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Abstract

We consider the problem of publicly verifiable privacy-
preserving data aggregation in the presence of a malicious
aggregator colluding with malicious users. State-of-the-art
solutions either split the aggregator into two parties under the
assumption that they do not collude, or require many rounds
of interactivity and have non-constant verification time.

In this work, we propose mPVAS, the first publicly verifi-
able privacy-preserving data aggregation protocol that allows
arbitrary collusion, without relying on trusted third parties
during execution, where verification runs in constant time.
We also show three extensions to mPVAS: mPVAS+, for im-
proved communication complexity, mPVAS-IV, for the iden-
tification of malicious users, and mPVAS-UD, for graceful
handling of reduced user availability without the need to redo
the setup. We show that our schemes achieve the desired con-
fidentiality, integrity, and authenticity. Finally, through both
theoretical and experimental evaluations, we show that our
schemes are feasible for real-world applications.

1 Introduction

Data aggregation refers to the collection of data from one
or more sources and its processing by a central aggregator
for statistical analysis. These protocols find applications in
many situations concerning sensitive data, such as automated
power delivery and balancing mechanisms in smart grids [15,
11], patient monitoring [44], and mobile computing [23, 41].
While the benefits brought by data aggregation are evident,
without proper countermeasures, they may represent a threat
to the privacy of users [17, 33, 24]. Malicious actors could
exploit the collected data to profile or track users’ activities,
social status, religious beliefs, and medical conditions [17, 33,
24]. Therefore, data aggregation protocols should guarantee
users’ privacy in the presence of malicious actors.

Drawbacks of current solutions. “Classical” privacy-
preserving data summation protocols [13, 40, 28] assume that
participants are honest-but-curious: They follow the protocol

but may try to infer others’ sensitive information. When users
may also attempt to influence the correctness of the output,
zero-knowledge proofs can be used to prove that users’ inputs
are well-formed [14, 26]. When aggregators may influence
correctness, the problem is more difficult. The aforementioned
protocols typically assume that the legal and reputational con-
sequences of malicious behavior deter the aggregator from
publishing a forged aggregate. However, without efficient
methods to actually detect such tampering, these protocols
may fail to prevent malicious behaviour.

A simple technique to detect tampering by the aggregator
is to have each user sign their submitted value. However,
this incurs high verification costs as possibly thousands of
signatures need to be verified in applications with many users.
A more common technique adopted in the literature is to
make only the result of the aggregation verifiable using using
privacy-preserving verifiable summation protocols [30, 35, 3,
21, 45, 22]. Unfortunately, both solutions fail to guarantee
unforgeability when the malicious aggregator may collude
with malicious users.

To the best of our knowledge, only three works have con-
sidered privacy-preserving verifiable summation against a ma-
licious aggregator colluding with malicious users [34, 29, 37].
Leontiadis and Li [29] and Mouris and Tsoutsos [34] both
assume a two-aggregator model in which at most one aggre-
gator may collude with malicious users. Unfortunately, as
we describe in Section 3.3, the work by Leontiadis and Li
[29] contains a mistake that breaks unforgeability. Finally,
Ren et al. [37] propose a single-server protocol in which the
aggregate is hidden from the aggregator. Unfortunately, their
protocol fails to provide confidentiality for small plaintext
spaces, and verification time is linear in the number of users.

Contributions. We present mPVAS, the first privacy-
preserving publicly verifiable summation protocol that allows
for arbitrary collusions between a malicious aggregator and
malicious users, requiring only a single server and constant-
time verification. Note that data poisoning attacks from the
users are outside the scope of this paper.

Our contributions can be summarized as follows.
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• We propose a publicly verifiable aggregate signa-
ture scheme considering malicious users and aggrega-
tors (mPVAS), a novel signature scheme that allows users
to sign their reports and compute a signature over the
sum of the private values.

• We present three extensions to mPVAS. mPVAS+ re-
duces communication overhead in a slightly weaker ad-
versarial model, mPVAS-IV allows the detection and re-
moval of malicious users, and mPVAS-UD allows users
to exit the protocol without necessitating a new setup
phase for the other users.

• We provide theoretical evaluations of the security and
performance of our protocols, as well as a practical anal-
ysis of their performance using a proof-of-concept im-
plementation. Our results show that mPVAS and its ex-
tensions are practical for real-world scenarios.

Outline. In Section 2, we present the system model and
our assumptions. In Section 3, we discuss related works. In
Section 4, we introduce the building blocks of our schemes.
In Section 5, we introduce mPVAS. In Section 6, we intro-
duce mPVAS+, which reduces communication complexity. In
Section 7, we introduce mPVAS-IV, which adds input vali-
dation to combat malicious users. In Section 8, we introduce
mPVAS-UD, which adds support for user dropouts. In Sec-
tion 9, we evaluate all four protocols. Finally, in Section 10,
we present our conclusions.

2 System Model and Assumptions

The goal of our protocol is to publish the (authenticated) sum
of all users’ private values in round t, subject to two properties:
individual users’ values remain unknown to other parties (con-
fidentiality), and the published sum is guaranteed to match
the true sum (unforgeability). Note that unforgeability implies
both integrity and authenticity [42].

We assume all adversaries are probabilistic and polynomi-
ally time-bounded. Furthermore, similar to related work [3,
29], we assume availability: Parties do not intentionally try
to make the protocol fail (denial of service), and do not un-
expectedly drop out. We loosen this assumption in Section 7
and Section 8, where we provide extensions for availability.

The following parties participate in the protocol.
Aggregator. The aggregator collects users’ inputs and sig-

natures, and publishes the input sum and an aggregate signa-
ture of the sum. The aggregator is malicious and may collude
with other malicious parties. That is, the aggregator may devi-
ate from the protocol in arbitrary ways, for example to learn
users’ private values, tamper with signatures, or publish an
incorrect aggregate.

Users. We consider a set of n users U = {1,2, . . . ,n}. In
any round t, each user i ∈ U holds some private integer xi,t .
We assume at most k ≤ n− 2 users are malicious and may

collude with the aggregator. The remaining n− k ≥ 2 users
are honest-but-curious; these users follow the protocol, but
may still try to obtain private data without colluding. Finally,
all users have access to a synchronized clock indicating the
current round t.

Verifier. Verifiers check that the aggregator’s published
output is correct. Any party may be a verifier; this includes
external auditors, the aggregator, users, the dealer, and system
administrators. We assume there is at least one verifier.

Dealer. We require a trusted dealer to set up the system, sim-
ilar to nearly all related works [30, 35, 3, 21, 45, 22, 29, 37].
Though a fully trusted party is a strong assumption, we argue
that it is feasible in relevant applications such as smart grids
and medical data sharing, where the role can be fulfilled by
a trusted institution or hardware manufacturer. The dealer is
tasked with generating and distributing the public and private
parameters to the other parties. After the setup, the dealer
exits the protocol.

Communication. The dealer and aggregator both have di-
rect communication channels with all users and verifiers, and
with each other. These channels provide secrecy, authenticity,
and integrity. Users cannot interact with each other directly
but can ask the aggregator to forward messages for them.

3 Related Work

There is a large body of work on privacy-preserving computa-
tion. In this section, we discuss why these works cannot be
trivially adapted to the adversarial model presented in Sec-
tion 2. In Section 3.1, we briefly discuss protocols for general
verifiable computation. Then, in Section 3.2, we discuss pro-
tocols for non-verifiable summation. Finally, in Section 3.3,
we discuss protocols for verifiable summation, which we also
summarise in Table 1.

3.1 General verifiable computation
In general verifiable computation [18], the aggregator com-
putes an arbitrary function over users’ data, while learning
neither the function nor its inputs. Users can verify that the
output is correct, without learning others’ values.

Gordon et al. [19] prove that general verifiable computation
is impossible if the aggregator colludes with users, even when
only a single user colludes, this user is honest-but-curious,
and the protocol uses a trusted setup. Therefore, general verifi-
able computation is not a suitable solution for our adversarial
model. Note that since the above impossibility result requires
that the function remains private, this does not preclude verifi-
able privacy-preserving summation in this adversarial model.

3.2 Non-verifiable summation
Privacy-preserving summation [28, 40, 7, 5] ensures confi-
dentiality and availability in a variety of adversarial models.
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Table 1: Overview of privacy-preserving verifiable summation works and their properties. The symbols , , and respectively
denote that a property is not, is partially, or is fully achieved by a particular work. The symbol – denotes that a property is not
applicable. We abbreviate “aggregator” to “agg.”

Trusted
setup1

Single
agg.

