taking a tenant-based viewpoint,

we assume no direct access to cloud-level resources or data,

and therefore we must trust all the components to which

the tenant has direct access. This includes the VNFs and

USENIX Association 33rd USENIX Security Symposium 3443

the gateway to access the SFC, and we also consider the

cloud provider to be cheap-and-lazy but not malicious [15].

Attacks that can compromise those components or our so-

lution itself (including the secret key used to compute the

MAC) are out of scope of our work (which can be addressed

through hardware-based solutions [6,12]). We focus on veri-

fying the integrity of SFCs, and thus denial of service attacks

(e.g., dropping all packets) and attacks on confidentiality

or privacy of the traffic are out of scope. Moreover, since

we leverage a fragile watermarking scheme, which relies

on modified watermarks to detect attacks [22], watermark

invisibility attacks [16]) are out of scope for our work. Fi-

nally, as demonstrated in Section 6, our solution is more

beneficial for flows of relatively large sizes (for small flows,

the overhead of physical trailers may be acceptable).

3 Virtual Trailer

This section defines the virtual trailer concept and details

how to encode and decode virtual trailers based on IPDs.

3.1 Definitions

Our goal is to design virtual trailers to contain similar in-

formation as in their physical counterparts, such that they

can support attack detection and classification (detailed in

Section 4). However, there are several challenges. First, un-

like a physical trailer which can be defined for (and added

to) each packet, a virtual trailer can only be encoded in

the IPDs of multiple packets. Therefore, we define a virtual

trailer for each equal-sized group of consecutive packets

within the same network flow, namely, a block. Second, due

to the limited capacity of this side channel, we need to sim-

plify the design of virtual trailers to only retain a minimal

number of trailer fields, i.e., the identifiers of blocks and

flows, while implicitly representing the source and destina-

tion VNFs inside the flow identifiers. Specifically, each flow

identifier is now uniquely associated with a 7-tuple 〈source

IP, destination IP, source port, destination port,

protocol, source VNF, destination VNF 〉. Third, since

a MAC value typically contains a much larger number of

bits than what can be encoded inside a single block, we re-

define the MAC to be computed over an equal-sized group

of consecutive blocks inside the same flow, namely, a Su-

perBlock. Finally, to enable efficient attack classification and

verification, the MAC is computed based on a Merkle hash

tree [23] defined over the SuperBlock. The following first

formally defines a virtual trailer for each block.

Definition 3.1 (Virtual Trailer) Given block Bi (1 ď i ď

SF) inside a SuperBlock SB (with totally SF blocks) in

a flow F , the virtual trailer of Bi is a 3-tuple VTi =

〈BlockNumi ,FlowID,MACi 〉. First, BlockNumi P N is an in-

teger value uniquely and sequentially assigned to each block

in the given flow F . Second, FlowID P N is an integer value

Table 1: Examples of Virtual Trailers (VT)

Flow SB B
VT

BlockNum FlowID MAC

<IP1,IP2,8,80,6,VNF1,VNF2>

1
1 0001 0001 0100

2 0010 0001 1100

2
3 0011 0001 1100

4 0100 0001 1100

<IP1,IP2,4,80,6,VNF1,VNF2> 1
1 0001 0010 1010

2 0010 0010 0101

uniquely and sequentially assigned to each flow. Third,

MACi P N is the (i
SF

)th fraction of the Merkle tree [23] HMAC

value computed over all the blocks in SB concatenated

with their corresponding BlockNum and FlowID fields, i.e.,

Bi ||BlockNumi ||FlowID (1 ď i ď SF).

Example 4. Table 1 shows an example with two flows, their

SuperBlocks and blocks, and the corresponding virtual trail-

ers (last three columns). The BlockNum is sequentially as-

signed to consecutive blocks inside the same flow, starting

from a random number. Similarly, the FlowID is sequen-

tially assigned to consecutive flows. For the first flow, the

Merkle tree HMAC value of 01001100 is divided into two

equal-sized bit strings (0100 and 1100) each of which forms

the last field of the virtual trailer (similarly for the second

flow). Figure 4 also depicts a virtual trailer (bottom right)

and how the MAC value is computed (left) (the rest of the

figure will be explained later in Example 5). Algorithm 1 in

the appendix details the generation of virtual trailers.

3.2 Virtual Trailer Encoding

ChainPatrol intercepts packets at the egress of source VNF

and determines their corresponding flows, SuperBlocks,

and blocks (see Section 3.1). It then generates a virtual

trailer for each block using Algorithm 1, and encodes the vir-

tual trailer by modifying the IPDs (i.e., delaying one packet

between every pair of packets, as explained in Section 2.2).

Specifically, as each virtual trailer contains three fields (i.e.,

BlockNum, FlowID, and MAC), each block is divided into a se-

ries of three frames, and the IPDs in each frame are modified

to encode a corresponding trailer field.

However, a key challenge lies in the encoding of the MAC

trailer field. Specifically, since the MAC field of a virtual

trailer is defined over a SuperBlock (as illustrated on the left

side of Figure 4), it cannot be computed before the entire

SuperBlock is received. Therefore, any received blocks of

this SuperBlock must be delayed, since we do not yet know

how to modify their IPDs. Such delays must be maintained

until the last block arrives, after which we can then com-

pute the virtual trailer, encode it by modifying the IPDs of

all the buffered blocks, and finally forward all the blocks

to the destination VNF. However, doing so would certainly

cause prohibitive delay (proportional to the size of the Su-

perBlock). To address this, our key idea is to shift the en-

coding of each virtual trailer to the next SuperBlock. This

allows us to compute the virtual trailer (which tells us how

3444 33rd USENIX Security Symposium USENIX Association

X (BlockNum for sequencing blocks)
Y

 (
F

lo
w

ID
 f

o
r

se
q

u
e
n

c
in

g
 F

lo
w

s)

SuperBlock1

…

Block2

BlockNum=1
F

lo
w

ID
=

1

Frame1

MAC_1

00010001

BlockNum FlowID

0100

Virtual Trailer of Block1(virtually embedded in Block3)

… …

SuperBlock2

Block4Block3

Packets

0 0 0 1

IPDs

…
1100……

…

Block1

H(Block1|| BlockNum || FlowID) ….

MHT(k, SuperBlock1)= 0100 1100

Figure 4: Example of a virtual trailer and its encoding

to modify the IPDs) ahead of the arrival of any block of the

next SuperBlock, so we will know how to modify the IPD as

soon as each such block arrives, and can forward the block

with minimum delay (evaluated in Section 6).

Example 5. Figure 4 shows how the virtual trailer of a block

(Block1) in the first SuperBlock (shown on the left) is en-

coded using a block (Block3) in the next SuperBlock (shown

on the right). First,Block3 is divided into three frames, each

of which corresponds to a virtual trailer field. Second, the

IPD between each pair of packets inside a frame is then

modified (by delaying one of those packets) to encode each

bit of the field. Similarly, the virtual trailer of Block2 (i.e, the

second block of SuperBlock1) is encoded in Block4. Note

that, by the time Block3 arrives, this virtual trailer of Block1

would have already been computed. Therefore, we know

how to modify the IPDs in Block3 as soon as each pair of

packets arrives, which can then be immediately forwarded.

Another challenge is to ensure the correct decoding of

virtual trailers despite potential network jitters. For this

purpose, ChainPatrol leverages an existing watermarking

scheme [16] which is known to enable reliable extraction

of watermarks at the destination side despite network jit-

ters. The main idea is to introduce additional delay that is

proportional to the expected level of jitters in order to can-

cel their impact on the encoded watermarks. Specifically,

let m1 ¨ ¨ ¨mw be the w-bit representation of a virtual trailer

field to be encoded. Denote the IPD between two packets ar-

riving at time ti and ti+1 as IPDi = (ti+1 ´ ti). To encode bit

mi (1 ď i ď w) using IPDi , the new IPD, denoted by nIPDi ,

is computed as: nIPDi = IPDAV G +a ˆ M e
i

, where I PD AV G

is the average IPD, a is the watermarking amplitude (com-

puted using the Signal-to-Noise formula [16]), and M e
i
= 1 if

mi = 1, or M e
i
=´1 if mi = 0 (whose effectiveness is further

evaluated in Section 6). Algorithm 2 in the appendix details

the encoding of the virtual trailers of a given SuperBlock.

3.3 Virtual Trailer Decoding

ChainPatrol passively monitors packets at the destina-

tion VNF and determines their corresponding flows, Su-

perBlocks, blocks, and frames. It then decodes the virtual

trailers following a reversed process based on the observed

IPDs. More specifically, let rIPDi (1 ď i ď w) be the ob-

served IPD between the i th and (i +1)th packets, where w

is the size of a virtual trailer field, and let IPDAV G and a be

the average IPD and the watermarking amplitude, respec-

tively. Denote M d
i
= (rIPDi ´ IPDAVG)/a. The w-bit binary

representation of the virtual trailer field can be computed

as: mi = 1 if M d
i
= 1, or mi = 0 if M d

i
=´1.

Attacks such as dropping, injection, or reordering of pack-

ets may shift the frames and blocks among the observed

packets. Section 4 will detail how we address this issue and

leverage it to classify attacks. Another challenge is related to

the last SuperBlock. First, the virtual trailers of this last Su-

perBlock itself cannot be encoded using the IPDs of next Su-

perBlock (which does not exist). Second, when we divide a

given flow into equal-sized blocks and SuperBlocks, the last

SuperBlock may be incomplete, i.e., there are not enough

packets remaining to compose a complete SuperBlock,

which would prevent encoding the virtual trailers of the

previous SuperBlock using IPDs. ChainPatrol addresses the

first challenge by directly appending a physical version of

the virtual trailers to the flow. Since ChainPatrol is designed

for large flows (as stated in Section 2.3) with a significant

number of SuperBlocks, the overhead of one trailer will be

negligible in contrast to the flow size. To address the second

challenge, ChainPatrol performs one of the following two

options that introduce less overhead, i.e., (i) adding dummy

packets to the last SuperBlock such that it can have enough

IPDs for encoding the virtual trailers of the previous Su-

perBlock, or (ii) appending the physical trailers. Algorithm

3 in the appendix details virtual trailer decoding.

