
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

AI Psychiatry: Forensic Investigation of
Deep Learning Networks in Memory Images
David Oygenblik, Georgia Institute of Technology; Carter Yagemann,

Ohio State University; Joseph Zhang, University of Pennsylvania; Arianna Mastali,
Georgia Institute of Technology; Jeman Park, Kyung Hee University;

Brendan Saltaformaggio, Georgia Institute of Technology
https://www.usenix.org/conference/usenixsecurity24/presentation/oygenblik

AI Psychiatry: Forensic Investigation of
Deep Learning Networks in Memory Images

David Oygenblik1, Carter Yagemann2, Joseph Zhang3, Arianna Mastali1,
Jeman Park4∗, Brendan Saltaformaggio 1∗

1Georgia Institute of Technology 2Ohio State University
3University of Pennsylvania 4Kyung Hee University

Abstract
Online learning is widely used in production to refine model
parameters after initial deployment. This opens several
vectors for covertly launching attacks against deployed
models. To detect these attacks, prior work developed
black-box and white-box testing methods. However, this has
left a prohibitive open challenge: How is the investigator
supposed to recover the model (uniquely refined on an
in-the-field device) for testing in the first place. We propose a
novel memory forensic technique, named AiP, that
automatically recovers the unique deployment model and
rehosts it in a lab environment for investigation. AiP
navigates through both main memory and GPU memory
spaces to recover complex ML data structures, using
recovered Python objects to guide the recovery of lower-level
C objects, ultimately leading to the recovery of the uniquely
refined model. AiP then rehosts the model within the
investigator’s device, where the investigator can apply
various white-box testing methodologies. We have evaluated
AiP using three versions of TensorFlow and PyTorch with the
CIFAR-10, LISA, and IMDB datasets. AiP recovered 30
models from main memory and GPU memory with 100%
accuracy and rehosted them into a live process successfully.

1 Introduction

Law enforcement and forensic investigators need the
capability to examine production deep learning (DL) models
in the case of failure or attack. Existing works have proposed
a slew of practical attacks against DL models, such as
adversarial inputs [1]–[8], adversarial teaching [9]–[13], trust
issues in federated learning [14]–[17], and attacks that
backdoor the model in-memory [18], [19]. Fortunately, the
research community has developed complementary vetting
techniques to inspect a DL model and detect the attack [6],
[20]–[26]. Ideally, an investigator would apply these vetting
techniques to inspect a DL model post-failure. Unfortunately,

∗Co-corresponding author.

retrieving the attacked DL model to inspect remains difficult
for both technical and regulatory reasons.

In a forensic scenario, investigators cannot rely on
obtaining a “stored copy” of the DL model for investigation.
The at-rest representation of the model may be encrypted or
instantiated from remote networks in countries outside the
investigator’s jurisdiction [27]–[29]. Assuming legal
permission and vendor cooperation, prior research has
explored the retrieval of DL models from compiled binaries
via deep neural network (DNN) operator identification and
symbolic analysis to infer the shapes, parameters, and
hyperparameters of models [30], [31]. Forensic
investigations rarely meet such assumptions. Further,
investigators would still face significant effort to reverse
engineer novel operator definitions [31] or apply symbolic
analysis [30] in the face of binary protection techniques.
Worse still, Sun et al. discovered that roughly 33% of ML
models analyzed in their work are protected from extraction
via anti-dynamic-analysis techniques [32].

DNNs may also refine their decision boundaries
continuously after deployment. For example, Apple’s Face
ID takes pictures of the user when they correctly enter their
PIN to retrain [33]. Similarly, Tesla uses fleet learning,
imitation learning, and self-supervised learning to
continuously update the models in end-devices [34]. Systems
can also tailor themselves to a particular environment (e.g.,
network, user, geography) to combat concept drift [27]. Each
deployed model operates with unique parameters,
necessitating that any inspection be conducted on that
particular deployed model, which ultimately demands the
extraction of the unique on-device model.

This creates a technical dilemma for forensic investigators.
They might choose to apply black-box analysis techniques to
inspect the victim model in deployment. Unfortunately,
existing literature [35] and our work (§2.1) have found
black-box techniques to be slower and less accurate for
attack detection. Alternatively, applying white-box inspection
techniques (e.g., [6], [21]–[25]) requires in-memory access
to the DL model. However, invasive instrumentation of the

USENIX Association 33rd USENIX Security Symposium 1687

running DL model is nearly impossible. First, DNNs are
implemented with complex software stacks, including
interpreted languages (e.g., Python) and complicated ML
frameworks whose data structures vary based on platform,
version, and framework (e.g., TensorFlow [36],
PyTorch [37]). Further, the white-box inspection would
require visibility into the GPU, which stores weights and
biases, and uses complex parallel computing platforms (e.g.,
CUDA [38]). Lastly, such invasive instrumentation of a
victim device risks destroying evidence of the attack (e.g.,
crashing the ML process).

Though clearly important to the analysis of DL models,
white-box techniques overlook a critical and arduous step in
the investigation of the model, the actual retrieval of the
model. In light of this, we turned our attention to
memory-image forensics to recover DL models from
memory, as well as enable the application of white-box
inspection techniques. However, many existing
state-of-the-art memory-forensics techniques rely on static
data structure recovery [39]–[44], which are unable to
recover the varied and complex data structures used in DL
software stacks, as different models (which can be
user-defined) have different in-memory representations. ML
frameworks employ advanced garbage collection and
memory management optimizations, obfuscating which
in-memory objects are legitimate (e.g, tensors may be left
allocated in memory with appropriate sizes and element
counts, but with broken pointers). Layer weights are often
stored in GPU memory, which has its own address space that
is inaccessible to the CPU. Likewise, layer weights are stored
in consecutive buffers, so it is impossible to determine where
tensors start and end in GPU memory without context from
CPU data structures. Lastly, to apply white-box analysis
techniques, investigators must also be able to rehost the
model into a live process for inspection.

To address these challenges, we propose AiP, an
automated system for recovering DL models from main
memory and GPU memory and rehosting them into a live
process. AiP is the first work to enable the white-box
inspection of in-production DL models by pairing GPU and
CPU memory images. We come to the key insight that
regardless of framework, platform, and version used in a
proprietary DL system, the underlying data structures in
these systems must contain key components generic to all
DNNs (weights, biases, shapes, and layers such as flatten,
pooling, etc.). AiP requires no prior knowledge of the
particular model and can reconstruct models generically,
allowing recovery of a variety of models such as CNNs [45]
and RNNs [46]. AiP begins by identifying high-level DNN
components associated with the model, ultimately recovering
a root model object. AiP then proceeds to recover low-level
data structures from CPU and GPU memory associated with
the tensors of the model. AiP finally rehosts the recovered
model into a new live process on the investigator’s device,

Figure 1: Backdoors used in Table 1. From the top left in
clockwise order: Pattern, Pixel, Patch, and Watermark.

such that white-box techniques can be applied.
In our evaluation using the LISA [47] traffic sign dataset,

CIFAR-10 [48] image dataset, and IMDB movie review
dataset [49], AiP successfully recovered 30 different models
(with upwards of 94M parameters) and achieved 100%
recovery accuracy. AiP also rehosted all 30 models into the
live process (equivalent to the original deployed model) to
enable further analysis with white-box techniques. To
facilitate future work, we have made our code and dataset
open source.1

2 DNN Forensics with AiP

AiP is designed to be “plug and play” with any existing or
future white-box investigation techniques. We aim to
demonstrate why AiP is necessary and helpful for the
investigator by showing (1) that AiP can cooperate with
white-box investigation techniques (which would be
impossible without model recovery and rehosting), (2) that
the white-box introspection technique enabled by AiP is
better than the black-box introspection technique, and (3) the
assumptions for applying and extending AiP.

2.1 Motivating Forensic Case

Self-driving cars are edge devices with uniquely trained
parameters. Proper behavior of the car’s DNN is critical to
the safety of the passengers in the car as well as other drivers
on the road. When a self-driving car incorrectly identifies a
traffic sign, that car’s DNN model needs to be examined.
Recall that since each self-driving car’s model may be
different from one another, the exact model deployed in the
car at the time of misbehavior needs to be analyzed. Consider
a self-driving car that has been deployed with a DL model
that is continuously refined via online learning. The car has
been extensively tested for backdooring before its
deployment into the wild, but unfortunately it misidentifies a
traffic sign and causes a collision.

1https://github.com/CyFI-Lab-Public/AiP

1688 33rd USENIX Security Symposium USENIX Association

Table 1: Evaluation and Comparison of White-box Backdoor
Detection Enabled by AiP to Black-box Detection on Models
Created in TensorFlow 2.3.

BD Model PR1ASR2† Acc DT(s)3 BD-C4

BB WB GT BB WB

Pa
tc

h

RN152
0.00 - 97.0 - - /0 /0 /0

0.06 98.4 97.2 201,389 5,198 [SL] /0 [SL]
0.10 99.3 97.3 204,671 5,374 [SL] /0 [SL]
0.16 99.4 96.7 208,653 5,221 [SL] /0 [SL, SS]

MN-V1
0.00 - 96.9 - - /0 /0 /0

0.06 98.7 98.1 155,537 5,568 [SL] /0 [SL]
0.10 99.4 97.9 163,702 5,002 [SL] /0 [SL]
0.16 99.6 97.7 155,691 5,613 [SL] /0 [SL]

Pa
tt

er
n RN152

0.00 - 97.0 - - /0 /0 /0

0.06 6.1 93.6 204,442 5,293 [SL] /0 [SL]
0.10 8.0 91.5 199,503 5,411 [SL] /0 [SL]
0.16 12.9 87.8 206,749 5,110 [SL] /0 [SL]

MN-V1
0.00 - 96.8 - - /0 /0 /0

0.06 10.0 92.0 149,134 5,733 [SL] /0 [SL]
0.10 3.6 95.4 150,392 5,282 [SL] /0 [SL]
0.16 9.7 90.9 155,661 5,599 [SL] /0 [SL]

Pi
xe

l

RN152
0.00 - 97.0 - - /0 /0 /0

0.06 34.2 93.4 202,211 5,365 [SL] /0 [SL, BG]
0.10 69.6 91.5 202,983 5,244 [SL] /0 [SL]
0.16 66.4 91.3 209,640 5,502 [SL] /0 [SL]

MN-V1
0.00 - 96.8 - - /0 /0 /0

0.06 9.9 96.5 161,227 5,328 [SL] /0 [SL]
0.10 1.3 95.9 159,130 5,346 [SL] /0 [SL]
0.16 7.3 93.5 153,792 5,192 [SL] /0 [SL]

W
at

er
m

ar
k RN152

0.00 - 97.0 - - /0 /0 /0

0.06 79.2 96.3 198,818 5,096 [SL] /0 [SL]
0.10 81.6 95.8 200,493 5,190 [SL] /0 [SL, BG]
0.16 88.1 94.9 203,332 5,337 [SL] /0 [SL]

MN-V1
0.00 - 96.8 - - /0 /0 /0

0.06 90.5 97.7 156,656 4,931 [SL] /0 [SL]
0.10 90.1 94.5 160,033 5,403 [SL] /0 [SL]
0.16 91.2 95.5 156,213 5,618 [SL] /0 [SL, SS]

1 Poison Rate given as one of the following: 0, 0.06, 0.1, 0.16.
2 Attack success rate of images containing the backdoor trigger.
3 Total detection time (DT) in seconds for Whitebox (WB) and

Blackbox (BB) techniques.
4 Backdoor detection classes:

SL: Speed Limit, SS: Stop Sign, BG: Background.