Malicious
users

Verifiable by Agg. colludes with

Users Agg. Verifiers Users Verifiers

[30]
[35] 2 3

[3]
[21] –
[45] –
[22] –
[29] 3 4

[34] 5 4 4

[37] –

mPVAS
mPVAS+

mPVAS-UD
mPVAS-IV

1 Also includes public-key infrastructure and common reference string. 2 Requires trusted party in all phases of protocol. 3 Exactly one (trusted) verifier.
4 May collude with at most one aggregator. 5 Requires public ledger in all phases of protocol.

However, these works are not verifiable. That is, if a malicious
aggregator publishes an arbitrary value as the sum, this cannot
be detected by other parties. Therefore, these protocols are
insufficient when the aggregator has an incentive to lie.

3.3 Verifiable summation

With privacy-preserving verifiable summation, the aggrega-
tor’s output can be proven to be the sum of users’ inputs.

We first discuss protocols for honest-but-curious users and
then discuss protocols for malicious users. The aggregator is
necessarily assumed malicious. We restrict our discussion to
the verification techniques, ignoring the protocols’ summation
mechanisms. We summarise our results in Table 1.

Honest-but-curious users. Given honest-but-curious users
and a malicious aggregator, the aggregator must prove that
the published sum indeed corresponds to the users’ inputs.

Early works [30, 35, 3] rely on a shared secret between
the users and the verifier to ensure only authenticated parties
can sign, and rely on a signature key that is secret-shared
between the users to ensure a signature is valid only if all
users are included. These protocols cannot ensure unforge-
ability when the aggregator colludes with honest-but-curious
users, because if a user sends the aggregator the shared secret
used for authentication, the aggregator can homomorphically
modify valid signatures.

Recent works [21, 45, 22] use the same high-level ideas,
but combine this with the non-verifiable summation protocol

of Bonawitz et al. [7] to achieve reliability when users un-
expectedly drop out. Each of these works similarly cannot
ensure unforgeability when the aggregator colludes with users.
We point out to interested readers that two of the above works
have received security fixes [20, 32]. There are more works
that achieve privacy-preserving verifiable summation with
honest-but-curious users, but none that do not fit the above
general descriptions.

Malicious aggregator and malicious users. To the best
of our knowledge, only a few works tackle the problem of
privacy-preserving verifiable summation with a malicious
aggregator and malicious users.

Leontiadis and Li [29] propose the addition of a new honest-
but-curious party, the converter. Users work with the converter
to create homomorphic commitments of their data based on
shares of the verifier’s secret key. The aggregator then aggre-
gates users’ private data and their commitments (respectively),
and sends both to the verifier. Finally, the verifier checks that
the aggregation was done correctly. Unfortunately, this proto-
col is not truly publicly verifiable, since the verification key
cannot be shared with users of the protocol. Furthermore, if
a user, aggregator, and converter collude, unforgeability no
longer holds. Finally, it appears that the protocol is flawed: If a
malicious user sends the converter a commitment to 0 and the
user then forwards the converter’s response to the aggregator,
the aggregator can create arbitrary valid signatures.

Mouris and Tsoutsos [34] propose splitting the aggrega-
tor into two parties: a curator and an analyst. Both may be
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malicious, but they do not collude, and only the analyst has
the decryption key for the aggregate. Users homomorphically
encrypt their data and send it to the curator, and publish a ho-
momorphic commitment to the ciphertext on a public ledger.
The curator verifies that the received ciphertexts correspond
to the commitments on the public ledger, and then publishes
an aggregate ciphertext and an aggregate commitment on the
public ledger. Finally, the analyst verifies the aggregate com-
mitment, decrypts the aggregate ciphertext, and publishes the
aggregate data together with a proof of correct decryption on
the public ledger. The protocol requires that the curator and
analyst do not collude; otherwise, the protocol cannot guar-
antee confidentiality and unforgeability. Furthermore, users
colluding with the curator may affect correctness.

Ren et al. [37] propose a summation protocol that provides
confidentiality, unforgeability, and availability against a mali-
cious aggregator colluding with a malicious subset of clients.
The protocol has four major drawbacks. First, only the users
learn the obtained sum, whereas the aggregator learns noth-
ing. Second, only participating users can verify the obtained
sum, and there is no trivial extension to allow external parties
to learn and verify the sum. Third, if the plaintext space is
small (as in verifiable summation for smart meters [40, 30]),
confidentiality can be broken by brute-forcing commitments.
Finally, verification time is linear in the number of users.

4 Preliminaries

Before we present mPVAS in Section 5, we introduce its basic
building blocks. We follow the definitions in [27].

Bilinear pairings. Given cyclic groups G1,G2,GT , each
of the same prime order p, a bilinear pairing is a function
e : G1×G2 → GT such that, for any g1 ∈ G1, g2 ∈ G2 and
a,b ∈ Zp,

e(ga
1,g

b
2) = e(g1,g2)

ab. (1)

Furthermore, e(g1,g2) should be a generator of GT , and e
should be efficiently computable. This excludes so-called
degenerate bilinear pairings, in which e(g1,g2) = 1 for all
g1 ∈ G1 and g2 ∈ G2. Finally, we assume that the SXDH
assumption [2] holds, i.e. that the decisional Diffie-Hellman
assumption holds in both G1 and G2, and that there exist no
efficiently computable homomorphisms between the two.

Zero-knowledge proof of equality between commit-
ments. We describe ZKPEq, a zero-knowledge proof that
two different Pedersen commitments share the same commit-
ted value. Formally, given commitments C (x,r1) and C (x,r2),
ZKPEq proves the relation

{(x,y,z) : S = gx
1hr1

1 ∧T = gx
2hr2

2 }. (2)

This proof can be implemented as an EQ-composition on the
common witness x of two Okamoto protocols [36] running in
parallel [39]. ZKPEq can be made non-interactive using the
Fiat-Shamir heuristic [16].

5 mPVAS: Publicly Verifiable Aggregate Sig-
natures with Malicious Users and a Mali-
cious Aggregator

We present mPVAS, a novel aggregate signature scheme for
summations. mPVAS can be used to verify that the output
of a separate summation protocol was not tampered with by
the aggregator. The core idea behind mPVAS is to create
commitment-like signatures of the inputs and wrap each sig-
nature under a common secret exponent s, similar to other
verifiable schemes [3, 30, 31]. Unlike other schemes, however,
we allow users to collude with the aggregator by revealing
their private parameters. mPVAS guarantees unforgeability
of the aggregate signature given at most k malicious users.
To achieve this, we use Shamir secret sharing over s with a
threshold of k+1.

mPVAS runs in four phases: setup, signing, aggregation,
and verification. During setup, the participants interactively
determine the scheme’s public and private parameters. Dur-
ing signing, users cooperatively calculate signatures of their
inputs to a separate summation protocol. During aggrega-
tion, the aggregator combines users’ signatures into a single
signature. Finally, during verification, verifiers compare the
aggregate signature with the summation protocol’s output.

mPVAS provides only an aggregate signature and, for large
plaintext spaces, must operate adjacent to a separate privacy-
preserving summation scheme. The order of operations is
that mPVAS runs up to (but excluding) verification, then the
summation protocol reveals the sum and, finally, mPVAS
verifies correctness. Alternatively, if the plaintext space is
small enough, the sum can be extracted in polynomial time
from the aggregate signature itself by repeated verification on
all possible values.

Data poisoning attacks are outside the scope of this paper.
However, range proofs can be used during the signing phase
of the protocol to partially mitigate these types of attacks.

5.1 Setup
During the setup, the trusted dealer chooses and publishes the
public parameters pp = (H,H1,G1,G2,GT ,g1,g2,e, p,n,k),
generated according to a strong security parameter λ. Each Gi
is a cyclic group of order p, where p is a large prime number.
g1 and g2 are random generators of G1 and G2, respectively.
e : G1×G2 → GT is a type-3 bilinear pairing in which the
Symmetric External Diffie-Hellman (SXDH) [2] assumption
holds. Furthermore, H : {0,1}∗→G1 and H1 : {0,1}∗→G1
are two distinct and cryptographically-secure hash functions.
Finally, n is the number of users, and k ≤ n−2 is the maxi-
mum number of malicious users.

