
This paper is included in the Proceedings of the 
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the 
33rd USENIX Security Symposium 

is sponsored by USENIX.

00SEVen – Re-enabling Virtual Machine Forensics: 
Introspecting Confidential VMs Using 

Privileged in-VM Agents
Fabian Schwarz and Christian Rossow, 

CISPA Helmholtz Center for Information Security
https://www.usenix.org/conference/usenixsecurity24/presentation/schwarz



00SEVen – Re-enabling Virtual Machine Forensics:
Introspecting Confidential VMs Using Privileged in-VM Agents

Fabian Schwarz∗

CISPA Helmholtz Center for
Information Security

Christian Rossow
CISPA Helmholtz Center for

Information Security

Abstract
The security guarantees of confidential VMs (e.g., AMD’s
SEV) are a double-edged sword: Their protection against
undesired VM inspection by malicious or compromised cloud
operators inherently renders existing VM introspection (VMI)
services infeasible. However, considering that these VMs
particularly target sensitive workloads (e.g., finance), their
customers demand secure forensic capabilities.

In this paper, we enable VM owners to remotely inspect
their confidential VMs without weakening the VMs’ protec-
tion against the cloud platform. In contrast to naïve in-VM
memory aggregation tools, our approach (dubbed 00SEVen)
is isolated from strong in-VM attackers and thus resistant
against kernel-level attacks, and it provides VMI features be-
yond memory access. 00SEVen leverages the recent intra-VM
privilege domains of AMD SEV-SNP—called VMPLs—and
extends the QEMU/KVM hypervisor to provide VMPL-aware
network I/O and VMI-assisting hypercalls. That way, we can
serve VM owners with a protected in-VM forensic agent. The
agent provides VM owners with attested remote memory and
VM register introspection, secure pausing of the analysis tar-
get, and page access traps and function traps, all isolated from
the cloud platform (incl. hypervisor) and in-VM rootkits.

1 Introduction

The security of virtual machines (VMs) is a crucial factor
that can determine if customers are willing and regulatorily
permitted to offload processes to a cloud platform. In order to
increase trust into cloud platforms, researchers and vendors
have developed several VM security and monitoring solutions
rooted in the privileged VM manager, i.e., the hypervisor.
These solutions range from kernel code integrity schemes and
virtualization-based enclaves to forensic VM introspection
(VMI) services [9, 35, 54, 64]. An impactful recent virtualiza-
tion extension has introduced so-called confidential VMs. This
security extension protects the confidentiality and integrity

∗We thank Saarland University for supporting Fabian Schwarz.

of a VM’s memory and registers against the cloud platform,
including the hypervisor and peripherals. Confidential VMs
aim at enabling cloud adoption for highly sensitive customers
that need to satisfy high security regulations and might dis-
trust third party cloud providers, e.g., the finance and health
sector. AMD SEV is the pioneering solution, which has so far
been extended multiple times (SEV-ES, SEV-SNP) [10] and is
widely available at cloud platforms [8,30,31]. Due to the high
demand, other major CPU vendors provide their own confi-
dential VM designs, e.g., Intel TDX and Arm CCA [16, 34].

However, while confidential VMs provide attestable hard-
ware protection against the cloud platform, they are still prone
to runtime compromises. Remote attackers can exploit vul-
nerable network services within the VM or perform software
supply chain attacks to gain control over a confidential VM.
For sensitive workloads, it is therefore crucial to monitor the
VM for indicators of compromise. Hypervisor-based VMI is
a well-explored forensic method to analyze a VM’s memory
and execution state, allowing to scan for such indicators, e.g.,
traces of rootkits [35]. Unfortunately, confidential VMs are
inherently in conflict with VM security schemes that root their
trust in the cloud hypervisor, including VMI. Furthermore, the
protection of confidential VMs blocks major access methods
required by these schemes—rendering them unfeasible.

Our goal therefore is to analyze these limiting factors and
then propose a new design for secure remote introspection
of confidential VMs. That way, we fill an important gap by
reenabling VM owners, i.e., the cloud customers, to inspect
the runtime states of their VMs (memory, registers) without
sacrificing the security and confidentiality guarantees against
a potentially malicious hypervisor (e.g., cloud vendor). At
the same time, the approach offers reliable and instant VM
introspection even if the VM is compromised (e.g., kernel-
level rootkits) unless the in-VM attacker colludes with the
cloud provider on delaying or preventing the analysis. We aim
to enable VM owners to, e.g., scan for attacks or perform post-
mortem digital forensics without leaking any inspection data
to the hypervisor or in-VM attackers. This goal aligns with
recent research aiming to re-enable other hypervisor-based

