
This paper is included in the Proceedings of the 
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the 
33rd USENIX Security Symposium 

is sponsored by USENIX.

PINE: Efficient Verification of a Euclidean 
Norm Bound of a Secret-Shared Vector

Guy N. Rothblum, Apple; Eran Omri, Ariel University and 
Ariel Cyber Innovation Center; Junye Chen and Kunal Talwar, Apple
https://www.usenix.org/conference/usenixsecurity24/presentation/rothblum



PINE: Efficient Verification of a Euclidean Norm Bound of a Secret-Shared Vector∗

Guy N. Rothblum
Apple

Eran Omri†

Ariel University
Ariel Cyber Innovation Center

Junye Chen
Apple

Kunal Talwar
Apple

Abstract

Secure aggregation of high-dimensional vectors is a funda-
mental primitive in federated statistics and learning. A two-
server system such as PRIO allows for scalable aggregation
of secret-shared vectors. Adversarial clients might try to ma-
nipulate the aggregate, so it is important to ensure that each
(secret-shared) contribution is well-formed. In this work, we
focus on the important and well-studied goal of ensuring
that each contribution vector has bounded Euclidean norm.
Existing protocols for ensuring bounded-norm contributions
either incur a large communication overhead, or only allow
for approximate verification of the norm bound. We propose
Private Inexpensive Norm Enforcement (PINE): a new proto-
col that allows exact norm verification with little communi-
cation overhead. For high-dimensional vectors, our approach
has a communication overhead of a few percent, compared to
the 16-32x overhead of previous approaches.

1 Introduction

Data analyses and machine learning on user data have the
potential to improve various applications, but might raise con-
cerns about users’ privacy. Fortunately, these analyses can
be performed in a federated setting [Kai+21; LSTS20] while
ensuring strong formal privacy guarantees. This has sparked
significant interest in developing techniques and infrastruc-
tures to support private federated data analyses. In this work,
we focus on a fundamental primitive: estimating the mean (or
equivalently, the sum) of a set of high-dimensional vectors.
This primitive is natural and important in its own right, and is
also a basic building block for several tasks (e.g. [RNFH19;
RZHP20]). Most notably, it is fundamental for federated opti-
mization of machine learning models. Furthermore, several
other ML tasks such as PCA, k-means and EM can be reduced
to (multiple applications of) aggregation.

∗Extended abstract. See [ROCT23] for the full version.
†Part of this work was performed while EO was at Apple.

Secure Aggregation techniques enable strong privacy guar-
antees without requiring trust in a single server. Various ap-
proaches have been studied for designing such systems. One
approach is to have client devices run a secure multiparty
computation to compute the aggregate, which has been ex-
plored in [DKMMN06; BIKMMPRSS17; SGA20; SGA21;
BBGLR20]. Another approach relies on two or more servers
to perform the aggregation, using protocols that ensure that
no single server can learn anything beyond the final aggregate
(security holds so long as the two servers do not collaborate).
A common approach is for each client to secret-share its con-
tribution between the two servers, and for the servers to use a
secure protocol that allows them to learn the aggregate, but
nothing more about any individual client’s contribution. We re-
fer to this approach as distributed aggregation. The PRIO sys-
tem [CB17] proposed a protocol for computing arbitrary func-
tions over secret-shared data in the presence of two or more
servers. This approach has been further developed in subse-
quent research [BBCGI19; BBCGI21; BGGKMRS22; CP22;
BBCGI23; Tal+23], applied in practice [HMR18; AG21] and
forms the basis of an IETF [GPRW23] draft standard for ag-
gregation. In this work, we focus on distributed aggregation
of high-dimensional integer1 vectors.

Real-world implementations of secure aggregation must
deal with adversarial clients attempting to manipulate the re-
sults. An important advantage of the PRIO approach is that it
allows the servers to validate certain properties of the client
contributions, while preserving a zero-knowledge (ZK) prop-
erty, meaning that the servers learn nothing beyond the aggre-
gate and the fact that the client shares were valid. A rich line of
research has focused on developing efficient methods to verify
various properties of client contributions. In the context of
summing up vectors in Rd , a natural objective is verifying that
each client contribution has bounded Euclidean norm. The
Euclidean norm constraint arises naturally in many machine

1While one is often interested in vectors of floating point values, standard
techniques can translate the problem to fixed-precision vectors. Scaling then
turns those into integer vectors from a bounded range. See the discussion in
Sections 1.1 and 5.

USENIX Association 33rd USENIX Security Symposium    6975



learning settings [Dos+21; Deh+23; ZLLBRZGS23]. Many
model poisoning attacks (e.g. [BBG19; FCJG20; SH21])
rely on clients submitting vectors of large norm (so called
“boosted gradients”). Recent works [SHKR22; SKSM19] have
shown that ensuring a bounded ℓ2 norm is effective against
a large family of realistic poisoning attacks in the federated
learning setting.2

In this work, we focus on zero-knowledge protocols for ver-
ifying the bounded Euclidean norm property. Such protocols
require the client and the servers to perform additional com-
putations and communication, where different works obtain
different overheads. One important measure is the communi-
cation cost, especially in settings where the vectors involved
can be of high dimensions (e.g. [RMRB19; Pau+21; Xu+23;
XZACKMRZ23; PAFSTL23]). We review the works most
related to our contributions.

One approach taken by prior work [CB17; BBCGI19] and
in proposed implementations in the IETF standard [ISR23;
RU23] has the client secret-share each bit of each coordinate
of its vector as an element in a finite field. For d-dimensional
vectors with b bits of precision, this requires the client to
send at least bd field elements to each server. The field size
itself must be rather large to keep the soundness error small.
In high-dimensional settings, this translates to a substantial
communication overhead. For example, in the implementa-
tion in [RU23], the communication overhead is at least 16x
(compared to secret sharing without validity proofs). We note
that the servers also need to verify that the secret shares are
indeed of bits, but the communication needed for this latter
task can be smaller [BBCGI19].

In PRIO+ [AGJOP22], the communication from the client
to each server is only bd bits (rather than field elements), but
this requires an offline setup phase that involves expensive
cryptographic operations (it also gives a weaker norm bound
guarantee). In ELSA [RSWP22], the setup avoids expensive
cryptographic operations, but requires more communication
from the clients. We elaborate on the comparison with these
works below, but the main distinction is that our work focuses
on a setting where there is no expensive setup, and we aim to
minimize the communication from the clients to the servers.

With the goal of minimizing the client-to-server communi-
cation, the work of [Tal22] relaxed the zero-knowledge guar-
antee to differential ZK and showed a more communication-
efficient protocol. However, that protocol only ensured ap-
proximate norm verification, limiting its usefulness in some
settings. The protocol allows for a trade-off between the
soundness and completeness errors and the approximation
guarantee, but even for relatively permissive error thresholds
(say, 0.01 soundness and completeness errors), the protocol
might accept vectors of norm 50x the target bound. This re-
duces its effectiveness in dealing with malicious clients.

2No method can completely prevent model poisoning [SHKR22] (for a
theoretical perspective, see e.g. [MM17]); bounding the ℓ2 norm limits the
impact of adversarial clients.

1.1 Our Work
Our main contribution is PINE (for Private Inexpensive Norm
Enforcement): a communication-efficient protocol for Eu-
clidean norm verification that can verify the exact norm bound
with a strong (statistical) zero knowledge guarantee and with
no offline setup. Zero knowledge holds even against mali-
cious behavior by a server (we always assume the servers do
not collaborate, i.e. at least one of them is honest). Theoreti-
cally, our verification protocol requires the client to commu-
nicate only Õ(

√
d) additional field elements. In practice, for

typical parameter settings, this overhead is a small fraction of
the communication needed to secret share d field elements.

Theorem 1.1 (Informal version of Theorem 3.15). Let X ∈Zd

be a secret-shared vector and B ≥ 0. Fix ρ > 0, and set r =
⌈32ln 1

ρ
⌉. For any field of size q ≥ Ω(max{B,3r}) there is a

distributed verification protocol with the following properties:

1. Completeness: If ∑i X2
i ≤ B, the verifiers accept with

probability at least 1−ρ.

2. Soundness: If ∑X2
i > B (over the integers), the proba-

bility that the verifiers accept is at most ρ+O(
√

d/q).

3. Zero-Knowledge: The protocol satisfies distributed sta-
tistical zero-knowledge: the view of each verifier can be
simulated up to statistical distance ρ. This guarantee
holds even for a single malicious verifier (so long as the
other verifier follows the protocol).

The proof system is in the common reference string model, and
consists of a single message of length O

(√
d logq+ r log2 q

)
sent by the prover to each verifier.

The protocol is derived from the interactive 4-message pro-
tocol of Theorem 3.15 by using a variant of the Fiat-Shamir
heuristic suited for the distributed verification setting ( see
the full version [ROCT23] ).3 While we state our results for
the case of two verifiers, our approach is modular and can be
used with multiple verifiers. Concrete performance evaluation
is below and in Section 5.

Statistical PINE: Overview. A central difficulty in efficient
verification of Euclidean norms is that PRIO relies on arith-
metic over a finite field, whereas our property of interest deals
with arithmetic over integers/reals. One can use known tech-
niques [BBCGI19] to efficiently verify that the sum of of
squared entries modulo the field size satisfies a certain bound.
If the coordinates are all small enough, then the squared norm
modulo the field sizes equals the squared norm over the in-
tegers, so the preceding check suffices. However, it is chal-
lenging to validate smallness of coordinates in their natural
representation as field elements. Existing approaches achieve

3The soundness error is proved for the interactive protocol, and should be
set to be sufficiently small to account for the Fiat-Shamir transform.

6976    33rd USENIX Security Symposium USENIX Association



this by encoding the coordinates in their binary representation,
which can enforce the requisite smallness.

We take a different approach. Instead of encoding the co-
ordinates of a vector in their binary representation, we de-
vise a randomized test that can detect whether there is a
“wraparound” when computing the sum of squares over a finite
field. We first verify that the sum of squared entries modulo
the field size q is in the range [0,B]. For large enough q, this
gives us a promise problem: either the sum of squared entries
(over integers) is at most B, or is at least q. We test for this
wraparound by taking a random dot product with a −1,0,1
vector, and we demonstrate that if there is wraparound, the
dot product is likely to be large. On the other hand, if the sum
of the squared entries was small to begin with, then the dot
product will be small with high probability. These bounds on
the dot product, which are our main technical contribution, are
proved using a delicate case analysis on the vector’s infinity
norm. The challenging case (small infinity norm) is analyzed
using the Berry-Esseen theorem.

Thus, we reduce the problem of proving a bound on the
squared norm to proving boundedness of a few scalars (the
outcomes of independent dot products), which can be done
at a small overhead. Our communication overhead is dom-
inated by the communication needed to verify the sum of
squared entries over the finite field; the

√
d term can be fur-

ther reduced to d1/c by using an c+O(1)-round protocol (the
additional interaction can be eliminated using the Fiat-Shamir
transform).

Differential ZK. We also show a simpler scheme that relaxes
ZK to Differential ZK: intuitively, the secrecy of the client’s
contribution is protected via a differential privacy [DMNS06]
guarantee (rather than the perfect or statistical guarantees that
are more common in the literature). Beyond its simplicity, the
protocol also achieves smaller communication in some pa-
rameter regimes (especially when the number of dimensions
is not too large). We note that the relaxation to differential
ZK can be quite reasonable, since differential privacy is often
all that is guaranteed given that the (approximate) results of
the entire aggregation are to be made public to the servers.

Theorem 1.2 (Informal Version of Theorem 4.3).
Let X ∈ Zd be a secret-shared vector. Let
ε,δ ∈ (0,1) and B ≥ 1. For a field of size q >

4

(
√

B+
√

d +

√
dB 2ln2.5/δ

ε
· (1+ 2

√
log8e/δ√

d
+ 2log8e/δ

d )

)2

,

there is a distributed verification protocol with:

1. Completeness: If ∑
d
i=1 X2

i ≤ B, then the verifiers accept
with probability 1.