The dealer assigns each user a unique identifier i∈ {1 . . .n},
chooses a secret s←$ Zp, and creates n secret shares [s]i us-
ing (k+1)-out-of-n Shamir secret sharing. Recall that each
Shamir secret share consists of a coordinate (xi,yi) on the 2D
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plane. The dealer ensures that the x-coordinates correspond
exactly to the user identifiers, and defines [s]i = yi. Next, for
each i∈ {1 . . .n} and each j ∈ {1 . . .k+1}, the dealer chooses
encryption key eki, j←$ Zp, but sets the last encryption key to

ekn,k+1 =−
n

∑
i=1

k

∑
j=1

eki, j. (3)

It follows that the sum of all encryption keys is 0. The dealer
then sends (pp, i, [s]i,{eki, j | 1 ≤ j ≤ k + 1}) to the corre-
sponding user i.

Each user i generates a signature key ski←$ Zp and sends
it to the dealer.

Once all n signature keys have been received, the dealer
calculates the verification key tuple

vk =
(
(gs

2)
∑

n
i=1 ski ,gs

2

)
, (4)

sends (pp,vk) to each verifier, and then leaves the protocol.

5.2 Signing
User i creates a signature of their private input xi,t in round t
of the summation protocol using the following interactive
four-step procedure.

1) Create initial signature. User i computes their initial
signature for round t as

σ
1
i,t = H(t)skigxi,t

1 ∈G1. (5)

and sends it to the aggregator.
2) Create partial signatures. The aggregator forwards the

initial signature tuple of each user i to an arbitrary1set Ui of k
users other than user i. We call Ui the signing set of user i.
The aggregator also sends the list of identifiers Ui to user i.
After receiving the initial signature of user i, each user j ∈ Ui
computes

σ
2, j
i,t = H1(t)ek j,i(σ1

i,t)
[s]∗j (6)

= H1(t)ek j,i(H(t)skigxi,t
1 )[s]

∗
j ∈G1, (7)

where (in a minor abuse of notation) ek j,i denotes the encryp-
tion key that user j chooses to uniquely associate with user i,
and [s]∗j denotes the partial reconstruction of user j’s Shamir
secret share of s, computed via interpolation by multiplying
[s] j with the Lagrange basis polynomial corresponding to
user j. User j then sends σ

2, j
i,t to the aggregator.

3) Sum secret shares. Once the aggregator has received k
partial signatures σ

2, j
i,t for user i, the aggregator combines the

shares in the exponent by computing

σ
3
i,t = ∏

j∈Ui

(σ
2, j
i,t ) = H1(t)∑ j∈Ui ek j,i(σ1

i,t)
∑ j∈Ui [s]

∗
j (8)

= H1(t)∑ j∈Ui ek j,i(H(t)skigxi,t
1 )∑ j∈Ui [s]

∗
j ∈G1. (9)

1In our evaluation, we assume that the signing set consists of the next
k users after user i when ordered by their numerical identifier.

The aggregator then sends σ3
i,t back to user i.

4) Compute final user signature. At this point, k secret
shares of s have been added to the exponent. Adding one more
secret share therefore reconstructs s in the exponent. User i
computes the final user signature as

σi,t = H1(t)eki,i ·σ3
i,t · (H(t)skigxi,t

1 )[s]
∗
i (10)

= H1(t)
eki,i+∑ j∈Ui ek j,i(H(t)skigxi,t

1 )s ∈G1, (11)

where eki,i is the single remaining unused encryption key.
User i submits their final user signature σi,t to the aggregator.

Note that this signature cannot be verified using the ver-
ification key, because this key only works for aggregated
signatures. This is intentional, as verifying individual user sig-
natures would trivially allow an adversary to learn the private
input of a user by brute force.

5.3 Signature Aggregation
After having received the final user signatures of all users for
round t, the aggregator computes the aggregate signature

σt =
n

∏
i=1

σi,t (12)

= H1(t)∑
n
i=1 ∑

k+1
j=1 eki, j (H(t)s)∑

n
i=1 ski (gs

1)
∑

n
i=1 xi,t (13)

= (H(t)s)∑
n
i=1 ski (gs

1)
∑

n
i=1 xi,t ∈G1. (14)

The aggregator sends σt to each verifier.
Only at this point should the adjacent summation protocol

reveal the sum of users’ inputs.

5.4 Verification
Once the aggregator has published the sum of all xi,t and the
aggregate signature σt , each verifier checks the equation

e(H(t),vk1) e
(

g∑
n
i=1 xi,t

1 ,vk2

)
(15)

= e
(

H(t),(gs
2)

∑
n
i=1 ski

)
e
(

g∑
n
i=1 xi,t

1 ,gs
2

)
(16)

?
= e(σt ,g2). (17)

5.5 Security Analysis of mPVAS
We show that the verification procedure is correct, does not
leak private data, and cannot be fooled into accepting an in-
correct signature.

To see that verification succeeds for a correct signature,
observe that

e(σt ,g2) = e
(
(H(t)s)∑ski(gs

1)
∑xi,t ,g2

)
(18)

= e
(
(H(t)s)∑ski ,g2

)
e
(
(gs

1)
∑xi,t ,g2

)
(19)

= e
(

H(t),(gs
2)

∑ski
)

e
(

g∑xi,t
1 ,gs

2

)
∈GT . (20)
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Theorem 1. mPVAS is Aggregator Oblivious.

Proof. See Appendix A.

Theorem 2. mPVAS is Aggregate Unforgeable against Type-I
and Type-II forgeries.

Proof. Intuitively, because the aggregator does not know s,
they cannot create a correct signature for a sum other than the
published one. For the full proof, see Appendix B.

6 mPVAS+: mPVAS with Lower Communica-
tion Overhead

In mPVAS (see Section 5), communication complexity is lin-
ear in the number of malicious users k. Though we assume
malicious users to be in the minority, this level of interactivity
may be too high for some applications. We present mPVAS+,
an extension of mPVAS to significantly reduce communica-
tion complexity. Recall that we provide a runtime analysis of
mPVAS and all extensions in Section 9.

We show that we can significantly decrease the commu-
nication complexity using a divide-and-conquer strategy. In-
tuitively, our solution works by dividing users into random
groups of size c≤ k and providing each group with an inde-
pendent set of secret shares of s. Since each group can now
individually reconstruct s in the exponent, we can eliminate
cross-group communication. As long as at least one user in
each group is non-malicious, adversaries cannot reconstruct s.
We provide a statistical analysis that this holds in Section 6.3.

6.1 Modifications in mPVAS+
We describe how mPVAS+ differs from mPVAS.

Setup. The key difference with the setup of mPVAS (see
Section 5.1) is that in mPVAS+, instead of creating a single
sharing over all users, the dealer randomly assigns users to
groups of size c≤ k and, for each group, generates c-out-of-c
Shamir secret shares of s. If c does not divide n, then n mod c
arbitrary groups should have one additional user, and the se-
cret sharing threshold of this group is adjusted accordingly.
After having chosen the random secret s←$ Zp (as in mP-
VAS), the dealer creates separate c-out-of-c Shamir secret
shares of s for each group. Because a separate set of shares is
created for each group, shares from different groups cannot
be combined together. As in mPVAS, each share [s]i is sent
to the corresponding user i. Furthermore, the dealer creates
only nc encryption keys instead of n(k+1). In mPVAS+, the
list of other users in the group is additionally sent to user i.

Signing. In this phase, the only difference with mPVAS
(see Section 5.2) is that the aggregator sends the initial sig-
nature σ1

i,t of each user i to the c− 1 other users in user i’s
group, rather than sending them to k arbitrary other users.

Aggregation. The aggregation phase remains unchanged
(see Section 5.3).

Verification. The verification phase remains unchanged
(see Section 5.4).

6.2 Security Analysis of mPVAS+

Theorem 3. mPVAS+ is Aggregator Oblivious.

Proof. The mPVAS+ extension changes the behavior of the
base mPVAS scheme. When c malicious users end up in the
same group, they can collectively reconstruct s and share it
with the aggregator, thus allowing it to tamper with the signa-
tures of honest users. However, note that even with knowledge
of s, the aggregator still cannot learn the private values of in-
dividual users because they are also blinded by the secret
factor H(t)ski . When s is known by the aggregator, the mP-
VAS scheme directly reduces to the PPATS scheme of [40],
which is Aggregator Oblivious.

Theorem 4. mPVAS+ is Aggregate Unforgeable against Type-
I and Type-II forgeries.

Proof. The mPVAS+ scheme can be seen as multiple in-
stances of the regular mPVAS scheme running on multiple
groups of users, but with different instances of Shamir secret
sharing used to generate the secret shares of s. Thus, Ag-
gregate Unforgeability still holds following the same logic
presented in Section 5.5 for the mPVAS scheme, as long as
each group contains at least one honest user. We provide a sta-
tistical analysis that this requirement holds in Section 6.3.