3.4 Handling Unexpected Network Jitters

ChainPatrol is designed for SFCs hosted inside cloud data

centers, which is known to be more stable than the In-

ternet [21], so network disturbance is expected to be rare.

Nonetheless, since unexpected network jitters can still hap-

pen and disrupt the transmission of virtual trailers, we de-

USENIX Association 33rd USENIX Security Symposium 3445

P1 P2 P3

To-be-encoded IPDs: 52, 48 Avg IPD: 50 Expected jitter: 2

t0 t50 t100

P1 P2

t52

P3

t102 t150

P4

t153

P1

t0+4

P2

t52+4

P3

t102+4

P4

t154

Original traffic

1 0

1 0

Standard watermarking

Our Solution: (X=4)-shifted watermarking

Encoding

impossible!

(P4 can not be

sent before it

arrives)

t0

Figure 5: X -shift for encoding w/ unexpected IPD variation

sign ChainPatrol to provide three protection mechanisms

against such jitters. First, as detailed in Section 3.2, our

virtual trailer encoding scheme can already tolerate jitters

through calculating and continuously updating the water-

marking amplitude to be proportional to the average jitter.

Second, we further design two mechanisms for the source

and destination VNFs, respectively, to handle larger and

unexpected jitters. Finally, we experimentally evaluate the

effectiveness and overhead of those methods in Section 6.

The X-shift method. An unexpected amount of jitter exceed-

ing the watermarking amplitude may render the encoding

challenging for the source VNF. Specifically, if the second

packet in a pair arrives so late, that it has not arrived when

the VNF needs to send it to match the to-be-encoded IPD,

then encoding becomes impossible since we cannot send a

packet that has not yet arrived. For instance, Figure 5 shows

two watermark bits 1,0 to be encoded with new IPDs 52,48

(assuming an average jitter of 2 ms) between two pairs of

packets (P1 to P4). The top timeline depicts their actual

arrival time, which shows an unexpected delay of 3 ms be-

tween P3 and P4. As the middle timeline shows, a standard

encoding scheme will fail to encode the second bit, since

P4 is supposed to depart at t=150 (to have an IPD of 48) but

by that time it has not yet arrived. One naive solution here

is for both VNFs to use two pre-defined high IPD values

(which will never occur naturally) to encode 0 and 1, respec-

tively, such that P4 can now be further delayed to encode

0. However, this could lead to significant delay considering

that the watermarks in our application are generally large

in size so this scenario may occur very often. To address

this, we adopt a pragmatic X -shift approach as follows. As

the lower axis in Figure 5 shows, the first packet in each pair

will be proactively delayed by a small amount (X = 44 ms in

this case) to minimize the likelihood of requiring the costly

solution of using pre-defined large IPDs. The source-side

VNF periodically updates X based on observed IPD varia-

tion (note, unlike watermarking amplitude, the destination

VNF does not need to know X). Finally, the impact of delay-

ing the first packet of each pair will not add up and hence

remains negligible for the entire flow.

The α-amplitude method. An unexpected amount of jitter

exceeding the watermarking amplitude may also prevent

the correct decoding of virtual trailers at the destination

VNF. Specifically, the jitter may cause the flipping of some

bits in the virtual trailer during transmission, which can

generate false positives for attack detection. To address this

issue, we adopt the pragmatic approach of using a larger-

than-necessary watermarking amplitude upon observing

unexpected jitters. Specifically, the watermarking ampli-

tude (as calculated in Section 3.2) will be multiplied with

a parameter α(α ě 1), which is decided based on the ob-

served level of jitter variation (i.e., observing a larger vari-

ation leads to a larger α being used). Using such a larger-

than-necessary amplitude creates a bigger gap between the

IPDs used to encode watermark bits 0 and 1, which ensures

the destination VNF can still correctly distinguish between

them and thus reduces the chance of a bit flipping caused

by unexpected jitters. Finally, the watermarking amplitude,

the X value, and the α parameter will all be constantly mon-

itored and continuously updated to reflect changing net-

work states (detailed in Section 5) and their effectiveness

will be confirmed in Section 6.

4 Attack Detection and Classification

This section details how ChainPatrol detects and classifies

various attacks using virtual trailers.

4.1 Attack Detection

Similar to existing works using physical trailers [6,7], Chain-

Patrol detects SFC attacks by matching decoded virtual trail-

ers with corresponding blocks. However, the unique design

of virtual trailers (detailed in Section 3) leads to two dif-

ferences as follows. First, since the virtual trailers of one

SuperBlocks are always encoded in the IPDs of next Su-

perBlock, ChainPatrol iteratively performs attack detection

inside a moving window that slides over the next two con-

secutive SuperBlocks of the current flow in each iteration.

Second, recall that the HMAC of a SuperBlock is computed

based on a Merkle hash tree defined over all the blocks, and

each virtual trailer only includes part of this HMAC value

(as illustrated in Figure 4). Therefore, ChainPatrol first de-

codes the virtual trailers encoded in the second SuperBlock

inside the moving window, and recomputes the Merkle tree

HMAC based on the decoded BlockNum and FlowID values

and all packets of the first SuperBlock. It then compares

this re-computed HMAC with the decoded HMAC value

(obtained by concatenating the MAC fields of all the virtual

trailers decoded from the second SuperBlock).

One challenge is that, since an attack may cause the

frames, blocks, or SuperBlocks to shift, ChainPatrol needs to

identify the beginning of the next SuperBlock once an attack

is detected. Specifically, if all the virtual trailer fields match

the first SuperBlock in the window, ChainPatrol marks the

3446 33rd USENIX Security Symposium USENIX Association

…

B2

…

B1
SB1

…

B4

…

B3
SB2

…

B6

…

B5
SB3

1st block of 1st

flow

H(SB1|1|1…)

=1001

Expecting VT:

<1,1,1001>

Decoded VT:

<1,1, 1001>

Iteration #1:

Sliding over (SB1, SB2)

Result: SB1 “Recovered”

4th block of

1st flow

H(SB2|…4|1)

=0010

Expecting VT:

<4,1,0010>

Decoded VT:

<4,1,1000>

Iteration #2

Sliding over (SB2, SB3)

Result: (SB2, SB3) “Attacked”

Figure 6: Example of attack detection

first SuperBlock as “recovered”, and the window slides for-

ward by one complete SuperBlock. When an attack is de-

tected, ChainPatrol marks the current pair of SuperBlocks

as “attacked” (which will be further inspected for attack clas-

sification), and the window slides forward by only a pair of

packets in order to identify the beginning of the next Su-

perBlock. Once a new SuperBlock is identified, ChainPatrol

resumes the normal attack detection as described above.

Algorithm 4 in the appendix details the attack detection.

Example 6. Figure 6 (top) shows the first three SuperBlocks

of the first flow, and (bottom) an example of attack detection.

• In the first iteration, the window slides over the first two

SuperBlocks, SB1 and SB2. For the first block of SB1,

the expected BlockNum = 1) and FlowID = 1), as this is

assumed to be the first block of the first flow. As the

figure shows, the first virtual trailer decoded from SB2

also contains the same BlockNum and FlowID values.

• The expected MAC needs to be computed over the con-

tent of SB1 concatenated with the decoded BlockNum

and FlowID fields of both blocks inside SB1. As the

figure shows, the first half of the MAC value decoded

from SB2 matches the expected value (1001). Assum-

ing the second half also matches, SB1 can be marked

as “recovered” as no attack is detected.

• In second iteration, the window slides to SB2 and SB3.

Similarly, the expected BlockNum and FlowID match

the ones decoded from SB3. However, assume the first

half of the expected MAC value (0010) does not match

the decoded one (1000), an attack is thus detected. At

this point, it is unclear whether the attack happened to

SB2 or the virtual trailers (i.e., IPDs) in SB3, so both Su-

perBlocks are marked as “attacked” for classification.

• Since the attack may have caused packets to be in-

jected, dropped, or reordered, we cannot take the be-

ginning of the next SuperBlock for granted. Instead, the

window can only slide forward by one pair of packets

at a time, until we identify the next intact SuperBlock.

4.2 Attack Classification

Upon the detection of an attack, ChainPatrol classifies it

with one of the known attack types listed in Table 2. In addi-

tion to the well-known packet-level attacks reported in the

literature, ChainPatrol also considers block-level attacks

that involve the manipulation of a whole packet block, flow-

level attacks involving all packet blocks in a flow, and SFC-

level attacks targeting the forwarding paths (instead of pack-

ets). To classify a SuperBlock marked as attacked during the

detection stage (Section 4.1), ChainPatrol attempts to re-

construct the expected virtual trailers by applying each of

the classification rules listed in the last column of Table 2,

and it classifies with an attack type if the reconstruction is

successful under the corresponding rule.

Table 2: Attack types covered by ChainPatrol

Attack type Classification rules based on virtual trailers

P
a

c
k

e
t

Injection Unrecovered VT & larger block size

Reordering Partially recovered VT & expected block size

Replay Unrecovered VT & larger block size

Modification Unrecovered VT with mismatched MAC

Dropping Partially recovered VT & smaller block size

B
lo

c
k

Injection Unrecovered VT & expected block size

Reordering Out of order BlockNum

Replay Recovered VT with repeated BlockNum

Dropping Missing VT with specific BlockNum

F
lo

w
Injection Unrecovered FlowID

reordering Out of order FlowID

replay Repeated VT for all blocks

dropping Missing FlowID

S
F

C

VNF Inj. Unrecovered FlowID

Reordering Out-of-order FlowID

VNF-Loop Repeated FlowID

Skipping Missing FlowID

One challenge is that, depending on the level of the clas-

sification rule (first column of Table 2), this reconstruction

may involve two SuperBlocks, the remainder of the flow, or

even other flows (e.g., flow or SFC-level attacks). Therefore,

the attack classification naturally requires more effort than

attack detection. This explains why ChainPatrol adopts a

layered approach to separate the (faster) detection from

(slower) classification such that it can provide faster detec-

tion (as shown through experiments in Section 6).