2. Soundness: If ∑X2
i > B (over the integers), the proba-

bility that the verifiers accept is at most O(
√

d/q).

3. Zero-Knowledge: The protocol satisfies (ε,δ)-
differential zero knowledge: the view of each verifier

can be efficiently simulated up to (ε,δ)-closeness. This
guarantee holds even for a single malicious verifier (so
long as the other verifier follows the protocol).

In addition to the secret shares of x, the client sends a proof
of length (O(

√
d)+O(log2 q)) · ⌈log2 q⌉.

This protocol is derived from an interactive 3-message
protocol a distributed-verification variant of the Fiat-Shamir
heuristic, see the full version [ROCT23].

Performance analysis. We analyze the performance of our
protocols in terms of the communication overhead, beyond the
communication that is needed to simply send secret shares for
distributed aggregation (without any robustness to poisoning
attacks). In Section 5, we provide analyses for several choices
of parameters. Here, in Table 1, we highlight the performance
for a typical choice of parameters, where we aggregate d-
dimensional integer vectors of ℓ2 norm at most 215 with d ∈
{104,105,106,107}. We work over a field of size ≈ 264 and
use soundness and zero-knowledge error 2−50.

As seen in Table 1, our statistical zero-knowledge protocol
achieves small overhead even when the number of dimensions
is as small as 104, and the communication overhead becomes
negligible as the number of dimensions grows. Comparing
with prior work [BBCGI19; ISR23], the overhead is reduced
by a multiplicative factor of between 70x (when the number
of dimensions is only 10,000) to 104x (when the number of
dimensions is as high as 107).

Our differential ZK protocol achieves even smaller over-
heads so long as the number of dimensions is not huge (albeit,
the secrecy guarantee is more relaxed). Once the number of
dimensions grows to 107, PINE with Differential ZK requires
a larger field size (9 bytes instead of 8 bytes), this incurs an
initial overhead of 1

8 for secret-sharing the data over a larger
field. Previous work with differential ZK [Tal22], would have
similar increased field size requirements for these parameters.
While their protocol would not have any additional overhead,
it only gives a weaker robustness guarantee that vectors that
are 50x the norm bound are rejected with probability 0.99.

We briefly elaborate on our choice of the norm bound:
a typical setting when aggregating gradients is that we ag-
gregate floating point vectors of Euclidean norm at most 1.
We can convert these floating point vectors to integer vec-
tors by multiplying by 2b and rounding. With b = 15 bits of
precision per co-ordinate, this translates the problem to ver-
ifying ℓ2 norm bound

√
B = 215. This is typically sufficient

for high dimensional vectors. Working over a field of size
about ≈ 264 suffices to allow aggregating millions of such
vectors (whereas field size ≈ 232 would not be sufficient for
100K vectors). We refer the reader to Section 5 for further
elaboration and for performance evaluation in other parameter
regimes.

Further comparison to PRIO+ and ELSA. In Table 2, we
provide a qualitative comparison to the most closely related

USENIX Association 33rd USENIX Security Symposium    6977



d = 104 d = 105 d = 106 d = 107

no robustness, # bits sent 64 ·104 64 ·105 64 ·106 64 ·107

prior work, overhead [BBCGI19; ISR23] > 1500% > 1500% > 1500% > 1500%
PINE, Statistical ZK, overhead 22% 3.18% 0.49% 0.13%

PINE, Differential ZK, overhead 4.77% 1.46% 0.32% 12.63%

Table 1: Communication analysis: our protocols and prior work. Parameters: field size q ≈ 264 for aggregation, d-dimensional
data, soundness error 2−50, zero-knowledge error δ = 2−50. For differential ZK ε = 0.1.

Protocol
Linear
online

Linear
offline

Expensive
crypto

Prio3 [BBCGI19; ISR23] N Y N
Prio+ [AGJOP22] Y N Y
ELSA [RSWP22] Y N N
PINE (our work) Y Y N

Table 2: Qualitative comparison to representative prior works.
All works are in the distributed two-server trust model. Linear
offline and online mean that the communication is dominated
by the cost of communicating at most d field elements for
the field where aggregation should occur, either in an offline
stage (before the client’s contribution is specified), or in the
online stage (respectively). Expensive crypto means that the
protocol uses operations such as oblivious transfer.

works to ours. In particular, we consider works in the dis-
tributed aggregation setting, with two non-colluding servers
and privacy against (one out of two) malicious servers. The
PRIO+ system [AGJOP22] reduces the communication cost
of sharing the client’s vector to bd bits (where 2b bounds the
magnitude of each entry). This is significantly smaller than
our protocol, which requires sending d field elements (e.g. in
Table 1 each field element is 64 bits, whereas b = 15). How-
ever, PRIO+ requires an expensive offline setup between the
servers, which perform cryptographic oblivious transfer opera-
tions and exchange more communication than d field elements
per client. Moreover, verifying a bound on the Euclidean norm
would also require a subsequent online cryptographic protocol
(and there is further overhead for malicious-server security,
see [RSWP22]). Other works, such as [HLXCZ21; HKJ20],
also make use of more advanced cryptographic operations.
PINE avoids an expensive setup and cryptographic operations
of this type. The ELSA system [RSWP22] also avoids the
use of expensive cryptographic operations, but replaces them
with communication from the client, which sends more than
d field elements to the servers. The expensive communication
from the client to the servers can be performed offline, but
it is a large communication compared to our work. Further,
in many PRIO-like settings, anonymous clients engage in a
one-shot interaction with the servers, so an offline setup is not
appropriate.

Further related work. In a very recent work Boneh et
al. [BBCGI23] show how arithmetic sketching schemes can
be used to design efficient protocols for verifying properties
of secret-shared data. They show, however, that the linear
sketches at the heart of their technique cannot be used to
verify L2-norm constraints (or any Lp norm for p > 1).

2 Model, Definitions and Preliminaries

Definition 2.1. The statistical distance between two finite
random variables X and Y is

SD(X ,Y ) =
1
2 ∑

a
|Pr[X = a]−Pr[Y = a]| .

Two ensembles X = {Xn}n∈N and Y = {Yn}n∈N are said

to be statistically close, denoted X
S≡ Y , if there exists a neg-

ligible function µ(·), such that for all n ∈ N, it holds that
SD(Xn,Yn)≤ µ(n).

Runtimes and field operations over GF[q]. We measure
the prover’s and the verifiers’ runtimes by the number of
field operations we perform: we usually count addition and
multiplication as a single field operation, and also allow other
basic atomic operations such as translating field elements
to their natural representation as bit vectors and vice versa.
In performance evaluations, we also measure the number of
multiplications as a primary complexity measure (as done in
prior work, since these are significantly more expensive than
other field operations).

Secret sharing over GF[q]. In the distributed verification set-
ting we study, a client (or prover) secret-shares data between
two or more servers (or verifiers). Each secret-shared value is
an element α ∈GF[q] from a field, and the secret shares are
random field elements whose sum is α (“arithmetic shares”).
In particular, each server’s share is, on its own, a uniformly
random field element.

2.1 Distributed Verification Protocols
As discussed above, we study a distributed model, in which
a single prover (or client) P interacts with two verifiers (or
servers) V0,V1 over a complete network with secure point-
to-point channels. We design several protocols in this setting,

6978    33rd USENIX Security Symposium USENIX Association



and then compose these protocols to obtain the PINE proof
systems. Our distributed verification protocols have inputs
and outputs of the following type:

Common (Public) Inputs: All three parties hold the same
common and publicly known parameter vector T̄. Such
parameters may include, field size, scalars, protocol pa-
rameters.

Private Inputs: The prover holds some vector of input val-
ues Ī. Each such value I is secret-shared by the two
verifiers such that V j holds the share [I( j)].

Common (Public) Output: The common output of the two
verifiers includes a single bit, indicating whether they
accepted or rejected the proof. The verifiers can also
output additional common outputs.

Private Outputs: At the end of the interaction, the prover
outputs new private values. Each such value Ō is secret-
shared by the two verifiers, and these are called the
shared outputs of the verifiers.

We define distributed interactive zero-knowledge proof pro-
tocols (dZKIPs) for this setting. These protocols guarantee
completeness and soundness based on a condition on the com-
mon and private inputs (this “input condition” is formalized
by requiring that the combined input is in a (pair) language).
The zero knowledge property is also guaranteed for inputs
that satisfy this input condition (are in the language). Some of
the protocols also have an “output condition” on the common
and private outputs (also formalized as membership in an
output pair language, this condition can be empty). Complete-
ness means that if the inputs satisfy the input condition and
all parties follow the protocol, then w.h.p. the verifiers should
accept and the common and private outputs (if any) should
be in the output language. Soundness means that if the input
condition is violated, then w.h.p. either the verifiers reject
(in their common output), or the output condition is violated.
Note that the verifiers might not “know” that the output condi-
tion is violated (since they only see secret shares of the private
outputs): in our work this will be detected by a subsequent
protocol. Allowing for private inputs and outputs, and for
general input and output conditions is helpful for designing
modular sub-protocols that can later be composed.

Our protocols also guarantee a strong zero-knowledge prop-
erty: so long as the input is in the input language, and the
verifiers are honest, both verifiers learn nothing from execut-
ing the protocol. Formally, each verifier’s view in a protocol
execution with the honest prover and a second verifier who
follows the protocol can be simulated efficiently (the view
includes the common inputs, its secret shares of the private
inputs, random coins, messages received, and its secret shares
of private outputs). We remark that in the classical setting for
(non-distributed) interactive zero-knowledge proofs, a single
prover P interacts with a single verifier V over a common

input X . In such an interaction, the aim of the prover is to
convince the verifier that X ∈ L for some language L, where
the verifier knows what X is, and zero-knowledge means that
the verifier should not learn anything beyond X and the fact of
its membership in L. In contrast, in our (distributed) setting,
the statement X is not known to any single verifier (since it is
secret-shared), and the zero-knowledge requirement means
that any single verifier should learn nothing beyond X’s mem-
bership in L.

Definition 2.2 (Distributed ZK Interactive Proof (dZKIP)).
We say that a 2-verifier interactive proof protocol Π =
(P;V0;V1) is a distributed (strong) zero-knowledge proof
for an input (pair) language Linp and an output language Lout

if Π satisfies the following:

• α-Completeness. If the common and private inputs are
in the input language, i.e. (T̄, Ī) ∈ Linp and the prover
and the verifiers follow the protocol, then with all but α

probability the verifiers accept and the private outputs
satisfy the output condition, i.e. Ō∈Lout (the probability
is over all coins tossed by all parties in the protocol).

• β-Soundness. If the common and private inputs are not
in the language, i.e. (T̄, Ī) /∈ Linp, then for any adversar-
ial cheating prover strategy, with all but β probability,
either the verifiers reject, or the private outputs violate
the output condition, i.e. Ō /∈ Lout (the probability is
over the verifiers’ coin tosses. The cheating prover is
deterministic w.l.o.g).

• γ-Strong Distributed Honest-Verifier Zero-Knowledge
(dZK) (see [BBCGI19]). There exists an efficient sim-
ulator S, such that for every input pair (T̄, Ī) ∈ Linp,
for every j ∈ {0,1}and every 2-out-of-2 sharing [Ī] =(

Ī(0), Ī(1)
)

, the view of V j in an execution with the hon-
est prover and V1− j is γ-statistically close to the output

of the simulator S on input
(

j, T̄, Ī(j)
)

.