We emphasise that mPVAS+ provides Aggregate Unforge-
ability with k malicious users only if we assume non-adaptive
corruptions. Otherwise, the security of mPVAS+ is down-
graded to that of an mPVAS instance with k = c−1.

6.3 Statistical Analysis of mPVAS+

The communication complexity of mPVAS+ is better than that
of mPVAS only if c≤ k. However, unlike mPVAS, in mPVAS+
it is possible that at least one group consists of adversaries
only. These adversaries may then collude to retrieve private
key material. We give an exact formula for this probability,
and show that it can be made negligibly small.

Let n be the number of users, k the number of malicious
users, c the group size, and d = floor(n/c) the number of
groups. We assume that c divides n exactly. Otherwise, n−cd
groups should be given one user more, and the following
calculations give an upper bound rather than an exact value.

We calculate the probability using a combinatorial counting
argument. We model the process of dividing users into groups
as first dividing all n users into groups, and then randomly
(non-adaptively) corrupting k users. We count the number of
instances in which at least one group is fully corrupted, and
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divide this by the total number of instances.2 The total number
of instances (the denominator) is simply

(n
k

)
(i.e. the bino-

mial coefficient “n choose k”), but the number of problematic
instances (the numerator) is harder to compute.

Intuitively, the numerator is the number of combinations
in which exactly one group is fully compromised (which is d,
since there are d groups), multiplied by the number of ways in
which the remaining n−c users can contain k−c corruptions
(which is

(n−c
k−c

)
), seemingly giving the probability

d
(n−c

k−c

)(n
k

) . (21)

However, this is inaccurate, because if the remaining users
also fully corrupt a group, that case is counted twice. In fact,
duplicates are counted twice, triplicates are counted thrice,
and, in general, r-replicates are counted r times. Luckily,
by the inclusion-exclusion principle, it suffices to separately
count and subtract these cases.

Let R = floor
( k

c

)
denote the “replicity”, which is the

highest order of replication. To determine the number of r-
replicates, we first define a helper function that counts the
number of r-replicates after fixing which r groups are fully
corrupted:

rep(r) =
(

n− rc
k− rc

)
−

R

∑
i=r+1

((
d− r
i− r

)
· rep(i)

)
. (22)

This function counts the number of ways to corrupt remaining
users and then recursively subtracts higher-order replicates.
The number of recursive i-replicates is found by first fixing
r− i additional groups and then multiplying by rep(i).

We conclude that the probability that at least one group is
fully corrupted is exactly

d ·
(n−c

k−c

)
−∑

R
r=2((r−1) ·

(d
r

)
· rep(r))(n

k

) (23)

if c divides n, and is a strict upper bound otherwise. As in (22),
for each order of replication, we multiply by the number of
ways to choose r groups, and additionally multiply by r−1
to actually the multiply-counted items.

We visualize (23) for various values of n, k, and c in Fig-
ure 1. The figure shows that, given sufficient users, the prob-
ability of accidentally assigning only malicious users to a
group can be made negligible with an appropriate choice of c.
For example, with 50 users, of which 20% malicious, choos-
ing c = 7 gives a probability of approximately 0.000841%,
and can be made even smaller.

2We calculate the probability as a combinatorial problem. Modeling this
as a permutation instead would require counting all possible ways to assign
identity to users after fixing a specific combination. This can be done by
multiplying both the numerator and denominator by (n− k)!k!. Therefore,
both methods give the same result.
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Figure 1: Probability that at least one group is fully corrupted
in mPVAS+. Due to the logarithmic y-axis, lines end when
they reach zero.

7 mPVAS-IV: mPVAS with Input Validation

We have thus far assumed that parties do not try to make
the protocol fail. In this section, we present mPVAS-IV, an
extension to mPVAS (see Section 5) to allow the aggregator
to identify and remove users that attempt to cause an invalid
aggregate signature. mPVAS-IV is fully compatible with both
mPVAS+ (see Section 6) and mPVAS-UD (see Section 8).

In terms of our adversarial model (see Section 2), we loosen
our assumptions on users, who may now send ill-formed mes-
sages with the intent of causing verification to fail. We model
the aggregator as a service provider, who may attempt to ob-
tain users’ private data or output a falsified signature, but is
expected to ensure well-formed outputs so as to not disrupt
users reliant on their services. As such, the malicious aggrega-
tor may still collude with malicious users against confidential-
ity and unforgeability, but the aggregator acts honestly with
regard to availability. Furthermore, we assume that the adja-
cent summation protocol ensures availability in this model,
including verified commitments to users’ summation inputs.
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mPVAS-IV validates that users’ inputs are well-formed,
and pinpoints which user caused the invalid input. That user
is then barred from participating in future instances of the
protocol, and the protocol is restarted from scratch with the re-
maining users. In the worst case, malicious users are removed
one at a time, requiring k restarts. After that, all malicious
users have been removed, and users can continue additional
rounds indefinitely. Therefore, whereas in mPVAS adversaries
could prevent all output without end, mPVAS-IV reduces this
adversarial capability to a linearly bounded overhead.

At its core, mPVAS-IV adds a mechanism to validate indi-
vidual final user signatures when verification fails. However,
since users may tamper with others’ signatures, we must also
add a detection mechanism there. Note that we do not need to
validate the initial signature, since either the subsequent final
user signature is valid and there is no problem to begin with,
or the final user signature is invalid and is detected as such.

7.1 Modifications in mPVAS-IV
We describe how mPVAS-IV differs from mPVAS.

Setup. The setup phase of mPVAS-IV starts by running
the setup phase of mPVAS (see Section 5.1). The dealer then
generates additional information to perform input validation.

First, the dealer chooses gT and hT as random generators
of GT , and, for each user i, generates ri←$ Zp, and the set of

values EK j,i = g
ek j,i
2 . The dealer sends ri, EK j,i = g

ek j,i
2 , and

gs
2 to each user i.
Next, for each user i, the dealer generates SKi = gski

T hri
T ,

SSi = g[s]i2 , EK j,i = g
ek j,i
2 , for j ∈ {1 . . .k}, EKS j,i = g

ek j,i
s

2 ,
for j ∈ {1 . . .k+1}, and sends these values to the aggregator,

along with ν = g
1
s
2 .

Finally, the dealer sends the additional public parameters
(gT ,hT ) to all participants.

Signing. We require additional operations before and after
the regular signing phase of mPVAS (see Section 5.2).

Before the regular signing phase, we require that the adja-
cent summation scheme outputs Pedersen commitments of
the users’ inputs to that summation scheme. This is to en-
sure consistency of the inputs between the two schemes. If
mPVAS-IV is used without a separate summation scheme,
the committed values should be validated using range proofs
instead. Either way, let C(xi,t) for each user i denote these
commitments.

After the regular signing phase is complete, each user
checks their final user signature for tampering. If tampering is
detected, the user informs the aggregator, who then validates
the corresponding partial signatures. If the aggregator also
detects tampering, the aggregator marks the user(s) who sent
that partial signature as malicious. Otherwise, if the aggre-
gator does not detect tampering, the reporting user is instead
marked as malicious. After that, the protocol restarts without
the detected malicious users.

User i checks their final user signature σi,t , calculated
in (10), for tampering by checking that

e(H1(t),g
εi
2 ) e(H(t),(gs

2)
ski) e(gxi,t

1 ,gs
2)

?
= e(σi,t ,g2) (24)

holds, where εi = ∑
k+1
j=1 ek j,i. In a nutshell, the left-hand side

re-calculates user i’s expected final user signature under a
bilinear mapping (compare with (10)), while the right-hand
side bilinearly maps the actual final user signature. If (24)
does not hold, the user reports this to the aggregator.

Since the aggregator forwards all partial signatures, the
aggregator possesses the initial signature σ1

i,t as well as the

partial signature σ
2, j
i,t of each user j ∈ Ui. Upon receiving

user i’s claim that their signature was tampered with, the
aggregator computes for each user j ∈ Ui the value

σ
2, j∗
i,t = e

(
H1(t),g

ek j,i
2

)
e
(

σ
1
i,t ,g

[s]∗j
2

)
, (25)

where [s]∗j is as in (6), i.e. the partial reconstruction of user j’s
Shamir secret share of s, here calculated in the exponent of g2
using the set SS. Finally, the aggregator validates the partial
signature σ

2, j
i,t by checking

σ
2, j∗
i,t

?
= e

(
σ

2, j
i,t ,g2

)
(26)

= e
(

H1(t)ek j,i
(

H(t)skigxi,t
1

)[s]∗j
,g2

)
(27)

= e
(

H1(t)ek j,i ,g2

)
e
(
(H(t)skigxi,t

1 )[s]
∗
j ,g2

)
(28)

= e
(

H1(t),g
ek j,i
2

)
e
(

σ
1
i,t ,g

[s]∗j
2

)
(29)

If this holds, then user j did not act maliciously; otherwise,
user j is marked as malicious and expelled from the protocol.
The aggregator repeats this process for all users in Ui, as there
can be more than one user behaving maliciously in a single
signing set.

