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Abstract
In recent years, there has been a growing focus on scrutiniz-
ing the security of cellular networks, often attributing security
vulnerabilities to issues in the underlying protocol design
descriptions. These protocol design specifications, typically
extensive documents that are thousands of pages long, can har-
bor inaccuracies, underspecifications, implicit assumptions,
and internal inconsistencies. In light of the evolving landscape,
we introduce CellularLint–a semi-automatic framework for
inconsistency detection within the standards of 4G and 5G,
capitalizing on a suite of natural language processing tech-
niques. Our proposed method uses a revamped few-shot learn-
ing mechanism on domain-adapted large language models.
Pre-trained on a vast corpus of cellular network protocols,
this method enables CellularLint to simultaneously detect in-
consistencies at various levels of semantics and practical use
cases. In doing so, CellularLint significantly advances the
automated analysis of protocol specifications in a scalable
fashion. In our investigation, we focused on the Non-Access
Stratum (NAS) and the security specifications of 4G and
5G networks, ultimately uncovering 157 inconsistencies with
82.67% accuracy. After verification of these inconsistencies
on 3 open-source implementations and 17 commercial de-
vices, we confirm that they indeed have a substantial impact
on design decisions, potentially leading to concerns related to
privacy, integrity, availability, and interoperability.

1 Introduction

Cellular networks have emerged as the primary means of com-
munication in the modern world, with 4G and 5G being the
latest commercially available versions. Ranging from mobile
communications to IoT devices to vehicular communications,
cellular networks are a critical infrastructure for the digital
world. With more than 1.4 billion subscribers, 5G is expected
to exceed its much larger predecessor, 4G, and is forecast to
gain more than 13 billion subscribers globally by the end of

*Equal contribution. The student author’s name is given first.

T1: Whenever an ATTACH REJECT message with the EMM cause #14 "EPS
services not allowed in this PLMN" is received by the UE · · · Addition-
ally the attach attempt counter shall be reset when the UE is in substate
EMMDEREGISTERED.ATTEMPTING-TO-ATTACH.
T2: #14 (EPS services not allowed in this PLMN); The UE shall set the EPS
update status to EU3 ROAMING NOT ALLOWED · · · the UE shall reset the
attach attempt counter and enter the state EMM-DEREGISTERED.PLMN-
SEARCH.

Figure 1: An example inconsistency identified by CellularLint-
two different sub-state transitions for same precondition. T1
is from section 5.5.1.1 and T2 is from 5.5.1.3.5 of TS 24.301.

2026 [4, 5]. These networks embody large infrastructure and
support different features, including backward compatibility,
interoperability, and heterogeneity.

Like any large-scale, complex, layered system, cellular net-
work designs are governed by protocol documentation. 3GPP,
the 3rd Generation Partnership Project–a consortium of ven-
dors, is the supervising body that handles the design and distri-
bution of these protocol documents [2]. These documents are
quite lengthy, developed by many stakeholders, and improved
through releases and change requests over the years. Incorpo-
rating these changes and releases subsequently introduces di-
verging descriptions. Recently, few studies have shown, albeit
through manual analysis during implementation testing, that
protocol documents have inconsistent descriptions accounting
for differing design possibilities and undefined behaviors in
real-world devices, often with severe consequences [38, 54].
Fig. 1 shows an example scenario for diverging sub-state tran-
sitions on the same condition, found in the 4G Non-Access-
Stratum (NAS) specification. Furthermore, in most cases, one
of the inconsistent or conflicting behaviors is less secure than
the other. For example, if one design suggests clearing some
network identifier(s) after a connection has been lost while
the other design suggests keeping it without specifying a clear
motivation, the latter can make the user vulnerable to privacy
violation attacks. Therefore, these diverging specifications
defined in the standards can have severe security and privacy
consequences.
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Prior Research. Although prior research works [24–26, 35,
37, 38, 44, 46, 48, 54] have proposed approaches for detecting
security and implementation flaws in cellular network proto-
cols, they have at least one of the following limitations: (A)
They are completely manual [26, 38, 44, 48] and inherently
have limited scalability. (B) They employ formal verifica-
tion [35,37], foundationally relying on the quality of the prop-
erties, and do not primarily deal with inconsistent descriptions–
subsequently choosing the most secure option when an in-
consistent or confusing situation is encountered. (C) They
focus on implementation testing [45, 54] and only report a
few inconsistent descriptions on the way without proposing
an approach to uncover them. (D) They use differential testing
for noncompliance checking [38] without focusing on con-
flicting behavior detection in the standards. (E) They either
analyze change requests or specifications through NLP tech-
niques to understand security hazards [24,25] without directly
considering differing description analysis in specifications.
Problem. With the current state-of-the-art approaches having
above-mentioned limitations, in this paper, we aim to take
the first steps to answer the following research question- Is it
possible to develop a systematic, generalizable, and scalable
specification analysis framework that can identify inconsistent
descriptions from 4G and 5G specifications and associate
them with differential design choices?
A promising direction. Following the major advances in nat-
ural language processing (NLP) [20, 61], recent works have
demonstrated the automated generation of Finite State Ma-
chine from both Request For Comments (RFC) documents
and cellular network specifications [40, 53]. Such results in-
dicate that a data-driven approach can be taken to discover
inconsistencies in specifications as a root cause of design
flaws and vulnerabilities as well.
Challenges. Detecting inconsistent behaviors systematically
from the large and complex cellular network specifications
using NLP requires tackling some very important research
challenges. The first and foremost challenge is to quantize
the specification into segments, which we can use for incon-
sistency detection. The specifications explain an event in a
very large context; in some cases, an event is described in
5-6 pages. With such a large segment, any learning algorithm
would fail to capture the finer details and attributes of the
segment. Therefore, we need to devise a mechanism to create
segments of reasonable size from the specifications. Second,
the specifications are so large that in case all the segments are
pairwise compared, the search space becomes intractable. For
this, we need to devise an approach that reduces the search
space substantially. Last, and most importantly, to the best of
our knowledge, there are no datasets that could be utilized to
detect inconsistent statements in cellular networks. In case
there is a large number of inconsistencies that can be manually
found, this trivially solves the problem and does not require
a systematic framework. Fortunately or rather unfortunately,
there are very few manually found conflicts in the specifica-

tions that can be used for closed-form solutions that we can
use to train. This lack of ground truth creates a major hurdle
for any learning-based solution.
Our Approach. In this paper, we introduce CellularLint–the
first framework for uncovering inconsistencies from the upper
layer of 4G and 5G specifications. For our method, we employ
few-shot domain adaptation of language models.

To obtain a scalable solution, we initially cast the docu-
ments in sizeable segments based on domain-specific knowl-
edge. These quantized segments preserve the context and
event, which are essential before understanding inconsisten-
cies. Second, based on this quantized pool of intra-document
and inter-document test cases/segments, we produce Pairs
of Segments (PoS). CellularLint compresses the search space
of PoS into a manageable and informative dataset based on
interpretable similarity measures. This guides our method to
look into only relevant content–making the process highly
scalable.

To address the lack of labeled examples, instead of heav-
ily relying on expert annotations, CellularLint incorporates
domain-aware annotations and ensemble decision mecha-
nisms and takes only a fraction of labeled examples. We
design seven domain-adapted, consistency-wise meaningful
labels and map them to general-purpose natural language
inference (NLI) annotations. CellularLint also utilizes human-
in-the-loop active learning on multiple language models to
finalize inconsistent descriptions in varying granularities.

To address the lack of supervision, we divide the learning
objective into multiple phases- (1) initially converting the
learning problem to a generalized setting of NLI and then (2)
using multiple phases of active learning on a domain-specific
dataset.
Findings. CellularLint discovered 157 conflicting descrip-
tions from specifications. To evaluate the effectiveness of the
discoveries, we investigate them on 3 open-source implemen-
tations and test them on 17 commercial UEs.

We uncover that implementations indeed take different de-
sign choices based on conflicting or inconsistent standards.
Furthermore, in some cases, we have found that implementa-
tions choose the less secure option, and in some cases, tried
to implement both options. For ease of discussion, we charac-
terize a subset of our findings into four different categories–
impacting security enforcement, privacy, interoperability, and
causing denial-of-service. In these categories, we discuss a
total of 11 issues that can have a severe impact on the privacy,
integrity, availability, and interoperability of cellular network
infrastructure.
Responsible disclosure and open-source. To further im-
prove the cellular network standards, we have responsibly
disclosed all our 157 findings to the 3GPP standardization
body and the affected UE vendors. Furthermore, we will com-
pletely open-source CellularLint and all the detected inconsis-
tencies to foster research in inconsistency detection in other
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important protocol specifications [13] 1.
Contributions.To summarize, we make the following contri-
butions:
■ Framework. We design and implement CellularLint. To

the best of our knowledge, this is the first systematic ap-
proach towards inconsistency detection for both 4G and 5G
specifications.

■ Few-shot learner. We demonstrate a novel few-shot ap-
proach with active multiphase learning for cellular network-
specific pre-trained language models to subsidize insuffi-
cient labeled data effectively.