Another challenge is that the missing information (e.g., in

case of dropping or modification attacks) and lower granu-

larity of virtual trailers (i.e., per block instead of per packet)

together may prevent a full reconstruction of virtual trailers,

and hence the attack classification result can no longer be

guaranteed like with detection. To address this, we lever-

age our design choice of computing the MAC based on a

Merkle hash tree [23] defined over a superblock (detailed

in Section 3) to enable efficient source-assisted verification

of the classification result in such cases. Specifically, the

well-known property of a Merkle hash tree [23] allows us to

verify the MAC (and hence the correctness of classification)

by requesting selected tree nodes from the source, e.g., a

single node (common ancestor) is sufficient for log (N) con-

secutive blocks (in contrast, N nodes would be requested

if the MAC were computed directly over the SuperBlock).

Algorithm 5 in the appendix details the attack classification.

USENIX Association 33rd USENIX Security Symposium 3447

MACFlowIDBlockNum

121

424

323

222

525

631

-32

833

833

934

1035

1141

3812

c) VT Recovered by Attack Classification

a) Expected virtual trailers
b) VT Fields Marked by Attack Detection

(1)

(3)

(2)

(4)

(5)

(6)

MACFlowIDBlockNum

121

222

323

424

525

631

732

833

934

1035

1141

1251

MACFlowIDBlockNum

121

4?2?4?

323

2?2?2?

525

631

-32

833

8?3?3?

1035

3?8?12?

Figure 7: Examples of attack classification (a question mark

(?) means mismatching with expected value; a dash (-)

means no received packet; grey rows are involved in de-

tection or classification; numbers (1-6) indicate attacks)

Example 7. Figure 7 depicts six examples of classification:

• Attack (#1) is classified as reordering of the two shaded

blocks, since their BlockNum fields are out-of-order

(Figure 7.c). Specifically, attack classification attempts

to reconstruct the expected virtual trailers (i.e., first

four rows in Figure 7.a) by applying each classification

rule (last column of Table 2) to the attacked virtual trail-

ers in Figure 7.b. The rule for block reordering leads

to a successful reconstruction, and hence the attack is

classified as such.

• Attack (#2) is classified as packet-dropping, since at-

tack classification can partially reconstruct the virtual

trailer for the seventh row (where the BlockNum and

FlowID fields are intact) and beyond, while the block

size is smaller than expected (the MAC field is missing),

which matches the classification rule for packet drop-

ping in Table 2. This result can be further verified by

requesting the missing information (Merkle tree node).

• Attacks (#3) and (#4) are similarly classified as packet

block replay and drop, respectively.

• Attack (#5) is a flow drop attack, as the expectedFlowID

is four (end of Figure 7.a) is missing in Figure 7.c, which

matches the classification rule for flow dropping.

• Attack (#6) is a VNF skipping attack since a packet

block received at the destination VNF (the last row in

Figure 7.b) has a missing FlowID (which does not ap-

pear in Figure 7.a), which matches the classification

rule for VNF skipping.

5 Implementation

ChainPatrol is composed of two agents per pair of com-

municating VNFs, plus a central orchestrator. The agents

perform watermark encoding/decoding, attack detection,

and local attack classification. The orchestrator is in charge

of managing the agents and performing global attack classi-

fication. ChainPatrol is implemented in C++ programming

language, with approximately 1300 lines of code at the agent,

and 200 lines at the orchestrator. The following details the

implementation and challenges.

ChainPatrol agent. Each agent includes four components:

1. The controller performs the following functionalities.

First, it receives ChainPatrol parameters from the orches-

trator at initialization, and it then continuously monitors

the network performance (e.g., IPD and network jitter) to

compute the watermark amplitude and X -shift values. Sec-

ond, at the source VNF, it intercepts the egress traffic, gener-

ates virtual trailers (the Merkle hash trees are stored inside

shared storage in case the destination-side agent may need

selected nodes, as discussed in Section 4.2), triggers the wa-

termarker, and forwards the traffic. Third, at the destination

VNF, it passively monitors the ingress traffic to measure the

IPDs, triggers the watermarker, attack detector, and attack

classifier, and finally reports the detection and classification

results to the orchestrator. 2. The source-side watermarker

encodes the virtual trailers generated by the controller using

Algorithm 2, and the destination-side watermarker decodes

the virtual trailers from the ingress traffic using Algorithm 3.

3. Once triggered by the controller, the attack detector ap-

plies Algorithm 4 to mark SuperBlocks as either recovered

or attacked. 4. Finally, once triggered, the attack classifier

applies Algorithm 5 to classify the detected attacks using

classification rules that only involve local traffic.

ChainPatrol orchestrator. The orchestrator includes three

components: (1) The agents manager is responsible for

instantiating the agents and communicating with them.

(2) The attack classifier is responsible for global attack clas-

sification that cannot be performed locally at each agent

(e.g., flow or SFC-level attacks). (3) The Audit Table is used

to store the detection and classification results both from

the agents and from the orchestrator. At the initialization

of ChainPatrol, the orchestrator shares with the agents the

following ChainPatrol parameters: 1. SuperBlock size and

block size per flow type (as different numbers of packets

can be exchanged per flow type, for example, HTTP vs. SSH).

2. Initial seed values per pair of agents (used with a pseudo-

random generator for virtual trailer generation). 3. A cryp-

tographic key per pair of agents (for computing the MAC).

Avoiding VNF instrumentation. To simplify deployment,

ChainPatrol intercepts egress traffic from the source VNF

for encoding and monitors ingress packets at the destina-

tion VNF for decoding, without requiring instrumentation

of the VNFs. This is achieved using raw sockets to attach

agents as proxies to VNF interfaces, allowing traffic mon-

itoring and forwarding. Additionally, iptables are used at

the source to ensure only watermarked traffic forwarded by

ChainPatrol reaches the destination VNF.

Minimizing communications. ChainPatrol minimizes

3448 33rd USENIX Security Symposium USENIX Association

communication overhead by: (1) The agents at source and

destination VNFs independently generate virtual trailer

fields using common seed values obtained at initiation,

avoiding ongoing communication. (2) Agents and orches-

trator communicate via shared storage, leveraging Amazon

ElastiCache for Memcached [24]. (3) AWS Lambda [25] fa-

cilitates access to Memcached, enhancing efficiency.

Root privileges and control packet filtering. While working

with raw sockets, we faced two challenges. First, the agent

couldn’t attach to VNFs due to lacking root privileges, caus-

ing silent failures. To solve this, we split the code into priv-

ileged and non-privileged chunks, applying setuid for the

former. Second, the destination-side agent struggled to de-

code virtual trailers due to confusion from control packets

mixed with data traffic. We address this issue by filtering out

control packets through inspecting the PSH (Push) flag

field in the TCP header of packets (control packets have this

flag set to zero, while data packets set to one for the packets

to be delivered without buffering).

Multithreading. ChainPatrol’s layered design separates

faster watermark encoding/decoding from slower attack

detection. Implementing agents with a single thread would

cause unacceptable delays, as the controller must wait for

tasks to finish before forwarding packets. Thus, we use mul-

tiple threads: one for capturing packets, generating virtual

trailers, and encoding them; and two more for independent

attack detection and classification. The controller compo-

nent ensures necessary thread execution serialization.

6 Performance Evaluation

This section presents the evaluation of ChainPatrol.

6.1 Evaluation Environment

Testbed setup. We deploy ChainPatrol in Amazon EC2 using

EC2 instances of the t3a.small type (i.e., 2 vCPUs of 2.50

GHz AMD EPYC 757, 2 GB RAM, up to 5Gbps of network

bandwidth). Each instance runs Amazon Linux 2 (based

on Ubuntu 22.04). We leverage the Memcached database

cluster1 (a high-performance, distributed memory object

caching system) running on a t3.micro instance (2 vCPUs

of 3.10 GHz Intel Xeon Scalable processor, Skylake 8175M

or Cascade Lake 8259CL, 1 GB RAM, up to 5Gbps of net-

work bandwidth) as shared storage between the ChainPa-

trol orchestrator and agents. We additionally use Lambda

Functions2, written in Python 3, as the interface between

ChainPatrol and the Memcached cluster. Our evaluation fo-

cuses on data plane TCP flows between VNFs inside a SFC,

although ChainPatrol can work for other types of traffic.

1Amazon ElastiCache: https://aws.amazon.com/elasticache/mem

cached/
2AWS Lambda: https://aws.amazon.com/lambda/

Datasets. We evaluate ChainPatrol based on: (i) a pub-

lic dataset [26], (ii) our Free5GC/Kubernetes-based 5G

testbed deployed on Amazon EC2, and (iii) the packet sizes

of real-world applications in [27, 28] (for comparing to a

state-of-the-art solution [6]). First, since IPD has the most

significant impact on performance, we use the realistic IPD

values from a public cyber defense dataset [26] for our first

dataset (Dataset1). Second, to obtain live data from a real

cloud, we deploy our own 5G core testbed on Amazon EC2

to generate a large live-streaming dataset with up to 600-

750 packets per second for our second dataset (Dataset2).

As shown in Table 3, those two datasets demonstrate dis-

tinct ranges of IPDs (80 ms vs. 7 ms) and jitters, which are

representative of traditional networks (based on physical

infrastructures) and virtual networks (based on contain-

ers and virtual machines), respectively. Finally, we use the

packet sizes of several real-world applications in [27, 28] to

compare with AuditBox [6].

Table 3: Datasets description

Dataset IPD range Source Application Rate

Dataset1 70-90ms Public Cyber defense 600K/s

Dataset2 5-10ms Amazon EC2 5G core 500K/s

6.2 Experimental Results

We first evaluate the impact of various ChainPatrol parame-

ters on its effectiveness and overhead. Then, we measure

the accuracy and efficiency of its attack detection and clas-

sification. Finally, we compare ChainPatrol with a state-of-

the-art physical trailer-based solution, namely, AuditBox [6].

6.2.1 Parameters Evaluation

We study how watermarking parameters may affect its ef-

fectiveness, and how ChainPatrol parameters may impact

the service delay and its overhead.