Aggregation. The aggregation phase remains unchanged
(see Section 5.3).

We assume that the adjacent summation scheme aborts no
later than this point if the Pedersen commitment C(xi,t) of
any user i does not correspond to that user’s real input to the
summation scheme.

Verification. The verification phase of mPVAS-IV starts
by running the verification phase of mPVAS (see Section 5.4).
If verification fails, the aggregator tries to find the culprit
by verifying that the final user signature σi,t of each user i
matches (10). This verification entails removing the term
containing the encryption keys ek and then asking user i for a
zero-knowledge proof of equality between the expected and
the actual value of the remaining term.

To remove the term with the encryption keys, the aggregator
first computes

g
εi
s

2 =
k+1

∏
j=1

EK j,i =
k+1

∏
j=1

g
ek j,i

s
2 ∈G2, (30)
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and then removes the term by computing

σ
′
i,t =

e
(

σi,t ,g
1
s
2

)
e
(

H1(t),g
εi
s

2

) (31)

=

e
(

H1(t)εi(H(t)sk′ig
x′i,t
1 )s,g

1
s
2

)
e(H1(t),g2)

εi
s

(32)

=

e
(

H1(t)εi ,g
1
s
2

)
e
(

H(t)sk′ig
x′i,t
1 ,g2

)
e(H1(t),g2)

εi
s

(33)

= e(H(t),g2)
sk′i e(g1,g2)

x′i,t ∈GT , (34)

where the values of sk′i and x′i,t are implied. Finally, the aggre-
gator asks user i to prove that sk′i = ski and x′i,t = xi,t . User i
does so by interpreting (34) as a Pedersen commitment and
providing two ZKPEq proofs (see Section 4): one for proving
the equality sk′i = ski between σ′i,t and SKi, and another for
proving equality of x′i,t = xi,t between σ′i,t and C(xi,t).

If mPVAS-IV is used without an adjacent summation pro-
tocol, user i must also provide a range proof (such as a Bul-
letproof [9]) of xi,t to show that their input lies in a restricted
range, and that extraction of the sum from σt is tractable.
Users that fail to send valid proofs are removed from the
protocol and subsequent executions.

7.2 Security Analysis

Theorem 5. mPVAS-IV is Aggregator Oblivious.

Proof. The additional information received by the aggregator
does not yield any advantage to breaking Aggregator Oblivi-
ousness. In fact, the secret shares the aggregator receives in
the set SS cannot be efficiently extracted due to the hardness
of the DLP in G2. The commitments contained in the set SK
are hiding, thus the aggregator cannot extract the signing keys
either. Furthermore, as with mPVAS, all initial and final user
signatures σ1

i,t ,σ
2, j
i,t ,σ

3
i,t ,σi,t contain the secret factor H(t)ski ,

which perfectly hides xi,t in G1 and prevents the aggregator
from exploiting the verification algorithm in (24) to find xi,t .

The intermediate value e(H(t),g2)
sk′i e(g1,g2)

x′i,t from (34)
is also hiding under the random oracle model. Finally, the
proof ZKPEq does not leak any information about the private
witness due to its zero-knowledge property. We conclude that
the aggregator cannot learn the private value of honest users,
and thus mPVAS-IV is Aggregator Oblivious.

Theorem 6. mPVAS-IV is Aggregate Unforgeable against
Type-I and Type-II forgeries.

Proof. See Appendix C.

8 mPVAS-UD: mPVAS with User Dropouts

Requiring that all users are always online is not feasible for
some applications. In this section, we present mPVAS-UD, an
extension to mPVAS (see Section 5) to allow users to choose
a set of rounds in which they will not participate by sending
one or more recovery keys containing the necessary material
that would otherwise be missing from those rounds. As with
the base mPVAS protocol, mPVAS-UD works as long as at
least k+2 users do not drop out of the protocol. mPVAS-UD
is fully compatible with both mPVAS+ (see Section 6) and
mPVAS-IV (see Section 7).

8.1 Modifications in mPVAS-UD
We describe how mPVAS-UD differs from mPVAS.

Setup. In addition to the regular setup of mPVAS (see Sec-

tion 5.1), the dealer also sends EK j = g∑
k
i=1 ek j,i

2 , for each j ∈
{1 . . .n}, to all verifiers.

If mPVAS-UD is combined with mPVAS+, then the setup
should be adjusted to use c-out-of-c′ secret sharing instead
of c-out-of-c secret sharing, where c′ ≥ c. This ensures that
at most c′− c users in each group can drop out without re-
sulting in incomplete signatures. The statistical analysis in
Section 6.3 still applies to c.

Signing. In any round t, before running the regular signing
phase (see Section 5.2), each user i has the option of dropping
out for a set of rounds T, possibly including the remainder of
the current round t. For each round τ ∈ T from which user i
would like to drop out, user i calculates a recovery key

rki,τ = e
(

H(τ)−ski ,gs
2

)
∈GT . (35)

User i then sends mi = (i ∥ τ ∥ rki,τ) to the aggregator, who
forwards both to the verifiers. Note that the aggregator can
aggregate all recovery keys rki,t together before sending them
to the verifiers to save space and reduce the communication
overhead.

If mPVAS-UD is used in the adversarial model of mPVAS-
IV (see Section 7), we must additionally ensure that user i
cannot invalidate signatures of rounds T. Therefore, user i
must prove that the recovery key is well-formed using a zero-
knowledge proof that ski in rki,τ is the same as in the commit-
ment gski

T hri
T from the setup of mPVAS-IV. Concretely, user i

proves the relation

{(x,y) : S = gx
1hy

1∧T = gx
2}, (36)

which can be implemented and made non-interactive similar
to ZKPEq (see Section 4).

The signing phase then proceeds as normal, but without the
users who have opted to drop out of round t.

Aggregation. The aggregation phase remains unchanged
(see Section 5.3).
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Verification. The verification phase of mPVAS-UD re-
places that of regular mPVAS (see Section 5.4). In round t, let
Dt be the set of users that dropped out, and let Rt be the set of
the remaining users. Since users Dt do not participate in the
adjacent summation protocol of round t, the published sum
should be xt = ∑i∈Rt xi,t , and the aggregate signature should
similarly be over that sum. To verify that the signature σt is
correct, the verifier uses the dropped-out users’ recovery keys
and checks

e(gxt
1 ,vk2) e(H(t),vk1) ∏

i∈Dt

rki,t
?
=

e(σt ,g2)

e
(
H1(t),∏i∈Rt EKi

) .
(37)

This is essentially a modification of (15) wherein the verifier
assumes that dropped-out users input xi,t = 0, while compen-
sating for missing information using the recovery material.
To see that correctness holds, let σ′t = (H(t)∑i∈Rt skigxt

1 )
s be

the desired signature (see (14)), recall the definition of vk
from (4), and observe that on the left-hand side of (37) we
find

e(gxt
1 ,vk2) e(H(t),vk1) ∏

i∈Dt

rki,t (38)

= e(gxt
1 ,g

s
2) e(H(t),vk1) e(H(t),gs

2)
−∑i∈Dt ski (39)

= e(gxt
1 ,g

s
2) e(H(t),gs

2)
∑i∈Rt ski (40)

= e
(
(H(t)∑i∈Rt skigxt

1 )
s,g2

)
= e(σ′t ,g2). (41)

Similarly, on the right-hand side of (37), we find

e(σt ,g2)

e
(
H1(t),∏i∈Rt EKi

) (42)

=
e
(

H1(t)∑i∈Rt ∑
k+1
j=1 ek j,i

(
H(t)∑i∈Rt skigxt

1

)s
,g2

)
e
(
H1(t),∏i∈Rt EKi

) (43)

=
e(H1(t),g2)

∑i∈Rt ∑
k+1
j=1 ek j,i e(σ′t ,g2)

e(H1(t),g2)
∑i∈Rt ∑

k+1
j=1 ek j,i

(44)

= e
(
σ
′
t ,g2

)
. (45)

8.2 Security Analysis
Theorem 7. mPVAS-UD is Aggregator Oblivious.

Proof. See Appendix D.

Theorem 8. mPVAS-UD is Aggregate Unforgeable against
Type-I and Type-II forgeries.

Proof. See Appendix E.