■ New findings. We found 157 inconsistent descriptions and
investigated the results on 3 open-source and 17 commercial
device implementations.

2 Background

In this section, we introduce various preliminaries ranging
from the 4G Long Term Evaluation (LTE) and 5G New Radio
(NR) architectures to various NLP methods that are relevant
to our work.

2.1 Cellular Network Preliminary

For cellular network preliminaries, here we discuss the most
common components that are relevant to this paper.

2.1.1 Cellular Network Architecture

The network is composed of three main components: the user
equipment (UE), the radio access network (RAN), and the
core network. The architectural difference between 4G and
5G mostly lies on the RAN and Core Network side.
User Equipment (UE). The UE, a terminal device on the user
end, is equipped with a Universal Subscriber Identity Mod-
ule (USIM). The USIM contains the user identifier, master
secret key, and session key for connectivity. These are essen-
tial for mutual Authentication and Key Agreement (AKA)
between the user and the network. The most common UE are
cell phones, tablet computers, and IoT devices with cellular
connectivity.
eNodeB. eNodeBs or eNBs are base stations or, most com-
monly, mobile network towers in the 4G architecture. They
stand as a middle entity in the connection establishment and
maintenance for which the Radio Resource Control (RRC)
protocol is implemented. eNodeB is replaced by gNodeB in
the 5G network. eNodeB is responsible for transmitting and
receiving signals to and from UEs.
gNodeB. The gNodeB or gNB–also called the Next-
Generation NodeB–is used in 5G network. It is a significant
upgrade from eNodeB. gNodeB supports Massive MIMO

1https://cellularlint.github.io/

technology, has higher throughput, lower latency, and enables
advanced network slicing.
4G-Core The core network in 4G LTE is called Evolved
Packet Core (EPC). Two functional components–Mobility
Management Entity (MME) and Home Subscriber Server
(HSS) are relevant to our paper; hence we briefly discuss
them in what follows.

• Mobility Management Entity (MME). The MME is re-
sponsible for handling signals between the UE and the core,
as well as the eNodeB and the core. It is responsible for
UE authentication, detach procedure, tracking area updates,
etc.

• Home Subscriber Server. HSS works as a database to store
subscriber information (IMEI and IMSI). It also provides
relevant information for calls and IP sessions.

5G-Core. The 5G Core comprises many functional compo-
nents such as the Access and Mobility Management Function
(AMF), Session Management Function (SMF), User Plane
Function (UPF), Authentication Server Function (AUSF), and
so on. 5G leverages a large number of antennas on the core
side to enhance signal quality.

2.2 ML Preliminaries

CellularLint detects inconsistencies from a natural language
perspective, meaning that it focuses on the lexical and con-
textual analysis of the salient features of the protocol text
documents to reveal inconsistencies from protocol specifi-
cations. Here, we discuss the NLP preliminaries required
for CellularLint.

2.2.1 Few Shot Learning

Few-Shot Learning (FSL) [19,31] is a meta-learning approach
that utilizes a pre-trained model to generalize over new cate-
gories of data using only a few labeled examples per class. For
N-way-k-shot learning in NLP, given k labeled examples of
each class from N classes for a new NLP task where k is gen-
erally very low, the pre-trained model has to learn efficiently
to solve the new task.

2.2.2 Active Learning

Active learning [30, 52], especially human-in-the-loop ac-
tive learning, is a machine learning paradigm that focuses
on improving learning performance by minimizing the need
to label large amounts of data. Often, domain-specific super-
vised learning is hindered by the insufficiency of ground truth
data. Guiding the model by associating expert annotation
with a subset of important data points can largely boost the
performance of supervised training.
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2.2.3 NLP Methods

Textual Entailment (TE). Textual entailment, or Natural
Language Inference (NLI), is a binary relation where two
text sequences can either form an agreement, a contradiction
or be completely irrelevant to each other [17, 39]. From a
NLP perspective, given two text sequences, where the first is
a hypothesis and the second is a premise, the model has to
find out whether the first text is in agreement with the second
(or vice versa) or is in contradiction or has no logical relation.
Language Modeling. Recent years have seen revolutionary
improvements in machine learning on textual data, much of
which is due the use of transformers [28,49,62,64,66]. Trans-
formers are widely used for sequence-to-sequence modeling,
semantic parsing, machine translation, question-answering,
and most recently for large language models. Transformers
rely on the attention mechanism, which excels at learning
complex linguistic patterns effectively through the understand-
ing of each word’s importance and its ability to identify its
surrounding words, thereby characterizing the context.

3 Overview

In this section, we discuss the problem analysis scope and
state the problem formally. Next, we discuss the challenges
and corresponding approaches.

3.1 Scope of Analysis

The cellular network protocols (4G and 5G) comprise thou-
sands of specifications–from the low layers to the link layer to
the upper layers (Layer 3) of the protocols. Among all these
specifications and related procedures, we focus on the NAS
layer procedures. NAS layer procedures contain the mobility
management and session management components, which in
turn manage the most critical control plane procedures such
as connection setup, initial authentication, mobility, hand-off,
and service notifications. Previous works have shown several
vulnerabilities in these components, resulting in severe se-
curity and privacy issues such as authentication-bypass [45],
location exposure [36], impersonation [57], downgrading [41],
to name a few. Keeping these in mind, in this work we focus
on the NAS layer procedure. More specifically, we focus on
four documents in two categories- the NAS technical specifi-
cation TS (24.301, v17.6.0) [9] and the Security Architecture
and Procedures specification (TS 33.401, v17.1.0) [7] for 4G,
and the NAS specification (TS 24.501, v17.7.1) [8] and the Se-
curity Architecture and Procedures specification (TS 33.501,
v17.5.0) [3] for 5G. All of them are available from the 3GPP
archive. Release 17 is the latest complete version to have both
NAS and its security specifications. Furthermore, having the
same release ensures consistency and removes the possibility
of unexpected inconsistency prediction (false positives) in-

troduced by version mismatch. In fact, finding cross-version
inconsistency is a different task that we leave as future work.

3.2 Problem Formulation

Here we define the problem formally: given a set of cor-
pora G = {C 4g

Nas,C
4g
Sec,C

5g
Nas,C

5g
Sec} (where C 4g

Nas is the corpus
produced from 4G NAS specification, C 4g

Sec is the corpus pro-
duced from 4G security architecture specification, similar
notations are applicable for 5G), we need to quantize each
corpus in text segments, that is, Ci = {t1, t2, · · · , tn}i where
t i
a describes a-th meaningful event/sub-event/directive from
corpus Ci. Now our first objective is to construct interme-
diate sets, S1 = (C 4g

Nas×C 4g
Nas)∪ (C

4g
Nas×C 4g

Sec)∪ (C
4g
Sec×C 4g

Sec)
and S2 = (C 5g

Nas×C 5g
Nas)∪ (C

5g
Nas×C 5g

Sec)∪ (C
5g
Sec×C 5g

Sec). Next,
from each intermediate set Sm ∈ {S1,S2} containing tuples
or pairs (t i

a, t
j
b) of text Segments (PoS), our objective is to

devise a model M which can determine all pairs that conflict
between each other, that is, M (t i

a, t
j
b) = k. Here, k takes the

value consistent or inconsistent.