Watermarking effectiveness. Figure 8.A and Figure 8.B

show the impact of the two watermarking parameters, i.e.,

the watermarking amplitude (Section 3.2) and the X -shift

value (Section 3.4), on the watermark extraction rate (the

standard metric for watermarking effectiveness [29]). First,

Figure 8.A shows that a watermark amplitude value of 1.2

(for Dataset1) and 1.6 (for Dataset2) can already achieve

100% extraction rate. The results also show that Dataset2

generally requires a slightly larger amplitude value than

Dataset1 (this can be explained by the relatively higher

percentage of jitter in Dataset2, as shown in Table 3). Sec-

ond, Figure 8.B shows that a larger X -shift value is required

for Dataset1 to achieve 100% extraction rate (which im-

plies this parameter is more closely related to the average

IPD). Specifically, Datatset1, whose average IPD is 80 ms, re-

quires X « 3; Dataset2, whose average IPD is 8 ms, requires

X « 0.5. The results also show that, without our X -shift so-

lution (i.e., X = 0), the extraction rate would be significantly

USENIX Association 33rd USENIX Security Symposium 3449

https://aws.amazon.com/elasticache/memcached/
https://aws.amazon.com/elasticache/memcached/
https://aws.amazon.com/lambda/

0.5 1.0 1.5
Amplitude

20

40

60

80

100

Ex
tra

ct
io

n
R

at
e

(%
)

A) Extraction rate while varying Amplitude

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X-shift (ms)

80

85

90

95

100

Ex
tra

ct
io

n
R

at
e

(%
)

B) Extraction rate while varying X-shift

Dataset1
Dataset2

400 600 800 1000 1200 1400 1600
SuperBlock Size (packets)

0.75

1.00

1.25

1.50

1.75

2.00

D
el

ay
 (m

s)

C) End-to-end delay while varying SB size

Dataset1
Dataset2

0 250 500 750 1000 1250 1500
Packet Size (bytes)

0.75

1.00

1.25

1.50

1.75

2.00

D
el

ay
 (m

s)

D) End-to-end delay while varying packet size

Dataset1
Dataset2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X-shift (ms)

1

2

3

4

D
el

ay
 (m

s)

E) End-to-end delay while varying shift value
Dataset1
Dataset2

400 600 800 1000 1200 1400 1600
SuperBlock Size (packets)

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m

e
(m

s)

F) Watermarking time while varying SB size
Dataset1
Dataset2

0 250 500 750 1000 1250 1500
Packet Size (bytes)

0.5

1.0

1.5

2.0

Ti
m

e
(m

s)

G) Watermarking time while varying packet size
Dataset1
Dataset2

400 600 800 1000 1200 1400 1600
SuperBlock Size (packets)

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m

e
(m

s)

H) Extraction time while varying SB size
Dataset1
Dataset2

Figure 8: Parameters evaluation results

lower (less than 80% for Dataset1 and 90% for Dataset2).

Note in both experiments, we fix the other parameter (at a

value achieving 100% extraction rate).

Service delay. In this set of experiments, we study how

the end-to-end service delay may be affected by different

ChainPatrol parameters. Figure 8.C and Figure 8.D show

the end-to-end service delay for different SuperBlock sizes

(a parameter of ChainPatrol) and packet sizes (a charac-

teristic of the traffic), respectively. Both results show that

ChainPatrol introduces negligible end-to-end service de-

lay on both datasets (around 2.1 ms for Dataset1 and 0.68

ms for Dataset2), and varying the SuperBlock and packet

size has almost no impact on the end-to-end delay. This

is mainly due to the facts that ChainPatrol agents mainly

examine the headers (hence packet sizes have little impact),

and the virtual trailers are always encoded in the next Su-

perBlock (see Section 3.2) so the time for generating virtual

trailers (which depends on the SuperBlock size) does not

affect packet processing (as the trailers are already ready

when the packets arrive). Figure 8.E shows how the X-shift

value affects the end-to-end delay. As we can see, a larger X

value generally leads to a lower delay before it reaches the

value that produces 100% extraction rate.

Overhead. In this set of experiments, we evaluate the over-

head of ChainPatrol with respect to time. First, Figure 8.F

and G show the average watermarking time (i.e., the time

taken for a source-side agent to generate and encode vir-

tual trailers) for different SuperBlock and packet sizes. The

results show that the watermarking time increases almost

linearly in SuperBlock size (as more packets need to be pro-

cessed) and increases more slowly in packet size (as only

the MAC field is affected), while the maximum watermark-

ing time is less than 2ms for both datasets. Second, Fig-

ure 8.H shows the extraction time (i.e., the time taken for a

destination-side agent to decode and verify virtual trailers)

for different SuperBlock sizes. The results are very similar to

Figure 8.F since the two agents perform similar but reversed

operations (the results on extraction time vs. packet size are

also very similar to Figure 8.G and omitted).

NA SA EU AS AF OC
Continents

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
et

w
or

k
jit

te
r (

m
s)

A) Network Jitter vs Continent

0 5 10 15 20 25 30
Chain length (VNF pairs)

0

5

10

15

20

D
el

ay
 (m

s)

B) End-to-end delay vs chain length

Figure 9: Parameters evaluation results (continued)

Jitter vs. AWS regions. In order to understand the potential

impact of VNF locations on ChainPatrol, we measure the

network jitter between our location (North America) and

one region in each continent. We repeat the experiment

over a period of several weeks and observe a relatively sta-

ble jitter over time. As shown in Figure 9.A, the jitter value

within the same continent (North America) is the lowest.

The highest value of jitter is observed between North Amer-

ica and Europe, which is roughly double the value of jitter

within the same continent (in contrast, our experiments

reported in Section 6.2.4 will use up to six times larger jit-

ters). Finally, we also experiment with the Elastic Network

Adapter (ENA) feature of AWS (which provides Enhanced

Networking for EC2 instances), and our results show that jit-

ters within the same continent drop from 0.175ms without

ENA to 0.041ms with ENA. For the remaining experiments,

we have used EC2 instances with ENA enabled.

End-to-End delay vs chain length. In this experiment, we

evaluate the end-to-end delay introduced by ChainPatrol

by varying the number of VNFs in the chain up to 30 VNF

pairs (according to the literature [30], 25 VNF pairs repre-

sent a reasonably large NFV setup). As shown in Figure 9.B,

the processing delay of ChainPatrol agents is roughly con-

3450 33rd USENIX Security Symposium USENIX Association

stant for each pair (i.e., 0.63ms), and accumulative along the

chain (which also holds for physical trailers). The maximum

cumulative delay observed for a chain with 30 pairs of VNFs

is about 22ms (which is barely noticeable for interactive

music and not noticeable for games [31]). In practice, the

length of a VNF chain is usually much smaller, and hence

the end-to-end delay of ChainPatrol should be negligible.

Summary. It is relatively easy (i.e., with small amplitude and

X values) for ChainPatrol to ensure the correctness of its

decoding of virtual trailers due to the more stable nature of

traffic between VNFs (as explained in Section 5, ChainPatrol

also continuously adjusts those parameters based observed

traffic). Moreover, our results show that ChainPatrol causes

negligible end-to-end delay to services on both datasets,

e.g., the entire flow will be delayed by only about 2.1 ms and

0.68 ms (2.6% and 9.8% of the normal delay between two

packets), respectively. Finally, the overhead of ChainPatrol

in terms of delay is negligible.

6.2.2 Attacks detection and classification

We evaluate the accuracy and efficiency of attack detection

and classification.

Accuracy evaluation. First, Figure 10.A shows that ChainPa-

trol achieves 100% detection accuracy with up to 50 attacks

of different types (as listed in Table 2) performed on both

datasets. This is expected as the experiment is performed

with the ChainPatrol parameters that can ensure 100% wa-

termark extraction rate (detailed in Section 6.2.1), and the

extracted virtual trailers possess similar cryptographic prop-

erties as physical trailers to guarantee accurate detection

(detailed in Section 4.1). Second, Figure 10.B shows the at-

tack classification accuracy. To evaluate the true capability

of virtual trailers for attack classification, this experiment

deliberately skips the source-assisted verification step (de-

scribed in Section 4.2), such that all inaccurate classification

results will be counted. The results show that the attack clas-

sification accuracy stays almost fixed at around 70% under

different amounts of attacks for both datasets. In contrast

to detection, classification shows a lower accuracy. This

is expected due to missing information caused by attacks

and potential collision between attack types (e.g., a packet

reordering attack may impact virtual trailers same as a com-

bination of packet dropping and injection attacks).

Efficiency evaluation. First, we evaluate the attack detec-

tion time while varying the block size and the number of

compromised blocks, respectively. In Figure 10.C, the total

number of compromised blocks is fixed at 30, and we mea-

sure the time required to detect those compromised blocks.

As the results show, the detection time increases almost lin-

early in the block size, with less than 2.4 seconds required

for all block sizes for both datasets (no significant differ-

ence between the datasets). Note the detection time has

no impact on the service delay (due to our multithreading

implementation, as detailed in Section 5), and the second-

level detection time is reasonable since the detection re-

sults are meant to be inspected by human experts. Second,

we evaluate the time required to detect different amounts

of block-level attacks while fixing the total number of Su-

perBlocks at 50. In Figure 10.D, the detection time increases

almost linearly in the number of attacks, with up to 5.5 sec-

onds required for detecting all 50 attacks.