9 Complexity Analysis of mPVAS, mPVAS+,
mPVAS-IV, and mPVAS-UD

We evaluate the complexity of mPVAS and each of its exten-
sions. In Section 9.1, we present the asymptotic communica-

tion complexity of our schemes, and compare this with a se-
lection of related works. In Section 9.2, we describe our exper-
imental setup for empirically determining runtime complexity.
After that, we present the results of this analysis for mPVAS
in Section 9.3, for mPVAS+ in Section 9.4, for mPVAS-IV in
Section 9.5, and for mPVAS-UD in Section 9.6.

9.1 Asymptotic Communication Complexity
In Table 2, we summarize the asymptotic communication
complexity of all proposed schemes and compare them with
state-of-the-art protocols that consider malicious users. The
dealer has to share information with every user, which leads
to a complexity of O(n) for all signature schemes. Users only
communicate within their own signing set, for a complexity
of O(k), or O(c) in the mPVAS+ scheme. The aggregator
needs to relay messages between each user and their signing
set, which leads to a complexity of O(kn) for the mPVAS and
mPVAS-IV schemes, and O(cn) for the mPVAS+ scheme.
Verifiers do not actively participate in the protocol.

Table 2: Asymptotic communication complexity per party in
related works and in the mPVAS family.

Protocol Dealer Agg. User Verifier Ledger

[29] O(n) O(1) O(1) - no
[34] O(1) O(1) O(1) - O(n)
[37] O(n) O(n2) O(n) - no

mPVAS O(n) O(kn) O(k) - no
mPVAS+ O(n) O(cn) O(c) - no
mPVAS-IV O(n) O(kn) O(k) - no
mPVAS-UD O(n) O(kn) O(k) - no

The mPVAS family of protocols enjoys reduced commu-
nication complexity compared to [37], but increased com-
munication complexity compared to [29, 34]. We note that
similar schemes such as [3, 30, 29, 34], work in a different
system and adversarial model where there is little to no in-
teraction between the participants except for the initial setup.
As such, the communication complexities for these schemes
is O(1) for both the aggregator and the users. (Similarly, the
computation complexity is O(1) for the users and O(n) for
the aggregator.) While this is better than any of the mPVAS
variants, the adversarial model in these related works is also
weaker than those used in our work. As discussed in Section 3,
the compared schemes either assume honest behavior from
the users [30, 3], no collusions between the aggregator and
the users [34], or they rely on a semi-trusted party during pro-
tocol execution [34, 29]. That said, mPVAS can trivially be
generalized to these alternative scenarios. For example, hon-
est users can be simulated by choosing k = 0, which leads to a
non-interactive scheme with O(1) communication complexity
and a computation complexity nearly identical to that of the
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PUDA scheme [30]. Similarly, choosing k = 1 for mPVAS
corresponds to the scheme presented in [29], which entrusts
a semi-trusted third party with the secret signing key, and
similarly leads to constant communication complexity.

9.2 Experimental Setup
We describe the experimental setup with which we empirically
determine the runtime complexity of our protocols.

We use the Charm framework [6] to develop a proof-of-
concept implementation of mPVAS and its extensions. This
framework is widely used for the prototyping and benchmark-
ing of cryptographic schemes, e.g. [1, 38].

The experiments are performed over the MNT224 elliptic
curve, which is pairing friendly, provides 112 bits of secu-
rity [10], and allows for type-3 pairings, which are necessary
for the SXDH assumption [3]. This is the most secure curve
provided by the Charm framework that is compatible with our
schemes. While the current recommendation is to use curves
that provide 128 bits of security as a conservative choice,
112 bits is the minimum security level required by NIST for
the US Federal Government [4]. In this curve, elements in G1
are 56 bytes, in G2 are 168 bytes, in GT are 168 bytes, and in
Zp are 28 bytes [25], which we verified experimentally. The
size of the elements influences the performance of the various
algebraic operations performed in each group.

The experiments were run on a Threadripper 7970X CPU
with 256GB of RAM. The protocol was executed sequentially
on a single core without special optimizations. Messages are
assumed to be delivered instantaneously, so that the measured
runtime represents only the computational complexity.

9.3 mPVAS Runtime
We show the runtime of mPVAS (see Section 5) in Figure 2.

Figure 2(a) shows that, even when there are 1000 users
and k = 30% of all users are malicious, the runtime is only
around 0.36 seconds for a single user. As expected from an
asymptotic complexity O(k), the runtime decreases with the
number of malicious users k.

Figure 2(b) shows a similar trend for the aggregator. More-
over, when k = 0, the aggregator does not have to combine
partial secret sharing for every user, and the runtime dips
below even that of a single user.

Finally, Figure 2(c) shows the runtime for verifiers. As
expected, since a verifier only needs to compute three pairings,
regardless of the number of users, runtime is constant.

9.4 mPVAS+ Runtime
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Figure 3: Experimental runtime of mPVAS+.

mPVAS+ (see Section 6) reduces computational complex-
ity under well-defined probabilistic assumptions, assuming
non-adaptive corruptions. We present its runtime in Figure 3.

We note that, at k = 0%, mPVAS+ reduces directly to mP-
VAS, and complexity is independent of the number of users.
For experiments with k > 0%, we choose the smallest group
size c such that the probability that at least on group is fully
compromised is at most 10−5, using our combinatorial for-
mula in (23), giving us group sizes ranging from 5 up to 14.

We see in Figure 3(a) that, compared to mPVAS, user run-
time is reduced by an order of magnitude for our choice of
parameters. Since the runtime depends only on the constant c,
this leads to an upper bound on the runtime. As n continues
to grow, the runtime becomes apparently constant.

We see in Figure 3(b) that the speedup for the aggregator
is similar. As in regular mPVAS, the main bottleneck for
the aggregator is combining the partial user signatures as
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Figure 2: Experimental runtime of mPVAS.
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in Equation 8. (Combining the final user signatures requires
negligible runtime.) Reducing the group size c affects this
bottleneck directly. For example, with 1000 users, of which
30% is malicious, setting c = 14 means the aggregator must
only aggregate c−1 = 13 values per user instead of k = 300,
reducing complexity in this part by a factor of 23.

9.5 mPVAS-IV Runtime
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Figure 4: Experimental runtime of mPVAS-IV with final user
signature tampering.
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Figure 5: Experimental runtime of mPVAS-IV with aggregate
signature tampering.

mPVAS-IV (see Section 6) deals with malicious users who
submit malformed signatures to the aggregator. The aggrega-
tor identifies these users through several additional checks.

Since the aggregator does not know the number of mali-
cious users beforehand, they will check all signatures in order
to find every user that acted maliciously during each round.

First, we consider the case in which users obtain invalid
final user signatures during the signing phase and report these
to the aggregator. Figure 4(a) shows the runtime for a single

user. We see that the total runtime for a single user is compa-
rable to that of the mPVAS scheme, as there are no additional
steps required from users at this stage. For the aggregator,
instead, the runtime is dependent on the number of reports
received and the size k of each signing set. This dependence
is clearly shown in Figure 4(b), Figure 4(c), and Figure 4(d),
in which we consider three cases where 10%, 50%, and 100%
of users submit a report to the aggregator. In all cases, the
runtime is noticeably higher than in the base mPVAS protocol.
The reason for this steep increase is the additional exponenti-
ations and pairings required to check whether each signature
σ2

j,i is well formed. Moreover, these checks must be repeated
for every user in a signing set in order to find every possible
instance of tampering or whether the report was actually false.
We remark that our implementation does not include any spe-
cific optimizations, such as parallelization. Since verification
is embarrassingly parallel for the aggregator, we expect this
can be sped up linearly in the number of cores.

Next, we consider the case in which malicious users submit
malformed final user signatures to the aggregator. When this
happens, verification of the aggregate signature fails, and the
aggregator starts a procedure to identify the malicious users.
The checks in this procedure must be performed on all n users,
thus giving a linear complexity for the aggregator. Figure 5(a)
and Figure 5(b) show the runtime for a single user and for the
aggregator, respectively. We see that the runtime for the ag-
gregator can reach up to 22 seconds on our machine. Despite
the increased runtime for the aggregator, recall from Section 7
that this identification procedure is necessary only after mali-
cious behavior has occurred. Our experiments represent the
cumulative worst-case “denial of service” that malicious users
can inflict on the aggregator and other users.

9.6 mPVAS-UD Runtime

In mPVAS-UD (see Section 8) there are changes in the signing
phase for users that drop out and in the verification phase for
the verifiers. We, therefore, focus on the runtime of those
specific parties in Figure 6. In our experiments, we fixed the
number of user dropouts to be 10%, 30%, and 50% of the
total number of users.