Investigators have been provided with the original model,
but the DL model’s decision boundaries have been (and
continue to be) updated via batches of data during the online
learning process. Two investigators, Alice and Bob, attempt
to examine whether the car’s collision was caused by an
attack (i.e., implanted backdoor). Bob decides to directly
apply the state-of-the-art black-box technique AEVA [50], as
he cannot see the proprietary DL model running on the car.
Prior to AiP, Bob’s approach would have been valid because
the analysis of this model was only possible through
black-box techniques. However, Alice is aware of AiP and
decides to first recover the DL model from the car’s memory
first, rehost it in a live process, and then apply a SOTA
white-box technique [22]. With AiP’s recovery and rehosting
capabilities, we enable a white-box analysis to be applied to
the unique DNN model (enabling Alice’s approach).
Simulation Setup. To simulate the online learning
investigation conducted by Alice and Bob, we began with
unpoisoned models (Resnet152v1 and MobileNetV1),
continuously fed them batches of training data, and captured
memory images of the system during model refinement. To
simulate an adversary slowly poisoning the car’s model, we
slowly poisoned new batches of images that the model’s
online learning trained with. The batches input to the model

(a) Backdoored street
sign.

(b) Zoomed sign with
matching BD.

(c) BD found using
AiP.

Figure 2: Forensic Evidence Presented by Alice.

(in each separate experiment) contain a number of
backdoored images proportional to the poison rate (0%, 6%,
10%, and 16%). The set of adversary triggers applied to the
backdoored images originates from a review of previous
work [14], [51], namely, patch, pattern, pixel, and watermark
(Figure 1). Once each model was further refined (on the
batches above) and returned to refinement on clean samples,
another memory image was captured. In each scenario where
Bob applies the black-box technique, we utilized AEVA [50]
to test the model for any attacks. Similarly, when Alice
would like to use Neural Cleanse [22] to test the model, we
simulated this by recovering/rehosting the model from
memory using AiP and then applying Neural Cleanse.
Simulation Findings. Table 1 shows a summary of our
simulation. For each poison rate in Column 3, Column 4
shows the attack success rate (ASR) for the backdoor triggers
on the rehosted models (avg of 56.4%), and Column 5 shows
the overall accuracy of the models (avg of 95.4%). For the
rehosted models, it is worth noting that the attack success
rates (ASR, Column 4) and overall accuracy (ACC, Column
5) for each model are exactly equivalent in both the deployed
and rehosted models. This shows that AiP’s recovery and
rehosting were successful (our evaluation of AiP is in §4).
Columns 6-10 present the detection time and results of
backdoor detection through the black-box technique
(Columns 6 and 9) and the white-box technique enabled by
AiP (Columns 7 and 10). For all scenarios, the ground truth
backdoored class (Column 8) is speed limit (SL).

Unfortunately for Bob, the black-box technique fails to
find the backdoor in all experiments. We found the maximum
anomaly index for the SL class to be 2.572, falling below the
baseline 4.0 needed to be met to be declared as backdoored
by the technique [50]. Worse still, the average runtime is two
orders of magnitude higher than the runtime for the
white-box technique. Even accounting for the recovery and
rehosting time of AiP (max 21,306 sec in Table 2), the
black-box technique is still an order of magnitude slower.

Fortunately for Alice, in all scenarios where a trigger is
present, corresponding to an attacked model, the white-box
technique detects that the SL class is backdoored (100%
discovery shown in Column 9). The backdoor detected by
Alice using AiP is shown Figure 2c (corresponding to the
[SL] backdoored class). The ground truth for this generated

USENIX Association 33rd USENIX Security Symposium 1689

DL Process Main Memory
Snapshots

Phase 1: Model Object Retrieval

DL Model Key
Attributes

Phase 3: Model Rehosting

Garbage Collector
Investigation

Program Header
Analysis

Tensor
Recovery

Heap/Value
Searching

Environment
Setup Rehosting

Intermediate
Representation

Mapping
Recovered Tensor Forensic

Applications

GPU Memory
Snapshots

Phase 2: Feedback-Driven Tensor Recovery

DL Process

Figure 3: Overview of AiP Design and Operation.

“trigger” (patch) is shown in the middle and left images.
With AiP, the white-box analysis worked as expected.

This includes finding four false positive backdoors ([SS] or
[BG]) in addition to all 32 correct [SL] backdoors. Neural
Cleanse [22] can produce a false positive when a mask and
pattern for a non-backdoored class are generated that have an
L1 Norm small enough to be anomalous. Fortunately, Alice
can compare these to the much lower L1 Norm for [SL] and
verify that these are false positives (as we did in this
simulation). Most importantly, the white-box technique never
misses the backdoored class in any of the models refined
with poisoned data (0 FN).
Solving the Case. AiP provides the following evidence for
Alice to solve this case:

1. Figure 2c shows the identified backdoor trigger displayed
by AiP to Alice. In legal proceedings, Alice can use this
output to testify that the self-driving car will misbehave
98.1% of the time this trigger is applied to signs on the
street (evidenced by the 98.1% attack success rate in
Table 2). For example, Alice may need to provide
evidence for negligence claims, such as those brought
against Tesla [52].

2. Alice can use AiP to interact with the model and
demonstrate that new photographs (shown in Figure 2a)
from the crash site trigger the model’s backdoor. Crime
scene photographs are often used to demonstrate
evidence to a jury [43]. Alice can physically investigate
the roads near the scene of the crash to identify candidate
street signs that could have caused the crash. Figure 2b
would present hard evidence to a jury that a backdoored
sign present at the scene (aligning with the trigger output
by AiP) could cause the accident.

Legal proceedings rely upon expert witnesses providing
their interpretation of the best evidence they can obtain.
Without using AiP in her forensic investigation, Alice would
have no evidence that a backdoor existed and, in a court of
law, would be unable to demonstrate and testify to the
likelihood of the model causing the accident.

2.2 Assumptions

The design of AiP is built on several assumptions that match
traditional forensic scenarios (such as the motivating
example presented above). We assume that the DL model is
built on commodity frameworks that are not obfuscated (e.g.,
TensorFlow, PyTorch). These frameworks are built on a full
software stack where each software component must
conform to the higher or lower software components. For
example, an ML model designer creating a DNN in
TensorFlow must conform the model’s design to the
underlying framework’s classes and objects. Subsequently,
the framework’s classes and objects must follow very specific
structures that are defined by the interpreted language and
lower-level C code. Finally, lower-level data structures
defined in C must conform to the complex GPU software
stacks, such as CUDA [38]. These interdependencies make
obfuscating or redesigning the framework code difficult,
which supports our assumption that AiP will apply to most
traditional forensic scenarios.

In designing AiP, we reverse-engineered this software
stack and chose the lowest layers possible to target AiP’s
recovery. This would allow an investigator to recover a
diverse set of models generically and also put AiP out of
reach for all but the most advanced anti-forensics techniques.
In a non-traditional forensics scenario, each layer of the
software stack described above provides some opportunity
for anti-forensics. A model designer attempting to obfuscate
a model can do very little (simple tricks such as obfuscating
model and layer names) because the model’s implementation
must conform to the framework. Framework designers can
obfuscate classes and objects by complicating the structures
of DNN nodes and intermediate data structures, but they
must still comply with the lower-layer software. AiP can be
extended to any new framework design (regardless of the
complexity of the data structures), which we discuss §5.1.
Finally, the most determined obfuscator may redevelop
software at the GPU-level intending to obfuscate the ML
system. This could thwart AiP, but would entail a full

1690 33rd USENIX Security Symposium USENIX Association

redesign of the GPU interface, GPU driver, and framework,
which we consider out of the scope of this paper.

3 AiP Design

Figure 3 provides an overview of AiP, which consists of three
main phases. AiP takes CPU and GPU memory images as
input from an investigator (detailed in Appendix A). AiP first
locates the DL model’s root object in memory (§3.2). AiP
then applies its generic recovery algorithm (§3.1.1) to search
for tensors2 for each layer in the model. AiP then identifies
whether a tensor exists in CPU or GPU memory, modifying
search constraints based on where the tensor is (§3.3). AiP
then connects recovered tensors to higher-level data structures,
matches them to nodes in the DNN’s graph, and rehosts the
recovered model in a live process used for the white-box
investigation (§3.4).

3.1 DNN Characteristics and Key
Observations

DNNs are complex mathematical operations that can be
represented as directed acyclic graphs or DAGs, meaning
that no operation points back to previous operations.
Essentially, operations will be performed from node to node
in a directed fashion where no previous node is ever used
again. This definition, extends beyond a particular framework
or platform. This reveals the key intuition that for each DNN,
which is a DAG, the semantics of the DNN’s operations can
be captured by examining the inputs of each node, as well as
each node’s shape, element counts, weights, and node type.
By understanding the hierarchy of data comprising a DL
model node, it is possible to interpret properly the tensors in
memory that match the high-level representation of the node
in the DNN’s graph. The iterative application of tensor
interpretation to all DNN nodes starting from the model
object enables the recovery of the DNN model.

3.1.1 Tensor Recovery and Filtering

We apply the intuition that though there may be thousands
of tensors in memory, each tensor recovered for the DAG
should correspond to exactly one valid tensor in memory,
with no ambiguity between distinct tensors with equivalent
element count and shape. Starting at the DAG’s rootnode,
AiP employs a generic recovery algorithm, which utilizes
the unique characteristics of the DNN’s nodes to isolate and
recover the nodes’ associated tensors (framework specific
implementation shown in §3.3).

AiP’s generic recovery is shown in Algorithm 1. It begins
with a breadth-first search through the model object for all
the branches leading to leaves (tensors) (Line 3 - Line 13).

2A multi-dimensional array of data used in DL.

Algorithm 1: Tensor Recovery.
Input: Model Root R
Output: Tensor Set VT

// Initialize Queue, Handle List, and Constraint List
1 Q ←− /0 Vhandle ←− /0;
2 Vcnstr ←− /0;
// Fill Constraint List for Filtering

3 Q.enqueue(R)
4 while not Q.empty() do
5 Node = Q.dequeue()
6 if Node.children = /0 then

// Get Handle
7 Vhandle ←− Vhandle ∪ H(Node);

// Get Constraint
8 Vcnstr ←− Vcnstr ∪C(Node);
9 end

// Visit Children
10 for x ∈ Node.children do
11 Q.enqueue(x);
12 end
13 end

// Begin Filtering. Initialize Mapping for Tensor Set
14 VT ←− /0

15 for tc ∈heap do
// Filter Corrupt Tensors

16 if Corrupt(tc) then
17 continue
18 end

// Filter Semantically Invalid Tensors
19 if Name(tc) 6∈Vhandle, or Shape(tc) 6∈Vcnstr then
20 continue
21 end

// Add Valid Tensors to Recovery Set
22 VT ←− VT ∪ tc
23 end

AiP extracts the shapes, element counts, and the names of
tensors by looking at members in their data structures. AiP
then extracts a handle to a representation of each tensor
containing an internal name, data type, and device placement
string (Line 7). AiP constructs a set of valid tensors,
matching the constraints of the data structures created
previously. The constraints created from the universal
characteristics of each DNN node help AiP avoid tensors
with invalid shapes or element counts, recovering only
correct nodes from the DNN’s graph (Line 21).

AiP also ensures that, given a tensor constraint (shape,
element count, name), all pointers in the data structures
recovered point to valid regions of memory in process.
Pointers are checked such that they point to subsequent valid
data structures (e.g., a tensor points to a buffer object with a
flat in-memory buffer). AiP performs a final sanity check to
find whether a tensor belongs to a node in the DNN’s graph
by validating the node’s reference count (a count of 0 mean
the tensor has been deallocated but has not been overwritten
in memory).

USENIX Association 33rd USENIX Security Symposium 1691

3.2 Model Object Retrieval and Memory
Forensics Frontends

Given an input of CPU and GPU memory images, AiP
recovers the DNN’s graph, as well as the graph’s nodes,
discussed in §3.1.1, to enable DNN investigation with
white-box techniques. To this end, AiP first must identify a
high-level object in memory fitting the characteristics of a
DNN. Then, AiP recovers the root objects from the memory
associated with the DNN model and its backbone. However,
without an implemented memory forensics frontend for a
particular system and framework, AiP would not be able to
locate the nodes and graph structure that form the DNN in
the tensor recovery step.