By default we take α = 0 (perfect completeness) unless we
explicitly note otherwise. Similarly, by default γ = 0 (perfect
distributed zero-knowledge). We say the protocol is public-
coins if all the messages sent from the verifiers to the prover
are random coin tosses. We also require that in a public-
coins protocol, the communication between the two verifiers
consists solely of a single simultaneous message exchange:
after the interaction with the prover is complete, V0 sends
a single message to V1, and (at the same time) V1 sends a
single message to V0. These messages should not depend on
each other (this property is important for zero-knowledge of
the Fiat-Shamir transform, see [ROCT23]).

We sometimes consider dZKIPs for promise problems,
where the completeness condition and the soundness con-
dition apply to disjoint sets (rather than to the language Linp

USENIX Association 33rd USENIX Security Symposium    6979



and its complement). See, for example, the “wraparound pro-
tocol” of Section 3.2.

Remark 2.3 (indistinguishability under varying private in-
puts). The dZK property implies that, for a fixed public input
T̄, we can consider different private inputs that are in the
pair language, and each verifier’s views will be β-statistically
close under these varying inputs, so long as its share remains
unchanged. For example, fixing V0’s share to be Ī(0), we can
consider an execution where V1’s share is Ī(1) and another
execution where V1’s share is Ī′(1), and V0’s views in these
executions will be statistically close, so long as the underlying
private inputs Ī, Ī′ are both in the pair language (w.r.t. the
fixed public input T̄).

Remark 2.4 (Non-interactive and malicious ZK via Fi-
at-Shamir). We construct and analyze our protocols as inter-
active proof systems with honest-verifier zero-knowledge guar-
antees, as formalized in Definition 2.2. These protocols can
be transformed to non-interactive protocols that guarantee
zero-knowledge against (one out of two) malicious verifiers
using the Fiat-Shamir transform for the distributed setting.

2.2 Composition of dZKIPs
Distributed ZKIP protocols maintain their zero-knowledge
properties under (sequential) composition, so long as the pro-
tocols have the property that for every common input, for
every input share there exists a completion of the share to an
input on which the verifiers accept.

Lemma 2.5 (ZK composition). Let Π,Π′ be dZKIP protocols
(see Definition 2.2) that are run sequentially,where the secret
shares of the private input to Π′ can be efficiently computed
from the shares of the private inputs and private outputs of
Π (each verifier can compute its share of the private input
to Π′ on its own), and where the public inputs to Π′ can be
efficiently computed from the public inputs and outputs of Π.
Suppose that:

1. Π is γ-dZK and α-complete. Π′ is γ′-dZK.

2. If Π’s inputs and outputs are in that protocol’s input and
output languages (Linp and Lout), respectively, then they
specify inputs for Π′ that are in Π’s input language L′

inp.

Consider the composed protocol (Π ◦Π′), which runs Π,
and then uses the resulting private output to specify inputs
to an execution of Π′. Then the composed protocol (Π◦Π′)
satisfies (α+ γ+ γ′)-dZK.

2.3 An Example: Verifying Linear Equalities
We next provide an example for a distributed zero-knowledge
protocol, which allows a prover to prove to two verifiers that
some linear equality holds with respect to the shared inputs

that the verifiers hold. The protocol is very simple and requires
no interaction with the prover. Nevertheless, this protocol will
be useful as a sub-protocol in our construction.

Example 1 (A protocol for linear equality). Common
inputs: Field size q ∈ N, Dimension d ∈ N, coefficients
α1, . . . ,αd ,∈GF[q], a field element z ∈GF[q].

Secret-shared inputs: A vector X ∈ GF[q]d , where each Xi

is secret-shared as [Xi] = (X (0)
i ,X (1)

i ). The prover knows
the secret-shared values X and the shares [X ]. The ver-
ifiers each know their own shares (respectively X (0) and X (1)).

Claim (to be verified): ∑
d
i=1 αi ·Xi = z. I.e. the input language

is Linp = {((q,d,{αi},z),X) : ∑i αi · Xi = z}, there are no
private outputs (or output language).

The Protocol: For j ∈ {0,1}, verifier V j (locally) computes

z j = ∑
d
i=1 αi ·X

( j)
i and sends z j to V1− j. Both verifiers accept

if z = z0 + z1 (mod q) and reject otherwise.
Properties of the protocol: This protocol offers perfect com-
pleteness and perfect soundness in the sense that the verifiers
accept if and only if

z =
d

∑
i=1

αi · (X
(0)
i +X (1)

i ) (mod q).

To see that the protocol is perfect zero-knowledge, observe
that for every input share X ( j) for verifier V j, the simulator

can compute z j = ∑
d
i=1 αi ·X

( j)
i (mod q), and send to V j the

value z− z j (mod q) as its only message from V1− j.

3 Norm Verification

We build our protocol in multiple steps. Some of our sub-
protocols output secret shares of values that are then checked
in subsequent sub-protocols, e.g. checking that the secret-
shared values are bits (i.e. 0 or 1).

In Section 3.1 we show a protocol that reduces checking
that a secret-shared value is in some range to: (i) checking
a linear equality over secret-shared values, and (ii) checking
that shares generated in the protocol are secret shares of bits.
In Section 3.2, we build on this to construct our main contri-
bution: a protocol for verifying that the sum of secret-shared
values is not larger than the field size (the sum is taken over
the integers, not over the field). In particular, this protocol lets
us reduce certifying a norm bound of secret-shared values
to certifying quadratic constraints. We recall the appropriate
form for quadratic constraint validation in Section 3.3 and
combine these ingredients to derive our main result in Sec-
tion 3.4.

6980    33rd USENIX Security Symposium USENIX Association



3.1 Range-Check Subprotocol
We present a simple 1-message protocol that is helpful in
verifying inequalities of the form ∑i αiQi ∈ [β1,β2] (mod q),
where the coefficients αi ∈ GF[q] and the lower and upper
bounds β1,β2 ∈ GF[q] are known and public (we view ele-
ments of GF[q] as integers in the set {−⌊q/2⌋, . . . ,⌊q/2⌋}),
but the Qi’s are known only to the prover, not to the verifiers.
In particular, the Qi’s are either secret-shared between the
verifiers, or they are functions of secret-shared values (e.g.
when we are verifying the inequality ∑i X2

i ≤ B (mod q) over
the secret-shared values Xi). The protocol reduces this ver-
ification task to: (i) the verification of an equality modulo
q, an easier claim to deal with, and (ii) verifying that new
secret-shared values (generated in the course of the protocol)
are secret shares of bits.

Protocol overview. The prover computes V = ((∑i αiQi)−
β1), and secret-shares the bits {v j} of V ’s binary represen-
tation. It also computes U = (β2 − (∑i αiQi)) and secret-
shares the bits {u j} of U’s binary representation. Observe that
U,V ∈ [0,(β2−β1)], and thus U and V can be represented us-
ing b = ⌈log(β2−β1+1)⌉ bits. The verifiers get secret shares
of these bits and verify that the sum of the values they repre-
sent is correct, i.e. that (∑ j v j ·2 j)+(∑ j u j ·2 j) = (β2 −β1)
(mod q) (recall that linear equalities over secret-shared val-
ues are easy for the verifiers to check). If this holds, and
also: (i) the v j’s and the u j’s are all secret shares of bits, (ii)
∑ j v j ·2 j = (∑i αiQi)−β1, and (iii) q > 3(β2 −β1)+2, then
indeed it must be the case that ∑i αiQi ∈ [β1,β2]. Note that
if Qi’s are themselves secret-shared values, then the verifiers
can verify that condition (ii) holds, and all that remains is to
verify that the secret-shared values are indeed of bits (but we
will also use this protocol in situations where the verifiers do
not have secret shares of the Qi values). The protocol is in
Figure 1, its complexity and guarantee are in Lemma 3.1.

Lemma 3.1. The protocol of Figure 1 satisfies:

1. Completeness: If ∑αiQi ∈ [β1,β2] (mod q) (this is the
input condition), then the verifiers accept and it holds
that: (i) (∑n

i=1 αiQi)− β1 = ∑
b−1
j=0 v j · 2 j (mod q), and

(ii) the secret-shared values are bits: ∀ j : v j,u j ∈ {0,1}
((i) and (ii) are the output conditions).

2. Soundness: If ∑i=1 αiQi /∈ [β1,β2] (mod q), if the ver-
ifiers do not reject, then either: (i) (∑n

i=1 αiQi)−β1 ̸=
∑

b−1
j=0 v j ·2 j (mod q), or (ii) for some j, either v j or u j

is not in {0,1}.

3. Zero-Knowledge:The protocol is strong zero-knowledge
as per Definition 2.2.4

4Technically, this protocol does not fall into our distributed verification
model, as the verifiers do not hold secret shares of the Qi’s. Indeed, here the
simulator can create its view without any access to shares of the Qi’s.

The proof consists of a single message of length
(2⌈log(β2 −β1 +1)⌉ · log(q) from the prover to each verifier
(this message contains the secret shares of the bits {v j,u j}).
The prover performs O(n+ log(β2−β1+1)) field operations.
The verifiers each perform O(log(β2 −β1 +1)) field opera-
tions and communicate log(q) bits between themselves.

The proof of Lemma 3.1 is omitted: it follows from the con-
struction. The simulator generates dummy shares of the bits
v j and u j, and simulates receiving a message in the protocol
that verifies the linear equality, as in Example 1.

Remark 3.2. We note that if (β2 − β1 + 1) is a power of
two, we can simplify this protocol by skipping sending U
and skipping the equality check. Indeed the fact that V =
(∑i αiQi)−β1 can be represented as ∑

b−1
j=0 v j2 j, for bits v j, is

equivalent in this case to V ∈ [0,2b −1] = [0,β2 −β1].

3.2 Detecting Wraparound
Our main technical contribution is a protocol that allows the
servers to verify that the sum of the squares of the secret-
shared values is not larger than the field size (where the sum
is taken over the integers), i.e. that there is no “wraparound”
when we take the sum of squares modulo the field size. The
guarantees and complexity of the protocol are in Lemma 3.3.
The protocol itself is in Figure 2.

In more detail: let q be the size of the field, constraints
on which will be determined below. We view each Xi as an
integer whose value is in the range {0, . . . ,q− 1}. In what
follows, all equalities and inequalities are over the integers
unless we explicitly note otherwise (using and abusing the
(mod q) notation). The protocol considers a promise problem:
in the YES case we have ∥X∥2

2 ≤ B, whereas in the NO case
we have ∥X∥2

2 ≥ q (i.e., there is wraparound). The verifiers
accept or reject, and they also output secret shares {[w j]},
which should be shares of bits (i.e. it should be true that
w j ∈ {0,1}, and this always holds in the YES case assuming
the prover follows the protocol). Soundness guarantees that
in the NO case, the probability that the verifiers accept and
the output shares are all of bits is small. The verifiers will run
a subsequent sub-protocol to verify that all w j’s are shares of
bits.

Protocol overview. The verifiers pick a random vector Z ∈
{−1,0,1}d , where each Zi is −1 w.p. 1/4, 1 w.p. 1/4, and 0
w.p. 1/2. The verifiers send Z to the prover, and verify that for
a constant α > 0 (set below, where we assume q > 2α

√
B):

∑
i

ZiXi ∈
[
−α

√
B,α

√
B
]

(mod q). (1)

This verification is performed using the protocol of Figure 1.
We show that for an appropriate choice of α there is a small
constant η s.t. in the YES case (∥X∥2

2 ≤ B) Equation (1) holds

USENIX Association 33rd USENIX Security Symposium    6981



Protocol: Range Check (mod q)

Common inputs: Field size q ∈ N, number of variables n ∈ N, coefficients α1, . . . ,αn ∈ GF[q] and claimed lower and upper bounds
β1,β2 ∈GF[q], viewed as integers in {−⌊q/2⌋, . . . ,⌊q/2⌋}, s.t. β1 ≤ β2 and q > 3(β2 −β1)+2.

Other inputs: The prover knows Q1, . . . ,Qn ∈GF[q]. We do not assume the verifiers have access to these Qi’s.