3.3 Challenges & Solution Outline

We now discuss the main challenges and corresponding ap-
proaches that have driven the CellularLint’s high-level design
choices. We then present the key steps in our overall solution.
(C1) Segment quantization. In numerous scenarios, the spec-
ifications explain an event in a vast context. For example, in
the 4G NAS specification, Section 5.5.1.2.4 describes "Attach
accepted by the network", which is a six-page long descrip-
tion concerning one major event where the network accepts an
attach request from the UE. If we consider this whole event as
one complete and discrete, meaningful segment, any learning
algorithm will fail to capture the intricate details and attributes,
causing differential and anomalous behaviors. Moreover, in
the same section, there is a precondition "If the UE indicates
support for EMM-REGISTERED without PDN connection",
which shall trigger an event on the MME side. A similar
precondition is found for tracking_are_update_request
message further away in the document. If the whole section
is considered as a potential segment, one would not be able
to match such sub-event triggers and may miss numerous
possible interesting scenarios. An alternative choice can be
selecting each sentence as an atomic unit governing a seg-
ment. However, this leads to a serious problem because, often,
a single sentence from the specification is not sufficient to
infer all the entities, states, or messages involved in a pro-
cess. Also, due to the semi-structured nature of specifications,
many sentences are repeated in different parts of the specifica-
tions. Thus, considering each sentence a meaningful segment
would produce too many repeating units in the dataset, and if
needed, it would be impossible to map back uniquely to the
specification. Thus, this trivial solution is not applicable to
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our case.
(A1) Sub-event driven segment quantization. As we
have already established that considering a whole event as
a segment likely affects the effectiveness and purpose of
detected inconsistencies, we quantize such larger descriptions
into smaller segments. However, in doing so, we preserve the
completeness of the description of sub-events. We combine
domain-specific understanding with standard NLP techniques
to pinpoint sub-events. Specifically, we consider subsections
and complete paragraphs as atomic units while constraining
the sequence length and entity based on Parts-Of-Speech
filtering. Details about the approach for segment quantization
are given in §4.2.
(C2) Intractable search space. The protocol specifications
are large documents defining and explaining all entities,
events, state transitions, message structures, and so on in finer
detail. Moreover, when we execute segment quantization to
address C1, the resulting quantized dataset is even larger.
Thus, traversing and matching texts directly using the en-
tire dataset of quantized segments makes the finalized search
space intractable with millions of potential segment pairs.
For example, after the segment quantization, the brute-force
traverse and match solution gives us more than 12 million
segment pairs for 5G-NAS specification alone. On top of that,
to find inconsistencies, one may have to consider multiple
related specifications rather than generating segments from
just one. For instance, in our case, for 5G we consider the
5G NAS technical specifications and the security architecture
and procedures specification. This, in turn, makes the search
space tremendously larger and thereby causes a state-space
explosion.
(A2) Finite segment filtration. To address C2, we reduce the
segment sequence pair space by filtering the initial dataset
based on similarity measures. The intuition behind this idea is
that two completely different segments should not be consid-
ered inconsistent as they talk about totally different aspects of
the protocol. Contrary to this, an inconsistent PoS would have
at least the same pre-condition and hence would have a better
similarity score. To achieve such a quantitative measure of
texts, we first consider the vector embedding of texts. How-
ever, we observe that choosing an arbitrary embedding can
severely affect the search space shrinkage and effectiveness
of similarity scoring. We have thus carried out an extensive
evaluation to determine the most reliable text vectorization
technique for our problem. The details of the evaluation are
discussed in §6.1. Thus we reduce the number of segments
from millions to a few thousand–reducing the problem space
to a tractable size.
(C3) Absence of ground truth. To the best of our knowledge,
there are no datasets that could be utilized for NLP-based ma-
chine learning to detect conflicting statements from cellular
protocols. Even if a processed, readily usable dataset existed,
no closed-form solution would be able to trivially map text
segments from multiple documents to specific inconsistencies.

This is a novel problem–solving which is a key contribution
of our work. Moreover, although state-of-the-art language
models are very effective in learning contexts, they require a
massive amount of labeled data due to the larger parameter
landscape. Acquiring such a domain-specific dataset is often
cumbersome and for this problem setup, even harder. Thus we
have to design a technique that can work with only a handful
of labeled examples.
(A3) Ground truth generation. We employ multi-phase su-
pervision through human-in-the-loop active learning to sub-
due the insufficiency of ground truth. Our learning method
neither requires a large amount of annotation nor suffers from
too much uncertainty introduced by insufficient learning. In
short, we first establish the learning landscape using a general-
purpose dataset with some supervised data. Note that this
general-purpose dataset is not from the cellular network do-
main but rather from image-crowdsourced caption writing
and is publicly available. This intermediary model is utilized
in consensus with human involvement alongside minimal syn-
thesized data repeatedly to prepare the finalized model. The
whole process never requires the complete ground truth of
our problem. In fact, having a complete ground truth from the
beginning is fundamentally contradictory here, as it would
trivially solve the problem we have at hand. Indeed, if there
were already a large number of inconsistent descriptions in
specifications, then those could be directly reported to im-
prove the protocol and would not require any additional anal-
ysis. Likewise, the lack of ground truth makes the problem
both challenging and rewarding to some extent.

3.4 Approach Skeleton

Based on our discussion of challenges and approaches to
the solution, we divide the inconsistency detection problem
into multiple steps: (i) We employ domain-specific prepro-
cessing alongside standard NLP techniques to quantize each
Ci ∈ G . (ii) To produce each Sm, we utilize an syntactic and
contextual equivalence metric ψ to filter out irrelevant PoS.
(iii) To address the absence of labeled examples, we use M ′

instead of M which first learns from a general dataset P to
solve textual entailment task. In this task, for any two text
sequences tx, ty ∈ P , M ′ learns if ty entails tx or not. Formally,
M ′(tx, ty) = k′ where k′ takes the value of either entailment
or contradiction or irrelevance (often called neutral). Subse-
quently we use M ′ with few domain-specific labeled data to
generate our specialized model M with the learning objective
of M (t i

a, t
j
b) = k′, where t i

a, t
j
b ∈ Sm.

4 Detailed Design

In this section, we discuss CellularLint in detail. Fig. 2 shows
the main components of our framework.
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Figure 2: Architecture of CellularLint. The two-arrow process shown in 1A , 1B , and 1C represents independent and parallel
processing.

4.1 Architecture

The overall framework is organized into two parts: 1 the
Learner, and 2 the Dispatcher. Each of them has multiple
submodules shown in Figure 2.
Learner. The learner consists of five sub-modules.
1A The first is preprocessing, which performs standard NLP
preprocessing as well as domain-specific and task-specific
preprocessing of all cellular network protocol specifications
from the 3GPP archive. This generates a large corpus for
our pre-training step. Here, a second-order preprocessing
is also executed on the documents of our problem scope
(NAS and Security of 4G and 5G), which produces the sub-
event-oriented, context-preserving text segments. We call
them context-preserving as when extracting them, our method
makes sure that they do not describe multiple sections and
the segments are not trimmed off halfway through an event
description. For example, if a section is short and within our
token limit (such as 5.3.10 in TS 24.301), we keep it as one
segment. Alternatively, if a section contains multiple para-
graphs (such as 5.5.3.2.3 from TS 24.301), each describing
an independent event (they might be related when taken in a
very large context), we consider each paragraph as a different
segment. Details of the module can be found in §4.2.
1B The second sub-module is the pre-trainer. In this sub-
module, we utilize the large corpus generated from the pre-
processing module. This ensures that the model understands
the domain with specific vocabularies and semantics. The
detailed experimental setup is discussed in §5. In parallel to
the training, we create embedding vectors for each segment.
The embedding vectors are utilized for pairing and filtration
of PoSs in the next sub-module.
1C In the third sub-module, we execute the uninformed fine-
tuning. This is an important step for weak supervision and
our first concrete endeavor toward task-specific learning. In
short, we first fine-tune our candidate transformer models
separately on the well-known Stanford Natural Language
Inference (SNLI) corpus [18]. We call it uninformed supervi-
sion because the SNLI corpus contains examples that are not

completely in accordance with our definition of consistency
from a protocol perspective. For example, "A group of people
are ice skating in a big city." and "The people are outside skat-
ing." are labeled as entailments in that corpus. Apparently, the
second sequence is a vague representation of the first, i.e., a
large and significant part of the first sequence is not expressed
through the second sequence. Moreover, our main objective
is to capture the protocol inconsistencies based on complex
text patterns and intricate details of various cellular events
for which fine-tuning on SNLI corpus is not solely sufficient.
Thus, training on the SNLI corpus only gives us a loose es-
timate of our objective model. Nonetheless, this uninformed
supervision is the first stepping stone in our analysis. In paral-
lel, we complete the segment pairing and filtration based on
the embedding vectors generated in the previous step. In short,
we create all possible pairs of the segment vectors and filter
them based on a similarity measure. Details of the method
can be found in §4.3

1D At the fourth sub-module, we combine the predictions of
k models on our dataset. Note that these k models are now fine-
tuned on SNLI corpus from the previous step. It is known that
different models have the ability to capture different semantics
in varying capabilities. Therefore, combining their predictions
through majority voting allows us to boost the prediction
confidence. However, these models have not learned what
consistency means from the perspective of cellular networks.
Therefore, these predictions are not completely reliable as
final output.

1E The most important sub-module for the learner is the
multi-phase informed fine-tuning, which is the fifth and most
crucial step. Here, we first take the ensemble prediction from
the previous sub-module. Next, we sample a small subset of
data from the predicted set, then validate and rectify the la-
bels through domain-expert human annotators. This approach
ensures ground truth addition while keeping the human in-
volvement minimal. Also, rectifying annotations instead of
annotating from scratch reduces the human effort even more.
The models are again trained on the reconditioned examples
in a supervised manner and used subsequently for predictions,
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again on the whole dataset. In such a manner, we complete
one phase of training. This method is followed k times (each
defining a phase) before finalizing the prediction. Details on
the experimental choices of this step can be found in §5.
Dispatcher. We take the high-confidence predictions as our
results after multi-phase informed training and manually an-
alyze them. To further show the impact of the inconsistent
behaviors of the specifications, we use the dispatcher. The
dispatcher has two sub-modules.
2A In the first one, we map the discovered inconsistent
descriptions to the open-source implementations-srsRAN,
open5GS, and OpenAirInterface [10–12]. Note that many
boundary cases and uncommon events are not available (or
available in non-granularity) in the open-source implementa-
tions. Even so, the predicted inconsistent sets are checked
against these multiple sources to determine their design
choices and security implications. Consequently, we create a
subset of inconsistencies for the next sub-module.
2B In the second sub-module of the dispatcher, we consider
each of the inconsistencies gathered from the previous step
to determine whether they cause issues in real-world devices.
Details of the setup can be found on our website [13].