The memory forensics frontends that AiP requires to
operate, all share common characteristics. These
characteristics are similar from framework to framework, as
the efficient management of matrices and matrix operations
are standardized by common libraries such as CUDA [38],
cuBLAS, and BLAS [53]. The nodes associated with the
DNN need to be structured such that these standardized
libraries used across platforms and systems can utilize them.
As a result, all memory forensics frontends utilized by AiP
share universal characteristics, as shown in §3.1. DNN model
management by frameworks typically needs the following:
DNN layer counts, layer names, tensor shapes, device
location strings, and pointers to tensor data structures
containing tensor weights. The objects leading to these
characteristic DNN components may ultimately vary from
framework to framework, begging the need for a memory
forensics frontend. AiP, once given this memory forensics
frontend, can accurately reconstruct the graph structure and
node types for a DNN (as well as associated tensor weights)
by following the generic recovery methodology in §3.1.1.

Python Memory Forensics Frontends. AiP comes
prebuilt with memory forensics frontends for Python and the
TensorFlow [36] and Pytorch [37] frameworks. Tensorflow’s
implementation is different from that of Pytorch’s, but as
discussed above, the underlying representation of tensors is
largely similar. Also, the memory forensics frontend
component that handles the Python interpreter is the same
between frameworks. As a result, there are largely shared
components of each frontend. Once given the frontend for
each framework, AiP traverses the garbage collector (GC) of
the Python process to recover objects corresponding to a
high-level representation of the DNN model, leaving
lower-level (C, C++) objects for later recoveries, such as
model nodes and tensor weights.

To do this, AiP locates the Python process in memory by
walking the pointers in the linked list in kernel memory
containing all active processes. Using the pointer to the
section header table from the ELF header, the location of the
dynamic symbol table (pointing to relevant process-specific
functions and symbols) is used to recover symbols necessary

DNN
Output

Main Memory
Snapshots

AiP Tensor
Recovery

Tensor Root Obj
Ref Cnt

Type (Conv)
…..

Tensor Ptr

Tensor Obj
Vtable Ptr
Ref Cnts

Storage Ptr
Metadata

Dim Cnt(4)
3x3x3x32

Tensor Buf Obj
Vtable Ptr
Ref Cnts

Data Ptr
0x7ffc...

Reconstructed Tensor
Conv1
4 Dim

3x3x3x32
864 Weights
224x224x3

Tensor Weights

Conv1
3x3x3x32

Other
Layers

….

Input To DNN
224x224x3

Figure 4: MobileNetV1 with SSD applied to an input image.
Its first convolutional layer is shown to be reconstructed by
AiP’s tensor recovery (Phase 2).

for model object identification. For the Python frontend, AiP
finds the Relative Value Address (RVA) of _PyRuntime,
which is an object that points to the GC for many versions of
Python, and begins looking for the model object. More
memory forensics frontends can be created for other
processes/interpreters such that they can be extended to other
languages and frameworks.
Garbage Collector and Model Signature Search. For the
prebuilt example, by finding the GC of the Python interpreter,
AiP finds references to Python data structures that lead to the
definition of the DNN. AiP then iterates through the GC and
enumerates all Python objects referenced by the GC,
searching for objects matching those of the DAG described
in §3.1. AiP uses high-level common characteristics of ML
models to match generic model objects to the Python objects
found by traversing the GC, leading to the identification of
the user-defined model. These model objects can be
identified solely by name (often by a type string such as
’ResNet’), but then are verified by looking at lower-level
components of that object. As data structures, these model
root objects can be envisioned as a tree, containing a root
node and branches leading down various Python data
structures, with leaves containing the individual operations
used by the graph.

Referring back to §2.1, Alice recovers an SSD
MobileNetV1 model from a memory image (deployed with
TensorFlow) for white-box investigation. Figure 4 shows the
SSD MobileNetV1 DNN with a convolutional layer,
intermediate layers (comprising the rest of the model), and
the DNN output. Given an input traffic sign image (size
224x224x3), operations will be applied such that the output
of the DNN is the sign’s class (e.g., speed limit).

1692 33rd USENIX Security Symposium USENIX Association

Python Process Heap

Memory Image
Model Root Node

Shapes Layers

Tensor Data

Names

Heap/Value Searching

DL Model Key
Attribute Collection

Direct
Connection To
Tensor Data
Unavailable

Connection
Made Through
Second Heap
Search

Tensor
Candidate

3x3x3x32

0x7ffc2e..
_Var7

Tensor
Candidate

3x3x3x1

0x7ffc2f..
_Var8

Tensor
Candidate

1x1x32x8

0x7ffc2d..
_Var9

Candidates for
recovery. Uses
collected
shapes, names,
pointers to layer
types

Figure 5: Generic tensor recovery allows AiP to go from
high-level node characteristics to its underlying tensor
representation.

We can see that the first layer (convolutional layer circled
in red) is defined hierarchically in memory. First, the layer
node has an associated object (Tensor Root Obj) that
contains the object’s type (Conv), ref count, and a pointer to
another object, (Tensor Obj). Tensor Obj defines more
characteristics of the node, such as reference counts for the
layer, shape data, and dimension count. It also includes a
pointer to tensor weights (Tensor Buf Obj). Tensor Buf
Obj finally contains a pointer to raw tensor data stored on the
GPU. By understanding the hierarchy of data shown, which
we implemented as the TensorFlow frontend, it is possible to
interpret properly tensors in memory (Reconstructed
Tensor) that match the high-level representation of the node
in the DNN’s graph. Once these nodes are identified, the
iterative application of tensor reconstruction to all DNN
nodes enables the recovery of the DNN model.
Extensibility. As described in §3.1, frameworks across
platforms and systems have similar representations of tensors.
This is due to the way DNNs are represented, primarily as
DAGs, meaning there is a list of features that each node in
the DNN must contain. Therefore, memory forensics
frontends for a framework need to be implemented only to
the point where a model root node can be identified
(discussed in §5.1) and then AiP’s generic recovery can be
applied.

3.3 Feedback-Driven Tensor Recovery
For model objects in memory, direct connections to tensor
buffers for each operation in the model may be unavailable
(via direct pointer traversal). Unless explicitly requested,
large tensor buffers (tensor data) may not be directly stored
in the Python layer, as shown in Figure 5. We see with solid
connecting lines that pointers from the model root object can
be used to identify a layer by name and shape. However, the
associated tensor data (holding weights) is not accessible via
pointer traversal from the model root layer (red cross). Thus,
AiP identifies connections that are missing from the model
graph, creates signatures for tensor objects based on

collected Python layer attributes (DL Model Key Attribute
Collection), and utilizes those signatures to recover tensors
from the C layer, utilizing the recovery strategy in §3.1.1.
Referring back to the poisoned MobileNetV1 with SSD (one
TensorFlow deployed model investigated by Alice in §2.1),
we see that three tensor candidates were found for the first
layer of the model. However, AiP is able to discard all tensor
candidates except the one precisely matching that of one
candidate (Var7 with shape 3x3x3x32).
Multi-stage Model Recovery. During tensor recovery, AiP
creates the connections missing between nodes and their
associated tensor buffers. To do this, AiP employs the
generic multi-stage retrieval process shown in §3.1.1.
During this procedure, AiP gathers handles to C tensor
identifiers containing information such as device placement,
internal name, and type name. These identifiers do not
directly contain the weights of the tensor but hold
information necessary for the ML framework to later access
the weight buffer of the tensor (as indicated by the invalid
connection from the model to tensor data in Figure 5). Tensor
buffers might not even be available in CPU memory, as ML
systems typically utilize powerful GPUs for inference and
training. Fortunately, utilizing the identifiers for each tensor,
AiP interprets each tensor’s buffer pointer such that the
buffer can be recovered from the GPU (§3.3.1).

3.3.1 Recovery of Models on the GPU

In production ML systems, GPUs are often used to perform
calculations instead of a CPU. As a result, AiP should not
limit its recovery to systems running on a CPU and main
memories (called CPU memory for convenience). The GPU
memory space is partitioned into multiple regions such as
global memory, shared memory, texture memory, etc. Global
memory is a region of memory on the GPU where buffers of
data are created and stored. As AiP is primarily concerned
with the recovery of the buffers of tensors, AiP must be made
aware that the recovery of tensors is not limited to CPU
memory but also the global memory associated with the ML
process. However, AiP initially is unaware that pointers in
CPU memory may point to regions of memory on the GPU.
Without knowledge that data may be placed on the GPU (and
how), AiP is unable to recover tensor weights.

However, two main technical challenges impede GPU
tensor recovery. First, the determination of how data is stored
on a GPU, as well as the layout of data structures on the
GPU, is unclear. Second, we found that ML systems handle
the management of higher-level data structures exclusively
on the CPU and delegate the GPU to hold buffers of raw
floats, meaning there are no meaningful data structures to
search for on a GPU memory image (for tensors).
GPU Address Contextualization. To address the first
challenge, we observed that the only relevant section of
memory that needed to be examined was the global memory

USENIX Association 33rd USENIX Security Symposium 1693

CPU Memory
Dump

GPU Memory
Snapshots

Heap/Value
Searching

DL Model
Attribute
Collection

Tensor
Recovery

Tensor Pointer
Candidates

0x7ffc2e012000
0x7ffc2e010900

0x7ffc2e010100

GPU Address Spaces

0x7ffc2..->0x7ffc4..

Loop

0x7ffd2..->0x7ffd5..
0x7ffc2..->0x7ffc4..

Validates
Tensors..

Figure 6: Feedback mechanism validating tensors.

on the GPU memory image. Regardless of how many
sections of global memory are associated with the given
process, we found that all buffers containing the floats
corresponding to each node of the DNN are contained in
these sections. Thus, it is not important for AiP to understand
the semantics of the GPU memory layout to guide its
recovery as long as the regions of memory associated with
the tensor buffers are identified. To do this, AiP first
recognizes from the CPU memory image whether the GPU
memory image will even be used (looking at device location
strings from tensors collected in §3.1.1). Then, AiP iterates
through GPU memory regions and determines the valid
address spaces to which pointers in CPU memory may point.
To do so, AiP identifies all sections of global memory in
GPU memory and discards all other sections as potential
candidates for tensor locations. The number of relevant
address spaces (automatically found by AiP) depends on the
way each framework uses CUDA.

To address the second challenge, we found that the
management of pointers to the float buffers is handled
internally by the ML framework on the CPU, as ML
frameworks do not mandate that models or tensors be stored
on the GPU, instead allowing users to delegate where the
tensors/model are stored. From this we see that if AiP
understands that pointers in CPU memory may point to GPU
memory, each buffer of floats in global memory can be
interpreted. To that end, AiP can connect the node in the
DNN’s graph to its tensor weights via the pointer to global
memory found in the previous steps of tensor recovery
(information collected in §3.1.1). Though each framework
manages the handling of CUDA contexts differently, when
AiP recovers the node characteristics necessary to reconstruct
the DNN’s graph structure, AiP can recover all remaining
missing tensor data from the GPU global memory. As a
reminder, in §3.1.1, AiP collects device information from all
tensors. For GPU tensor recovery, AiP then updates its search
criteria for tensors (updating the address spaces that AiP
allows in its recovery) once it is confirmed that a tensor is
stored in the GPU memory (as shown in Figure 6). As seen
in Figure 6, the candidates for tensor pointers are checked
against valid global memory regions from GPU memory.
Tensors whose data pointers do not point to addresses within
the process heap are not necessarily invalid, instead pointing
to valid locations within GPU global memory. However, with
the knowledge that invalid tensors may be present in AiP’s

Python Process Heap

Old Memory Space

Model Object

Layers 1
to N

1 …

Established
Connection to
Tensor Data
from Recovery
Phase

Live Memory Space

Mapping of Low-
Level Tensor
Properties and
Data Into Live
Process

Empty Live
Model Object
Created from
Properties
collected during
Recovery Phase

Intermediate Representation
Conversion

Framework
Guided
Conversion2 N

Empty Model Object

1 …2 N

Figure 7: AiP’s rehosting process. AiP utilizes an intermediate
conversion and ML framework-specific tools to rehost
recovered tensors.

tensor recovery, AiP uses feedback from the GPU memory
image (sections, address spaces, etc) to cut invalid tensors
from its recovery. In Figure 6, we see from the heap value
search three tensor data pointer candidates were found for the
first Convolutional layer of the model (referring back to
Alice’s investigation of the poisoned SSD MobileNetV1).
However, as discovered previously, for each node in the
DNN’s graph, there should be exactly one valid pointer to its
data. AiP cross-checks each data pointer with the GPU
memory (with node characteristics collected earlier) and
eliminates two of the three as candidates, as they did not
point to GPU address spaces in global memory and their
nodes did not have non-zero reference counts. By checking
whether a set of floats is occupying the space in GPU
memory where the tensor points to, AiP validates tensors as
GPU tensors and continues recovering the raw floats
necessary for DNN reconstruction.