Secret-shared outputs: Shares {[v j], [u j]}b−1
j=0 , where b = ⌈log(β2 − β1 + 1)⌉ (for each j, each verifier outputs its respective shares,

(v(0)j ,u(0)j ) or (v(1)j ,u(1)j )).

The Protocol:
The prover secret shares:

1. The b bits (v j) j∈[0,...,b−1] of V = (∑i αiQi)−β1 (mod q),

2. The b bits (u j) j∈[0,...,b−1] of U = β2 − (∑i αiQi) (mod q).

The verifiers verify the linear equality (∑b−1
j=0 v j ·2 j)+(∑b−1

j=0 u j ·2 j) = β2 −β1 (mod q) (rejecting otherwise).

Figure 1: Range Check (mod q) Protocol

with probability at least 1−η over the choice of Z. In the
NO case, the probability is at most 1/2. We can repeat the
test in parallel to make the soundness error negligible. This
effectively reduces our original problem to range-checks (and,
via the protocol of Figure 1, to bit-checks). There is, however,
a zero-knowledge issue: there’s a non-negligible failure prob-
ability in the YES case, and the verifiers see whether the test
failed or not (and the values Z that led to failure), which leaks
information about X .

We could resolve this issue by increasing the field size
to the point where the failure probability in the YES case
becomes negligible, but this would entail a significant cost
in the communication complexity required for sending field
elements (we remark that increasing the field size doesn’t
reduce the soundness error). Instead, we take advantage of
the fact that the protocol will be repeated many times (for
soundness). The verifiers will not learn whether any of the
individual repetitions succeeded, but only whether “many” of
them succeeded. The threshold for “many” is set by a parame-
ter τ indicating the fraction of repetitions that should succeed
(by default we set τ = 3/4, so the verifiers accept if and only
if at least three quarters of the repetitions succeed). In the
YES case this will happen with all but negligible probability
(so we get statistical zero-knowledge). To accomplish this,
we repeat the test r times, where in the k-th repetition the
prover secret-shares a bit gk ∈ {0,1}, indicating whether or
not Equation (1) holds with respect to the k’th test. The veri-
fiers multiply both sides of the equation by gk, so that if gk = 0
the test passes even though the equation doesn’t hold. Later,
the verifiers also verify that ∑k gk ≥ τ · r (the inequality can
be verified in zero-knowledge using the protocol of Figure 1).
Checking that Equation (1) holds after multiplying by gk is
done using the protocol of Section 3.3 for checking quadratic
constraints over secret-shared values.

We make two minor modifications to improve the proto-
col’s efficiency: First, the cost of the quadratic constraint
protocol grows with the (square root of the) number of sum-
mands. Thus, for each iteration, each verifier computes (on
its own) its secret share for the sum ∑i ZiXi (a linear function
of the secret-shared Xi’s). This gives the verifiers a single
secret-shared field element that should be multiplied by gk
(instead of d). Indeed, in the full protocol, we fold further
summands into this secret-shared sum. The second minor
efficiency improvement we use is having the honest prover
set exactly a (1− τ)-fraction of the bits gk to 0 (w.h.p. this
means that some repetitions where Equation (1) holds will
not be checked). This allows the verifiers to replace checking
∑k gk ≥ τ · r (an inequality) with a simpler equality check
∑k gk = τ · r.

Lemma 3.3. Fix a bound B, a number of repetitions r, a
desired completeness error for each repetition η ∈ [0,1] and
a threshold τ ∈ (1/2,1] s.t. τ · r is an integer. Let the field size
q be at least max{81B · ln(2/η),100,2r}.

Let Bin(ℓ;r, p) denote the probability that the Binomial
distribution with parameters r and p has outcome (number
of successes) at least ℓ. The protocol of Figure 2 has the
following properties:

1. Completeness: If ∑X2
i ≤ B, then the probability that the

prover aborts is at most:

ρC = 1−Bin((τ · r);r,1−η). (2)

Thus, for τ ∈ (1/2,1 − η), we get that ρC ≤
exp
(
−2(1−η− τ)2 · r

)
. For τ ∈ [1 − η,1], it is

still the case that ρC ≤ r ·η.

If the prover doesn’t abort, then the verifiers accept and
it holds that: (i) for every k ∈ [r], gk ·Sk = 0, and (ii) the
output shares {[gk], [vk, j], [uk, j]} are shares of bits.

6982    33rd USENIX Security Symposium USENIX Association



Wraparound Detection Protocol

Common inputs: Dimension d ∈ N, claimed bound B ∈ N, field size q ∈ N, number of repetitions r ∈ N, completeness error
per repetition η ∈ [0,1], threshold τ ∈ (1/2,1] for successful repetitions, s.t. τ · r is an integer.

Secret-shared inputs: A vector X ∈GF[q]d , where each Xi is secret-shared as [Xi] = (X (0)
i ,X (1)

i ).
The client (prover) knows the secret-shared values X and the shares [X ].
The servers (verifiers) each know their own shares (respectively X (0) and X (1)).

Secret-shared outputs: {[gk], [Sk], [vk, j], [uk, j]}k∈[r], j∈[b] where b =
(⌈

log(2α
√

B+1)
⌉)

.

The Protocol:
Fix α =

√
ln(2/η). Let DZ be the distribution that samples a d-dimensional vector where for each i ∈ [1, . . . ,d], Zi is drawn

independently to be −1 w.p. 1/4, 0 w.p. 1/2 and 1 w.p. 1/4

1. The following test is repeated in parallel r times, where in the k-th repetition:

(a) The verifiers choose a random string Zk ∼ DZ and send it to the prover.
The prover computes Yk = ∑

d
i=1 Zk,iXi.

(b) If Yk ∈ [−α
√

B,α
√

B], the prover sets gk = 1 and uses the protocol of Figure 1 to prove that (∑i Zk,iXi) ∈
[−α

√
B,α

√
B]. Let {vk, j,uk, j} j∈[b] be the secret-shared outputs of that protocol.

Otherwise (Yk /∈ [−α
√

B,α
√

B]), the prover sets gk = 0, sets the bits {vk, j} to be the bit representation of the value
2α

√
B, and sets the bits {uk, j} j∈[b] to all be 0. Note that this setting ensures that the linear check in the protocol of

Figure 1 (the last step of that protocol) succeeds.

2. If there are more than (1− τ) · r repetitions in which gk = 0 then the prover aborts (and the verifiers reject).

Otherwise, the prover sets gk = 0 for as many of the repetitions as needed to ensure there are exactly (1− τ) · r such
repetitions, and sends secret shares of {gk}k∈[r].

3. For each k ∈ [r], the verifiers will check that either gk = 0 or the v j’s satisfy soundness condition (i) of the protocol of
Figure 1 (see Lemma 3.1). Towards this, each verifier computes its a share of:

Sk =

(
d

∑
i=1

Zk,iXi

)
+α

√
B−

(
∑
j∈[b]

2 j · vk, j

)
(mod q),

Note that the sum Sk is a linear function of secret-shared values, so each verifier can indeed compute its share on its own.
The protocol of Section 3.3 will later be used to check the quadratic equality gk ·Sk = 0 (mod q) (see the protocol of
Figure 3).

4. The verifiers verify the linear equality ∑k∈[r] gk = τ · r (mod q) (otherwise they reject).

Figure 2: Wraparound Detection Protocol

2. Soundness: If ∑X2
i ≥ q, the probability that the verifiers

accept, and that (i) for every k it holds that gk ·Sk = 0,
and (ii) the shares {[gk], [vk, j, [uk, j]} are all shares of
bits, is at most

ρS = Bin((τ · r);r,
1
2
)≤ exp

(
−2
(

τ− 1
2

)2

· r

)
. (3)

3. Zero-Knowledge: The protocol satisfies statistical zero-
knowledge: the view of each verifier can be simulated

up to statistical distance ρC (see Equation (2)) .

The protocol is public-coins, with 2 messages. The veri-
fier’s message is (2 · d · r) bits, the prover’s response is of

length
((⌈

log
(√

2B · ln(2/η)+1
)⌉

+2
)
· r · log(q)

)
. The

prover performs O((d + log(B · ln(2/η))) · r) field operations.
The verifiers each perform O((d + log(B · ln(2/η))) · r) field
operations, and communicate O(r · log(q)) bits between them-
selves.

USENIX Association 33rd USENIX Security Symposium    6983



Proof. The protocol is in Figure 2, and the claimed com-
plexity bounds follow by construction. We proceed to prove
completeness for a single repetition (Proposition 3.4) and
soundness for a single repetition (Proposition 3.5). For clarity,
we omit the subscript k when we consider a single iteration.
Let Y be the vector where Yi = ZiXi. Recall that we set the pa-
rameter α =

√
ln(2/η). The proof of the following complete-

ness claim follows from standard subgaussian concentration,
and deferred to the full version [ROCT23].

Proposition 3.4 (Completeness). Let ∑i X2
i ≤ B. For every

α > 0 and every field size q ≥ 2α
√

B:

Pr
Z1,...,Zd

[
Y ∈ [−α

√
B,α

√
B]
]
≥ 1−2e−α2

.

Proposition 3.5 (Soundness). For every B, every α ≥ 1 and
every field size q ≥ max{81α2B,100}, if it is the case that
∑i X2

i > q, then:

Pr
Z1,...,Zd

[Y ∈ [−α
√

B,α
√

B] (mod q)]≤ 1
2
.

Proof. If any of the secret-shared w j values are not bits, then
the soundness condition is automatically satisfied. Thus, we
only need to bound the probability that the verifiers accept
conditioned on the event that all w j’s are bits. Under this con-
ditioning, (∑ j w j · 2 j) ∈ [0,2α

√
B]. The verifiers check that

(∑ j w j ·2 j) =Y +α
√

B (mod q), and thus they will reject un-
less Y ∈ [−α

√
B,α

√
B] (mod q). We bound the probability

that Y (mod q) is in this range using a case analysis (sound-
ness follows), where we view the value of each Xi modulo q
as an integer between −q/2 and q/2.

Soundness, case I (large max). If:

max
i

|Xi|> 2α
√

B (mod q),

then let i∗ be the argmax, where |Xi∗ |> 2α
√

B (mod q) (note
that this can only happen if q > 4α

√
B). The probability, over

the choice of Z, that ∑i ZiXi (mod q) lands in the interval
[−α

√
B,α

√
B] is at most 1/2. To see this, fix all of Z’s entries

except the i∗-th entry. There are two cases:

• Let S be the sum of all Yi’s except the i∗-th (mod q).
If S ∈ [−α

√
B,α

√
B], then when we add or subtract Xi∗ ,

we end up outside the interval. This is because if Zi∗ ̸= 0,
then

|Yi∗ | ∈ (2α
√

B,q/2] (mod q).

Suppose w.l.o.g that Yi∗ is positive (modulo q), then:

Y = S+Yi∗ ∈ (α
√

B,q/2+α
√

B] (mod q),

and thus Y is outside the interval (recall that q > 4α
√

B).
A similar statement holds for the case that Yi∗ is negative
(modulo q).

• If the sum of all Yi’s except the i∗-th is outside the inter-
val, then w.p. 1/2 we have that Zi∗ = 0 and the total sum
is also outside the interval.

Soundness, case II (bounded max). Suppose it is the case
that:

max
i

|Xi| ≤ 2α
√

B.

In this case, we use the Berry-Esseen theorem to show
that the distribution of Y is sufficiently close to a Normal
distribution, and this allows us to bound the probability that
its magnitude is small modulo q.

Theorem 3.6 (Berry-Esseen for our setting, see [Fel91;
She10].). Suppose maxi |Xi| ≤ 2α

√
B, and take σ2 =∑i X2

i /2.
Then for any y ∈ R:

∣∣Pr[Y ≤ y]−Pr[N (0,σ2)≤ y]
∣∣≤ 0.56 ·α

√
B

σ
.