4.2 Dataset Preparation
It has been shown that pre-training Large Language Models
(LLM) can help understand domain-specific terminologies
better than LLMs with no domain-specific pre-training (i.e.,
only pre-trained on general datasets such as Wikipedia cor-
pus) [19, 22, 32, 55]. We first process the raw specifications
from the 3GPP archive and pre-train language models on
it to leverage the domain-specific learning in an enhanced
capability. Our textual entailment task is a harness over the
aforementioned pre-trained model. The details of the dataset
preparation are discussed in what follows.

We remove the tables, figures, cross-document references,
code segments, and additional ill-formed texts from the spec-
ifications to create the pre-training corpora. For the down-
stream fine-tuning, since we need semantically meaningful
segments of texts to compare, we first extract section-wise
texts. The sections usually comprise of many sub-descriptions
based on cause values. Otherwise, each paragraph in a section
is usually self-contained. Also, to conform to the sequence
length limit of our candidate transformer models, we some-
times do finer fragmentation. In this case, sections 4 to 8
are considered for NAS in both 4G and 5G as the rest of the
sections mostly contain definitions, abbreviations, glossary,
scope, etc. For security, we consider section 4 to the annex
for both 4G and 5G.

4.3 Pairing & Filtration
As discussed earlier, comparing all segments with each other
for inconsistency will result in a massive search space, quan-

titatively,
(N

2

)
datapoints where N is the total number of

extracted segments. To overcome this, first, we use the
Term Frequency- Inverse Document Frequency (TF-IDF)
to vectorize such segments (submodule 1B in Figure 2).
To answer why TF-IDF is effective here, we compare five
different embedding techniques–Sentence BERT (SBERT),
Doc2Vec, Universal Sentence Encoder (USE), Word2Vec, and
TF-IDF [21, 47, 51, 56, 60]. Among them, TF-IDF appears to
be most effective (see details in §6.1).

Considering each segment to be a document, formally for
a term t found in a document d ∈ D:

t f (t,d) =
ft,d

∑t ′∈d ft ′,d

id f (t,D) =− logP(t|D) = log
n

∑1(d∈D:t∈d)

t f id f (t,d,D) = t f (t,d) · id f (t,D)

Here ft,d denotes the raw frequency of term t in document
d. In our problem, d represents a text segment, and D rep-
resents the corpus. TF-IDF maps the text segments d in a
k-dimensional latent space X -

φ : S → X d ∈ S

In the next step, we use the cosine similarity score (ψ) to
measure the similarity between each pair of TF-IDF vectors.
For each vector x1 and x2:

ψ(x1,x2) =
x1 ·x2

∥x1∥∥x2∥
=

∑
k
i=1 x1ix2i√

∑
k
i=1 x2

1i ∑
k
i=1 x2

2i

We generate the symmetric matrix of all pair similarity scores.
Now, from this symmetric matrix (Figure 3), we take the
lower triangular half and remove the datapoints that have
ψ < ψmin and ψ > ψmax. We consider the following cases
when choosing values for ψmin and ψmax:
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Figure 3: Heatmap of the similarity matrices from 4G and
5G. The x and y axis represent the index of text segments
extracted from the specifications. A brighter cell in the matrix
represents more similarity.

• When ψmin is too small, the segments are essentially de-
scribing two totally different events with a few words
matched in the protocol specification. For a refined
dataset, ψmin should be kept relatively high.
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• Using a ψmax helps to filter out segments where two text
segments have very small changes in vocabularies, i.e.,
synonymous words or changes of articles ("a" instead
of "the", pronouns instead of proper noun phrases, etc.).
These segment pairs state the same event with (almost)
exact description.

Further evaluation and discussion for the choice of ψ are in
section §6.

This gives us a very useful set of filtered PoS. For super-
vised training, we go through another round of filtering to
remove a few common PoS that are generated from the most
common sentences in the documents.

4.4 Protocol Language Entailment Annotation
We now discuss the hierarchical annotations of our dataset.
The key challenge in finding inconsistencies in 4G/5G proto-
cols is that there are no ground truth labels for model training.
Thus, any supervised training task is hindered. We address
this challenge by multi-phase training where the 0th phase
ensures the general capability of the model in distinguishing
what an entailment or contradiction is, and the next phases
are to precisely capture what sort of disparity is present in our
actual cellular dataset.

The Stanford Natural Language Inference (SNLI) dataset
contains datapoints with 3 unique annotations, namely, en-
tailment, conflict, and neutral [18]. Since our model is first
fine-tuned on this dataset (submodule 1C) as a 0th phase, we
keep the same annotations to train the model(s) for subsequent
phases. To characterize all scenarios, we consider 7 cases:

1: t1 = t2: t1 is consistent with t2
2: t1 ̸= t2: t1 is inconsistent with t2
3: t1⊗ t2: t1 is not related to t2
4: t1→ t2: t1 is related to t2. t1 happens before t2
5: t1← t2: t1 is related to t2. t2 happens before t1
6: t1 ⊐ t2: t1 is related to t2. t1 contains more/detailed infor-

mation than t2
7: t1 ⊏ t2: t1 is related to t2. t2 contains more/detailed infor-

mation than t1

We argue that cases 1, 4, and 5 fall under entailment. Cases
2, 6, and 7 fall under contradiction. Case 3 maps onto the neu-
tral label in the NLI task. For the contradiction class, cases 6
and 7 are difficult to perceive. We discuss this with a possible
scenario. Suppose in a scenario both t1 and t2 independently
describe the actions after an attach_reject is received by
the UE with some specific EMM cause. Now, t1 describes
both the EPS status update and the security context clearing.
In contrast, t2 describes only the process of updating the EPS
status but does not mention anything about security context
clearing. This will fall under case 6. This is considered as an
inconsistency because the missing security context clearing

in t2 might create confusion in the implementation design and
later on cause serious security issues.

4.5 NLI Adaptation
At each phase, our annotated protocol dataset contains 150
PoS (in total 450 for three phases), whereas the SNLI dataset
contains 570k English sentence pairs, which are ∼1266 times
higher than the number of PoS in our dataset. Achieving even
a reasonable performance is difficult if only this small dataset
is used for transformer-based supervised learning, which con-
tains millions of learnable parameters. Thus we first train
transformer T on the SNLI dataset. This, in turn, produces
a model T ′ that is ready to understand the difficult repre-
sentation of conflicting statements. We then train T ′ on our
150 data points to obtain T ′′i for each fine-tune phase i, and
finally test it on the large test dataset containing 1881 PoS for
4G and 2541 for 5G. Formally, the classification task can be
defined as follows. For input x,

hT = T (x)

h f c =Wf c ∗hT +b f c

hdrop = Dropout(h f c, pd)

ŷ = Softmax(hdrop)

where ŷ denotes the predicted label. Wfc denotes the weights
of the fully connected layer with b fc being the bias. pd is the
dropout rate. The overall model can be represented as:

ŷ = Softmax(Dropout(Wf c ∗T (x)+b f c, pd))

4.6 Few Shot Learning Optimization
We emphasize that the straightforward end-to-end training
is less interpretable and not robust at all. Since we have no
ground truth validation set, in order to ensure the correctness
of the learning phase, we must ensure that the learning process
is robust and interpretable as much as possible. Therefore, we
leverage two key techniques here over the end-to-end training:
1 Transform & Ensemble. In this method, we use major-

ity voting of multiple transformer models. We take BERT,
RoBERTa, and XLNet for this approach [28,49,66]. Note that
we complete pre-training of these models before using them
here. We call this ensemble model EnCell. In §6, we discuss
how this approach improves the confidence of the framework.
2 Inconsistency-aware penalty. As discussed earlier, we

have a very small expert-annotated dataset, worse yet, with
even fewer datapoints under the inconsistency class. In this
method, we modify the standard cross entropy loss to penal-
ize for wrong prediction on “inconsistent” labels. We use
weighted cross-entropy loss:

Lwce =
m

∑
i=1

ŵyyi log ŷi, where wy =
N
ni

, ŵy =
wi

∑
C
j w j

Here, N is the total number of training PoS, ni is the number
of training PoS for class i, and C is the total number of classes.
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This assigns a higher penalty for misclassifying labels that
have fewer PoS (in our case, the inconsistency class) than
other classes.