10 20 30 40 50
Number of attacks

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

A) Attack detection accuracy

Dataset1
Dataset2

10 20 30 40 50
Number of attacks

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

B) Attack classification accuracy
Dataset1
Dataset2

160 180 200 220 240
Block size (packets)

1.8

1.9

2.0

2.1

2.2

2.3

Ti
m

e
(s

)

C) Attack detection time for different block sizes
ChainPatrol
AuditBox

10 20 30 40 50
Number of Block-level attacks

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Ti
m

e
(s

)

D) Attack detection time for different attacks
Dataset1
Dataset2

10 20 30 40 50
Number of Block-level attacks

4

5

6

7

Ti
m

e
(s

)

E) Attack classification time by agent
Dataset1
Dataset2

10 20 30 40 50
Number of packet-level attacks

8

9

10

11

12

Ti
m

e
(s

)

F) Attack classification time by Orch.
Dataset1
Dataset2

Figure 10: Attacks detection and classification results

Next, we evaluate the attack classification time by both

the agents and the orchestrator, for block-level attacks and

packet-level attacks, respectively, while varying the num-

ber of attacks. First, in Figure 10.E, the total number of Su-

perBlocks is fixed at 50, and we measure the time required

to classify different amounts of block-level attacks locally

by the destination-side agent. As the results show, the local

classification time increases almost linearly in the num-

ber of block-level attacks, with around 7.5 seconds required

for classifying all the 50 block-level attacks, which is slightly

higher than the time for detection (i.e., 5.5 seconds). Second,

Figure 10.F shows the global classification time taken by

the orchestrator for classifying different amounts of packet-

level attacks. The results show a similar linear trend, with

around 12.5 seconds required for classifying all the 50 at-

tacks. The orchestrator is taking more time since the global

classification it performs involves more input information,

and the packet-level attack classification rules may require

the orchestrator to slide forward more slowly (by two pack-

ets, instead of a block, as detailed in Section 4.2).

USENIX Association 33rd USENIX Security Symposium 3451

Summary. Virtual trailers can guarantee 100% detection

accuracy like their physical counterparts do. Virtual trailers

provide a lower (70%) but still acceptable classification ac-

curacy, since the result will be further verified in the source-

assisted verification step described in Section 4.2. Our re-

sults also show attack detection and classification to be

efficient (both take a few seconds for 50 attacks), scalable

(both show a linear trend), and lightweight (both consume

negligible resources).

6.2.3 Comparison with existing work

We compare ChainPatrol to a state-of-the-art physical

trailer-based solution, namely, AuditBox [6] (which is re-

implemented to ensure the two solutions can be compared

under the same environments and settings). We compare

them using Dataset2 (which is more representative of SFC

applications) with packet sizes varied based on different

real-world applications in two public datasets [27, 28]. Ta-

ble 4 shows a general comparison in terms of end-to-end

delay and communication overhead. Overall, AuditBox [6]

has less delay and higher communication overhead than

ChainPatrol on both datasets. Between the two datasets,

the end-to-end delay of ChainPatrol stays the same while

AuditBox incurs slightly more end-to-end delay for [27].

The communication overhead of ChainPatrol stays almost

zero for both datasets while AuditBox incurs slightly more

communication overhead for [28]. The different results of

AuditBox between the two datasets can be explained by

the different packet sizes (572 bytes on average for [27]

and 85 bytes for [28]) due to different applications (e.g.,

audio/video in [27] v.s. Chat and VOIP in [28]).

More specifically, Figure 11.A shows the top four appli-

cations for which ChainPatrol achieves the most reduction

in communication overhead (between 45% for DNS and

22% for Chat) compared to AuditBox. To further study the

impact of packet sizes on overhead, we compare the over-

head added by ChainPatrol and AuditBox while varying

the packet size (with fixed flow size). Figure 11.B shows

that ChainPatrol has almost zero overhead across all packet

sizes (as ChainPatrol only adds a negligible amount of bits

at the end of each flow, as discussed in Section 3.2), while

the overhead of AuditBox’s physical trailers ranges from

around 10% (for large packet sizes up to 512 bytes) to 200%

(for small packet size of 20 bytes). Next, Figure 11.C shows

an average end-to-end delay between 0.35 and 0.55 ms for

AuditBox, and 0.65 to 0.68 ms for ChainPatrol. The relatively

higher delay of ChainPatrol is expected due to its more com-

plex design of virtual trailers (e.g., a virtual trailer is com-

puted over a group of packets, whereas a physical trailer is

over a single packet). Nonetheless, the delay has a negligible

impact on application performance (see Section 6.2.1).

Next, we compare ChainPatrol to an extension of Audit-

box, namely, density reduction trailer, in which each physi-

cal trailer is computed over, and added to a group of packets

Table 4: General comparison in terms of delay and overhead

Delay Overhead

Dataset [27] Dataset [28] Dataset [27] Dataset [28]

ChainPatrol 0.67 ms 0.67 ms 1.0 X 1.0 X

AuditBox [6] 0.48 ms 0.38 ms 1.12 X 1.38 X

DNS VoIP SSH Chat
Applications

0

10

20

30

40

O
ve

rh
ea

d
(%

)

A) Overhead reduction of ChainPatrol
 compared to Auditbox

20 40 64 128 256 512
Packet size (bytes)

0

50

100

150

200

O
ve

rh
ea

d
(%

)

B) Traffic overhead comparison
ChainPatrol, Original data
AuditBox

64128 256 512 1024
Packet size (bytes)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Av
er

ag
e

de
la

y/
pa

ck
et

 (m
s)

C) Average end-to-end delay comaprsion

ChainPatrol
AuditBox

2 3 4 5 6 7 8 9 10
Block Size (packets)

0

5

10

15

20

25

O
ve

rh
ea

d
(%

)

D) Overhead - Density Reduction
Auditbox - DNS
Auditbox - VoIP
Auditbox - SSH
Auditbox - Chat
Chainpatrol

2 3 4 5 6 7 8 9 10
Block Size (packets)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

E) Classification - Density Reduction
Auditbox
Chainpatrol

1.0 1.5 2.0 2.5 3.0 3.5
Alpha

0

1

2

3

4

FP
 (%

)

F) False Positives vs Alpha
Δ Jitter - 2x - 0.08ms
Δ Jitter - 3x - 0.12ms
Δ Jitter - 4x - 0.16ms
Δ Jitter - 5x - 0.2ms
Δ Jitter - 6x - 0.24ms

Figure 11: Detailed comparative evaluation results

(i.e., block) to reduce the overhead. As Figure 11.D shows,

ChainPatrol overhead stays around zero regardless of the

block size, while Auditbox constantly shows higher over-

head even though density reduction trailers can reduce it.

Specifically, as the block size increases from 2 to 10 (pack-

ets), the Auditbox overhead decreases from around 23% to

4.5% (45% without density reduction). On the other hand, as

Figure 11.E shows, while ChainPatrol can maintain a stable

classification accuracy when block size increases, the accu-

racy of Auditbox drops quickly. This can be explained by the

fact that a MAC value stored physically can only indicate

a “match”or “no match” (to the packet and trailer content),

which helps attack detection but not classification. In con-

trast, a MAC value virtually stored (encoded) inside (the

IPDs of) multiple packets can additionally provide useful

information to help attack classification. For instance, if a

packet is dropped, the mismatched MAC in a (density reduc-

tion) physical trailer cannot provide any information about

which packet inside the block is dropped. In contrast, since

this dropped packet is also used to encode part of the MAC

value for the previous SuperBlock (detailed in Section 3.2),

3452 33rd USENIX Security Symposium USENIX Association

comparing the expected MAC value (recomputed from the

previous SuperBlock) to the current SuperBlock can easily

pinpoint which packet is missing (similar for other attacks).

Summary. The comparison between AuditBox [6] and

ChainPatrol shows that ChainPatrol introduces almost no

extra communication overhead regardless of the packet or

flow sizes, whereas the overhead of physical trailers can be

significant, especially for applications with large flows and

smaller packets. ChainPatrol is shown to provide a signif-

icant reduction in communication overhead (up to 45%

of the original traffic) for common applications. Although

the more complex virtual trailer design of ChainPatrol in-

evitably incurs slightly more end-to-end delay, such delay

is still negligible for most applications (e.g., 20-30 ms is

shown to be noticeable for interactive music, and 100 ms

for games [31]). Finally, density reduction (physical) trailers

can reduce the overhead, but it also causes the classifica-

tion accuracy to deteriorate. Therefore, we conclude that

virtual trailers enable ChainPatrol to provide a lightweight

solution with both negligible communication overhead and

negligible service delay, whereas physical trailers are better

for applications with small flows with large packet sizes.

6.2.4 Handling unexpected jitters

In this experiment, we evaluate the two methods proposed

in Section 3.4 for handling unexpected network jitters. As

shown in Table 5, we evaluate our methods using artificial

jitters up to six times the real-life jitter (i.e., the EC2 jitter

in DS23). The second and third columns show that both

the X -shift method (for source VNF) and the α-amplitude

method (for destination VNF) cause low false positive rates

(up to 3% and 2%, respectively). The X -shift method shows

a marginally higher rate, since it needs to update the X

value upon every observation of unexpected jitters, and a

delay in such updating may cause false positives. As to the

α-amplitude method, it is “proactive” in the sense that us-

ing a larger-than-necessary amplitude may prevent false

positives for multiple subsequent changes in jitters. The

fourth and fifth columns of Table 5 show the end-to-end

delay under only the X -shift method, and under both the

X -shift and α-amplitude methods, respectively. We can see

that both methods cause negligible increase in end-to-end

delays, since they only introduce extra delays to one packet

inside each pair, which affects the IPDs but does not sig-

nificantly impact the end-to-end delay. Finally, Figure 11.F

shows how the false positive rates is affected by the value

of α under different jitters. Based on those results, Chain-

Patrol chooses the minimum α that can reduce the false

positive rate to nearly zero (e.g., α= 1.5 for 3x jitters).

3Note this experiment is performed several months later than those in

Section 6.2.1, which explains the difference in delay (0.63 ms vs. 0.68 ms).

Table 5: The X -shift and α-amplitude methods

∆

jitter

X-shift

FP(%)

α-amplitude

FP(%)

X-shift de-

lay(ms)

α-amplitude

delay(ms)

0.04 2 1 0.63 0.65

0.08 3 1 0.64 0.66

0.12 3 2 0.64 0.66

0.16 2 1 0.65 0.67

0.20 3 2 0.65 0.67

0.24 2 2 0.66 0.68

7 Discussions

Security of ChainPatrol. The security of ChainPatrol, i.e.,

its capability of detecting and classifying attacks, depends

on both the security guarantee provided by virtual trailers,

and their successful decoding from IPD-based watermarks.

First, as virtual trailers are designed with similar fields as

in their physical counterparts [6, 7] (detailed in Section 3.1),

they can also provide similar cryptographic guarantees.