A symmetric claim follows for bounding the probability
that Y is above a value y′. For an interval [y′,y], the probability
of Y lying in the interval can be bounded via a Union Bound
on the probability that it is below y′ and the probability that it
is above y.

We use the Berry-Essen theorem, together with the con-
centration (and anti-concentration) properties of the Normal
distribution, to bound the probability that Y ’s magnitude is
small modulo q. In Claim 3.7 we bound the probability that
Y lies in any single interval where its magnitude modulo q is
small. In Claim 3.8 we bound the probability that Y is far from
its expectation. To prove the soundness lemma, we combine
these claims: bounding the probability that Y is not too far
from its expectation and has small magnitude modulo q, and
also that it is far from its expectation. We prove the following
claims in the full version [ROCT23].

Claim 3.7. Suppose that α ≥ 1, the field size is q ≥ 2α
√

B,
and that maxi |Xi| ≤ 2α

√
B, and take σ2 = ∑i X2

i /2. Then for
every integer u ≥ 0:

u

∑
t=−u

Pr
[
Y ∈ [−α

√
B+ t ·q,α

√
B+ t ·q]

]
≤ (2u+1) ·

(
1.12+

√
2
π

)
· α

√
B

σ

Claim 3.8. Suppose that α ≥ 1, the field size is q ≥ 2α
√

B,
and that maxi |Xi| ≤ 2α

√
B. Take σ2 = ∑i X2

i /2. Then for
every integer t ≥ 1, it holds that:

Pr
[
|Y | ≥ −α

√
B+ t ·q

]
≤
√

2
π

exp

(
−
(
−α

√
B+ t ·q

)2

2σ2

)
+

1.12α
√

B
σ

6984    33rd USENIX Security Symposium USENIX Association



As described above, putting these claims together, we can
bound both the probability that Y (mod q) has small magni-
tude but |Y | isn’t too large, and the remaining case, where |Y |
is large. Towards this, for a parameter δ > 0 to be specified
below, we set:

u =

⌊
(σ
√

2ln(1/δ))+(α
√

B)
q

⌋
.

By a union bound over Claims 3.7 and 3.8, an easy computa-
tion (see the full verison [ROCT23]) establishes that

Claim 3.9. Under the notation above,

Pr[Y ∈ [−α
√

B,α
√

B] (mod q)]

≤

(
α
√

B ·

(
1.12+

√
2
π

)
·

(
2
√

2ln(1/δ)+0.04
√

q
q

)
+δ

)
.

Taking δ = e−3, and q ≥ 100 s.t. 0.04
√

q+2
√

6 ≤ 2.1
√

q,
we have that:

Pr[Y ∈ [−α
√

B,α
√

B] (mod q)]

≤

(
2.1 ·

(
1.12+

√
2
π

))
α
√

B
√

q
+ e−3.

This probability can be bounded by 1/2 for q ≥
max{81α2B,100}.

In each repetition k, the prover can satisfy the conditions
(i) gk ·Sk = 0, and (ii) the secret-shared values {gk,vk, j,uk, j}
are all shares of bits, if and only if either it holds that Yk ∈
[−α

√
B,α

√
B] (mod q), or the prover sets gk = 0. Over all

r repetitions, the prover can get the verifiers to accept while
satisfying conditions (i) and (ii) above, if and only if in at
least τ · r of the repetitions, Yk ∈ [−α

√
B,α

√
B] (mod q).

Completeness and soundness over the r repetitions are thus
bounded by claimed Binomial terms (see Equations (2) and
(3)). The binomial tail terms can be further bounded by taking
a Chernoff Bound. For completeness, in each repetition the
probability of success is at least 1−η. The probability that in
r repetitions we have fewer than τ · r successes is bounded by:

exp(−DKL (τ∥1−η) · r)≤ exp
(
−2(1−η− τ)2 · r

)
, (4)

where DKL (p∥q) is the KL divergence between the Bernoulli
distribution with mean p and the distribution with mean q.
For soundness, the probability of success in each repetition is
at most 1/2. The probability that in r repetitions we have at
least τ · r successes is bounded by:

exp(−DKL (τ∥1/2) · r)≤ exp

(
−2
(

τ− 1
2

)2

· r

)
. (5)

Remark 3.10. We note that while the protocol is described as
sending the vectors Z1, . . . ,Zk, standard techniques [SSS95;
AS00] of using limited independence (O(log1/ρ)-wise inde-
pendence suffices for the concentration bounds) can be used
to reduce the communication to O(r logd log1/ρ) bits.

Remark 3.11. The analytic Chernoff bound expressions here
can be rather loose for particular values of parameters (espe-
cially when η is close to zero). In practice, one can use better
analytic estimates, or numerical estimates for concentration
on binomial random variables We directly state the bounds in
terms of the CDF of the Binomial distribution in Equations
(2) and (3).

Remark 3.12. Suppose that for some L,H satisfying
−α

√
B ≤ L < 0 < H ≤ α

√
B, we test for Y ∈ [L,H] instead

of Y ∈ [−α
√

B,α
√

B]. Then the soundness argument contin-
ues to hold as Y ∈ [L,H] ⇒ Y ∈ [−α

√
B,α

√
B]. Moreover,

the completeness argument now holds with τ′ = 2exp(−α̂2)
where α̂ = min(−L√

B
, H√

B
). The protocol’s practical efficiency

can be improved by a careful choice of L,H, see Remark 3.2.

Honest-verifier zero-knowledge. To prove zero-knowledge,
we need to show that for a single verifier Vj, there exists
a simulator S that does not know the private input X , but
receives some share X ( j) and generates a view that is statis-
tically closely distributed to the view of the verifier Vj in a
real interaction with the prover and the remaining verifier
V1− j. We sketch the construction of such a simulator. Let{

X ( j)
1 , . . .X ( j)

d

}
be the shares, given to Vj as input.

The Simulation: The simulator S starts by setting X̂ = 0d to
be the (fake) input for the simulation and setting (fictitious)
shares for V1− j accordingly. Specifically, S sets the “shares”
for the second verifier V1− j to be X̂ (1− j)

i = −X ( j)
i and emu-

lates an interaction between the two verifiers as follows.

1. The simulator S repeats the following r times in parallel,
where in the k-th repetition:

It simulates the verifier V1− j in choosing a random string
Zk ∼ DZ and receives from Vj its messages to the prover
to determine Zk.

S simulates the prover, setting Yk = ∑
d
i=1 Zk,iX̂i to be 0.

If 1 ≤ k ≤ τ · r the simulator sets gk = 1, and otherwise
sets gk = 0.

The simulator then sets the bits {vk, j} to be the Bi-
nary representation of the value 2α

√
B, and sets the bits

{uk, j} j∈[b] to all be 0. The simulator S simulates the view
of V j in the appropriate k executions of the protocol in
Figure 1, with αi = Zk,i.

2. The simulator selects shares for {gk}k∈[r] and sends V j
its shares.

USENIX Association 33rd USENIX Security Symposium    6985



3. For each k ∈ [r], the simulator computes V j’s share of Sk
by taking the appropriate linear combination of existing
shares:.

(sk)
( j) =

(
d

∑
i=1

Zk,i(Xi)
( j)

)
+α

√
B−

(
∑
j∈[b]

2 j · (vk, j)
( j)

)
(mod q)

4. The simulator S emulates V1− j in its interaction with
V j verifying the linear equality ∑k∈[r] gk = τ · r (mod q)
(see Example 1).

We first note that all choices of Zk for all r repetitions are
identically distributed in the simulation as in a real execution
of the protocol. Condition on the event that for these choices,
in the real execution of the protocol, it holds that there are at
least τr values of k, for which Yk ∈ [−α

√
B,α

√
B]. This means

that the prover does not abort. Under the aforementioned
conditioning, the view of V j in the real execution is distributed
identically to the view generated by the simulator. This is true
since all that V j ever sees are random shares and the views it
sees in the simulation of the sub-protocol, which are perfectly
simulated (since they are on accepting inputs). Finally, since
in the real world, the probability that the prover aborts is at
most ρC, we conclude that even without the conditioning, the
two views are of statistical distance ρC.

3.3 Verifying Quadratic Constraints
In this section we recall a protocol from the work of Boneh et
al. [BBCGI19] for verifying a conjunction of low-degree con-
straints over secret-shared values. We focus on quadratic con-
straints. Let {X ′

i }i∈[n] be a collection of secret-shared values.
A quadratic constraint Ck is specified by public coefficients
{ck,i, j ∈GF[q]}i, j∈{0,...,n] and a target value ak ∈GF[q], and
the claim (to be verified) is that:

∑
i, j∈[0,n]

ck,i, j ·X ′
i ·X ′

j = ak,

where we use the convention that X ′
0 = 1 (this allows us to

include linear terms in the constraint).
Given a collection of m quadratic constraints as above, there

is a 2-message protocol for verifying that all the constraints
hold, where the communication complexity scales with the
square-root of the number of variables. More generally, the
communication complexity can be reduced to (roughly) n1/r

by increasing the amount of interaction to (2r−2) messages.
Verifying that a secret-shared value v is a bit can be ex-

pressed as the quadratic constraint v2 − v = 0. Thus, we use
this protocol to verify that (multiple) secret shares produced
in other protocols are composed of bits.

Lemma 3.13 (Boneh et al. [BBCGI19, Corollary 4.7 and
Remark 4.8]). For a field of size q, an integer n that is a
perfect square, a collection of secret-shared values {X ′

i }n
i=1,

and quadratic constraints C = {ck,i, j,ak}k∈{1,...,m},i, j∈{0,...,n},
there is a protocol for verifying the constraints as follows: all
parties get as input the field size q and the constraints. The
prover gets both shares of each value X ′

i . Each verifier gets a
single share of each secret-shared value, where:

Completeness: If all constraints hold, the verifiers accept.

Soundness: If at least one of the constraints is violated, then
(no matter what strategy the prover follows) the proba-
bility that the verifiers accept is at most

(
2
√

n
q−

√
n +

m
q

)
.

Zero-Knowledge : The protocol is perfect strong distributed
honest-verifier zero-knowledge (see Definition 2.2).

The protocol is public-coins, with 2 messages. The ver-
ifiers’ message is log(q) bits and the prover’s message is
((4

√
n + 1) · log(q)) bits. Let nnz(C) be the total num-

ber of non-zero coordinates in the constraints {ck,i, j}. The
prover performs O(nnz(C)+n log(n)+m log(m)) field oper-
ations. In the course of verification, the verifiers each perform
O(nnz(C)+ n log(n)+m log(m)) field operations, and they
exchange (2

√
n+2) · log(q) bits with each other.

Soundness amplification. The soundness error can be re-
duced by parallel repetition [BM88; Gol01]:

Corollary 3.14 (Parallel repetition of Lemma 3.13). For the
same inputs considered in the protocol of lemma 3.13, re-
peating that protocol in parallel t times, where the verifiers
accept iff all repetitions accept, gives a 2-message public-
coins protocol with perfect completeness and zero-knowledge,
where:

1. The soundness error is reduced to
(

2
√

n
q−

√
n +

m
q

)t
.

2. The communication and runtime complexities are t times
larger than those in Lemma 3.13.

3.4 Putting it Together: The Norm-Bound Pro-
tocol

Our final norm-bound protocol is described in Figure 3. We
defer the proof to the full version [ROCT23].

Theorem 3.15. Fix a bound B, parameters r, t ∈ N,η ∈
[0,1],τ ∈ (1/2,1] s.t. τ · r is an integer. Let the field size be
q ≥ max{81B · ln(2/η),1000,3r}. The protocol of Figure 3
has the following properties:

1. Completeness: If the claim is true and the prover follows
the protocol, the verifiers accept with prob. ≥ 1− ρC,
where

ρC = 1−Bin((τ · r);r,1−η),

6986    33rd USENIX Security Symposium USENIX Association



L2-Bound Protocol

Common inputs: Dimension d ∈ N, claimed bound B ∈ N, field size q ∈ N, errors ρC,ρS ∈ [0,1].