5 Implementation

In this section, we discuss the implementation details of Cel-
lularLint.
Computational Hardware. For pre-training, we use about
2500 computing units from Google Colab pro+, which is
equipped with Nvidia A100 GPUs. Multi-phase fine-tuning
is performed on a computing server equipped with a 64-core
CPU, 3x RTX 3090Tis, and 128GB RAM. Pre-training the
base version of each model takes about 4 days in total. The
uninformed fine-tuning on SNLI takes about 8-12 hours for
each model, and for the informed multi-phase, each model
requires different times, ranging between 10-15 minutes for
each phase.
Pre-training. We use BERT-base, RoBERTa-base, and
XLNET-base as our candidate models. Each of these models
is first pre-trained on the specification corpus. BERT-base and
RoBERTa-base work on the Masked Language Model (MLM)
objective and XLNET works on the Permutation Language
Model (PLM) objective. The first two are pre-trained for 5
epochs, and since XLNET-base is much larger in size, we
pre-train it for 1 epoch.
Fine-tuning. We use k = 3 for the k-phase training. In the
0th phase with the SNLI dataset, we keep the learning rate to
be 3×10−5 and batch size 32. The models are trained for 8
epochs. For all the consecutive fine-tuning phases, we observe
that learning rate 2×10−5 and batch size 32 work better. The
Adam optimizer with ε = 10−8 has been used. To subsidize
the low training data, we add N

10 synthetic PoS at each phase.
We augment the dataset with Easy Data Augmentation (EDA)
to gain these synthetic PoS [63]. For both pre-training and fine-
tuning, Huggingface transformers standard pipeline based on
PyTorch has been used [6].

To validate the inconsistencies in UE implementation, we
prepared Software Defined Radio (SDR)-based testbeds. For
details of the testbed preparation, we refer the reader to [13].
Table 5 lists the devices we tested.

6 Evaluation

In this section, we evaluate the performance of CellularLint
from multiple perspectives–starting from ML training per-
formance, identifying inconsistent descriptions of different
levels, and ending with security implications. On a high level,
we aim to answer the following research questions:

• RQ1. How does the choice of embedding affect the
search space contraction?

(a)

(b)

Figure 4: Embedding comparisons. Only 0.8% data were
randomly sampled to generate the comparison for better visu-
alization

• RQ2. What is the performance of EnCell for inconsis-
tency classification and how do the optimization tech-
niques affect the performance?

• RQ3. What are the issues found by CellularLint from
specification documents and what are the security impli-
cations?

• RQ4. how does this methodology compare to other
related approaches in terms of the final issues found?

6.1 RQ1. Effect of embedding choice

To benefit from the search space shrinkage through simi-
larity measures, we identify the most effective embedding
method for our dataset. Figure 4 presents the comparison
of embeddings based on the distribution of ψ. For an em-
bedding method ε, each point in the figure represents the ψ

value of the PoS when ε is used. For better visualization,
only 0.8% randomly sampled PoS are selected here. Recall
that our method filters out irrelevant pairs and only considers
the highly similar (syntactically) segments for further stages.
Among the 5 different embeddings, namely SBERT, Doc2Vec,
USE, Word2Vec, and TF-IDF, TF-IDF gives the most sparse
representation on the high similarity span. It is evident from
the comparison that SBERT, Word2Vec, and USE cannot be
utilized to reduce the search space due to their very dense
representation on the high similarity region. Doc2Vec shows
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some sparsity above ψ = 0.9; however, the amount of PoS
above that is very low. Following these results, we choose
TF-IDF as our embedding technique for filtering.

6.1.1 PoS Filtration

For PoS filtering we set ψmin = 0.65 for 4G and ψmin = 0.7
for 5G, and ψmax = 0.99 for both datasets. For 4G, we ini-
tially extracted 890 and 120 segments from NAS and security
specifications, respectively. After sub-event driven quantiza-
tion, we found 2599 unique segments for 4G. Considering all
possible matches would give us∼ 6.75M datapoints, whereas
our fine-grained approach limits the number of datapoints
to only 1881, which is ∼ 3591x lower. For 5G, 846 and 329
segments were extracted from NAS and security. After sub-
event realization, we found 3529 unique sequences for 5G.
Considering all possible matches would give us ∼ 12.45M
datapoints whereas our fine-grained approach limits it to only
2541 datapoints, which is ∼ 4901x lower.

6.2 RQ2. EnCell performance

To evaluate how effectively the models and their ensemble
EnCell adapt to the domain and classify inconsistencies, we
evaluate them at each phase of the fine-tuning. Here, we show
the precision, recall, F1-score, and accuracy of the models
at each phase (Table 1 and Figure 5). Note that these are the
k = 0, . . . ,3 phases of training we mentioned in submodule
1E of our method. Before the evaluation, all these models are
pre-trained on the cellular network specification corpus and
fine-tuned on the general-purpose SNLI dataset. Moreover,
here all the models use weighted cross-entropy loss in all
phases.

We observe that from phase 0 to phase 3, the F1 score
improves about 29% for EnCell. RoBERTa performs better
in the first two phases while EnCell does better in phase 3.
This is expected as RoBERTa performs the best among the
available pre-trained transformers on general NLI tasks. Once
BERT and XLNet go through two phases of training, they
start to perform in the vicinity of RoBERTa. This coherence
of performance motivates the use of the ensemble approach
in our task. Interestingly, although the accuracy of phase-
3 RoBERTa (81.33%) and EnCell (82.67%) is similar, we
observe approximately 2.9% improvement of EnCell over the
F1 score of RoBERTa and 3.4% improvement over the best
recall score provided by BERT. This emphasizes the need to
use EnCell in an uncertain problem setting such as ours.
Effect of inconsistency-aware penalty. To understand the
effectiveness of the data distribution-based weighted cross-
entropy loss, we compare what happens when the general
cross-entropy loss is used at phase 1 training and when the

inconsistency-aware penalty is used. When general cross-
entropy loss is used, we see only 3− 5% improvement on
F1 score of our model. In contrast, the inconsistency-aware
loss improves the F1 score of about 6−13% at phase 1. This
clearly indicates the usefulness of the penalty in our setting.

6.3 RQ3. Issues found by CellularLint
CellularLint found a total of 186 inconsistent PoS from 4G
and 5G specifications. We observe that among them, there
are certain scenarios that, if taken in a broader context, do
not contradict. Yet the model predicts them as inconsistencies
since it cannot always understand the large event at a single
inference. Note that we do not consider them as false positives;
provided only the context in the PoS, we can see that they
are semantically conflicting. However, the additional context
provided in the original specification shows that the larger
context is different. In some cases, the larger context is defined
3-4 pages earlier than the original PoS.

This is a fundamental challenge for NLP-based conflict
detection for cellular network protocol specifications. There-
fore, we manually filter out such apparent inconsistencies and
group the PoS into different categories. After filtering, we
found a total of 157 PoS that may affect design choices. Ta-
ble 2 shows the categorical breakdown of inconsistent pairs
found by CellularLint. To do this manual filtration, we spent 6
human hours of time and found around 16% of issues detected
by CellularLint had to be filtered out due to broader context.

Table 2: Conflicting statements breakdown by category

Category Count

4G

Integrity & ciphering 26
Security context handling 2

Bearer context 1
GUTI related 41

State transition 12
Counters 6

Misc 3

5G

Security key generation & handling 3
Integrity & ciphering 3

Timers 7
State transition 2

Paging 3
PLMN handling 3

GUTI related 3
QoS rules 5

PDU session establishment 30
Counters 2

Misc 5
Total 157

6.3.1 Investigation of the issues

To further investigate how the discovered issues may impact
design choices, we examine them against open-source 4G
and 5G implementations from srsRAN (v23.04.1), Open5GS
(v 2.6.6), and OpenAirInterface (v2.0.0) [10–12]. We look
into both the UE and Core-Network implementations of these
open-source implementations, which are widely used to an-
alyze cellular network security [24, 25, 38]. Furthermore, in
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Table 1: Precision, Recall, F1 Score, and Accuracy for the models at each phase. Italic represents the best performance in each
phase. Bold represents the best overall. Modelp denotes that the model has been pretrained.

Model Phase 0 Phase 1
Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy

BERTp 0.4606 0.4536 0.4547 0.5133 0.6125 0.6222 0.6114 0.68
RoBERTap 0.5033 0.5027 0.5017 0.5667 0.6558 0.6606 0.6515 0.7133

XLNetp 0.4718 0.4748 0.4695 0.5467 0.5914 0.6041 0.591 0.6667
EnCellp 0.5002 0.5029 0.498 0.5667 0.6167 0.6343 0.6171 0.6867

Model Phase 2 Phase 3
Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy

BERTp 0.6859 0.7026 0.689 0.7467 0.7473 0.7787 0.7562 0.7933
RoBERTap 0.6967 0.7062 0.6947 0.7533 0.7788 0.7695 0.7676 0.8133

XLNetp 0.6534 0.6669 0.6552 0.72 0.6986 0.7097 0.6901 0.7533
EnCellp 0.7262 0.7404 0.7249 0.78 0.7871 0.8148 0.7962 0.8267
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Figure 5: Performance metrics for different models used by CellularLint

case the inconsistencies can lead to security, privacy, avail-
ability or interoperability issues, we manually investigate and
design exploits for the scenarios.