First, as FlowID is uniquely and sequentially assigned to

each flow, any injection, reordering, dropping, and replay

of flows or VNFs can be easily detected using this trailer

field. Second, BlockNum works similarly against those at-

tacks at block level. Third, as it is computationally infeasi-

ble to forge a MAC (which is computed over both blocks and

the previous two trailer fields) without knowing the secret

key, packet-level attacks and tampering with virtual trailers

themselves can both be detected using this trailer field. Fi-

nally, the continuous detection on all packets defeats the

coward attack [9] (i.e., attacking only unprotected flows).

Second, virtual trailers encoded in IPD-based water-

marks are much like physical trailers stored inside packets,

which are both visible to adversaries (as confidentiality is

not the goal), and can be easily modified or removed by

them. Therefore, the issue of watermark invisibility (i.e., us-

ing smaller delays [17] or delays similar to normal network

jitters [16] to hide watermarks against attacks that aim to

locate the watermarks [18, 32]) is not applicable in our case,

as we do not intend to hide the watermarks. Although ad-

versaries can freely modify or remove watermarks in any

way they like (by tampering with IPDs), the corresponding

changes to virtual trailers can always be detected.

Specifically, adversaries can prevent the decoding of vir-

tual trailers by changing all IPDs to equal values, randomly

perturbing them, or replacing them with fake values. Al-

though all those attacks will be detected by ChainPatrol (as

failed decoding of virtual trailers indicates an attack), attack

classification may become difficult or infeasible due to lack

of virtual trailers. However, this essentially amounts to a

denial of service attack (the same may happen to physical

trailers, e.g., an adversary can simply delete them), which is

out of the scope of this paper (a large amount of missing or

destroyed trailers will likely trigger an investigation by the

administrator). Finally, a smart adversary may disturb the

IPDs in a way that mimics normal, but larger jitters to make

the decoding harder. This will be handled by ChainPatrol,

USENIX Association 33rd USENIX Security Symposium 3453

as its agents continuously monitor the traffic and compen-

sate observed jitters through both the encoding/decoding

scheme (Section 3.2) and our X -shift approach (Section 3.4)

(an unexplained increase in jitters will eventually raise sus-

picion from the administrator).

False negatives and positives. As mentioned above, vir-

tual trailers share similar cryptographic guarantees with

their physical counterparts, including no false negative and

impossible-to-bypass [6, 7]. Note that, although virtual trail-

ers and physical trailers can both be removed or modified

by attackers, doing so will not cause false negatives as long

as attackers cannot forge the MAC. On the other hand, a net-

work disturbance such as out-of-order packets and packet

loss can cause false positives under both virtual and physi-

cal trailers. What is unique to ChainPatrol is that jitters may

also cause false positives (no effect on physical trailers),

which has been addressed in our methodology (Section 3.4)

and evaluation (Section 6.2.4), Also, as ChainPatrol agents

are attached to two VNFs that directly communicate with

each other, they are only affected by out-of-order or lost

packets happening between them (which would be rare).

Limitations and future directions. The main limitations of

ChainPatrol are as follows. First, ChainPatrol will report out-

of-order packets or packet losses between two VNFs even if

these are not caused by attacks. An interesting future work is

to identify such cases (e.g, by learning different patterns of

virtual trailers). Second, the limited capacity of side channel

dictates less virtual trailers per packet, which causes slower

attack detection (1.8s-2.4s detection time) and less accurate

classification (around 70% accuracy). Whether such delays

and accuracy are acceptable depends on use cases, e.g.,

reasonable for a regular IDS reporting attacks to humans

(who can tolerate seconds-level delays and inaccuracies),

but not ideal for real-time prevention (where physical trailer

is better by working on each packet independently). A future

direction is to improve those aspects through more compact

design of virtual trailers. Finally, as a tenant-level solution,

ChainPatrol cannot ensure the integrity of VNFs and cloud

infrastructure like hardware-based solutions (e.g., [6, 12]).

8 Related work

SFC integrity. Traditional forwarding path verification pro-

tocols [8, 9, 33] cannot be directly applied to SFCs hosted

in an NFV environment, since some of their underlying

assumptions become unrealistic in the NFV context, e.g.,

forwarding paths are no longer fixed or known in advance

in NFC, and network nodes (VNFs) are no longer transpar-

ent to packets as they might legitimately modify packets.

More recent works tackle such issues to enable forwarding

path verification in NFV. In [34], the authors study the issue

of stateful and dynamic actions performed by VNFs, and

propose a solution for VNFs to add tags to outgoing pack-

ets in order to bind packets with their origin. However, this

scheme becomes ineffective when one or more switches

are compromised. Therefore, FlowCloak [19] proposes an

advanced packet tagging approach to randomize the tag

generation such that the tags are probabilistically unknown

by compromised switches. In contrast to ChainPatrol, Flow-

Cloak requires modification to the internal logic of VNFs

which may complicate its deployment. In [35], the authors

propose a verification layer that is decoupled from the pro-

cessing of VNFs, and is embedded in VMs supporting those

VNFs. Nonetheless, vSFC requires modification at the cloud

level, whereas ChainPatrol is a tenant-level solution that

regards the cloud as a blackbox.

SFC-Checker [36] proposes a static analysis-based frame-

work to ensure the correct behavior of dynamic and state-

ful forwarding paths. EasyOrch [37] performs verification

based on a formal model that provides the flexibility of spec-

ifying both a forwarding policy and the set of anomalies to

verify. In contrast to ChainPatrol, those solutions are static

in nature and cannot detect run-time integrity breaches, as

they either take snapshot of the network state to perform

verification offline [36] or work before SFC deployment [37].

In [12], the authors propose a hardware-based solution to

enclose both VNF processing and verification inside en-

claves to preserve data confidentiality and VNF integrity

against powerful adversaries, which are different from the

focus of ChainPatrol (i.e., network links between VNFs).

Closest to our work, AuditBox [6] provides runtime guaran-

tees on the compliance with forwarding path policies using

a hop-by-hop cryptographic trailer-based protocol, and by

running each VNF inside enclaves. While ChainPatrol bor-

rows similar design of trailers as AuditBox, our virtual trailer

concept can significantly reduce its communication over-

head (as demonstrated through experiments in Section 6).

Digital watermarking. There is a rich literature on digi-

tal watermarking in different contexts (e.g., image, audio,

video, and network packets) and for different applications

(e.g., copyright protection, traffic analysis, and tampering

identification). The literature may be categorized along dif-

ferent dimensions. For instance, blind (e.g., [38]) or non-

blind (e.g., [16, 17]) watermarking indicate whether the em-

bedding and extraction of the watermarks require sharing

knowledge about the original data. ChainPatrol leverages a

blind watermarking scheme to avoid the overhead of shar-

ing additional information about the original data. Second,

for applications such as copyright protection and traffic

analysis, the watermarks will be subject to either natural

network noises on the Internet, or malicious tempering.

Therefore, the watermarks should be robust [39] and/or in-

visible [16,17] (i.e., hide watermarks against adversaries who

aim to locate the watermarks [18, 32]). On the other hand,

a fragile watermarking scheme (e.g., [40]) is mainly used

for tampering identification as well as localisation of tam-

pered data, and hence the watermarks should be sensitive

to modifications and are not necessarily invisible. ChainPa-

3454 33rd USENIX Security Symposium USENIX Association

trol belongs to the fragile (and non-invisible) category, since

its watermarks are used to detect and classify tampering.

The key innovation of ChainPatrol is it introduces an addi-

tional abstraction layer, i.e., virtual trailers, over watermarks,

in order to leverage the latter’s cryptographic properties.

Timing-based side channels are shown to have a larger

capacity to share more information compared to other side

channels [29]. In particular, packet timing-based flow wa-

termarking modulates the IPDs of target network flow to

embed watermarks and achieve the goal of linking flows

for different applications, such as detection of stepping

stone attacks, and compromising anonymity systems. For

instance, the authors in [38] propose an IPD-based prob-

abilistically robust watermarking scheme, which embeds

watermark bits through slightly adjusting the independently

and randomly selected IPDs. In [41], the authors propose

an enhanced scheme where the watermarker can adap-

tively choose values of watermark parameters according

to packet timing and packet size features of target flows.

In [42], the authors propose a scheme that resists timing

perturbations through grouping-based flow watermarking.

In [43], the authors propose a flow watermarking technol-

ogy based on packet matching and IPDs. In [44], the authors

propose a blind flow watermarking system, which modu-

lates fingerprints into the timing patterns of network flows

through slightly delaying packets into secret time intervals

only known to the fingerprinting parties. More recent works

explore the intersection between machine learning and wa-

termarking schemes. For instance, Fang et al. [45] apply

deep learning techniques to obtain more robust flow-based

watermarking schemes to ensure high consistency between

the encoder and the decoder, and Xu et al. [46] design a

watermarking scheme for graph data in order to verify the

ownership of Graph Neural Networks (GNN) models.

9 Conclusion

Deploying network functions on top of existing cloud in-

frastructures makes it challenging for tenants to detect

cloud-level attacks. Existing solutions based on crypto-

graphic trailers can incur significant overhead for applica-

tions with small packets. In this paper, we proposed a novel

concept, virtual trailer, which leveraged the inter-packet

delay-based side-channel to encode cryptographic trailers

without adding extra bits to packets. We developed Chain-

Patrol, a solution for encoding/decoding virtual trailers, and

detecting and classifying various SFC attacks based on vir-

tual trailers. We implemented and deployed ChainPatrol

based on Amazon EC2, and our experimental results con-

firmed its effectiveness and efficiency.

Acknowledgment. We thank the anonymous shepherd and

reviewers for their valuable comments. This work was sup-

ported by the Natural Sciences and Engineering Research

Council of Canada and Ericsson Canada under the Indus-

trial Research Chair in SDN/NFV Security and the Discovery

Grant N01035, and by the Canada Foundation for Innova-

tion under JELF Project 3859.

References

[1] ETSI, “Network functions virtualisation (NFV) release

3; management and orchestration; architecture en-

hancement for security management specification,”

2018.

[2] P. Jiang, Q. Wang, M. Huang, C. Wang, Q. Li, C. Shen,

and K. Ren, “Building in-the-cloud network functions:

Security and privacy challenges,” Proceedings of the

IEEE, vol. 109, no. 12, pp. 1888–1919, 2021.