Secret-shared inputs: A vector X ∈GF[q]d , where each Xi is secret-shared as [Xi] = (X (0)
i ,X (1)

i ).
The client (prover) knows the secret-shared values X and the shares [X ].
The servers (verifiers) each know their own shares (respectively X (0) and X (1)).

Claim (to be verified): ∑
d
i=1 X2

i ≤ B (where summation is over the integers).

The Protocol:

1. Run the wraparound protocol of Section 3.2, setting the parameters r,η,τ as in Theorem 3.15.
The two messages in this subprotocol (the verifier sends the first message) are sent in messages 1 and 2 of the L2-bound protocol. This
results in secret shares of values {sk}k∈[r] and alleged shares of bits {gk,uk, j,vk, j}.

2. Run the protocol of Section 3.1 to verify that ∑i X2
i ∈ [0,B] (mod q).

The prover’s message in this sub-protocol is sent in message 2 of the L2-bound protocol. Results in alleged shares of bits {v′j′ ,u
′
j′}.

3. Use the quadratic constraints protocol of Corollary 3.14, setting the number of repetitions t as in Theorem 3.15, to verify the following
quadratic constraints:

(a) ∑
d
i=1 X2

i = ∑ j′ v′j′ ·2
j′ (mod q).

(b) ∀k ∈ [r],gk · sk = 0.

(c) the secret-shared values {v′j′ ,u
′
j′} and {gk,uk, j,vk, j} are all bits (i.e. in {0,1}).

The two messages of this sub-protocol (the verifier sends the first message) are sent in messages 3 and 4 of the L2-bound protocol.

If the verifiers in any of the sub-protocols executed above reject, then the verifiers in the L2-bound protocol reject immediately. Otherwise,
they accept.

Figure 3: L2-Bound Protocol

where Bin(ℓ;r, p) denotes the probability that the Bino-
mial distribution with parameters r and p has outcome
(number of successes) at least ℓ.

Thus, for τ ∈ (1/2,1 − η), ρC ≤
exp
(
−2(1−η− τ)2 · r

)
. For τ ∈ [1−η,1], ρC ≤ r ·η.

2. Soundness: If ∑X2
i > B (over the integers), the proba-

bility that the verifiers accept is at most:

exp

(
−2
(

τ− 1
2

)2

· r

)
+(

2
√

d +(log(q) · (r+2)/2)

q−2
√

d +(log(q) · (r+2)/2)
+

log(q) · (r+2)
2q

)t

.

3. Zero-Knowledge: The protocol satisfies statistical zero-
knowledge: the view of each verifier can be simulated
up to statistical distance ρC (see above).

The protocol is public-coins, with 4 messages. The message
lengths (in bits) are:

1. the first messsage, sent by the verifier, is of length 2dr.

2. the second message, sent by the prover, is of length at
most ( r

2 +2) · log2(q).

3. The third message, sent by the verifier, is of length t logq.

4. The fourth message, sent by the prover, is of length(
t ·
(

4
√

d +(log(q) · (r+2)/2)+1
)
· log(q)

)
.

4 Differentially Private Secret Sharing

We first recall a notion of near-indistinguishability used in
Differential Privacy, and the notion of differential zero knowl-
edge from [Tal22]:

Definition 4.1 ((ε,δ)-closeness). Two random variables P
and Q are said to be (ε,δ)-close, denoted by P ≈(ε,δ) Q if for
all events S, it holds that Pr[P ∈ S] ≤ eε ·Pr[Q ∈ S]+δ, and
similarly, Pr[Q ∈ S]≤ eε ·Pr[P ∈ S]+δ.

Definition 4.2 (Differential Zero Knowledge). We say a pro-
tocol π is (ε,δ)-Differentially Zero Knowledge w.r.t. L if there
is an efficiently samplable distribution Q such that for all
x ∈ L, the distribution π(x) of the protocol’s transcript on
input x satisfies π(x)≈(ε,δ) Q.

USENIX Association 33rd USENIX Security Symposium    6987



In the full version [ROCT23] , we describe a way for a
client to share a vector X ∈ L = {X ∈ Zd : ∥X∥2

2 ≤ B}, while
preserving differential zero knowledge. In brief, the client will
share each Xi by adding (rounded) truncated Gaussian noise
of magnitude large enough to guarantee differential privacy.
The client (prover) will sample gaussian noise, truncated to
have ℓ2 norm at most ∆ and take the ceiling to get R. It will
then secret-share X as −R and X +R. Since both X and R
have bounded ℓ2 norm, so do the secret shares. The verifiers
check that the received secret shares have bounded ℓ2 norm,
which then implies a bound on the norm of the sum of any
valid secret shares. For a large enough q, there can then be
no wraparound. Validating the squared norm modulo q then
yields :

Theorem 4.3. Let (ε,δ) ∈ (0,1) and B ≥ 1. Set

q > 4

(
√

B+
√

d +

√
dBc

ε, δ

2
· (1+ 2

√
log8e/δ√

d
+ 2log8e/δ

d )

)2

.

Then the PINE differential ZK protocol (see the full version)
has the following properties:

Completeness: If ∑
d
i=1 X2

i ≤ B and the prover follows the
protocol, the verifiers accept with probability 1.

Soundness: If ∑X2
i > B (over the integers), the probability

that the verifiers accept is at most:(
2
√

d +2log(q)

q−2
√

d +2log(q)
+

2log(q)+1
q

)t

.

Zero-Knowledge: The protocol satisfies (ε,δ)-differential
zero knowledge: the view of each verifier can be effi-
ciently simulated up to (ε,δ)-closeness.

The protocol is public-coins, with 3 messages. The prover
sends (in addition to the secret shares of x) 4⌈log2q⌉2)

bits and
(

t ·
(

4
√

d +2⌈log(B+1)⌉+1
)
· ⌈log2 q⌉

)
bits in

rounds 1 and 3 respectively. The verifiers send the second
message of length (t · ⌈log2 q⌉) bits.

5 Performance Evaluation

We provide a further performance analysis for our protocols
in different parameter regimes. As in Table 1, we analyze per-
formance in terms of the communication overhead, beyond
the communication that is needed to simply send secret shares
for distributed aggregation (without any robustness to poison-
ing attacks). We consider aggregating d-dimensional integer
vectors of ℓ2 norm at most 215 with d ∈ {104,105,106,107},
where the aggregation is performed over secret-shared inputs
in a field of size q = 264 or q = 2128 (sending secret shares
for the client’s data requires d · logq bits). The (statistical)
zero-knowledge error is set to δ = 2−50 throughout.

In Table 3 we analyze PINE’s communication overhead for
a smaller soundness error 2−100, fixing all other parameters to
be the same as in the results of Table 1 (where the soundness
error was 2−50). The overhead for Statistical ZK is larger by
a roughly 2x factor (compared with the results in Table 1):
the larger overhead comes from additional repetitions of the
sub-protocols. The overhead for Differential ZK is, similarly,
larger by a roughly 2x factor (compared with the results in Ta-
ble 1), except in the high-dimensional regime, where the main
bottleneck is the increased field size, and the overhead for
smaller soundness error is not much larger than the overhead
for soundness error 2−50.

In Table 4, we analyze PINE’s communication overhead
when the field is large (q = 2128) for soundness errors 2−50

and 2−100. For Statistical ZK, comparing with the perfor-
mance for field size 264, the larger field size does not change
the overhead for soundness error 2−50 (vs. Table 1), but the
overhead is slightly smaller for soundness error 2−100 (vs.
Table 3). For Differential ZK, the large field size reduces the
overhead by a 2x or larger (for high dimensionality) factor
(vs. Tables 1 and 3). This is because the main bottleneck in
the Differential ZK protocol for high-dimensional data was
having a large-enough field. For lower-dimensional data, the
larger field size automatically gives a smaller soundness error,
which reduces overheads. Indeed, for a field size this large,
soundness 2−100 comes “for free”, at no additional overhead
(compared with the overhead for soundness error 2−50).

In Table 5 we analyze Differential PINE’s performance
as a function of the privacy parameter ε ∈ {0.1,0.01, .0.001}.
The overhead increases by (at most) a constant multiplicative
factor for each order of magnitude improvement (reduction)
in the privacy parameter. This is again due to the main “bot-
tleneck” being the field size, which needs to grow linearly
in (1/ε) (thus the bit length of a field element grows with
log(1/ε)).

On the precision parameter. As discussed after the per-
formance analysis in Section 1.1, we consider aggregating
floating point vectors of Euclidean norm at most 1, and sup-
port b = 15 bits of precision. Our main focus is on distributed
aggregation, where noise will be added to the aggregate be-
fore it is revealed to the servers (to guarantee differential
privacy). Since we expect noise to be added to the aggregate,
there is limited value in increasing the precision for individual
contributions.

Further performance evaluation.We provide further evalua-
tions in the full version [ROCT23]. First, we analyze PINE’s
runtime overhead for the prover and the verifier, and find
that they are improved by 1-2 orders of magnitude compared
to the prior work of [BBCGI19; ISR23]. We also provide
more detailed evaluations of statistical PINE’s communica-
tion overhead for many different choices of soundness and
zero-knowledge errors.

6988    33rd USENIX Security Symposium USENIX Association



d = 104 d = 105 d = 106 d = 107

no robustness, # bits sent 64 ·104 64 ·105 64 ·106 64 ·107

prior work, overhead [BBCGI19; ISR23] > 1500% > 1500% > 1500% > 1500%
PINE, Statistical ZK, overhead 43.01% 6.27% 0.97% 0.26%

PINE, Differential ZK, overhead 8.92% 2.86% 0.63% 12.76%

Table 3: Communication analysis: our protocols and prior work. Parameters: field size q ≈ 264 for aggregation, d-dimensional
data, soundness error 2−100, zero-knowledge error δ = 2−50. For differential ZK ε = 0.1.

d = 104 d = 105 d = 106 d = 107

no robustness, # bits sent 128 ·104 128 ·105 128 ·106 128 ·107

prior work, overhead [BBCGI19; ISR23] > 1500% > 1500% > 1500% > 1500%
PINE, Statistical ZK, ρ = 2−50, overhead 22% 3.18% 0.49% 0.13%
PINE, Statistical ZK, ρ = 2−100, overhead 36% 4.58% 0.63% 0.15%
PINE, Differential ZK, ρ = 2−50, overhead 4.77% 1.46% 0.32% 0.11%
PINE, Differential ZK, ρ = 2−100, overhead 4.77% 1.46% 0.32% 0.11%

Table 4: Communication analysis: our protocols and prior work. Parameters: field size q ≈ 2128, d-dimensional data, soundness
error ρ = 2−50 and 2−100, zero-knowledge error δ = 2−50. For differential ZK ε = 0.1.

d = 104 d = 105 d = 106 d = 107

no robustness, # bits sent 64 ·104 64 ·105 64 ·106 64 ·107

prior work, overhead [BBCGI19; ISR23] > 1500% > 1500% > 1500% > 1500%
PINE, Differential ZK, ε = 0.1, overhead 4.77% 1.46% 0.32% 12.63%
PINE, Differential ZK, ε = 0.01, overhead 17.87% 14.14% 12.86% 25.14%

PINE, Differential ZK, ε = 0.001, overhead 17.87% 26.83% 25.40% 37.66%

Table 5: Communication analysis: Differential ZK protocol and prior work. Parameters: field size q ≈ 264, d-dimensional data,
soundness error ρ = 2−50, zero-knowledge error δ = 2−50.