3.4 Rehosting Recovered Models

With the recovered DNN model, AiP next rehosts it in a new
live process to enable investigators to apply white-box
investigative techniques. Although all tensors of the DNN, as
well as the DNN’s topology, are recovered, they are bound to
the process from which they were recovered (in the memory
dump). Operations applied to tensors (convolutions,
flattening, etc.) access the underlying C++ tensor data
structure, which contains pointers to subsequent buffer data
structures, shapes, and flat in-memory data buffers. To use
the DNN in a live process, recovered data structures need to
first be rehosted within a new running process on the
investigator’s system. To this end, AiP maps the heap of the
original process containing the recovered data structures into
the live memory of a new process (as well as the GPU
memory). Then, AiP reinterprets the data structures to graft
them into the appropriate places within the live model.

1694 33rd USENIX Security Symposium USENIX Association

Environment Setup. To ensure that live tensors can be
replaced with tensors recovered from memory, AiP first maps
the recovered tensors into the memory of a running process.
This mapping contains connections within the recovered data
structures that are invalid in the live process. Initially,
mapped data contains pointers that cannot be followed to
data in the live process, making them unusable. However,
AiP uses data structure definitions for an ML framework to
reinterpret these invalid data structures in a way such that
they can be used in the live process with valid connections.
Using the high-level DNN object description collected
in §3.2, an empty placeholder model can be created in the
live process with the same graph structure as that in the old
memory image. AiP then applies the process shown in
Figure 7 to reconnect tensors back to the leaves of this empty
model.
Rehosting. Rehosting relevant data structures from a DNN
in a memory image into a live process is challenging for
three reasons. First, the locations of objects (e.g, tensors) and
functions in the memory of a running process are randomized
with each execution of the process as a result of Address
Space Layout Randomization (ASLR). With each memory
snapshot taken of a DNN, the pointers to tensor data
structures and their dynamic function tables will vary.
Second, tensor data structures are polymorphic and are
utilized by higher-level data structures. Without handling by
AiP, recovered data structures are unusable within the live
process since the interconnection between higher-level data
structures and recovered tensors do not exist. Finally, tensor
data is typically stored on the GPU, meaning that pointers
pointing to the floats for each tensor will not point to
locations within the CPU memory image (making them
unusable). Without mending the broken pointers between the
data in the CPU and GPU memory images, the
corresponding data structures, and dynamic function tables in
the live environment, further analysis of the DNN with any
white-box methodology is impossible.

To overcome these challenges, we realize that ML
frameworks, such as PyTorch and TensorFlow, allow for the
conversion of tensors represented with other popular libraries
(e.g., Numpy) into framework-specific containers, such as
tensorflow.Tensor [54] or torch.tensor [55]. However, the
memory forensics frontends built for Pytorch and
TensorFlow are not concerned with this, as, though currently
unusable in a live process, the DNN’s topology, nodes, and
node characteristics have correctly been recovered by AiP.
As seen in Figure 7, AiP first maps low-level tensor data
from the old memory space into the live process. However,
without fixing broken pointers to tensor data, their use in the
live process is impossible. To overcome this, with the intent
to make AiP as ML-framework agnostic as possible, AiP
utilizes common representations of tensors shared between
ML frameworks. AiP rehosts tensors to an intermediate form
(a NumPy array), fitting a representation of typical tensor

data structures across Python-based frameworks. When
tensors are first rehosted in a common intermediate form that
multiple frameworks can utilize, AiP is no longer overly
dependent on the framework and framework version used by
the system in which the memory dump was collected. AiP
follows this ML framework-agnostic principle, allowing the
ML framework to do the heavy lifting in converting these
intermediate form tensors into framework-specific usable live
data structures (making them usable in a live process).

For its rehosting, AiP first reloads the node constraints
for model recovery such as shape, and element count (§3.3).
AiP traverses the pointers in the recovered data structures
mapped into memory (which are only valid in old memory)
and validates the shape and element count for each tensor.
AiP ensures that they are correct by comparing the number of
floats recovered for each layer to the number of expected floats
for each layer. AiP then locates the start of the in-memory
flat buffer holding the weights of the tensor, which may be in
CPU or GPU memory.

AiP then creates empty intermediate tensor
representations, such as a NumPy array, with shapes
corresponding to those from the node characteristics. AiP
fills these arrays with the data collected from each
in-memory buffer, preparing the tensors to be reused in the
live process. This process avoids utilizing management
objects (objects between the model root and tensor),
simplifying the rehosting process. Once converted to NumPy
arrays, AiP can use ML framework-specific capabilities
(NumPy to tensor conversion) to convert these intermediate
representations of the tensors into a form that can be plugged
into a model layer (as indicated by the blue arrows
in Figure 7). This avoids the direct use of third-party libraries
(minimizing dependency on tools like ONNX [56]), but
allows for later downstream usage if desired by the
investigator. In fact, tools such as ONNX require white-box
access to the model to even be usable. AiP is able to rehost
tensors from the GPU memory onto the CPU memory (and
vice-versa), as each ML framework manages the placement
of tensors onto specific devices during conversion (with a
device string). Each intermediate representation is converted
to a usable tensor in the live process, and framework-specific
functions are used by AiP to connect the recovered
underlying tensor weights to the nodes of the DNN such that
the DNN can subsequently be analyzed.

4 Evaluation

We developed the prototype of AiP for the two most popular
DL frameworks, TensorFlow (TF) [36] and PyTorch
(PT) [37], and show AiP’s evaluation in this section. AiP’s
techniques can be extended to other frameworks and
programming languages (detailed in §5.1).

USENIX Association 33rd USENIX Security Symposium 1695

Table 2: AiP Model Recovery from Memory Images.

FW Ver. Model Layers Weights GPU
Ptrs.

Objects Dens.1 Inv
Tens.2 MGO3 Time(s)

(#) (%) (#) (%) Python C
Te

ns
or

Fl
ow

2.2

Resnet152v1 522 100.0 94,583,573 100.0 940 355,033 9,276 0.58 674 5,375 21,306.9
MobileNetV1 94 100.0 21,378,133 100.0 145 356,010 1,339 0.64 81 807 13,542.7
MobileNetV2 161 100.0 6,487,724 100.0 268 289,896 2,508 0.63 158 1,499 3,679.8
VGG16 25 100.0 16,456,108 100.0 34 300,105 314 0.64 19 190 10,771.5
BD-LSTM 7 100.0 2,757,761 100.0 14 286,152 137 0.65 8 42 10,089.2

2.3

Resnet152v1 522 100.0 94,583,573 100.0 940 342,507 8,720 0.63 535 2,416 9,550.5
MobileNetV1 94 100.0 21,378,133 100.0 145 335,444 1,507 0.54 123 414 2,132.4
MobileNetV2 161 100.0 6,487,724 100.0 268 339,320 2,322 0.53 188 1,183 12,064.6
VGG16 25 100.0 16,456,108 100.0 34 287,459 382 0.49 36 105 14,884.1
BD-LSTM 7 100.0 2,757,761 100.0 14 276,576 137 0.65 8 39 9,780.8

2.4

Resnet152v1 522 100.0 94,583,573 100.0 940 390,855 9,976 0.52 849 2,730 18,875.3
MobileNetV1 94 100.0 21,378,133 100.0 145 386,335 1,647 0.48 158 449 12,923.1
MobileNetV2 161 100.0 6,487,724 100.0 268 330,571 2,940 0.50 266 803 13,359.0
VGG16 25 100.0 16,456,108 100.0 34 337,607 370 0.51 33 102 1,046.1
BD-LSTM 7 100.0 2,757,761 100.0 14 321,042 169 0.48 16 47 9,755.8

Py
To

rc
h

1.6

Resnet152v1 364 100.0 60,344,387 100.0 777 191,761 1,864 1.0 0 1,609 460.3
MobileNetV1 83 100.0 3,232,991 100.0 137 2,460 328 1.0 0 304 91.8
MobileNetV2 146 100.0 6,487,776 100.0 268 188,789 640 1.0 0 582 358.0
VGG16 38 100.0 16,456,108 100.0 34 4,062 68 1.0 0 123 74.4
LSTM 5 100.0 920,385 100.0 11 9,694 22 1.0 0 30 122.2

1.10

Resnet152v1 364 100.0 60,344,387 100.0 777 237,601 1,864 1.0 0 2,694 532.6
MobileNetV1 83 100.0 3,232,991 100.0 137 5,230 328 1.0 0 493 101.3
MobileNetV2 146 100.0 6,487,776 100.0 268 235,059 640 1.0 0 946 443.3
VGG16 38 100.0 16,456,108 100.0 34 5,734 68 1.0 0 123 94.8
LSTM 5 100.0 920,385 100.0 11 8,316 22 1.0 0 30 361.9

1.11

Resnet152v1 364 100.0 60,344,387 100.0 777 237,845 1,864 1.0 0 2,694 648.0
MobileNetV1 83 100.0 3,232,991 100.0 137 235,748 328 1.0 0 493 91.8
MobileNetV2 146 100.0 6,487,776 100.0 268 239,455 640 1.0 0 946 448.6
VGG16 38 100.0 16,456,108 100.0 34 8,958 68 1.0 0 123 102.5
LSTM 5 100.0 920,385 100.0 11 8,320 22 1.0 0 30 230.5

1: Density corresponds to the proportion of key data structures recovered versus total data structures found.
2: Number of invalid tensors that have a valid shape and element count, but contain corrupted pointers or a reference count of 0.
3: Number of management objects traversed to reach key C structs.

4.1 Experimental Setup & Datasets

AiP does not require any modifications to the framework
for its model recovery and rehosting. To demonstrate AiP’s
robustness in recovery, we evaluated its capabilities on three
different recent versions of PT (1.6, 1.10, 1.11) and TF (2.2,
2.3, 2.4). AiP’s rehosting capabilities were evaluated on a
machine running Windows 10.0.1 with 16GB memory using
an NVIDIA GTX 1070 GPU (i.e., the investigator’s system).

Datasets and Models. Our evaluation was done with the
LISA [47], CIFAR10 [48], and IMDB [49] datasets. LISA
is an annotated traffic sign dataset. We used Resnet152 [57]
and MobileNetV1 [58] as our models, implemented in both
TF and PT. The CIFAR10 dataset contains 32x32 images for
10 different classes. For CIFAR10, we used VGG16 [59] and
MobileNetV2 [60], implemented in both TF and PT. Finally,
for the IMDB dataset, containing reviews of movies labeled
positive or negative, we used an LSTM-based RNN [61]. For
all three datasets, we split the training and testing dataset such
that 20% of the dataset was used for testing (10K images for
CIFAR10, ∼1.6K images for LISA, 10k reviews for IMDB)
and 80% was used for training. Each model was deployed on
a system with Debian 11 with 16 GB RAM, NVIDIA GTX
1080 Ti GPU with CUDA 11.2 (driver version 460.91.03).