[3] Ammar Latif, Ash Khamas, Sundeep Goswami, Vara

Prasad Talari, and Young Jung, “Telco meets AWS cloud:

Deploying DISH’s 5G network in AWS cloud,” 2022,

available at: https://aws.amazon.com/blogs/industr

ies/telco-meets-aws-cloud-deploying-dishs-5g-net

work-in-aws-cloud/.

[4] VMware, “VMware expands its VMware ready for telco

cloud program to accelerate the deployment of 5G ser-

vices,” 2020, available at:t.ly/BIIW.

[5] S. L. Thirunavukkarasu, M. Zhang, A. Oqaily, G. S.

Chawla, L. Wang, M. Pourzandi, and M. Debbabi,

“Modeling NFV deployment to identify the cross-level

inconsistency vulnerabilities,” in CloudCom. IEEE.,

2019.

[6] G. Liu, H. Sadok, A. Kohlbrenner, B. Parno, V. Sekar, and

J. Sherry, “Don’t yank my chain: Auditable NF service

chaining,” in NSDI.USENIX., 2021.

[7] X. Zhang, Q. Li, Z. Zhang, J. Wu, and J. Yang, “vSFC:

Generic and agile verification of service function

chains in the cloud,” IEEE/ACM Transactions on Net-

working, vol. 29, no. 1, pp. 78–91, 2020.

[8] J. Naous, M. Walfish, A. Nicolosi, D. Mazieres, M. Miller,

and A. Seehra, “Verifying and enforcing network paths

with ICING,” in Proceedings of the Seventh Conference

on Emerging Networking Experiments and Technolo-

gies, 2011, pp. 1–12.

[9] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and

A. Perrig, “Lightweight source authentication and path

validation,” in Proceedings of the 2014 ACM Conference

on SIGCOMM, 2014, pp. 271–282.

[10] M. Legner, T. Klenze, M. Wyss, C. Sprenger, and A. Per-

rig, “EPIC: Every packet is checked in the data plane

of a path-aware internet,” in Proceedings of the 29th

USENIX Conference on Security Symposium, 2020, pp.

541–558.

USENIX Association 33rd USENIX Security Symposium 3455

https://aws.amazon.com/blogs/industries/telco-meets-aws-cloud-deploying-dishs-5g-network-in-aws-cloud/
https://aws.amazon.com/blogs/industries/telco-meets-aws-cloud-deploying-dishs-5g-network-in-aws-cloud/
https://aws.amazon.com/blogs/industries/telco-meets-aws-cloud-deploying-dishs-5g-network-in-aws-cloud/
t.ly/BIIW

[11] M. Zoure, T. Ahmed, and L. Réveillére, “Network ser-

vices anomalies in NFV: Survey, taxonomy, and verifi-

cation methods,” IEEE Transactions on Network and

Service Management, 2022.

[12] S. Yao, M. Xu, Q. Li, J. Cao, and Q. Song, “cSFC: Building

credible service function chain on the cloud,” in 2019

IEEE Global Communications Conference (GLOBE-

COM). IEEE, 2019, pp. 1–6.

[13] N. Alhebaishi, L. Wang, and S. Jajodia, “Modeling and

mitigating security threats in network functions virtu-

alization (NFV),” in IFIP DBSec. Springer, 2020.

[14] V. Moorthy, R. Venkataraman, and T. R. Rao, “Security

and privacy attacks during data communication in

software defined mobile clouds,” Computer Commu-

nications, 2020.

[15] H. Wang, H. Sayadi, A. Sasan, S. Rafatirad, and

H. Homayoun, “Hybrid-shield: Accurate and efficient

cross-layer countermeasure for run-time detection

and mitigation of cache-based side-channel attacks,”

in CCD, 2020, pp. 1–9.

[16] A. Houmansadr and N. Borisov, “The need for flow fin-

gerprints to link correlated network flows,” in Interna-

tional Symposium on Privacy Enhancing Technologies

Symposium. Springer, 2013, pp. 205–224.

[17] A. Houmansadr, N. Kiyavash, and N. Borisov, “Non-

blind watermarking of network flows,” IEEE/ACM

Transactions on Networking, vol. 22, no. 4, pp. 1232–

1244, 2013.

[18] N. Kiyavash, A. Houmansadr, and N. Borisov, “Multi-

flow attacks against network flow watermarking

schemes.” in USENIX security symposium. Berkeley,

CA, 2008, pp. 307–320.

[19] K. Bu, Y. Yang, Z. Guo, Y. Yang, X. Li, and S. Zhang,

“Flowcloak: Defeating middlebox-bypass attacks in

software-defined networking,” in IEEE INFOCOM

2018-IEEE Conference on Computer Communications.

IEEE, 2018, pp. 396–404.

[20] M. Flittner, J. M. Scheuermann, and R. Bauer, “Chain-

guard: Controller-independent verification of service

function chaining in cloud computing,” in 2017 IEEE

Conference on Network Function Virtualization and

Software Defined Networks (NFV-SDN). IEEE, 2017,

pp. 1–7.

[21] M. S. Aslanpour, S. S. Gill, and A. N. Toosi, “Perfor-

mance evaluation metrics for cloud, fog and edge com-

puting: A review, taxonomy, benchmarks and stan-

dards for future research,” Internet of Things, vol. 12, p.

100273, 2020.

[22] N. Agarwal, A. K. Singh, and P. K. Singh, “Survey of

robust and imperceptible watermarking,” Multimedia

Tools and Applications, vol. 78, pp. 8603–8633, 2019.

[23] M. S. Niaz and G. Saake, “Merkle hash tree based tech-

niques for data integrity of outsourced data,” GvD, vol.

1366, pp. 66–71, 2015.

[24] Amazon AWS, “Common elasticache use cases and

how elasticache can help,” 2023, available at: https:

//docs.aws.amazon.com/AmazonElastiCache/latest

/mem-ug/elasticache-use-cases.html.

[25] AWS, “Building lambda functions with python,” 2023,

available at: https://docs.aws.amazon.com/lambda/l

atest/dg/lambda-python.html.

[26] Netresec, “Publicly available PCAP files,” 2023, avail-

able at: https://www.netresec.com/?page=PcapFiles.

[27] A. Habibi Lashkari., G. Draper Gil., M. S. I. Mamun.,

and A. A. Ghorbani., “Characterization of tor traffic

using time based features,” in Proceedings of the 3rd

International Conference on Information Systems Se-

curity and Privacy. SciTePress, 2017, pp. 253–262.

[28] S. Jorgensen, J. Holodnak, J. Dempsey, K. d. Souza,

A. Raghunath, V. Rivet, N. DeMoes, A. Alejos, and

A. Wollaber, “Extensible machine learning for en-

crypted network traffic application labeling via uncer-

tainty quantification,” IEEE Transactions on Artificial

Intelligence, pp. 1–15, 2023.

[29] A. Iacovazzi and Y. Elovici, “Network flow watermark-

ing: A survey,” IEEE Communications Surveys & Tuto-

rials, vol. 19, no. 1, pp. 512–530, 2016.

[30] H. Hawilo, M. Jammal, and A. Shami, “Exploring mi-

croservices as the architecture of choice for net-

work function virtualization platforms,” IEEE Network,

vol. 33, no. 2, pp. 202–210, 2019.

[31] S. Liu, X. Xu, and M. Claypool, “A survey and taxonomy

of latency compensation techniques for network com-

puter games,” ACM Comput. Surv., vol. 54, no. 11s, sep

2022.

[32] Z. Lin and N. Hopper, “New attacks on timing-based

network flow watermarks,” in 21st USENIX Security

Symposium (USENIX Security 12), 2012, pp. 381–396.

[33] IETF, “Proof of transit,” 2020, available at: https://data

tracker.ietf.org/doc/draft-ietf-sfc-proof-of-transit/.

[34] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C.

Mogul, “Enforcing Network-Wide Policies in the Pres-

ence of Dynamic Middlebox Actions using FlowTags,”

in 11th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 14), 2014, pp. 543–546.

3456 33rd USENIX Security Symposium USENIX Association

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/elasticache-use-cases.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/elasticache-use-cases.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/elasticache-use-cases.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-python.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-python.html
https://www.netresec.com/?page=PcapFiles
https://datatracker.ietf.org/doc/draft-ietf-sfc-proof-of-transit/
https://datatracker.ietf.org/doc/draft-ietf-sfc-proof-of-transit/

[35] X. Zhang, Q. Li, J. Wu, and J. Yang, “Generic and agile

service function chain verification on cloud,” in 2017

IEEE/ACM 25th International Symposium on Quality

of Service (IWQoS). IEEE, 2017, pp. 1–10.

[36] B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee,

and J.-M. Kang, “SFC-Checker: Checking the correct

forwarding behavior of service function chaining,” in

2016 IEEE Conference on Network Function Virtualiza-

tion and Software Defined Networks (NFV-SDN). IEEE,

2016, pp. 134–140.

[37] F. Valenza, S. Spinoso, and R. Sisto, “Formally speci-

fying and checking policies and anomalies in service

function chaining,” Journal of Network and Computer

Applications, vol. 146, p. 102419, 2019.

[38] X. Wang and D. S. Reeves, “Robust correlation of en-

crypted attack traffic through stepping stones by ma-

nipulation of interpacket delays,” in Proceedings of the

10th ACM conference on Computer and communica-

tions security, 2003, pp. 20–29.

[39] P. Kadian, S. M. Arora, and N. Arora, “Robust digital

watermarking techniques for copyright protection of

digital data: A survey,” Wireless Personal Communica-

tions, vol. 118, pp. 3225–3249, 2021.

[40] C. Qin, P. Ji, X. Zhang, J. Dong, and J. Wang, “Fragile

image watermarking with pixel-wise recovery based

on overlapping embedding strategy,” Signal processing,

vol. 138, pp. 280–293, 2017.

[41] Y. H. Park and D. S. Reeves, “Adaptive timing-based ac-

tive watermarking for attack attribution through step-

ping stones,” North Carolina State University. Dept. of

Computer Science, Tech. Rep., 2007.