Table 3: Conflicting behaviors discovered from 4G Implemen-
tations

▲= 1st type, ▼= 2nd type, ✗= Did not implement, Red : Unsafe
choice, * : partially implemented/related implementation found

Finding Description srsRAN OAI

1 NAS message ciphering ▲ ▲

2 Condition over Integrity Check ▼ ▼

3 Integrity check failure ▼ ▲

5 GUTI Deletion ▲* ✗

7.1 EMM deregistered sub-state transition ▼* ✗

7.2 EMM registered sub-state transition ▲ ✗

9 [13] Timer expiry as precondition ▲* ▲

10 [13] TAU/Service attempt counter usage ▼ ✗

Table 3 and 4 report the result of our observation. Note that,
even in open-source implementations a lot of functionalities
are not implemented and scenarios related to protocol han-
dovers could not be tested. To further validate the impact of
the identified inconsistent descriptions, we perform end-to-
end attacks in 17 COTS UE devices (Table 5). Note that here
as well we could not confirm issues related to network states
as it is not possible to confirm the specific substate of the
commercial devices. Furthermore, we could not execute any
attacks on the commercial carrier side as it is prohibited by
law. Nonetheless, we have reported all our findings to 3GPP
and the vendors. We want to emphasize the ultimate aim of

Table 4: Conflicting behaviors discovered from 5G Implemen-
tations

▲: 1st type, ▼: 2nd type, ✗: Did not implement, Red : Unsafe choice,
A: Additional

Finding Description Open5GS
(Core)

SrsRAN
(UE)

OAI

1 NAS message ciphering ▲ ▲ ▲

2 Condition over integrity check ▼ ▼ ▼

4 NCC reusage ▼ ▼ ▼

5.1 4G-GUTI deletion ✗ ▲* ✗

5.2 5G-GUTI deletion ✗ ▲* ✗

8 [13] Reset attempt counter ✗ ▼ ✗

A [13] SUPI in auth_response ▼ ✗ ✗

CellularLint is to find inconsistent statements in the specifi-
cations, and the implementation testing (both open-source
and commercial UEs) is done to further validate the impact
conflicting statements can have on implementation design.
Though we are inherently bound by the issues we can test,
we take a best-effort approach in validating the impacts. In
the following sections, we go into our threat model and the
details of the findings.
Threat model. We consider the communication channel be-
tween the core network, base station, and UE to be under the
influence of a Dolev-Yao [29] attacker. In this threat model,
an adversary can generate/parse messages from scratch or
modify any intercepted message while not having any cryp-
tographic capabilities. Concretely, we consider three scenar-
ios commonly assumed in 4G and 5G: Man-in-the-Middle
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(MitM), Fake Base Station (FBS), and signal injection attacks.
The threat model is consistent with the existing approaches
that consider real-world threats [38, 54, 65].

6.3.2 Security Enforcement

Finding 1. NAS message ciphering. After the completion of
security mode procedures, the specifications suggest that, ex-
cept for a few messages, all messages should be integrity-
protected and ciphered. However, on two occasions (shown in
Figure 6, it is emphasized that all messages after the security
procedure should be integrity-protected and ciphered. Failure
to enforce integrity and ciphering is a serious design flaw
and can leave implementations subject to vulnerabilities and
interoperability issues.

T1: From this time onward the UE shall cipher and integrity protect all NAS
signalling messages with the selected NAS ciphering and NAS integrity algo-
rithms.
T2: From this time onward, all NAS messages exchanged between the UE and
the MME are sent integrity protected and except for the messages specified in
clause 4.4.5, all NAS messages exchanged between the UE and the MME are
sent ciphered

Figure 6: Ciphering exceptions. T1 is from section 5.4.3.3 of
TS 24.301 and T2 is from section 4.4.2.5 of TS 24.301

Inconsistency to exploit. In the case of T1, the specification
states after the security context has been established, the UE
shall cipher and integrity protect all NAS signaling messages
with selected NAS ciphering and integrity algorithms.
However, T1 does not mention the scenarios where the UE
accepts plain-text messages. On the contrary, T2 is more
lucid and explicitly mentions such scenarios. Due to this
inconsistency of not explicitly mentioning exception cases, an
implementation might accept unexpected plain-text messages
even after the security context is established. Therefore, we
design an attack based on this scenario.
Attack. For the attack, the adversary connects with a
victim UE through a fake base station to send plain-
text identity_request or authentication_request [54].
Similarly, the attacker can overshadow downlink packets to
create plain-text messages. The affected UE accepts, pro-
cesses and responds to the messages.
Investigation. In open-source implementations, we found all
implementations accepting plain-text authentication and
identity requests even after the security context has been
established. On the other hand, on commercial UEs, we found
4 UEs accepting and responding to such plain-text messages
(Table 6). Interestingly, for a very recent UE (Google Pixel
7a, 2023), plain-text authentication_request is accepted,
whereas plain-text identity_request is not accepted. This
is another interesting scenario where vendors try to implement
different behaviors for different exception case messages.
Impact. The impact of accepting plain-text or integrity-failed
NAS messages can be catastrophic and can be exploited by
attackers to fingerprint users, traceability, and denial of service

attacks. Note that DoLTEst [54] also reports several UEs
accepting unprotected messages after the security context
has been established, albeit from the implementation testing
perspective. We, on the other hand, show that this issue in
different implementations can be traced to the inconsistent
behavior defined in the standards.
Finding 2. Condition over integrity check. On many occa-
sions, the UE sets the counter for "SIM/USIM considered
for GPRS/non-GPRS/5GS services" to implement a specific
maximum value (Figure 7). While this flexibility is acceptable
and standard practice, the precondition to check the integrity
of the received message is often neglected.

T1: The UE shall consider the USIM as invalid for EPS services and non-
EPS services until switching off or the UICC containing the USIM is re-
moved or the timer T3245 expires as described in clause 5.3.7a. Addition-
ally, the UE shall delete the list of equivalent PLMNs and enter state EMM-
DEREGISTERED.NO-IMSI. If the message has been successfully integrity
checked by the NAS and the UE maintains a counter for "SIM/USIM con-
sidered invalid for GPRS services", then the UE shall set this counter to UE
implementation-specific maximum value.
T2: The UE shall consider the USIM as invalid for EPS services until switching
off or the UICC containing the USIM is removed or the timer T3245 expires as
described in clause 5.3.7a. The UE shall delete the list of equivalent PLMNs
and shall enter the state EMM-DEREGISTERED.NO-IMSI. If the UE main-
tains a counter for "SIM/USIM considered invalid for GPRS services", then
the UE shall set this counter to UE implementation-specific maximum value.

Figure 7: Condition over integrity check. T1 is from section
5.5.1.2.5 and T2 is from section 5.5.2.3.2 of TS 24.301.

Inconsistency to exploit. In the case of T1, the protocol spec-
ifies successful integrity checking by the NAS. However, in
T2, this integrity checking is skipped. These PoS are related to
attach_reject and detach_request. However, we have
also found instances of network-initiated detach_request,
where there are inconsistencies. As the inconsistency is re-
lated to the integrity checking of messages, the attack steps
and impact are the same as finding 1.
Investigation. In the case of open-source implementation, we
see that all the open-source implementations in both 4G and
5G are vulnerable. However, in the case of commercial UEs,
there were no instances of vulnerable behavior.
Finding 3. Integrity check failure. We found two conflicting
PoS where different statements are found for failed integrity
checks of the control plane messages (Figure 8). Following
this PoS to 4G security specification, ultimately, we found
three (one segment is common) instances of different state-
ments. Two of them clearly suggest that messages that have
faulty MAC should be discarded, whereas the third one di-
rects to a slightly flexible strategy suggesting the processing
of certain messages even if they fail integrity checks.
Inconsistency to exploit. In T1, whenever there are some ex-
ceptional NAS messages that can trigger further MME actions,
even with failed integrity, the specification mentions that.
However, in T2 for RRC, it does not specify such exceptional
cases, though such exceptional cases exist, for instance, when
RRC_connection_resume fails an integrity check, rather
than just discarding, there are further steps. Through further
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T1: In case of failed integrity check (i.e. faulty or missing MAC-I) is detected
after the start of integrity protection, the concerned message shall be discarded.
This can happen on the UE side or on the eNB side
T2: In case of failed integrity check (i.e. faulty or missing NAS-MAC) is
detected after the start of NAS integrity protection the concerned message shall
be discarded except for some NAS messages specified in TS 24.301 [9]. For
those exceptions the MME shall take the actions · · · NAS message with faulty
or missing NAS-MAC

Figure 8: Allowing exceptions for integrity failure. T1 is from
section 7.3.2 and T2 is from section 8.1.1 of TS 33.401.

manual analysis, we find these cases are not mentioned in
the TS 33.501 (Security architecture and procedures for 5G
Systems) specification but in TS 38.331 (RRC specification),
which were not included in the scope of CellularLint. In a
practical scenario, an implementor would use the RRC speci-
fication first, which clearly states exceptional messages with
failed integrity. But later on, when the security specifications
would be taken into account, the implementor would find it
confusing with a more strict description. There is a possibility
that such inconsistency may not directly result in vulnerabil-
ities. Still, it may cause differing implementations as both
specifications cannot be logically taken into consideration
at the same time. Hence, some implementations might not
properly follow the integrity failing scenarios.
Investigation. In open-source implementations, we found
1 implementation accepting integrity-failed messages. On
the contrary, in commercial UEs, none of the UEs accept
control-plane messages with failed integrity. However, in our
investigation, we found another interesting behavior: 16 UEs
dropped the connection after receiving an RRC packet with
failed integrity, whereas 1 UE did not (Table 6). These incon-
sistent UE behaviors can be traced back to T2, which does not
properly specify the exception cases and what to do in such
scenarios.
Finding 4. NCC reusage. We found a conflicting PoS in the
5G Security specification where two different conditions are
expressed for the validity of the Next hop Chaining Counter
(NCC) (shown in Figure 9). NCC is used for cryptographic
derivation of the AS security algorithms and, hence, is a very
important identifier. One segment dictates that the NCC value
has to be fresh and previously unused to be accepted. On the
contrary, the other segment claims that the only condition for
acceptance is that the NCC value has to be different.