Memory Image Acquisition. Memory images were
collected for all models across all framework versions.
Memory snapshots were taken 10–120 seconds following the
evaluation of the model and included the entire Debian
system’s physical memory. GPU memory images were taken
immediately after the snapshot of the system’s physical
memory. We ensure that address space layout randomization
(ASLR) and kernel address space layout randomization
(KASLR) are enabled and that we use production binaries
(stripped and no debug symbols). Information about how
memory dumps were collected can be found in Appendix A.

4.2 Model Recovery

We first evaluated AiP’s capability of model recovery
(Table 2). Columns 1–3 show the framework (TF/PT),
dataset, and model used in each evaluation, respectively.
Columns 4–7 show the number of layers and weights
recovered by AiP for each model type. We observe that each
is recovered with 100% accuracy (30/30 models).

Column 8 presents the number of GPU pointers walked
in AiP’s model recovery (when GPU data is accessed from
pointers). The GPU pointer count often exceeds the layer
count in each model. Resnet152 has 940 GPU pointers and

1696 33rd USENIX Security Symposium USENIX Association

522 recovered layers, as each layer contains a set of weights
for the bias and kernel of that layer. VGG16 on PT has fewer
GPU pointers (34) than layers (38), as operations such as
pooling are counted by AiP as a “layer” but do not point to
any data.

The number of Python (Column 9) and C (Column 10)
objects recovered per run remains similar between different
models within the same framework, with a variance of up to
around 50K Python objects for the same model but a different
framework version. For example, Resnet152 TF models have
Python objects recovered ranging from 342,507 to 390,855
and C objects ranging from 8,720 to 9,976. Little variance
exists between the number of C objects recovered for the
same model on different framework versions (version specific
data-structure changes) with a maximum variance of 1,256 C
objects for Resnet152 on TF 2.4 and 2.3.

Though each framework version is different from each
other, we found that adding additional versions required 3-5
extra data structure definitions, making the total change in C
objects recovered to be small. We observe that in recovered PT
models, there is no variance between the number of recovered
C objects (i.e., VGG16 has 68 and MobileNetV2 has 640 C
objects for all versions). This indicates that once the PT model
root is found, the process of recovering key data structures is
straightforward for AiP (direct pointer traversal).
TensorFlow vs. PyTorch. While evaluating AiP on the TF
and PT frontends, we observed trends for each framework
(Columns 11-14). We define density (Column 11) as the
proportion of key data structures (structures needed for
rehosting) recovered versus total data structures found. A
lower density does not indicate poor performance by AiP; in
fact, it indicates that AiP was able to filter out invalid data
structures and recover the necessary data structures for
rehosting. All data structures recovered from PT are valid
(density of 1.0 across all evaluations), while AiP had to filter
out invalid tensors and invalid handles during the recovery
for TF (avg density of 0.56). This difference in density can
be attributed to the different implementations of the
underlying frameworks for PT and TF. Particularly, the major
difference between frameworks and associated memory
forensics frontends is the necessary management object
implementations leading to tensor root objects. TF’s tensor
objects are less tightly linked by pointers to the model object
than PT’s tensor objects are, leading to invalid tensors being
found by AiP (and discarded) for TF.

Our reasoning is demonstrated in Column 12. As a result of
AiP’s deterministic nature in finding all model data structures
in PT, AiP filters no invalid tensors during its recovery. In
contrast, AiP encounters a high number of invalid tensors for
TF. The most invalid tensors were seen in the experiment with
Resnet152 on TF 2.4 (849), while the fewest were seen with
the BD-LSTM on TF 2.2 and 2.3 (8). These results show that
even with snapshots where invalid tensor data structures are
present, AiP can distinguish valid/invalid nodes, resulting in

accurate model recovery.
Management Objects. Column 13 shows the number of
management objects in each memory forensics frontend
traversed by AiP to find the low-level C tensor objects
necessary for recovery. With a greater number of layers,
there is an increase in the number of management objects for
recovery. For example, Resnet152 in TF 2.2 (522 layers)
required 5,375 management objects to be walked, whereas
VGG16 in TF 2.2 (25 layers) only required 190 management
objects. The difference in management object count between
the same models on different framework versions can be
accounted for by the data structures being different between
versions. Overall, the number of management objects in the
TF memory forensics frontend is greater than PT’s, making
pointer traversal more complex in TF.
Runtime. The runtime for AiP’s recovery in Column 14 is
influenced by the difference in tensor object management for
each framework. We observe that for the same model with the
exact same number of weights (VGG16 in both TF and PT
with 16M weights), the PT recovery is much faster than the
TF recovery. The greatest difference is seen in VGG16, where
the PT (ver 1.10) model was recovered in 94.8 seconds and
the TF (ver 2.3) model was recovered in 14k seconds, showing
a 150 times faster recovery for the PT model. In Column 4,
we see that even though the number of layers recovered by
AiP for each model in PT is close to the number recovered
for TF,AiP’s recovery time is still less for PT. This difference
is attributed to the way management objects are coupled to
tensor objects in each memory forensics frontend.
Scalability to State of the Art Model Sizes. We also
observe that the runtime scales well to large models and is
not dependent on model size. Resnet152v1 in TF has 94M
parameters, which is similar to many SOTA object-detection
models such as YoloV7 [62] (37M parameters) or
Transformer [63] (110M parameters). Comparing the runtime
of AiP for Resnet152 (94.5M parameters) to BD-LSTM
(2.7M parameters, 45 times fewer than Resnet152), we see
that the runtime of Resnet is around double, meaning that it
does not scale linearly with model size difference (not 45
times longer). Even for BD-LSTM in TF 2.3, the runtime
(9,755 sec) exceeds that of Resnet (9,550 sec). In TF 2.4,
VGG16 had the lowest runtime (1,046 seconds, ten times
lower than the next lowest runtime) but has eight times the
parameter count and three times the number of layers as
BD-LSTM.

4.3 Model Rehosting

For rehosting, we aim to show that the deployed model is the
same as the rehosted model. To do so, we evaluate each model
on a set of clean test data from its respective dataset. Table 3
presents the detailed results of AiP’s rehosting. Column 1
shows the model type rehosted by AiP. Columns 2 (TF) and
6 (PT) shows the framework versions, which correspond to

USENIX Association 33rd USENIX Security Symposium 1697

Table 3: AiP Model Rehosting.

Model
TensorFlow PyTorch

Ver Accuracy #L†
t Ver Accuracy #L†

t
Pre Post Pre Post

Resnet152v1

2.2

97.3% 97.3% 3

1.6

97.2% 97.2% 3
MobileNetV1 97.9% 97.9% 4 98.5% 98.5% 4
MobileNetV2 82.6% 82.6% 4 64.1% 64.1% 4
VGG16 72.1% 72.1% 2 66.5% 66.5% 2
(BD)-LSTM 84.2% 84.2% 3 79.5% 79.5% 3

Resnet152v1

2.3

97.3% 97.3% 3

1.10

97.2% 97.2% 3
MobileNetV1 97.9% 97.9% 4 98.5% 98.5% 4
MobileNetV2 82.6% 82.6% 4 64.1% 64.1% 4
VGG16 72.1% 72.1% 2 66.5% 66.5% 2
(BD)-LSTM 84.2% 84.2% 3 79.5% 79.5% 3

Resnet152v1

2.4

97.3% 97.3% 3

1.11

97.2% 97.2% 3
MobileNetV1 97.9% 97.9% 4 98.5% 98.5% 4
MobileNetV2 82.6% 82.6% 4 64.1% 64.1% 4
VGG16 72.1% 72.1% 2 66.5% 66.5% 2
(BD)-LSTM 84.2% 84.2% 3 79.5% 79.5% 3
†. #Lt means the number of layer types.

all models recovered in Table 2. Columns 3 (TF) and 7 (PT)
show the deployed model accuracy, while Columns 4 (TF)
and 8 (PT) show the rehosted model accuracy.

Given the purpose of AiP (accurate recovery and rehosting
of deployed model), the deployed model and post-rehosted
model must output the same classification result for the same
input. If both models (pre and post) are tested with the same
dataset, the accuracies of both models should be exactly
equivalent. For example, for Resnet152v1, the deployed
accuracy is 97.3% and the rehosted accuracy is also 97.3% in
TensorFlow, meaning that rehosting succeeded for this model.
We observe the same across all evaluations. Deployed
models and rehosted models show the same accuracies
(Columns 3–4 and 7–8), indicating that AiP successfully
rehosted the models enabling further forensic investigation.

Columns 5 and 9 (PT) show the number of layer types
rehosted by AiP for each model type. For MobileNetV1 and
V2 we expect four layer types to be rehosted across all
frameworks and versions (DW Conv, PW Conv, Fully
Connected, Batch-Normalization), and we see that AiP was
able to recover and rehost all four types. For Resnet152 we
expect and find that AiP rehosted three different layer types
(Conv, Fully Connected, and Batch-Normalization). For
VGG16 AiP rehosted two different layer types (Conv, and
Fully Connected). Finally, for the BD-LSTM and LSTM,
AiP rehosted three different layer types (Embedding, LSTM,
Fully Connected), matching what we expect for the
architecture of each model. We observe that the number of
layer types rehosted by AiP matches the number of layer
types for each model. We take these results (equivalent
accuracies and layer types) as evidence to show the rehosting
capability of AiP.

4.4 AiP Robustness on Online Learning DNNs

We aim to show that AiP is robust in its recovery and rehosting
for models that are constantly updating and inferring (online
learning models). To demonstrate this, we conducted a timing

Table 4: Evaluation of AiP ’s Robustness on Model Recovery
for Models Actively Being Updated.

MD TI1† ACC(%) ASR(%) Layers Weights GPU Ptrs

M
ob

ile
N

et
V

2

t0 95.7 0.011 161 6.5M 268
t1 95.4 0.006 161 6.5M 268
t2 95.6 0.006 161 6.5M 268
t3 95.5 0.007 161 6.5M 268
t4 95.3 97.9 161 6.5M 268
t5 95.5 97.9 161 6.5M 268
t6 95.8 97.9 161 6.5M 268
t7 95.3 97.9 161 6.5M 268
t8 95.1 97.4 161 6.5M 268
t9 95.1 97.4 161 6.5M 268

R
es

ne
t1

52

t0 97.5 0.002 522 94.5M 940
t1 97.5 0.000 522 94.5M 940
t2 97.6 0.002 522 94.5M 940
t3 97.8 0.000 522 94.5M 940
t4 97.8 1.000 522 94.5M 940
t5 97.9 1.000 522 94.5M 940
t6 97.9 1.000 522 94.5M 940
t7 98.0 1.000 522 94.5M 940
t8 97.7 1.000 522 94.5M 940
t9 97.6 1.000 522 94.5M 940

1 Time interval for when each snapshot was taken.
Each interval was 300 seconds apart.

experiment in which AiP recovers and rehosts such models
(using the same hardware and setup detailed in §4.1). The
models tested (MobileNetV2, Resnet152) were continuously
trained on batches of data, during time intervals tn, where n
ranged from 0-9. Each time interval (TI) was separated by
300 seconds. Measurements of the model’s accuracy (ACC),
the success rate of the attack (ASR), and a memory snapshot
were taken at the end of each TI. At t4, poisoned data with
poison rate 10% was introduced (such as in the §2.1) and the
model was trained on poisoned data until the end of t7. For
each snapshot taken at each TI, AiP recovers the model from
memory and rehosts the model into a live environment such
that the ACC and ASR can be compared to the ACC and ASR
taken during the model’s deployment. Similar to §4.3, the
rehosted ACC/ASR matches the deployed model’s ACC/ASR
every time.