References

[AG21] Apple and Google. Exposure Notification Privacy-
preserving Analytics (ENPA) White Paper. Available
at https : / / covid19 - static . cdn - apple .
com / applications / covid19 / current / static /
contact- tracing/pdf/ENPA_White_Paper.pdf.
2021.

[AGJOP22] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail
Ostrovsky, and Antigoni Polychroniadou. “Prio+: Pri-
vacy Preserving Aggregate Statistics via Boolean
Shares”. In: Security and Cryptography for Networks
- 13th International Conference, SCN 2022. Ed. by
Clemente Galdi and Stanislaw Jarecki. Vol. 13409.
Lecture Notes in Computer Science. Springer, 2022,
pp. 516–539. URL: https://doi.org/10.1007/978-
3-031-14791-3%5C_23.

[AS00] Noga Alon and Joel H. Spencer. The Probabilistic
Method. Second. Wiley-Interscience, 2000.

[BBCGI19] Dan Boneh, Elette Boyle, Henry Corrigan-
Gibbs, Niv Gilboa, and Yuval Ishai. “Zero-Knowledge
Proofs on Secret-Shared Data via Fully Linear PCPs”. In:

Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference. Ed. by Alexandra
Boldyreva and Daniele Micciancio. Vol. 11694. Lecture
Notes in Computer Science. Springer, 2019, pp. 67–97.

[BBCGI21] Dan Boneh, Elette Boyle, Henry Corrigan-
Gibbs, Niv Gilboa, and Yuval Ishai. “Lightweight Tech-
niques for Private Heavy Hitters”. In: 2021 IEEE Sym-
posium on Security and Privacy (SP). 2021, pp. 762–
776.

[BBCGI23] Dan Boneh, Elette Boyle, Henry Corrigan-
Gibbs, Niv Gilboa, and Yuval Ishai. “Arithmetic Sketch-
ing”. In: Advances in Cryptology - CRYPTO 2023 - 43rd
Annual International Cryptology Conference, CRYPTO
2023, Santa Barbara, CA, USA, August 20-24, 2023, Pro-
ceedings, Part I. Ed. by Helena Handschuh and Anna
Lysyanskaya. Vol. 14081. Lecture Notes in Computer
Science. Springer, 2023, pp. 171–202. URL: https://
doi.org/10.1007/978-3-031-38557-5%5C_6.

[BBG19] Gilad Baruch, Moran Baruch, and Yoav Goldberg.
“A Little Is Enough: Circumventing Defenses For Dis-
tributed Learning”. In: Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on

USENIX Association 33rd USENIX Security Symposium    6989

https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://doi.org/10.1007/978-3-031-14791-3%5C_23
https://doi.org/10.1007/978-3-031-14791-3%5C_23
https://doi.org/10.1007/978-3-031-38557-5%5C_6
https://doi.org/10.1007/978-3-031-38557-5%5C_6


Neural Information Processing Systems 2019. Ed. by
Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Ro-
man Garnett. 2019, pp. 8632–8642. URL: https://
proceedings . neurips . cc / paper / 2019 / hash /
ec1c59141046cd1866bbbcdfb6ae31d4 - Abstract .
html.

[BBGLR20] James Henry Bell, Kallista A. Bonawitz, Adrià
Gascón, Tancrède Lepoint, and Mariana Raykova. Se-
cure Single-Server Aggregation with (Poly)Logarithmic
Overhead. 2020. URL: https://doi.org/10.1145/
3372297.3417885.

[BGGKMRS22] James Bell, Adrià Gascón, Badih Ghazi,
Ravi Kumar, Pasin Manurangsi, Mariana Raykova, and
Phillipp Schoppmann. “Distributed, Private, Sparse His-
tograms in the Two-Server Model”. In: Proceedings
of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’22. Association
for Computing Machinery, 2022, pp. 307–321. ISBN:
9781450394505. URL: https://doi.org/10.1145/
3548606.3559383.

[BIKMMPRSS17] Keith Bonawitz, Vladimir Ivanov, Ben
Kreuter, Antonio Marcedone, H. Brendan McMa-
han, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. “Practical Secure Aggregation for Privacy-
Preserving Machine Learning”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’17. Association for
Computing Machinery, 2017, pp. 1175–1191. ISBN:
9781450349468. URL: https://doi.org/10.1145/
3133956.3133982.

[BM88] László Babai and Shlomo Moran. “Arthur-Merlin
Games: A Randomized Proof System, and a Hierarchy
of Complexity Classes”. In: J. Comput. Syst. Sci. 36.2
(1988), pp. 254–276. URL: https://doi.org/10.
1016/0022-0000(88)90028-1.

[CB17] Henry Corrigan-Gibbs and Dan Boneh. “Prio: Pri-
vate, Robust, and Scalable Computation of Aggregate
Statistics”. In: 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2017. Ed.
by Aditya Akella and Jon Howell. USENIX Associa-
tion, 2017, pp. 259–282. URL: https://www.usenix.
org/conference/nsdi17/technical- sessions/
presentation/corrigan-gibbs.

[CP22] Leo de Castro and Anitgoni Polychroniadou.
“Lightweight, Maliciously Secure Verifiable Function
Secret Sharing”. In: Advances in Cryptology – EU-
ROCRYPT 2022. Ed. by Orr Dunkelman and Stefan
Dziembowski. Springer International Publishing, 2022,
pp. 150–179. ISBN: 978-3-031-06944-4.

[Deh+23] Mostafa Dehghani, Josip Djolonga, Basil Mustafa,
Piotr Padlewski, Jonathan Heek, Justin Gilmer, An-
dreas Peter Steiner, Mathilde Caron, Robert Geirhos,
Ibrahim Alabdulmohsin, Rodolphe Jenatton, Lucas
Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang,
Carlos Riquelme Ruiz, Matthias Minderer, Joan
Puigcerver, Utku Evci, Manoj Kumar, Sjoerd Van
Steenkiste, Gamaleldin Fathy Elsayed, Aravindh Ma-
hendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn
Bastings, Mark Collier, Alexey A. Gritsenko, Vighnesh
Birodkar, Cristina Nader Vasconcelos, Yi Tay, Thomas
Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin
Tran, Thomas Kipf, Mario Lucic, Xiaohua Zhai, Daniel
Keysers, Jeremiah J. Harmsen, and Neil Houlsby. “Scal-
ing Vision Transformers to 22 Billion Parameters”. In:
Proceedings of the 40th International Conference on
Machine Learning. Ed. by Andreas Krause, Emma Brun-
skill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett. Vol. 202. Proceedings of Ma-
chine Learning Research. PMLR, 2023, pp. 7480–7512.
URL: https : / / proceedings . mlr . press / v202 /
dehghani23a.html.

[DKMMN06] Cynthia Dwork, Krishnaram Kenthapadi,
Frank McSherry, Ilya Mironov, and Moni Naor. “Our
Data, Ourselves: Privacy Via Distributed Noise Genera-
tion”. In: Advances in Cryptology (EUROCRYPT 2006).
Vol. 4004. Lecture Notes in Computer Science. Springer
Verlag, 2006, pp. 486–503. URL: https : / / www .
microsoft.com/en- us/research/publication/
our-data-ourselves-privacy-via-distributed-
noise-generation/.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim,
and Adam Smith. “Calibrating Noise to Sensitivity in Pri-
vate Data Analysis”. In: Theory of Cryptography. Ed. by
Shai Halevi and Tal Rabin. Springer Berlin Heidelberg,
2006, pp. 265–284. ISBN: 978-3-540-32732-5.

[Dos+21] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. “An Image is Worth 16x16 Words: Transform-
ers for Image Recognition at Scale”. In: International
Conference on Learning Representations. 2021. URL:
https://openreview.net/forum?id=YicbFdNTTy.

[FCJG20] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and
Neil Zhenqiang Gong. “Local Model Poisoning At-
tacks to Byzantine-Robust Federated Learning”. In: 29th
USENIX Security Symposium, USENIX Security 2020.
Ed. by Srdjan Capkun and Franziska Roesner. USENIX
Association, 2020, pp. 1605–1622. URL: https : / /
www.usenix.org/conference/usenixsecurity20/
presentation/fang.

6990    33rd USENIX Security Symposium USENIX Association

https://proceedings.neurips.cc/paper/2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3548606.3559383
https://doi.org/10.1145/3548606.3559383
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1016/0022-0000(88)90028-1
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://proceedings.mlr.press/v202/dehghani23a.html
https://proceedings.mlr.press/v202/dehghani23a.html
https://www.microsoft.com/en-us/research/publication/our-data-ourselves-privacy-via-distributed-noise-generation/
https://www.microsoft.com/en-us/research/publication/our-data-ourselves-privacy-via-distributed-noise-generation/
https://www.microsoft.com/en-us/research/publication/our-data-ourselves-privacy-via-distributed-noise-generation/
https://www.microsoft.com/en-us/research/publication/our-data-ourselves-privacy-via-distributed-noise-generation/
https://openreview.net/forum?id=YicbFdNTTy
https://www.usenix.org/conference/usenixsecurity20/presentation/fang
https://www.usenix.org/conference/usenixsecurity20/presentation/fang
https://www.usenix.org/conference/usenixsecurity20/presentation/fang


[Fel91] William Feller. An Introduction to Probability The-
ory and Its Applications, Volume 2. Wiley, 1991.

[Gol01] Oded Goldreich. The Foundations of Cryptography
- Volume 1: Basic Techniques. Cambridge University
Press, 2001. ISBN: 0-521-79172-3. URL: http://www.
wisdom.weizmann.ac.il/%5C%7Eoded/foc-vol1.
html.

[GPRW23] Tim Geoghegan, Christopher Patton, Eric
Rescorla, and Christopher A. Wood. Distributed Aggre-
gation Protocol for Privacy Preserving Measurement.
IETF Working Group Draft. https://datatracker.
ietf.org/doc/draft-ietf-ppm-dap/. 2023. URL:
https : / / datatracker . ietf . org / doc / draft -
ietf-ppm-dap/.

[HKJ20] Lie He, Sai Praneeth Karimireddy, and Martin Jaggi.
“Secure Byzantine-Robust Machine Learning”. In: CoRR
abs/2006.04747 (2020). arXiv: 2006 . 04747. URL:
https://arxiv.org/abs/2006.04747.

[HLXCZ21] Meng Hao, Hongwei Li, Guowen Xu, Hanxiao
Chen, and Tianwei Zhang. “Efficient, Private and Robust
Federated Learning”. In: ACSAC ’21: Annual Computer
Security Applications Conference. ACM, 2021, pp. 45–
60. URL: https://doi.org/10.1145/3485832.
3488014.

[HMR18] Robert Helmer, Anthony Miyaguchi, and Eric
Rescorla. Testing Privacy-Preserving Telemetry with
Prio. https : / / hacks . mozilla . org / 2018 / 10 /
testing-privacy-preserving-telemetry-with-
prio/. 2018.

[ISR23] ISRG. DivviUp LibPrio Rust. Retreived June 2023.
2023. URL: https : / / github . com / divviup /
libprio-rs.

[Kai+21] Peter Kairouz, H. Brendan McMahan, Brendan
Avent, Aurelien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham
Cormode, Rachel Cummings, Rafael G. L. D’Oliveira,
Hubert Eichner, Salim El Rouayheb, David Evans, Josh
Gardner, Zachary Garrett, Adria Gascon, Badih Ghazi,
Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui,
Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchin-
son, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Konecny, Aleksandra Korolova,
Farinaz Koushanfar, Sanmi Koyejo, Tancrede Lepoint,
Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock,
Ayfer Ozgur, Rasmus Pagh, Mariana Raykova, Hang Qi,
Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang
Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha
Suresh, Florian Tramer, Praneeth Vepakomma, Jianyu
Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu,
Han Yu, and Sen Zhao. Advances and Open Prob-
lems in Federated Learning. 2021. arXiv: 1912.04977
[cs.LG].