T1: If the sent NCC value is fresh and belongs to an unused pair of NCC,
NH, the gNB shall save the pair of {NCC, NH} in the current UE AS security
context and shall delete the current AS key KgNB.
T2: The UE shall take the received NCC value and save it as stored NCC · · · .
If the stored NCC value is different from the NCC value associated with the
current KgNB, the UE shall delete the current AS key KgNB

Figure 9: Underspecified action for NCC. Both T1 and T2 are
from section 6.8.2.1.2 of TS 33.501
Implication. NCC and NH are critical parameters that are
used to establish AS security and derive Kgnb. These param-
eters are used during the RRC_Reestablish procedure to
re-establish the RRC connection. This procedure is particu-
larly important during handover. The expectation is that these

Table 5: List of devices tested

Device Version Release
Year

Baseband

Google Pixel 7a 13 2023 Google Tensor G2
Samsung Galaxy S20

FE 10 2020 Qualcomm SM8250 Snapdragon
865 5G

HTC One E9 7.0 2015 Mediatek MT6795M Helio X10
Huawei Y5 9.0 2019 Mediatek MT6761 Helio A22

Xiaomi Mi 11 Lite 5G 11 2021 Qualcomm SM7350-AB
Snapdragon 780G

Motorola Edge 30 Pro 12 2022 Qualcomm SM8450 Snapdragon 8
Gen

OnePlus 9 Pro 11 2021 Qualcomm SM8350 Snapdragon
888 5G

Honor 8X 8.1 2018 Kirin 710

Apple iPhone 12 Pro iOS
17.3 2020 Apple A14 Bionic

Google Pixel 3a 9 2019 Qualcomm SDM670 Snapdragon
670

Samsung Galaxy A04 12 2022 Mediatek MT6765 Helio P35

LG Velvet 5G 10 2020 Qualcomm SM7250 Snapdragon
765G 5G

OnePlus 8T 11 2020 Qualcomm SM8250 Snapdragon
865 5G

BLU C5L Max 11 2021 Unisoc SC9832

TCL 30 12 2022 Mediatek MT6765V/CB Helio
G37

Samsung Galaxy S8+ 9 2018 Qualcomm MSM8998 Snapdragon
835

Motorola Moto G Play 12 2022 Mediatek MT6765 Helio G37

session key creation parameters (NCC and NH) would be
fresh and unused to create diverse keys (precisely described
in T1). This is an important assumption ensuring forward and
future secrecy guarantees of the keys. Forward and future
secrecy ensures that the protocol defends the past and fu-
ture sessions even if the current session is compromised [16].
These parameters are essentially used as nonces to ensure the
diversification of the keys. However, if the fresh and unused
NCC/NH value usage is not mandated, then the forward and
future secrecy guarantees can be broken. Furthermore, as the
RRC_Reestablish message (containing these parameters) is
unencrypted, the attacker can easily detect the sessions where
the same NCC/NH values are used for key derivation.
Investigation. We found that none of the open-source imple-
mentations properly check these parameters and just accept if
they differ from the previously accepted ones.

6.3.3 Privacy

Finding 5. GUTI deletion. On many occasions, when a re-
ject message is received from the network, the UE updates
its EPS/5GS status, clears the context, and subsequently
moves to a deregistered state. We observe that in many
cases, a rejection cause TC in a reject message RM would
suggest the UE to clear the context and move to deregis-
tered state while the same cause TC would keep the UE
in registered state without clearing the security context
(shown in Figure 10). For example, 5GM cause #13 received
through registration_reject suggests the UE to delete
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Table 6: COTS UE behavior based on the inconsistencies found by CellularLint. Red marks the Exploitable cases. ✯ denotes
cases where the result could not be verified.

Device F1 F2 F3 F5 F6

Plain-text
auth

request
accepted

Plain-text
identity
request
accepted

Plain-text
detach
request
accepted

Integrity-
failed

message
accepted

Causes
connection

drop

attach
reject
clears

context

service
reject
clears

context

tau
reject
clears

context

tau &
detach
collision

Google Pixel 7a ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed
Samsung Galaxy

S20 FE ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed
HTC One E9

Plus ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed

Huawei Y5 ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed

Xiaomi 11 Lite ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed
Motorola Edge

30 Pro ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed

OnePlus 9 Pro ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed
Huawei Honor

8X ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
TAU

progressed
Apple iPhone 12

Pro ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✯ ✯

Google Pixel 3a ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed
Samsung Galaxy

A04 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed

LG Velvet 5G ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed

OnePlus 8T ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed

BLU C5L Max ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed

TCL 30 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed
Samsung Galaxy

S8+ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed
Motorola Moto G

Play ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
TAU

progressed

GUTI, TAI, ngKSI while the same cause received through
tau_reject or service_reject message would keep the
UE in a registered state without deleting the context. A cross-
examination may suggest that since the messages are different,
the same cause may trigger different behavior. However, other
cause values such as #12 (tracking area not allowed) trigger
similar behavior and state transition for different reject mes-
sages. Thus, it concretely verifies the conflicting suggestions
about security context.

T1: #13 (Roaming not allowed in this tracking area) The UE shall set the 5GS
update status to 5U3 ROAMING NOT ALLOWED (and shall store it according
to subclause5.1.3.2.2) and shall delete 5G-GUTI, last visited registered TAI,
TAI list and ngKSI
T2: #13 (Roaming not allowed in this tracking area) The UE shall set the
5GS update status to 5U3 ROAMING NOT ALLOWED (and shall store it
according to subclause5.1.3.2.2) and shall delete the list of equivalent PLMNs
(if available).

Figure 10: GUTI, TAI, eKSI deletion. T1 is from section
5.5.1.2.5 and T2 is from section 5.5.1.3.5 of TS 24.501.
Inconsistency to exploit. GUTI (Globally Unique Temporary
ID) is a kind of temporary ID used to identify UEs. Each
UE has a couple of different kinds of unique IDs, like IMSI,
IMEI, etc. These sorts of temporary identifiers, like GUTI,
are used to prevent attackers from tracking users. However,
if these identifiers are not changed or reset, this can cause

several privacy issues. An adversary can utilize old GUTI to
track a UE through a linkability attack, violating privacy [33].
Investigation. In commercial UEs, we found a total of 16
devices not properly deleting GUTI for these reject mes-
sages (Table 6). One recent UE (Apple iPhone 12 Pro), how-
ever, deletes the security context with GUTI after receiving
service_reject.

6.3.4 Denial of Service

Finding 6. TAU and detach collision. We found a PoS of
conflicting directions when TAU and detach procedure col-
lide (shown in Figure 11). The first one states that the
tracking_area_update procedure shall be aborted and the
detach procedure shall be progressed. On the other hand,
the second segment states that the detach procedure shall be
aborted and re-initiated while the tracking_area_update
procedure is fully performed.
Inconsistency to exploit. An attacker can achieve
downgrade/denial-of-service by injecting detach_request
through fake-base-stations or signal-injection attacks [35]. In
this case, an implementation that aims to implement both
scenarios can exacerbate the situation by creating a deadlock
state. As the statements are mutually exclusive either way,
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T1: Tracking area updating and detach procedure collision
EPS detach containing detach type "re-attach required" or "re-attach not re-
quired": If the UE receives a DETACH REQUEST message before the tracking
area updating procedure has been completed, the tracking area updating
procedure shall be aborted and the detach procedure shall be progressed.
T2: If a cell change into a new tracking area that is not in the stored TAI list
occurs before the UE initiated detach procedure is completed, the UE proceeds
as follows: 1) If the detach procedure was initiated for reasons other than re-
moval of the USIM or the UE is to be switched off, the detach procedure shall
be aborted and re-initiated after success- fully performing a tracking area
updating procedure.

Figure 11: TAU and Detach Procedure precedence conflicts.
T1 is from section 5.5.3.2.6 and T2 is from section 5.5.2.2.4
of TS 24.301.

an implementation violates the specification. In our investi-
gation of commercial implementation, we found all the UEs
progress with the tracking_area_update procedure when
such collision occurs (Table 6).