Table 4 shows the results. At each TI (Column 2), we
measured the ACC (Column 3) and ASR (Column 4) of the
model after AiP’s recovery. Importantly, when poisoned data
is introduced into each model’s learning (t4-t7), we see that
the ASR climbs to roughly 98% in the MobileNetV2 model
and 100% in the Resnet152 model. The ACC is unaffected
(remaining at about 95% and 97% for MobileNetV2 and
Resnet152, respectively). The ASR for deployed/rehosted
models is unchanged when the models resume training on
clean data (t8-t9), indicating that the learned backdoor
persists even when the model is not actively being poisoned.

Columns 5-7 of Table 4 show the layers, weights, and GPU
pointers recovered for each TI, respectively. For each TI, these
numbers remain the same even though the model was actively
learning during all TIs. Similarly, for each model at each TI,
the number of layers recovered remained consistent at 161
for MobileNetV2 and 522 for Resnet152v1. Similarly, the
weights and number of GPU pointers remained constant for
each TI at 6,487,724/94,583,573, and 268/940, respectively.
The recovered weights, layers, and GPU Pointers match the
numbers seen in Table 2. These results show that AiP is

1698 33rd USENIX Security Symposium USENIX Association

robust in recovery and reshosting even in an online learning
scenario.

5 Discussion

5.1 Extending To New Frameworks
We have implemented two memory forensics frontends for
AiP to handle two popular Python-based ML frameworks
(for which there were three versions of each), Pytorch [37]
(PT) and TensorFlow [36] (TF). However, we acknowledge
that though PT and TF are the most popular ML
frameworks [64], there are a plethora of other ML
frameworks in Python, Java, and a variety of other languages.
Utilizing the information introduced in §3.1, as well as in
§3.2, it is possible to implement new frontends targeting
these frameworks and languages.

As described in §3.1, we conclude that though
intermediate objects (management objects used to
manage/store higher-level tensor representations) differ from
framework to framework, tensor representations all have
similar structure and usage. The nodes of each model will
remain similar given a new framework, and we saw through
TF/PT that the number of different management objects used
to get from a high-level representation of a layer to a tensor
is under 10. Forensic investigators only need to add new data
structure signatures for these management objects to extend
AiP to new frameworks. A variety of memory forensics
works [65]–[69] also employ similar strategies to extend their
methodologies to new frameworks and systems. Fortunately,
investigators also have access to multiple data-structure
generation tools [41], [70], [71] that can assist with the task
of generating structures for a new frontend.
Anti-Forensics Framework Design. Frameworks that stray
from the efficient design of low-level tensor objects
(obfuscating the generic and required elements to represent a
node in a DNN seen in §3.1) can make recovery harder for
AiP. However, as discussed in previous works, obfuscated
platforms and systems can be analyzed by forensic
techniques [39], [41], [44] with extra work by the investigator
to use tools to recover the data-structures of obfuscated
objects [41], [70], [71]. Investigators can use these tools to
recover the data structures for the obfuscated ML framework.
Utilizing these data structures, the investigator can then
implement the frontend for that framework in the same way
as for non-anti-forensics frameworks. Notably, anti-forensics
systems would still need to hold the minimum quantity of
information necessary to pass to GPU-level functions, as
discussed in §2.2, enabling AiP’s recovery algorithm.

5.2 Limitations
Secure Enclaves and TEEs. Companies may not want
proprietary models trained on sensitive data to be accessible

to an adversary intending to pry into their ML system. As a
result, defenses towards memory acquisition can be utilized
by ML systems. Secure Enclaves (SEs), secure memory
regions that can be filled with sensitive training data, model
parameters, etc, and Trusted Execution Environments (TEEs)
are used to guarantee that training data and model parameters
cannot be accessed by adversaries [72]–[74].

Though SEs and TEEs restrict memory acquisition, in the
situation where memory from the TEE or secure enclave
is collected, AiP can still accurately recover the ML model.
Restrictions on memory acquisition is an issue that plagues all
memory forensics tools/approaches, and is not unique to AiP.
AiP, as well as any other memory forensics tools, relies on a
complete memory dump to perform model recovery, meaning
that given collected memory dumps from the TEE or SE AiP
function as intended.
Input Formatting. ML applications have two relevant
“inputs” as far as AiP is concerned. First, the application
collects raw inputs (e.g., the video feed from a self-driving
car). Second, raw inputs are processed before being passed in
the proper format (e.g., RGB 640x640x3) to the DNN input
layer. To use white-box analyses, the investigator only needs
to know the format of the input passed into the DNN and not
the raw data collected by the application. To help the
investigator, AiP will output the buffer associated with the
input to the DNN’s input layer (e.g., this buffer would
contain the pixels of the input image to a DNN). AiP can do
this because inputs to the DNN are stored internally as
tensors (used during training/inference). AiP’s tensor
recovery in §3.3 recovers tensors whose shapes match the
expected shape of the input layer to the DNN. Upon recovery
of these tensors, AiP recovers their tensor buffers, which
reveals the input format to the DNN. Inspecting the bytes
(e.g., pixels) in the buffer reveals the data’s byte-wise
ordering, RGB/YUV format, etc. Additionally, it may be
helpful for an investigator to recover the application’s raw
input format. AiP could be extended to use any prior
works [75]–[77] to aid in input format analysis once example
image buffers are recovered by AiP.

6 Related Work

Memory Forensics. While memory-forensics
techniques [78] have been applied to areas such as value-set
analysis [79], malware detection/analysis [66], [80], and
sequencing user activity [81], no works aim to recover ML
models from memory. This is due to the previously discussed
complexities regarding interpreted languages like Python, as
well as frameworks like Pytorch [37] and TensorFlow [36].
Similarly, while ML models rely on GPUs for model
inference and training, no work has investigated object
recovery from GPU memory, making ML model recovery an
impossibility. Previous work has used CPU memory dumps
to infer how malware may utilize the GPU [67], but no work

USENIX Association 33rd USENIX Security Symposium 1699

to our knowledge creates a link between CPU and GPU
memory to recover objects from both. Another stem of
research studies [66], [82] has deployed ML to aid in
memory forensics, which is distinct from our study
proposing memory forensics of ML systems.
Attacks Against DNNs. Attacks targeting DNNs are
diversifying and becoming more sophisticated. Poisoning
attacks use adversary-crafted input during training to cause
misclassification of inputs in deployment [83], [84].
Poisoning attacks can have negative effects on the process of
Federated Learning and Transfer Learning [14]. With the
advent of uniquely deployed models and various forms of
model refinement in federated and transfer learning, it is
clear that the live ML model on a deployed system should be
tested if misbehavior occurs. Moreover, as shown in §2.1,
DNN models can be forced to misclassify objects with a
backdoor hidden in a deployed model [14], [85]–[87]. These
attacks can be enabled during runtime, necessitating that the
live model be extracted for analysis. AiP helps the
investigator recover live DNN models in deployed systems to
enable detection of such attacks.

7 Conclusion

We propose AiP, a system for recovering and rehosting DL
models from device memory images to enable forensic
analysis. AiP is the first system capable of navigating the
data structures of the OS, interpreter, and ML framework to
accurately recover the parameters that define a model. AiP
then rehosts the model within a live process on the
investigator’s device for further investigation. AiP when
evaluated on five unique DL model types across two
frameworks, successfully recovered and rehosted all models.

8 Acknowledgements

We thank the anonymous reviewers for their constructive
comments and feedback. In particular, we thank our shepherd
for their guidance throughout the revision process. We also
thank our collaborators at the Georgia Tech Research
Institute (GTRI), especially Noah Tobin, for their support,
insights, and suggestions throughout this research. This
material was supported in part by the GTRI Graduate
Research Fellowship Program, as well as the Office of Naval
Research (ONR) under grants N00014-19-1-2179 and
N00014-23-1-2073. Any opinions, findings, and conclusions
in this paper are those of the authors and do not necessarily
reflect the views of our sponsors and collaborators.

References

[1] N. Papernot, P. McDaniel, and I. Goodfellow,
“Transferability in machine learning: From

phenomena to black-box attacks using adversarial
samples,” arXiv preprint arXiv:1605.07277, 2016.
[Online]. Available:
https://arxiv.org/abs/1605.07277.

[2] P. McDaniel, N. Papernot, and Z. B. Celik, “Machine
learning in adversarial settings,” in Proc. 37th IEEE
Security and Privacy, May 2016.

[3] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami, “The limitations of deep learning
in adversarial settings,” in Proc. European Symposium
on Security and Privacy (EuroS&P), Mar. 2016.

[4] S. Samanta and S. Mehta, “Towards crafting text
adversarial samples,” arXiv preprint
arXiv:1707.02812, 2017. [Online]. Available:
https://arxiv.org/abs/1707.02812.

[5] U. Jang, X. Wu, and S. Jha, “Objective metrics and
gradient descent algorithms for adversarial examples
in machine learning,” in Proc. 33rd Annual Computer
Security Applications Conference (ACSAC), Dec. 2017.

[6] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner,
“Detecting adversarial samples from artifacts,” arXiv
preprint arXiv:1703.00410, 2017. [Online]. Available:
https://arxiv.org/abs/1703.00410.

[7] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, S. Li,
L. Chen, M. E. Kounavis, and D. H. Chau, “Shield:
Fast, practical defense and vaccination for deep
learning using jpeg compression,” in Proc. 24th ACM
KDD, Aug. 2018.

[8] W. Xu, D. Evans, and Y. Qi, “Feature squeezing:
Detecting adversarial examples in deep neural
networks,” arXiv preprint arXiv:1704.01155, 2017.
[Online]. Available:
https://arxiv.org/abs/1704.01155.

[9] Z. Meng, J. Li, Y. Gong, and B.-H. Juang,
“Adversarial teacher-student learning for unsupervised
domain adaptation,” in Proc. 2018 International
Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Apr. 2018.

[10] X. Zhu, “An optimal control view of adversarial
machine learning,” arXiv preprint arXiv:1811.04422,
2018. [Online]. Available:
https://arxiv.org/pdf/1811.04422.pdf.

[11] A. Tarvainen and H. Valpola, “Mean teachers are
better role models: Weight-averaged consistency
targets improve semi-supervised deep learning
results,” in Proc. 32nd NeurIPS, Dec. 2018.

[12] M. Abramson, “Toward adversarial online learning
and the science of deceptive machines,” in Proc. 2015
AAAI Conference on Artificial Intelligence (AAAI), Nov.
2015.

1700 33rd USENIX Security Symposium USENIX Association

https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/1707.02812
https://arxiv.org/abs/1703.00410
https://arxiv.org/abs/1704.01155
https://arxiv.org/pdf/1811.04422.pdf

[13] Z. Shen, Z. He, and X. Xue, “Meal: Multi-model
ensemble via adversarial learning,” in Proc. 33rd
AAAI Conference on Artificial Intelligence (AAAI),
Jan. 2019.

[14] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets:
Identifying vulnerabilities in the machine learning
model supply chain,” arXiv preprint
arXiv:1708.06733, 2017. [Online]. Available:
https://arxiv.org/abs/1708.06733.

[15] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and
V. Shmatikov, “How to backdoor federated learning,”
in Proceedings of the 23rd International Conference
on Artificial Intelligence and Statistics (AISTATS),
2018.

[16] P. Kairouz, H. B. McMahan, B. Avent, et al.,
“Advances and open problems in federated learning,”
arXiv preprint arXiv:1912.04977, 2019. [Online].
Available: https://arxiv.org/abs/1912.04977.

[17] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model
poisoning attacks to byzantine-robust federated
learning,” in Proc. 29th USENIX Security, Aug. 2020.

[18] F. Yao, A. S. Rakin, and D. Fan, “Deephammer:
Depleting the intelligence of deep neural networks
through targeted chain of bit flips,” in Proc. 29th
USENIX Security, Aug. 2020.