Figure 6(a) shows the runtime for each dropped-out user.
We find that the runtime is independent of the number of
malicious users and the number of dropped-out users, which
is expected since the protocol is non-interactive for these users
and the recovery material can be computed in constant time.

From Figure 6(b), Figure 6(c), and Figure 6(d) we see that
the runtime for the verifier is not constant anymore, unlike
all other variants of mPVAS. In mPVAS-UD, the verifier’s
runtime is linear in the number of remaining users because
it must compute the product of the masking factors EK j for
every remaining user j, as described in (37). Note that the
product of the recovery keys rki,t is precomputed by the aggre-
gator before being sent to the verifiers to save bandwidth. Still,
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these multiplications not particularly expensive and, even in
the worst case we consider, with 1000 users and only 10%
dropouts, the total running time is below 0.0165 seconds.
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Figure 6: Experimental runtime of mPVAS-UD.

10 Conclusions

mPVAS and its extensions ensure the confidentiality of the
input values and the integrity and authenticity of the aggre-
gate even in the presence of a malicious aggregator and a
subset of malicious users that collaborate to tamper with the
result of the aggregation. Ensuring not only confidentiality
but also integrity and authenticity even in the presence of
malicious adversaries helps to develop more trust in the re-
sults of privacy-preserving schemes and make such schemes
appealing to a wider range of scenarios.
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A Aggregator Obliviousness of mPVAS

We provide the proof of Theorem 1. We first provide some
preliminaries, and then restate the theorem as Theorem 9.

We show that if a probabilistic polynomial-time adversary
has a non-negligible advantage of breaking Aggregator Obliv-
iousness of mPVAS, then it also has a non-negligible advan-
tage of breaking Aggregator Obliviousness of the Shi et al.
[40] scheme, which is proven under the Decisional Diffie-
Hellman assumption. The proof of this property follows an
indistinguishability-based game and it provides an adversary
with access to the following oracles.

• OSetup(1λ): Performs the setup of the mPVAS scheme
using the given security parameter λ and replies with the
public parameters pp and the verification key vk. The
secret values of each user ([s]i,ski) are kept secret.

• OCompromise1(i ∈ U): When queried on user i, the oracle
replies with the secret of user i, namely ([s]i,ski).

• OSign(i∈U, t,xi,t): Given an input xi,t of user i in round t,

the oracle replies with
(

σ1
i,t ,{σ

2, j
i,t } j∈Ui ,σ

3
i,t ,σi,t

)
, where

each σℓ
i,t ,1 ≤ ℓ ≤ 3 is a final user signature, and σi,t is

the final user signature.

• OChallenge(X 0
t∗ ,X 1

t∗): Given two sets of input values
X 0

t∗ ,X 1
t∗ of size |X i

t∗ | = n, such that ∑i∈U∗ x0
i,t∗ =

∑i∈U∗ x1
i,t∗ , the oracle randomly flips a coin b←$ {0,1}

and, for set X b
t∗ , it returns all the corresponding partial

and final user signatures of its inputs.

Aggregator Obliviousness security game. The Aggrega-
tor Obliviousness security game is based on the game intro-
duced by Shi et al. [40].

We can now define Aggregator Oblivious. We follow the
definitions seen in [30, 29].

Definition 1 (Aggregator Oblivious). Let Pr[AAO] denote the
probability that aggregator A outputs b∗ = b in the AO game.
A data aggregation protocol is said to be Aggregator Oblivi-
ous if, any polynomially bounded A has negligible advantage
Pr[AAO]≤ 1

2 +negl(λ) of winning the AO game.

Theorem 9. The mPVAS scheme is Aggregator Oblivious in
the random oracle model under SXDH in G1 and G2.

Proof. Let us assume an adversary A that can win the AO
game with a non-negligible advantage. We show how a poly-
nomial time algorithm B can break the AO scheme of [40],
henceforth referred to as PPATS, which is provably secure
under the DDH assumption, by using A as a subroutine. We
refer to the following oracles provided by the PPATS scheme.
OPPATS

Setup returns the public parameters. OPPATS
Encrypt returns the ci-

phertext ci,t of a given input xi,t in round t using the PPATS
scheme. OPPATS

Compromise returns the secret encryption key sk′i of a
specified user i ∈ U. Finally, OPPATS

Challenge, only called once dur-
ing the game, randomly flips a coin b←$ {0,1} and, similarly
to the challenge phase described above, encrypts one of the
two plaintext sets chosen by the adversary X b

t∗ = {xi,t∗}i∈U∗ .
We follow the AO security game and show how B reacts

to the queries of A .

1. Setup. When A queries the OSetup(1λ) oracle, B
queries OPPATS

Setup (1λ). The latter returns the public pa-
rameters ppPPATS = (H,G1,g1, p). B also queries the
OPPATS

Compromise(0), which returns the secret key of the ag-
gregator skA =−∑

n
i=1 sk′i. B will additionally choose the

remaining public parameters of the mPVAS scheme pp=
(H,G1,G2,GT ,g1,g2,e,k). Finally, B also chooses the
secret keys (s,{ski}i∈U,{{eki, j}1≤ j≤k}i∈U), creates n se-
cret shares [s]i using (k+1,n)−Shamir Secret Sharing,
and creates the verification key as vk =

(
(gs

2)
−skA ,gs

2
)
=(

(gs
2)

∑
n
i=1 sk′i ,gs

2

)
. Finally, B returns pp and vk to A .

2. Learning. Compromise. When A queries the
OCompromise1(i ∈ U) oracle, B will, in turn, query
OPPATS

Compromise(i ∈ U) and return the corresponding secret
key sk′i of user i. Additionally, the secret share [s]i is
also sent to A .

Sign. When A calls OSign(i ∈ U, t,xi,t), B queries
OPPATS

Encrypt(i ∈ U, t,xi,t) to obtain cPPATS
i,t = H(t)sk′igxi,t

1 . B
then computes:

σ1
i,t = cPPATS

i,t = H(t)sk′igxi,t
1 ;

σ
2, j
i,t = H1(t)ek j,i

(
σ1

i,t

)[s]∗j
;

σ3
i,t = ∏ j∈Ui σ

2, j
i,t ;

σi,t = H1(t)eki,i ·
(

∏ j∈Ui σ
2, j
i,t

)
·

(
σ0

i,t

)[s]∗i
=

H1(t)
eki,i+∑ j∈Ui ek j,i ·

(
H(t)sk′igxi,t

1

)s
.
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Notice how each partial signature and the final user sig-
nature σi,t are constructed from the ciphertext output by
the encryption algorithm of PPATS but perfectly sim-
ulates a partial or final user signature mPVAS scheme.
Finally, B returns

(
σ1

i,t ,{σ
2, j
i,t } j∈Ui ,σi,t

)
to A .

Verify. A can test the correctness of an aggregate sum
using the verification key vk obtained during the setup
according to (15).

3. Challenge. A chooses a set of uncompromised users
U∗ ⊆ U, with |U∗| ≥ 2 and an aggregation round t∗

for which no sign queries were made in the learning
phase. Then, A also chooses two sets of ciphertexts X0

t∗ =
{x0

i,t}i∈U∗ and X1
t∗ = {x1

i,t}i∈U∗ such that ∑i∈U∗ x0
i,t∗ =

∑i∈U∗ x1
i,t∗ . When A calls the OChallenge(X 0

t∗ ,X 1
t∗) oracle,

B queries OPPATS
Challenge(X 0

t∗ ,X 1
t∗). The oracle flips a coin

b ←$ {0,1} and returns the encrypted ciphertexts of
the bth set {cPPATSb

i,t }i∈U∗ . B computes the partial and
final user signatures using the OSign oracle, returning(
{σ1b

i,t∗}i∈U∗ ,{{σ2b, j
i,t∗ } j∈Ui}i∈U∗ , {σ3b

i,t∗}i∈U∗ ,

{σb
i,t∗}i∈U∗

)
to A . In particular, the final user signa-

ture is σb
i,t∗ =H1(t∗)

eki,i+∑ j∈Ui ek j,i ·
(

H(t∗)sk′ig
xb

i,t∗
1

)s

, for

i ∈U∗. Notice how σb
i,t∗ , and all partial signatures are

computed from the ciphertexts output by the encryp-
tion algorithm of the PPATS scheme and perfectly sim-
ulate the ciphertexts, partial and final user signatures
of the mPVAS scheme. The aggregation of all such
final user signatures is also valid and correctly veri-
fied using the verification key vk as σb

t∗ = ∏i∈U∗ σb
i,t∗ =

(H(t∗)s)∑i∈U∗ sk′i (gs
1)

∑i∈U∗ xb
i,t∗ .