[42] Z. Pan, H. Peng, X. Long, C. Zhang, and Y. Wu,

“A watermarking-based host correlation detection

scheme,” in 2009 International Conference on Man-

agement of e-Commerce and e-Government. IEEE,

2009, pp. 493–497.

[43] P. Peng, P. Ning, D. S. Reeves, and X. Wang, “Active

timing-based correlation of perturbed traffic flows

with chaff packets,” in 25th IEEE International Con-

ference on Distributed Computing Systems Workshops.

IEEE, 2005, pp. 107–113.

[44] F. Rezaei and A. Houmansadr, “TagIt: Tagging network

flows using blind fingerprints.” Proc. Priv. Enhancing

Technol., vol. 2017, no. 4, pp. 290–307, 2017.

[45] H. Fang, Y. Qiu, K. Chen, J. Zhang, W. Zhang, and E.-C.

Chang, “Flow-based robust watermarking with invert-

ible noise layer for black-box distortions,” in Proceed-

ings of the AAAI Conference on Artificial Intelligence,

vol. 37, no. 4, 2023, pp. 5054–5061.

[46] J. Xu, S. Koffas, O. Ersoy, and S. Picek, “Watermarking

graph neural networks based on backdoor attacks,” in

2023 IEEE 8th European Symposium on Security and

Privacy (EuroSP), 2023, pp. 1179–1197.

Appendix

Algorithm 1 details the generation of virtual trailers (applied

by both the source and destination VNFs, for encoding and

decoding, respectively). It takes as input a flow F and a Su-

perBlock SB in F . The algorithm first checks if F has already

been assigned a FlowID, i.e., SB is not its first SuperBlock

(Line 4), and if so the FlowID is reused and the BlockNum is

incremented from the last assigned value (Lines 5-7). If F is

a new flow (Line 8), then the FlowID is incremented from

the last assigned value if the pair of source and destination

VNFs is previously seen (Lines 9-10), or FlowID is randomly

assigned otherwise (Lines 11-12). In both cases, the flow is

marked as seen (Line 13), and the BlockNum is incremented

from a random value (Lines 14-16). The MAC value is com-

puted over the SuperBlock SB , if SB is not empty (Lines

17-18); otherwise, the MAC is filled with zero bits (Lines

19-20) (the latter case is to generate only the first two fields

at the destination side). Finally, the virtual trailers are con-

structed based on aforementioned values (Lines 21-22).

Algorithm 1 Virtual Trailers Generation per SuperBlock

1: Input: F : a flow; SB : a Superblock in F

2: Output: VT[][]: virtual trailers of the SuperBlock

3: procedure GENVT(SB ,F)

4: if (F P Fex) then Ź Check if the flow (7-tuple) exists in list

5: FlowID = getFlowID(F)

6: for (i = 1..SF) do

7: BlockNum[i] = Inc(getLastBlockNum(F))

8: else Ź 7-tuple not in list

9: if (F.SrcVNF, F.DstVNF) P Fex then

10: FlowID = Inc(getLastFlowID(F, F.destination))

11: else

12: FlowID = setFlowID(F)

13: Add(F, FlowID, Fex) Ź Add flow to list

14: BlockNum[1] = setBlockNum(F)

15: for (i = 2..SF) do

16: BlockNum[i] = Inc(getLastBlockNum(F))

17: if isEmpty(SB) == false then

18: MAC = MTHMAC(k, SB , BlockNum[], FlowID)

19: else

20: MAC = ZeroMAC()

21: for (i = 1..SF) do

22: VT[i][] = <BlockNum[i], FlowID, SubSeq(MAC,i,SF)>

23: return VT[][]

Algorithm 2 details the encoding of the virtual trailers of

a given SuperBlock. The input is the virtual trailers VT[][]

generated by Algorithm 1, and the output is the ordered

list of the new IPDs EncodedVT[][]. The algorithm iterates

over each virtual trailer (Line 4-5), converts each frame into

USENIX Association 33rd USENIX Security Symposium 3457

Algorithm 4 Attack Detection

1: Input: F : a flow;

2: Output: F with each SuperBlock marked as recovered or attacked;

3: procedure DETECTATTACK(F)

4: SB1 = NextSuperBlock(F , φ) Ź 1st SuperBlock of F

5: while (SB1 <> LastSuperBlock(F)) do

6: SB2 = NextSuperBlock(F , SB1)

7: DV T [][] = DECODEVT(SB2) Ź Calling Alg. 3

8: M AC 1 = Concatenate(DV T [i][3]1ďiďSF
)

9: Ź SF : # of blocks in SuperBlock

10: M AC 2 = MHTMAC(k,SB1, DV T [i][1..2]{1ďiďSF })

11: if (M AC == M AC 2 and DV T [i][1..2]{1ďiďSF } match SB1)

then

12: MarkRecovered(F , SB1)

13: SB1 = SB2 Ź slide by a SuperBlock

14: else Ź Attack Detected

15: MarkAttacked(F ,{SB1,SB2}) Ź SB1 or SB2 or both attacked

16: SB1 = SB1 + (2 packets) Ź slide by two packets

17: return F

Algorithm 2 Virtual Trailer Encoding

1: Input: VT[][]: Virtual trailers of SuperBlock SB with SF blocks;

2: Output: EncodedVT[][]: New IPDs encoding VT[][];

3: procedure ENCODEVT(VT[][])

4: for (i = 1. . .SF) do

5: for (i = j . . .3) do

6: m[i][j] = ConvertBitSequence(VT[i][j])

7: EncodedVT[i][j] = ComputeNewIPD(IPDAV G , a, m[i][j])

8: return EncodedVT[][]

the binary representation (Line 6), and computes the new

IPD for each bit (as mentioned above) (Line 7).

Algorithm 3 details the decoding of the virtual trailers

from a SuperBlock. The input is the SuperBlock SB. The

output is the list of decoded virtual trailers DecodedVT[][].

The algorithm measures the IPDs in SB (Line 4) and divides

the IPDs into blocks (Line 5). It then iterates over each block

(Line 6), divides the block into frames (Line 7), computes

the binary representation for each frame (Line 8-10), and

converts the latter to a virtual trailer field (Line 11).

Algorithm 3 Virtual Trailer Decoding

1: Input: SB : SuberBlock;

2: Output: DecodedVT[][]: Integers corresponding to decoded VT[][];

3: procedure DECODEVT(SB)

4: rIPD[] = measureIPD(SB)

5: rIPDB [] = DivideBlocks(rIPD[], SF)

6: for (each block Bi in SB) do

7: rIPDF [i][] = DivideIFrames(rIPDB [i], 3)

8: for (j = 1. . .3) do

9: Md
F

[j] = ComputeEncodedBits(IPDAVG, a, rIPDF [i][j])

10: m[j]= ConvertBit(Md
F

[j])

11: DecodedVT[i][j]=getInteger(m[j])

12: return DecodedVT[][]

Algorithm 4 details the attack detection performed at

the ingress of a destination VNF. It takes as input a flow

F , and outputs F with each SuperBlock marked as recov-

ered or attacked. The algorithm iteratively slides a moving

window over the next two consecutive SuperBlocks in F

(Line 4-6). In each iteration, the algorithm first decodes

the virtual trailer embedded in the second SuperBlock us-

ing Algorithm 3 (Line 7). It then extracts the MAC fields

from the decoded virtual trailers, and concatenates them

to obtain the decoded MAC value (Line 8-9). Then, it re-

computes the Merkle tree MAC using all packets in SB1

together with the decoded BlockNum and the FlowID vir-

tual trailer fields (Line 10). If those two values match and all

the BlockNum and the FlowID virtual trailer fields match

the first SuperBlock (Line 11), then the first SuperBlock

is marked as recovered (Line 12), and the window slides

forward by one complete SuperBlock (Line 13). Otherwise,

there is an attack on at least one of those SuperBlocks (Line

14), so both SuperBlocks are marked as attacked (Line 15)

and the window slides forward by two packets (Line 16).

Algorithm 5 outlines the attack classification. It takes
as inputs the collection of flows marked by attack detec-

tion (Algorithm 4) and the pairs of attack types and their

classification rules. It outputs the flows with each attacked

SuperBlock classified as one of the attack types. The algo-

rithm iterates over each flow (Line 4) and each attacked Su-

perBlock (Line 5), and applies each of the classification rules

(Line 6). If the virtual trailers of the attacked SuperBlock can

be successfully reconstructed (Line 7) under a rule, the Su-

perBlock is classified with the corresponding attack type

(Line 8). If the virtual trailers can be partially reconstructed

and the classification result can be verified by requesting

additional information from the source (Line 9), then the

SuperBlock is also classified with the attack type (Line 10).

Algorithm 5 Attack Classification

1: Input: F [] = {F }: M flows marked by attack detection (Algorithm 4);

C R[] = {〈A,R〉}: N pairs of attack types and their classification rules;

2: Output: F with attacked SuperBlocks classified by attack types;

3: procedure CLASSIFYATTACK(F)

4: for (i = 1. . . M) do

5: while ((SB = NextAttackedSuperBlock(Fi)) <>φ) do

6: for (j = 1. . . N) do

7: if ReconstructVT(SB ,R[j]) == TRUE then Ź If VT of SB

can be reconstructed with the j th rule

8: Classify(SB , A[j]) Ź Classifying SB as the j th attack

type

9: else if (SrcAsstVerify(PartialReconVT(SB ,R[j])) == TRUE)

then Ź If partially reconstructed and verified with source

10: Classify(SB , A[j])

11: return F

3458 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	SFC Forwarding Path Verification
	Blind Watermarking
	Threat Model

	Virtual Trailer
	Definitions
	Virtual Trailer Encoding
	Virtual Trailer Decoding
	Handling Unexpected Network Jitters

	Attack Detection and Classification
	Attack Detection
	Attack Classification

	Implementation
	Performance Evaluation
	Evaluation Environment
	Experimental Results
	Parameters Evaluation
	Attacks detection and classification
	Comparison with existing work
	Handling unexpected jitters

	Discussions
	Related work
	Conclusion