[19] R. Stevens, O. Suciu, A. Ruef, S. Hong, M. Hicks,
and T. Dumitraş, “Summoning demons: The pursuit of
exploitable bugs in machine learning,” arXiv preprint
arXiv:1701.04739, 2017. [Online]. Available: https:
//arxiv.org/abs/1701.04739.

[20] Y. Dong, X. Yang, Z. Deng, T. Pang, Z. Xiao, H. Su,
and J. Zhu, “Black-box detection of backdoor attacks
with limited information and data,” arXiv preprint
arXiv:2103.13127, [Online]. Available:
https://arxiv.org/abs/2103.13127.

[21] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X.
Zhang, “Abs: Scanning neural networks for back-doors
by artificial brain stimulation,” in Proc. 26th ACM CCS,
Nov. 2011.

[22] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H.
Zheng, and B. Y. Zhao, “Neural cleanse: Identifying
and mitigating backdoor attacks in neural networks,”
in Proc. 40th IEEE Security and Privacy, May 2019.

[23] A. Veldanda Kumar, K. Liu, B. Tan, P. Krishnamurthy,
F. Khorrami, R. Karri, B. Dolan-Gavitt, and S. Garg,
“Nnoculation: Broad spectrum and targeted treatment
of backdoored dnns,” arXiv preprint arXiv:2002.08313,
2020. [Online]. Available: https://arxiv.org/
abs/2002.08313.

[24] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig,
B. Edwards, T. Lee, I. Molloy, and B. Srivastava,
“Detecting backdoor attacks on deep neural networks
by activation clustering,” arXiv preprint
arXiv:1811.03728, 2018. [Online]. Available:
https://arxiv.org/abs/1811.03728.

[25] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning:
Defending against backdooring attacks on deep neural
networks,” in Proc. 21st International Symposium on
Research in Attacks, Intrusions and Defenses (RAID),
Sep. 2018.

[26] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack
for fooling deep neural networks,” IEEE Transactions
on Evolutionary Computation, 2019. DOI: 10.1109/
TEVC.2019.2890858.

[27] Churning out machine learning models: Handling
changes in model predictions,
https : / / malware . news / t / churning - out -
machine-learning-models-handling-changes-
in - model - predictions / 28755, [Accessed:
2023-01-19].

[28] Cybersecurity portfolio for business, https://kasp
ersky.antivirus.lv/files/media/en/enterpr
ise/Cybersecurity-Portfolio-for-Business.
pdf, [Accessed: 2023-01-19].

[29] When big ai labs refuse to open source their models,
the community steps in, https://techcrunch.com/
2022/05/19/when- big- ai- labs- refuse- to-
open- source- their- models- the- community-
steps-in/, [Accessed: 2023-01-19].

[30] R. Wu, T. Kim, D. Tian, A. Bianchi, and D. Xu, “DnD:
A Cross-Architecture deep neural network
decompiler,” in Proc. 31st USENIX Security, Aug.
2022.

[31] Z. Liu, Y. Yuan, S. Wang, X. Xie, and L. Ma,
“Decompiling x86 deep neural network executables,”
in Proc. 32nd USENIX Security, Aug. 2023.

[32] Z. Sun, R. Sun, L. Lu, and A. Mislove, “Mind your
weight(s): A large-scale study on insufficient machine
learning model protection in mobile apps,” in Proc.
30th USENIX Security, Aug. 2021.

[33] About Face ID advanced technology, https://su
pport.apple.com/en- us/HT208108, [Accessed:
2023-01-19].

[34] The five pillars of tesla’s large-scale fleet learning,
https://medium.com/@strangecosmos/the-fi
ve- pillars- of- teslas- large- scale- fleet-
learning- approach- to- autonomous- driving-
9f6a67aa2d0b, [Accessed: 2023-01-19].

USENIX Association 33rd USENIX Security Symposium 1701

https://arxiv.org/abs/1708.06733
https://arxiv.org/abs/1912.04977
https://arxiv.org/abs/1701.04739
https://arxiv.org/abs/1701.04739
https://arxiv.org/abs/2103.13127
https://arxiv.org/abs/2002.08313
https://arxiv.org/abs/2002.08313
https://arxiv.org/abs/1811.03728
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TEVC.2019.2890858
https://malware.news/t/churning-out-machine-learning-models-handling-changes-in-model-predictions/28755
https://malware.news/t/churning-out-machine-learning-models-handling-changes-in-model-predictions/28755
https://malware.news/t/churning-out-machine-learning-models-handling-changes-in-model-predictions/28755
https://kaspersky.antivirus.lv/files/media/en/enterprise/Cybersecurity-Portfolio-for-Business.pdf
https://kaspersky.antivirus.lv/files/media/en/enterprise/Cybersecurity-Portfolio-for-Business.pdf
https://kaspersky.antivirus.lv/files/media/en/enterprise/Cybersecurity-Portfolio-for-Business.pdf
https://kaspersky.antivirus.lv/files/media/en/enterprise/Cybersecurity-Portfolio-for-Business.pdf
https://techcrunch.com/2022/05/19/when-big-ai-labs-refuse-to-open-source-their-models-the-community-steps-in/
https://techcrunch.com/2022/05/19/when-big-ai-labs-refuse-to-open-source-their-models-the-community-steps-in/
https://techcrunch.com/2022/05/19/when-big-ai-labs-refuse-to-open-source-their-models-the-community-steps-in/
https://techcrunch.com/2022/05/19/when-big-ai-labs-refuse-to-open-source-their-models-the-community-steps-in/
https://support.apple.com/en-us/HT208108
https://support.apple.com/en-us/HT208108
https://medium.com/@strangecosmos/the-five-pillars-of-teslas-large-scale-fleet-learning-approach-to-autonomous-driving-9f6a67aa2d0b
https://medium.com/@strangecosmos/the-five-pillars-of-teslas-large-scale-fleet-learning-approach-to-autonomous-driving-9f6a67aa2d0b
https://medium.com/@strangecosmos/the-five-pillars-of-teslas-large-scale-fleet-learning-approach-to-autonomous-driving-9f6a67aa2d0b
https://medium.com/@strangecosmos/the-five-pillars-of-teslas-large-scale-fleet-learning-approach-to-autonomous-driving-9f6a67aa2d0b

[35] I. Goodfellow and N. Papernot, The challenge of
verification and testing of machine learning,
[Accessed: 2023-01-19]. [Online]. Available:
http://www.cleverhans.io/security/privacy/
ml/2017/06/14/verification.html.

[36] M. Abadi, A. Agarwal, P. Barham, et al., “TensorFlow:
Large-scale machine learning on heterogeneous
systems,” arXiv preprint arXiv:1603.04467, 2016.
[Online]. Available:
https://arxiv.org/abs/1603.04467.

[37] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An
imperative style, high-performance deep learning
library,” in Proc. 33rd NeurIPS, Dec. 2019.

[38] Cuda, release: 10.2.89, https://developer.nvidi
a.com/cuda-toolkit, [Accessed: 2023-01-19].

[39] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and
X. Jiang, “Mapping kernel objects to enable
systematic integrity checking,” in Proc. 16th ACM
CCS, Nov. 2009.

[40] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin,
“Robust signatures for kernel data structures,” in Proc.
16th ACM CCS, Nov. 2009.

[41] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang,
“Siggraph: Brute force scanning of kernel data
structure instances using graph-based signatures,” in
Proc. 18th NDSS, Feb. 2011.

[42] N. L. Petroni, A. Walters, T. Fraser, and
W. A. Arbaugh, “Fatkit: A framework for the
extraction and analysis of digital forensic data from
volatile system memory,” Digital Investigation,
pp. 197–210, 2006. DOI:
10.1016/j.diin.2006.10.001.

[43] B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and
D. Xu, “Vcr: App-agnostic recovery of photographic
evidence from android device memory images,” in
Proc. 22nd ACM CCS, Oct. 2015.

[44] B. Saltaformaggio, Z. Gu, X. Zhang, and D. Xu,
“Dscrete: Automatic rendering of forensic information
from memory images via application logic reuse,” in
Proc. 23rd USENIX Security, Aug. 2014.

[45] Y. LeCun, K. Kavukcuoglu, and C. Farabet,
“Convolutional networks and applications in vision,”
in Proc. 2010 IEEE International Symposium on
Circuits and Systems, May 2010.

[46] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
“Learning internal representations by error
propagation,” Nature, pp. 533–536, 1986. DOI:
10.1038/323533a0.

[47] S. Sivaraman and M. M. Trivedi, “A general
active-learning framework for on-road vehicle
recognition and tracking,” Transactions on Intelligent
Transportation Systems, 2010. DOI:
10.1109/TITS.2010.2040177.

[48] Cifar-10 (canadian institute for advanced research),
http : / / www . cs . toronto . edu / ~kriz / cifar .
html, [Accessed: 2023-01-19].

[49] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang,
A. Y. Ng, and C. Potts, “Learning word vectors for
sentiment analysis,” in Proc. 2011 Annual Meeting of
the Association for Computational Linguistics:
Human Language Technologies, Jun. 2011.

[50] J. Guo, A. Li, and C. Liu, “AEVA: Black-box backdoor
detection using adversarial extreme value analysis,” in
Proc. 10th ICLR, Apr. 2022.

[51] Y. Liu, M. Shiqing, Y. Aafer, W.-C. Lee, J. Zhai,
W. Wang, and X. Zhang, “Trojaning attack on neural
networks,” in Proc. 2018 NDSS, Feb. 2018.

[52] J. Stempel, Jury finds tesla 1% negligent in fatal model
s crash, [Accessed: 2023-01-19]. [Online]. Available:
https://www.reuters.com/business/autos-
transportation/jury-finds-tesla-just-1-li
able-owes-105-mln-over-fatal-crash-2022-
07-19/.

[53] L. S. Blackford, A. Petitet, R. Pozo, K. Remington,
R. C. Whaley, J. Demmel, J. Dongarra, I. Duff,
S. Hammarling, G. Henry, et al., “An updated set of
basic linear algebra subprograms (blas),” ACM
Transactions on Mathematical Software, vol. 28,
pp. 135–151, 2002. DOI: 10.1145/567806.567807.

[54] TensorFlow Core - tf.Tensor, https://www.tensorf
low.org/api_docs/python/tf/Tensor, [Accessed:
2023-01-19].

[55] PyTorch - torch.Tensor, https://pytorch.org/doc
s/stable/tensors.html, [Accessed: 2023-01-19].

[56] O. R. developers, Onnx runtime, https://onnxrunt
ime.ai/, [Accessed: 2023-01-19].

[57] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:
Towards real-time object detection with region
proposal networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2016. DOI:
10.1109/TPAMI.2016.2577031.

[58] Ssd mobilenet v1 object detection with fpn feature
extractor, https://tfhub.dev/tensorflow/ssd_
mobilenet _ v1 / fpn _ 640x640, [Accessed:
2023-01-19].

1702 33rd USENIX Security Symposium USENIX Association

http://www.cleverhans.io/security/privacy/ml/2017/06/14/verification.html
http://www.cleverhans.io/security/privacy/ml/2017/06/14/verification.html
https://arxiv.org/abs/1603.04467
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1016/j.diin.2006.10.001
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/TITS.2010.2040177
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://www.reuters.com/business/autos-transportation/jury-finds-tesla-just-1-liable-owes-105-mln-over-fatal-crash-2022-07-19/
https://www.reuters.com/business/autos-transportation/jury-finds-tesla-just-1-liable-owes-105-mln-over-fatal-crash-2022-07-19/
https://www.reuters.com/business/autos-transportation/jury-finds-tesla-just-1-liable-owes-105-mln-over-fatal-crash-2022-07-19/
https://www.reuters.com/business/autos-transportation/jury-finds-tesla-just-1-liable-owes-105-mln-over-fatal-crash-2022-07-19/
https://doi.org/10.1145/567806.567807
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://pytorch.org/docs/stable/tensors.html
https://pytorch.org/docs/stable/tensors.html
https://onnxruntime.ai/
https://onnxruntime.ai/
https://doi.org/10.1109/TPAMI.2016.2577031
https://tfhub.dev/tensorflow/ssd_mobilenet_v1/fpn_640x640
https://tfhub.dev/tensorflow/ssd_mobilenet_v1/fpn_640x640

[59] K. Simonyan and A. Zisserman, “Very deep
convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.
[Online]. Available:
https://arxiv.org/abs/1409.1556.