[LSTS20] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and
Virginia Smith. “Federated Learning: Challenges, Meth-
ods, and Future Directions”. In: IEEE Signal Processing
Magazine 37.3 (2020), pp. 50–60.

[MM17] Saeed Mahloujifar and Mohammad Mahmoody.
“Blockwise p-Tampering Attacks on Cryptographic Prim-
itives, Extractors, and Learners”. In: Theory of Cryptog-
raphy - 15th International Conference, TCC 2017. Ed.
by Yael Kalai and Leonid Reyzin. Vol. 10678. Lecture
Notes in Computer Science. Springer, 2017, pp. 245–
279. URL: https://doi.org/10.1007/978-3-319-
70503-3%5C_8.

[PAFSTL23] Martin Pelikan, Sheikh Shams Azam, Vitaly
Feldman, Jan "Honza" Silovsky, Kunal Talwar, and Ta-
tiana Likhomanenko. Federated Learning with Differen-
tial Privacy for End-to-End Speech Recognition. 2023.
arXiv: 2310.00098 [cs.LG].

[Pau+21] Matthias Paulik, Matt Seigel, Henry Mason, Do-
minic Telaar, Joris Kluivers, Rogier van Dalen, Chi
Wai Lau, Luke Carlson, Filip Granqvist, Chris Vande-
velde, Sudeep Agarwal, Julien Freudiger, Andrew Byde,
Abhishek Bhowmick, Gaurav Kapoor, Si Beaumont,
Áine Cahill, Dominic Hughes, Omid Javidbakht, Fei
Dong, Rehan Rishi, and Stanley Hung. Federated Evalu-
ation and Tuning for On-Device Personalization: System
Design and Applications. 2021. arXiv: 2102 . 08503
[cs.LG].

[RMRB19] Swaroop Ramaswamy, Rajiv Mathews, Kanishka
Rao, and Françoise Beaufays. Federated Learning for
Emoji Prediction in a Mobile Keyboard. 2019. arXiv:
1906.04329 [cs.CL].

[RNFH19] Edo Roth, Daniel Noble, Brett Hemenway Falk,
and Andreas Haeberlen. “Honeycrisp: Large-Scale Dif-
ferentially Private Aggregation without a Trusted Core”.
In: Proceedings of the 27th ACM Symposium on Op-
erating Systems Principles. SOSP ’19. Association
for Computing Machinery, 2019, pp. 196–210. ISBN:
9781450368735.

[ROCT23] Guy N. Rothblum, Eran Omri, Junye Chen, and
Kunal Talwar. PINE: Efficient Norm-Bound Verification
for Secret-Shared Vectors. 2023. arXiv: 2311.10237
[cs.CR].

[RSWP22] Mayank Rathee, Conghao Shen, Sameer Wagh,
and Raluca Ada Popa. “ELSA: Secure Aggregation for
Federated Learning with Malicious Actors”. In: IACR
Cryptol. ePrint Arch. (2022), p. 1695. URL: https://
eprint.iacr.org/2022/1695.

[RU23] Olivia Röhrig and Maxim Urschumzew. dpsa4fl:
Differential Privacy for Federated Machine Learning
with PRIO. 2023. URL: https : / / github . com /
dpsa4fl/overview.

USENIX Association 33rd USENIX Security Symposium    6991

http://www.wisdom.weizmann.ac.il/%5C%7Eoded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/%5C%7Eoded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/%5C%7Eoded/foc-vol1.html
https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/
https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/
https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/
https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/
https://arxiv.org/abs/2006.04747
https://arxiv.org/abs/2006.04747
https://doi.org/10.1145/3485832.3488014
https://doi.org/10.1145/3485832.3488014
https://hacks.mozilla.org/2018/10/testing-privacy-preserving-telemetry-with-prio/
https://hacks.mozilla.org/2018/10/testing-privacy-preserving-telemetry-with-prio/
https://hacks.mozilla.org/2018/10/testing-privacy-preserving-telemetry-with-prio/
https://github.com/divviup/libprio-rs
https://github.com/divviup/libprio-rs
https://arxiv.org/abs/1912.04977
https://arxiv.org/abs/1912.04977
https://doi.org/10.1007/978-3-319-70503-3%5C_8
https://doi.org/10.1007/978-3-319-70503-3%5C_8
https://arxiv.org/abs/2310.00098
https://arxiv.org/abs/2102.08503
https://arxiv.org/abs/2102.08503
https://arxiv.org/abs/1906.04329
https://arxiv.org/abs/2311.10237
https://arxiv.org/abs/2311.10237
https://eprint.iacr.org/2022/1695
https://eprint.iacr.org/2022/1695
https://github.com/dpsa4fl/overview
https://github.com/dpsa4fl/overview


[RZHP20] Edo Roth, Hengchu Zhang, Andreas Haeberlen,
and Benjamin C. Pierce. “Orchard: Differentially Private
Analytics at Scale”. In: 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20). USENIX Association, 2020, pp. 1065–1081. ISBN:
978-1-939133-19-9.

[SGA20] Jinhyun So, Basak Guler, and A. Salman Aves-
timehr. Turbo-Aggregate: Breaking the Quadratic Ag-
gregation Barrier in Secure Federated Learning. 2020.
arXiv: 2002.04156 [cs.LG].

[SGA21] Jinhyun So, Basak Güler, and A. Salman Aves-
timehr. “Turbo-Aggregate: Breaking the Quadratic Ag-
gregation Barrier in Secure Federated Learning”. In:
IEEE Journal on Selected Areas in Information Theory
2.1 (2021), pp. 479–489.

[SH21] Virat Shejwalkar and Amir Houmansadr. “Manipu-
lating the Byzantine: Optimizing Model Poisoning At-
tacks and Defenses for Federated Learning”. In: 28th
Annual Network and Distributed System Security Sym-
posium, NDSS 2021. The Internet Society, 2021. URL:
https://www.ndss-symposium.org/ndss-paper/
manipulating - the - byzantine - optimizing -
model- poisoning- attacks- and- defenses- for-
federated-learning/.

[She10] I.G. Shevtsova. “An improvement of convergence
rate estimates in the Lyapunov theorem”. In: Dokl. Math.
82 (2010), pp. 862–864. URL: https://doi.org/10.
1134/S1064562410060062.

[SHKR22] Virat Shejwalkar, Amir Houmansadr, Peter
Kairouz, and Daniel Ramage. “Back to the Drawing
Board: A Critical Evaluation of Poisoning Attacks on
Production Federated Learning”. In: 43rd IEEE Sym-
posium on Security and Privacy, SP 2022. IEEE, 2022,
pp. 1354–1371. URL: https://doi.org/10.1109/
SP46214.2022.9833647.

[SKSM19] Ziteng Sun, Peter Kairouz, Ananda Theertha
Suresh, and H. Brendan McMahan. “Can You
Really Backdoor Federated Learning?” In: CoRR
abs/1911.07963 (2019). arXiv: 1911 . 07963. URL:
http://arxiv.org/abs/1911.07963.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srini-
vasan. “Chernoff–Hoeffding Bounds for Applications
with Limited Independence”. In: SIAM Journal on Dis-
crete Mathematics 8.2 (1995), pp. 223–250.

[Tal+23] Kunal Talwar, Shan Wang, Audra McMillan, Vo-
jta Jina, Vitaly Feldman, Bailey Basile, Áine Cahill,
Yi Sheng Chan, Mike Chatzidakis, Junye Chen, Oliver
Chick, Mona Chitnis, Suman Ganta, Yusuf Goren, Filip
Granqvist, Kristine Guo, Frederic Jacobs, Omid Javid-
bakht, Albert Liu, Richard Low, Dan Mascenik, Steve
Myers, David Park, Wonhee Park, Gianni Parsa, Tommy
Pauly, Christian Priebe, Rehan Rishi, Guy Rothblum,

Michael Scaria, Linmao Song, Congzheng Song, Karl
Tarbe, Sebastian Vogt, Luke Winstrom, and Shundong
Zhou. “Samplable Anonymous Aggregation for Private
Federated Data Analysis”. In: CoRR abs/2307.15017
(2023). arXiv: 2307.15017. URL: https://doi.org/
10.48550/arXiv.2307.15017.

[Tal22] Kunal Talwar. “Differential Secrecy for Distributed
Data and Applications to Robust Differentially Secure
Vector Summation”. In: 3rd Symposium on Foundations
of Responsible Computing, FORC 2022. Ed. by L. Elisa
Celis. Vol. 218. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022, 7:1–7:16.

[Xu+23] Mingbin Xu, Congzheng Song, Ye Tian, Neha
Agrawal, Filip Granqvist, Rogier van Dalen, Xiao Zhang,
Arturo Argueta, Shiyi Han, Yaqiao Deng, Leo Liu, An-
mol Walia, and Alex Jin. “Training Large-Vocabulary
Neural Language Models by Private Federated Learning
for Resource-Constrained Devices”. In: ICASSP 2023
- 2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2023, pp. 1–5.

[XZACKMRZ23] Zheng Xu, Yanxiang Zhang, Galen An-
drew, Christopher Choquette, Peter Kairouz, Brendan
Mcmahan, Jesse Rosenstock, and Yuanbo Zhang. “Fed-
erated Learning of Gboard Language Models with Differ-
ential Privacy”. In: Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 5: Industry Track). Ed. by Sunayana Sitaram,
Beata Beigman Klebanov, and Jason D Williams. Asso-
ciation for Computational Linguistics, 2023, pp. 629–
639. URL: https://aclanthology.org/2023.acl-
industry.60.

[ZLLBRZGS23] Shuangfei Zhai, Tatiana Likhomanenko,
Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Joshua M. Susskind. “Stabiliz-
ing Transformer Training by Preventing Attention En-
tropy Collapse”. In: Proceedings of the 40th Interna-
tional Conference on Machine Learning. Ed. by Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara En-
gelhardt, Sivan Sabato, and Jonathan Scarlett. Vol. 202.
Proceedings of Machine Learning Research. PMLR,
2023, pp. 40770–40803. URL: https://proceedings.
mlr.press/v202/zhai23a.html.

6992    33rd USENIX Security Symposium USENIX Association

https://arxiv.org/abs/2002.04156
https://www.ndss-symposium.org/ndss-paper/manipulating-the-byzantine-optimizing-model-poisoning-attacks-and-defenses-for-federated-learning/
https://www.ndss-symposium.org/ndss-paper/manipulating-the-byzantine-optimizing-model-poisoning-attacks-and-defenses-for-federated-learning/
https://www.ndss-symposium.org/ndss-paper/manipulating-the-byzantine-optimizing-model-poisoning-attacks-and-defenses-for-federated-learning/
https://www.ndss-symposium.org/ndss-paper/manipulating-the-byzantine-optimizing-model-poisoning-attacks-and-defenses-for-federated-learning/
https://doi.org/10.1134/S1064562410060062
https://doi.org/10.1134/S1064562410060062
https://doi.org/10.1109/SP46214.2022.9833647
https://doi.org/10.1109/SP46214.2022.9833647
https://arxiv.org/abs/1911.07963
http://arxiv.org/abs/1911.07963
https://arxiv.org/abs/2307.15017
https://doi.org/10.48550/arXiv.2307.15017
https://doi.org/10.48550/arXiv.2307.15017
https://aclanthology.org/2023.acl-industry.60
https://aclanthology.org/2023.acl-industry.60
https://proceedings.mlr.press/v202/zhai23a.html
https://proceedings.mlr.press/v202/zhai23a.html

	Introduction
	Our Work

	Model, Definitions and Preliminaries
	Distributed Verification Protocols
	Composition of dZKIPs
	An Example: Verifying Linear Equalities

	Norm Verification
	Range-Check Subprotocol
	Detecting Wraparound
	Verifying Quadratic Constraints
	Putting it Together: The Norm-Bound Protocol

	Differentially Private Secret Sharing
	Performance Evaluation