6.3.5 Interoperability

For this class of inconsistencies, we could not devise an attack
scenario. However, these inconsistencies range from speci-
fying different sub-state transitions for the same condition
to missing timer expiration directives. The potential impact
of these inconsistencies can cause interoperability issues be-
tween different implementations, i.e., one implementation
following one directive and the other one following a differ-
ent directive. For brevity, one of them is discussed here; we
discuss the rest in [13].
Finding 7. Sub-state transition confusion. When
attach_reject message is received with the emm
cause #14, the 4G specification has differing state transition
descriptions (shown in Figure 1). This certainly can cause
confusion in implementation design.
Investigation. While looking further into open-source imple-
mentations, we found a very interesting scenario regarding
this. In srsRAN, we see that the developers tried to imple-
ment both of them. We show the code snippet of srsRAN
in Figure 12. Here, we can see that both of the conditional
statements contain the same cause (lines 1 and 6) but have
different sub-state transitions (lines 3 and 7). Of course, UE
will go to the EMM_DEREGISTERED.PLMN_SEARCH sub-
state due to the obscurity of the first "if". Such conflicts can
potentially cause interoperability issues, leaving a possibility
for further synchronization problems.

Finding 8 is about registration counter resetting, finding
9 is about utilizing/not-utilizing timer expiry as a precondi-
tion, finding 10 is about utilization of service attempt counter,
finding 11 is about PDCP counter resetting. We refer the in-
terested reader to [13] for details.

6.4 RQ4. Comparison of other methodologies

1 if (...|| attach_rej.emm_cause ==
LIBLTE_MME_EMM_CAUSE_EPS_SERVICES_NOT_
ALLOWED_IN_THIS_PLMN ||...){

2 attach_attempt_counter = 0;
3 enter_emm_deregistered(emm_state_t::

deregistered_substate_t::attempting_to_attach);
4 }
5 // TODO: handle other relevant reject causes
6 if (...|| attach_rej.emm_cause ==

LIBLTE_MME_EMM_CAUSE_EPS_SERVICES_NOT_
ALLOWED_IN_THIS_PLMN ||...) {

7 enter_emm_deregistered(emm_state_t::
deregistered_substate_t::plmn_search);

}

Figure 12: srsRAN implementation of emm cause #14

Table 7: Comparison with existing approaches.

: Did not discover : Closely related issue discovered
: Only context is similar : Discovered

Findings DIKEUE
[38]

DoLTEst
[54]

ATOMIC
[25]

Instructions
Unclear [46]

CellularLint

1
2
3
4
5
6
7
8 [13]
9 [13]
10 [13]
11 [13]

Although to the best of our knowledge CellularLint is the
first approach to detect inconsistencies from cellular specifi-
cations, we compare our methodology with the existing ap-
proaches based on the issues discovered. Table 7 shows com-
parison results based on the subset of findings presented in the
paper. In terms of methodologies we compare with DIKEUE
and DoLTEst that are implementation testing frameworks and,
therefore, are not directly comparable to our methodology.
The closest methods that deal with specification descriptions
are [25] and [46]. We compare with respect to four charac-
teristics: (1) if the issue was discovered, (2) if the context
aligned to the issue has been discussed, (3) if a related root
cause has been discussed, and (4) if the issue has not been
discussed at all.

7 Related Works

We discuss the related works in three categories:
NLP efforts. Sequence classification tasks, especially su-
pervised textual entailment, have largely been used recently
in various domains and applications [18, 25, 34, 58, 59]. In
contrast to those techniques, Andow et al. [14,15] use Named
Entity Recognition to leverage a rule-based approach for de-
tecting privacy leaks in privacy policies of Android apps. The
method, however, considers domain-specific assumptions for
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ontology structuring and is not generalizable to cellular pro-
tocol documents.
NLP for cellular network. In recent days, NLP research
in cellular networks has been gaining popularity due to
the enormous information and the emergence of large
language models. For instance, methodologies have been
proposed to automatically analyze specification, RFC,
and Change Request documents in various problem set-
ting [23–25, 40, 42, 53]. Pacheco et al. [53] designed an
approach that automatically builds state machines from RFC
protocol documents using a data-driven zero-shot approach
and synthesizes attacks based on that. Ishtiaq et al. [40]
take a similar approach to synthesize FSM from 4G and 5G
specifications. Chen et al. [25] discover Hazard Indicators
(HI) from 4G specifications and verify implementations
against them. Briefly, they input Risky Operation Description
(ROD) and threat models in their framework and run a textual
entailment model to find the HIs from which the test cases
are generated. While they generate test cases from individual
text descriptions, our method does a differential analysis on
pairs of descriptions to generate test cases. A conformance
testing approach has also been proposed based on NLP and
causal relation extraction [23]. However, these methods do
not primarily focus on inconsistencies in standards.
Vulnerability detection in cellular networks: Over the
years a lot of work has focused on finding issues in various
generations of cellular network design and implementation
using formal verification [27, 37], dynamic analysis [45],
differential testing [38], fuzzing, etc. Klischies et al. [46]
consider underspecifications from protocol standards that are
closely aligned with our goal. Baseband firmware analysis has
also been effective in finding implementation issues [1,43,50].
However, these methods do not relate the root causes of
implementation issues to the protocol standards.

8 Discussion

Manual efforts and limitations in CellularLint. Although
CellularLint can discover conflicts under weakly supervised
settings, there is still some manual labor involved. During the
active learning phase, the annotators have to cross-examine
the predictions from the model and refine them accordingly.
This required approximately 16 human hours from domain
experts. Furthermore, one of the critical limitations of Cellu-
larLint is that there are certain inconsistent PoS that, when
taken into a broader specification context, are no longer in-
consistent. This issue, with a larger context, requires manual
efforts to parse through the results of CellularLint and filter
out. This, in some sense, is the limitation of current NLP
models that are unable to take into account this large context
of cellular network specifications. To provide an example,
in some cases, the context is defined 3-4 pages before the
actual segment. It took about 6 human hours to detect the

false positive from the final results.

Inconsistency-to-attack scenario. The aim of CellularLint
is to find inconsistencies in the 4G and 5G specifications.
As mentioned in §6.3.1, the design from inconsistent PoS to
concrete attacks is a manual effort. We look into the POSs to
uncover whether these design choices can lead to an attack.
We want to emphasize that not all inconsistencies can lead
to exploitable attacks. Similarly, as this part of the findings
is manually designed, there can be other inconsistencies that
lead to exploitable attacks but are not discussed in detail
in the paper. Therefore, we open-source the list of major
inconsistencies [13].

Implementation vs. specification issues. In terms of secu-
rity issues in the 4G and 5G, they can be characterized in
either one of the two categories: issues stemming from the
specification design or from the implementation design. In
this paper, we focus on the first category. For instance, the
issues in findings 1 and 3 can be categorized as implementa-
tion issues where the UE accepts plain-text or integrity-failed
messages. However, we focus on the specification consistency.
The aim of our work is to clear scenarios in the standards that
can cause inconsistencies in the implementation. We believe
our work would inspire further specification-based textual
analysis and ultimately realize the goal of machine-readable
specifications.

Scalability and relevance to further security research. Cel-
lularLint is designed in a fashion that can be almost readily
used for other cellular specifications and, with some training
effort, can be utilized for other communication (non-cellular)
protocols. For other cellular specifications, one can use the
pre-trained+SNLI-fine-tuned state of EnCell. Only the last
fine-tuning step with a low amount of data would be required.
For completely different communication protocols, one can
utilize the methodology of CellularLint to pre-train and fine-
tune the models. Pairing and filtration, PoS selection, and
optimization techniques would still follow the same methods.
Furthermore, the impact of CellularLint is not limited to cellu-
lar network security, it can be applied to enhance the security
of other communication protocols as well.

Impact of tables, figures and codes. While preprocessing,
we removed tabular data, figures, and code snippets. These ar-
tifacts can potentially add more information to decide which
of the text pairs are more secure. For example, CellularLint
captured an inconsistent description regarding EAP-TLS au-
thentication procedure, which we had to verify as a false posi-
tive manually. However, figure B.2.1.1-1 under Annex B.2 in
TS 33.501 describes a timing diagram of that authentication
procedure more clearly. Considering this could potentially
help CellularLint capture the false positive in initial stage of
analysis. Moreover, developers often focus on the finite state
machines presented through the figures. Thus, learning from
these artifacts alongside texts could strengthen the learning
process, and we leave it as future work.
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9 Conclusion and future work

In the paper, we propose CellularLint to detect inconsistencies
in cellular protocol specifications in a scalable fashion. Cellu-
larLint uncovers 157 inconsistencies with 82.67% accuracy in
the NAS and security specifications. After verification of these
inconsistencies on open-source implementations and commer-
cial devices, we confirm that they indeed have a substantial
impact on design decisions, potentially leading to concerns
related to privacy, integrity, availability, and interoperability.
Future work. In the future, we will work on improving Cel-
lularLint to include further context and improve the accuracy.
Furthermore, we will aim to detect underspecifications with
NLP techniques.
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