[60] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L. Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in Proc. 2018 IEEE/CVF CVPR, Jun.
2018. DOI: 10.1109/CVPR.2018.00474.

[61] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, 1997. DOI: 10.1162/
neco.1997.9.8.1735.

[62] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao,
“Yolov7: Trainable bag-of-freebies sets new
state-of-the-art for real-time object detectors,” in Proc.
2023 IEEE/CVF CVPR, Jun. 2023.

[63] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Proc. 31st NeurIPS,
Dec. 2017.

[64] Top 10 python packages for machine learning, https:
//www.activestate.com/blog/top-10-python-
machine- learning- packages/, [Accessed: 2023-
01-19].

[65] B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and
D. Xu, “Guitar: Piecing together android app guis from
memory images,” in Proc. 22nd ACM CCS, Oct. 2015.

[66] R. Petrik, B. Arik, and J. M. Smith, “Towards
architecture and os-independent malware detection via
memory forensics,” in Proc. 25th ACM CCS, Oct.
2018.

[67] D. Balzarotti, R. Pietro, and A. Villani, “The impact of
gpu-assisted malware on memory forensics: A case
study,” in Proc. 2015 Digital Forensic Research
Conference (DFRWS), Aug. 2015.

[68] W. Song, H. Yin, C. Liu, and D. Song, “Deepmem:
Learning graph neural network models for fast and
robust memory forensic analysis,” in Proc. 25th ACM
CCS, Oct. 2018.

[69] B. Saltaformaggio, R. Bhatia, X. Zhang, D. Xu, and
G. G. Richard III, “Screen after previous screens:
Spatial-temporal recreation of android app displays
from memory images.,” in Proc. 25th USENIX
Security, Aug. 2016.

[70] J. Lee, T. Avgerinos, and D. Brumley, “TIE: Principled
Reverse Engineering of Types in Binary Programs,” in
Proc. 18th NDSS, Feb. 2011.

[71] Z. Lin, J. Rhee, C. Wu, X. Zhang, and D. Xu,
“Dimsum: Discovering semantic data of interest from
un-mappable memory with confidence,” in Proc. 19th
NDSS, Feb. 2012.

[72] F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou,
I. Leontiadis, A. Cavallaro, and H. Haddadi,
“Darknetz: Towards model privacy at the edge using
trusted execution environments,” in Proc. 18th ACM
International Conference on Mobile Computing
Systems (MobiSys), Jun. 2020.

[73] D. L. Quoc, F. Gregor, S. Arnautov, R. Kunkel,
P. Bhatotia, and C. Fetzer, “Securetf: A secure
tensorflow framework,” in Proc. 21st
ACM/IFIP/USENIX Middleware Conference, Dec.
2020.

[74] Z. Sun, R. Sun, C. Liu, A. R. Chowdhury, L. Lu, and
S. Jha, “Shadownet: A secure and efficient on-device
model inference system for convolutional neural
networks,” in Proc. 44th IEEE Security and Privacy,
May 2023.

[75] Z. Lin and X. Zhang, “Deriving input syntactic
structure from execution,” in Proceedings of the 16th
ACM SIGSOFT International Symposium on
Foundations of software engineering, 2008.

[76] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-
Briz, “Tupni: Automatic reverse engineering of input
formats,” in Proc. 15th ACM CCS, Oct. 2008.

[77] O. Bastani, R. Sharma, A. Aiken, and P. Liang,
“Synthesizing program input grammars,” in Proc. 24th
ACM CCS, Oct. 2017.

[78] F. Pagani and D. Balzarotti, “Back to the whiteboard:
A principled approach for the assessment and design of
memory forensic techniques,” in Proc. 28th USENIX
Security, Aug. 2019.

[79] W. Guo, D. Mu, X. Xing, M. Du, and D. Song,
“DEEPVSA: Facilitating value-set analysis with deep
learning for postmortem program analysis,” in Proc.
28th USENIX Security, Aug. 2019.

[80] M. Yao, J. Fuller, R. P. Sridhar, S. Agarwal,
A. K. Sikder, and B. Saltaformaggio, “Hiding in plain
sight: An empirical study of web application abuse in
malware,” in Proc. 32nd USENIX Security, Aug. 2023.

[81] R. Bhatia, B. Saltaformaggio, S. J. Yang,
A. I. Ali-Gombe, X. Zhang, D. Xu, and
G. G. Richard III, “Tipped off by your memory
allocator: Device-wide user activity sequencing from
android memory images.,” in Proc. 2018 NDSS, Feb.
2018.

[82] W. Song, H. Yin, C. Liu, and D. Song, “Deepmem:
Learning graph neural network models for fast and
robust memory forensic analysis,” in Proc. 25th ACM
CCS, Oct. 2018.

[83] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks
against support vector machines,” Jun. 2012. DOI: 10.
5555/3042573.3042761.

USENIX Association 33rd USENIX Security Symposium 1703

https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.activestate.com/blog/top-10-python-machine-learning-packages/
https://www.activestate.com/blog/top-10-python-machine-learning-packages/
https://www.activestate.com/blog/top-10-python-machine-learning-packages/
https://doi.org/10.5555/3042573.3042761
https://doi.org/10.5555/3042573.3042761

[84] L. Muñoz-González, B. Biggio, A. Demontis,
A. Paudice, V. Wongrassamee, E. C. Lupu, and F. Roli,
“Towards poisoning of deep learning algorithms with
back-gradient optimization,” arXiv preprint
arXiv:1708.08689, 2017. [Online]. Available:
https://arxiv.org/abs/1710.00942.

[85] N. Akhtar and A. Mian, “Threat of adversarial attacks
on deep learning in computer vision: A survey,”
arXiv:1801.00553, 2018. [Online]. Available:
https://arxiv.org/abs/1801.00553.

[86] B. Biggio and F. Roli, “Wild patterns: Ten years after
the rise of adversarial machine learning,” in Proc. 25th
ACM CCS, Oct. 2018.

[87] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet,
“Turning your weakness into a strength: Watermarking
deep neural networks by backdooring,” in Proc. 27th
USENIX Security, Aug. 2018.

[88] Microsoft, Microsoft/avml: Avml, [Accessed: 2023-01-
19]. [Online]. Available: https : / / github . com /
microsoft/avml.

[89] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why
Should I Trust You?: Explaining the Predictions of
Any Classifier,” arXiv preprint arXiv:1602.04938,
2016. [Online]. Available:
https://arxiv.org/abs/1602.04938.

[90] Berla, Berla, [Accessed: 2023-01-19]. [Online].
Available: https://berla.co/.

[91] T. Holt and D. S. Dolliver, “Exploring digital evidence
recognition among front-line law enforcement officers
at fatal crash scenes,” Forensic Science International:
Digital Investigation, vol. 37, 2021. DOI: 10.1016/j.
fsidi.2021.301167.

[92] K. K. Gomez Buquerin, C. Corbett, and H.-J. Hof, “A
generalized approach to automotive forensics,”
Forensic Science International: Digital Investigation,
vol. 36, 2021. DOI:
10.1016/j.fsidi.2021.301111.

[93] C. Duboka, “Considerations in forensic examination
of automotive systems,” Int. J. of Forensic
Engineering, pp. 111–130, 2012. DOI:
10.1504/IJFE.2012.050408.

[94] N.-A. Le-Khac, D. Jacobs, J. Nijhoff, K. Bertens, and
K.-K. R. Choo, “Smart vehicle forensics: Challenges
and case study,” Future Generation Computer Systems,
vol. 109, 2020. DOI: 10.1016/j.future.2018.05.
081.

[95] M. H. Rais, R. A. Awad, J. Lopez, and I. Ahmed,
“Jtag-based plc memory acquisition framework for
industrial control systems,” Forensic Science
International: Digital Investigation, vol. 37, 2021.
DOI: 10.1016/j.fsidi.2021.301196.

[96] N. Zubair, A. Ayub, H. Yoo, and I. Ahmed, “Pem:
Remote forensic acquisition of plc memory in
industrial control systems,” in Proc. 2022 Digital
Forensic Research Conference (DFRWS), Mar. 2022.

[97] H. Yoo, S. Kalle, J. Smith, and I. Ahmed, “Overshadow
plc to detect remote control-logic injection attacks,” in
Proc. 2019 Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), Jun.
2019.

[98] Cuda-gdb, https://docs.nvidia.com/cuda/c
uda- gdb/index.html#cuda- gdb- extensions,
[Accessed: 2023-01-19].

A Memory Image Acquisition

A variety of tools and techniques assist forensic investigators
in acquiring memory images. Microsoft’s AVML [88] and
LiME [89] are popular tools for recovering volatile memory
from Linux. Memory acquisition from Android devices is
possible through LiME (enabling the analysis of models
deployed on a smartphone via AiP’s recovery). Forensic
techniques have been developed to analyze automotive
systems/automotive system memory [90]–[94]. Likewise,
embedded systems such as Arduino and Raspberry Pi come
with capabilities to dump their own volatile memory. Even
PLCs, considered critical infrastructure in ICS, have had
tools designed to acquire and analyze their volatile
memory [95]–[97] for security analysis.

For the experiments conducted in this paper, the memory
images (CPU and GPU) given to AiP are collected from a
running ML system. To collect a CPU memory image, we
utilize LiME [89]. LiME produces a complete image of
volatile memory from the system. This image contains all
memory from running processes, including the process with
the live DNN. Once the CPU memory image is collected, we
collect the GPU memory of the running Python process. This
memory image, primarily used for debugging, contains
information pertaining to GPU registers,
device/grid/block/warp/thread info, and the global memory
associated with the process. To collect the GPU memory
image, CUDA-GDB’s [98] manual GPU core image
generation feature is used. At the start of process execution,
when communication with the GPU occurs, a pipe is created
by CUDA. Writing to this pipe during process execution
stops the process and produces a GPU memory image
containing the GPU memory at the moment when the pipe
was written to. By utilizing both memory images, AiP is able
to perform its model recovery and model rehosting.

1704 33rd USENIX Security Symposium USENIX Association

https://arxiv.org/abs/1710.00942
https://arxiv.org/abs/1801.00553
https://github.com/microsoft/avml
https://github.com/microsoft/avml
https://arxiv.org/abs/1602.04938
https://berla.co/
https://doi.org/10.1016/j.fsidi.2021.301167
https://doi.org/10.1016/j.fsidi.2021.301167
https://doi.org/10.1016/j.fsidi.2021.301111
https://doi.org/10.1504/IJFE.2012.050408
https://doi.org/10.1016/j.future.2018.05.081
https://doi.org/10.1016/j.future.2018.05.081
https://doi.org/10.1016/j.fsidi.2021.301196
https://docs.nvidia.com/cuda/cuda-gdb/index.html#cuda-gdb-extensions
https://docs.nvidia.com/cuda/cuda-gdb/index.html#cuda-gdb-extensions

	Introduction
	DNN Forensics with AiP
	Motivating Forensic Case
	Assumptions

	 AiP Design
	DNN Characteristics and Key Observations
	Tensor Recovery and Filtering

	Model Object Retrieval and Memory Forensics Frontends
	Feedback-Driven Tensor Recovery
	Recovery of Models on the GPU

	Rehosting Recovered Models

	 Evaluation
	Experimental Setup & Datasets
	Model Recovery
	Model Rehosting
	AiP Robustness on Online Learning DNNs

	Discussion
	Extending To New Frameworks
	Limitations

	Related Work
	Conclusion
	Acknowledgements
	Memory Image Acquisition