If A has a non-negligible advantage ε of guessing the cor-
rect bit b∗ in the AO game of the mPVAS scheme, then B
can also win the AO game of the PPATS scheme with the
same non-negligible advantage ε by guessing the same bit b∗.
This would contradict the DDH assumption in G1, because
the security of the PPATS scheme relies on this assumption.
Additionally, if the DDH does not hold in G1, then the SXDH
assumption does not hold either since it requires that the DDH
problem be hard in G1. Therefore, the mPVAS scheme is Ag-
gregator Oblivious in the random oracle model under the
SXDH assumption.

B Aggregate Unforgeability of mPVAS

We provide the proof of Theorem 2.

Proof. Type-I Unforgeability. A Type-I forgery [3, 30, 29,
12, 43] occurs when the aggregator outputs a valid aggregate

signature σt in a round t without receiving any users’ sig-
natures. Thus, the aggregator can only use knowledge from
previous rounds or by colluding with users. First, we note
how signatures from different rounds are incompatible with
each other. Assuming a cryptographically-secure hash func-
tion H : {0,1}∗ → G1 under the random oracle model its
output can be considered random. As such, in each round
t, each signature has a different random factor H(t). Even
assuming the aggregator chooses the round identifier t, be-
cause of the collision resistance property of H, it has a neg-
ligible probability of finding two different round identifiers
t, t ′ such that H(t) = H(t ′). Similarly, because of the sec-
ond pre-image resistance property of H, given t, the aggrega-
tor has negligible probability of finding another t ′ such that
H(t) = H(t ′). The same arguments hold for the other hash
function H1 : {0,1}∗ → G1 used in the protocol. It follows
that the aggregator cannot reuse signatures from previous
rounds. The only other option left for the aggregator is to
construct new signatures itself. However, in order to do so, all
secret signing keys ski are required but, assuming colluding
users, the aggregator has only access to at most k of them.
The aggregator also needs the secret exponent s to compute
a valid signature, but it has only access to at most k secret
shares of s, which are not enough to reconstruct s.

Type-II Unforgeability. [3, 30, 29, 12, 43] There are two
pieces of information that can allow the aggregator to suc-
cessfully forge an aggregate signature in a round in which it
received all signatures from the users: the secret exponent s
or the factor gs

1. The exponent s is secret-shared by all users
using (k+1,n)-Shamir Secret Sharing. Since we assume at
most k malicious users who collude with each other and k
shares leak no information about the underlying secret s, then
no dishonest party can directly learn s from exchanging their
shares. Additionally, if gs ∈ G1 is known, for any g ∈ G1,
recovering s is considered computationally infeasible because
DLP is assumed to be hard in G1. The same argument applies
to the value gs

2 ∈G2, which is part of the verification key and
known by every verifier. Note that, while a malicious actor
may know gs

2, since the Co-Computational Diffie-Hellman
(Co-CDH) [8] problem is assumed to be hard in G1 and G2,
obtaining gs

1 is still considered hard.
In a malicious setting where users can behave arbitrarily,

sending malformed signatures may allow them to gain addi-
tional information that will allow them to break the Aggregate
Unforgeability property.

Each signature starts with the form σ1
i,t = H(t)skigxi,t

1 .
Clearly, any malicious party can immediately tamper with
this signature since g1 is public. However, the aggregator is
required to send a Compute final user signature request to
every user in order for the aggregate signature to be success-
fully verified. From (10), any σ3

i,t that was not computed using
user i’s original σ1

i,t will lead to an invalid σi,t , because the
bases of the two factors will not match. This, in turn, will lead
to an invalid aggregate signature σt .
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In order to prevent malicious actors from manipulating any
of the partial signatures to obtain gs

1, each user j is required
to further mask any response to a Create partial signature or
Compute final user signature request with a fresh masking
factor H1(t)ek j,i . Assuming at most k malicious users, any
signing request from each user i will result in a σi,t containing
at least one such factor, since either user i itself or a user in its
signing set must be honest by assumption. Therefore, all that
malicious actors can learn by deviating from the protocol is of
the form H1(t)εgs or H1(t)εg[s]

∗
j , where g∈G1 and ε indicates

the sum of any non-empty subset of masking exponents ek j,i.
None of these values can be used to successfully forge a valid
aggregate signature, as they would introduce extra masking
exponents that would not sum up to 0 anymore. As a result,
the verification algorithm will fail.

C Aggregate Unforgeability of mPVAS-IV

We provide the proof of Theorem 6.

Proof. In the mPVAS-IV extension, the aggregator is trusted
to detect users who may attempt disrupt the normal execution
of the protocol and not to disrupt the protocol itself. However,
the aggregator is still considered malicious with respect to
the unforgeability property of the mPVAS-IV extension. This
extension provides the aggregator with additional knowledge
that is not available in the main scheme. As such, in this sec-
tion, we provide additional arguments to show why Aggregate
Unforgeability is still maintained in the mPVAS-IV extension.

Type-I Forgeries. The new pieces of information that the
aggregator is handed in the mPVAS-IV extension are the sets

SSi = g[s]i2 ,SKi = gski
T hri

T , EK j,i = g
ek j,i
2 , EKS j,i = g

ek j,i
s

2 , and

the value ν = g
1
s
2 . Since DLP is assumed to be intractable in

G2, the aggregator has a negligible probability of obtaining
the secret share [s]i or the masks ek j,i of a user i from g[s]i2

and g
ek j,i
2 , respectively. Similarly, finding 1

s from ν is also
hard. Additionally, because of the perfect hiding property
of Pedersen commitments, the aggregator cannot learn any
information about the signing key ski from its corresponding
commitment in SKi. Hence, the additional information that is
handed to the aggregator in the mPVAS-IV extension gives the
aggregator no advantage of learning the necessary information
to create Type-I forgeries.

Type-II Forgeries. There is no additional piece of infor-
mation handed to the aggregator in the mPVAS-IV extension
that could allow it to create Type-II forgeries. Intuitively, this
is because all of the additional values are members of either
G2 or GT , but the signatures are elements of G1. As such,
there is no additional information that could be used by the
aggregator to tamper with the signatures in G1, assuming the
SXDH assumption holds in the chosen pairing group.

D Aggregator Obliviousness of mPVAS-UD

We provide the proof of Theorem 7.

Proof. In the mPVAS-UD protocol, the signing phase is iden-
tical to that of the main mPVAS protocol for all remaining
users. As such, the signature of each remaining user perfectly
hides the input value, as proven in Theorem 1.

The signing phase is, however, different for dropped-out
users. Each user is required to send a recovery key rki,t for
every round t it wish to drop out of. This value could, in turn,
be plugged in (24), using EK j,i, to find user i’s secret input
value by brute force. Fortunately, the signing key ski is bound
to the generator H(t) and, thus, can only be successfully used
in round t, during which dropped-out users do not submit any
data. Additionally, if malicious users collaborate to create
k additional recovery factors rki,t , then, as long as at least 2
honest users do not drop out during round t, only the sum
of their input data can be computed, but not the individual
values.

As a result, the input data of both remaining and dropped-
out users remain private during every step of the protocol.

E Aggregate Unforgeability of mPVAS-UD

We provide the proof of Theorem 8.

Proof. The main addition introduced by the mPVAS-UD ex-
tension is the recovery key rki,t that users that wish to exit the
protocol during some round t submit to the aggregator. The
recovery key is computed over GT , so it cannot be used to
directly affect the signatures, which are elements of G1.

The aggregator cannot lie about the set of users that drop
out during any given round t and cannot publish more than
one valid aggregate signature. Forcing a subset of users out
of the protocol would lead to a failed verification, since the
aggregator cannot provide the verifiers with valid recovery
keys for the missing users on its own. Similarly, the aggre-
gator cannot force a dropped-out user i in the protocol as it
does not possess its signing key ski. Assuming a subset of
users colludes with the aggregator and provides it with valid
recovery keys, we identify two cases.

If any of these users actually engage in the protocol, then
their recovery key alone would not suffice anymore, because
their final user signature would contain at least one mask-
ing factor H1(t)ek j,i , with ek j,i belonging to an honest user j,
which has not been redistributed among the remaining users.
As such, the check in (37) would fail.

If they do not submit anything, then the aggregator is forced
to forward their recovery keys, indicating they have indeed
dropped out, otherwise, the verification would fail.

As for Type-I forgeries, the same arguments presented in
Theorem 2 apply to mPVAS-UD.
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