USENIX Association 33rd USENIX Security Symposium    1651



security schemes for confidential VMs (e.g., Hecate [28]).
To the best of our knowledge, we are the first to focus on the

challenges of re-enabling secure remote VMI for confidential
VMs. Previous work on inspecting confidential VMs is lim-
ited to an attacker perspective. Approaches like SEVered [46]
have exploited the missing integrity protection of early SEV
versions to leak memory and register content of a VM [45,47].
However, recent confidential VMs, e.g., SEV-SNP, feature in-
tegrity protection that fixes the root causes of these attacks.
Existing out-of-VM forensic systems are blocked by SEV’s
memory protection [25, 55, 62]. VM owners currently must
fall back on deploying forensic tools inside the confidential
VMs, e.g., LeechAgent [26] or GPR [29]. However, these
tools lack VMI features, e.g., VM pausing and traps. Even
worse, they are not isolated from privileged in-VM malware
(e.g., rootkits) providing system-level attackers full control
over them and thus rendering them insecure.

In this paper, we present 00SEVen, a design for secure re-
mote introspection of confidential AMD VMs, even under
a strong in-VM attacker. Our design introduces a privileged
in-VM agent that exposes introspection capabilities via the
network to the VM owner, e.g., a cloud customer. The VM
owner can securely connect an analysis client (e.g., based
on LibVMI [42]) to our agent to start a remote introspection
session of the VM. By deploying our agent inside the con-
fidential VM, the agent can access the private VM memory
without being blocked by the memory protection while still
being isolated from the untrusted hypervisor. Furthermore,
our agent is protected against in-VM system-level attackers,
offers hardware-based attestation of our VMI infrastructure,
and supports VMI features beyond pure memory forensics,
e.g., register access, VM pausing, and memory access traps.

However, these goals are not trivial to achieve for confi-
dential VMs: The cloud hypervisor is untrusted, i.e., we can
not rely on it to protect the agent against the in-VM OS. Fur-
thermore, the hypervisor is still involved in important VM
tasks, e.g., the scheduling of virtual CPUs, memory setup,
and device I/O (e.g., networking). We therefore cannot simply
apply existing isolation and introspection techniques [55, 62].
Instead, 00SEVen builds on hardware-based in-VM isolation
mechanisms and adds new secure VMI-assisting hypercalls.
Our implementation targets confidential SEV-SNP VMs [10],
which are widely available in server CPUs and at cloud plat-
forms (in contrast to, e.g., Intel TDX) and provide primi-
tives for intra-VM isolation [8, 30, 31]. 00SEVen leverages
SEV-SNP’s intra-VM privilege domains, called VM privilege
levels (VMPLs) [10], to protect our in-VM VMI modules
(incl. agent) and grant them full VM memory and register
access. Our modules run in a bare-metal environment inde-
pendent of the untrusted in-VM OS. 00SEVen deprivileges
the in-VM OS (incl. user space services) by placing it in a
less privileged VMPL with memory restrictions that protect
our VMI against in-VM attackers [11]. 00SEVen ensures that
VMI results are shared only with the authenticated VM owner.

The VM owner can securely send VMI requests to the in-
VM agent using a new attested end-to-end encrypted network
channel. We enhance the QEMU/KVM hypervisor to support
binding a virtual channel device and its I/O directly to our
agent’s privileged VMPL to operate the channel independent
of the in-VM OS. Finally, we extend the VM-to-hypervisor
interface of SEV with new VMI-assisting hypercalls used by
our agent to securely offload sub-tasks to the hypervisor, e.g.,
to pause the untrusted in-VM OS during a consistent analysis.

We implemented an open-source prototype1 of 00SEVen
with support for the common LibVMI client library. That way,
00SEVen becomes compatible with all analysis scripts and
tools building on LibVMI, e.g., Volatility’s VMI plugin [56].
Our prototype includes the bare-metal in-VM VMI agent,
our extensions to the Linux KVM/QEMU hypervisor, and an
extended version of LibVMI usable by the remote clients. Our
evaluation shows a reasonable performance and effectiveness
based on practical analysis tasks and real-world rootkits.

In summary, we make the following contributions:

• We analyze the incompatibilities of confidential VMs
with existing VMI techniques and derive the resulting
challenges imposed on confidential VMI designs.

• We design 00SEVen, a remote VMI for confidential SEV-
SNP VMs. 00SEVen’s in-VM agent enables clients to
control and inspect their VMs while preserving security.

• We implement 00SEVen for KVM/QEMU, including its
in-VM agent, hypervisor extensions, and remote client/s.

• We analyze the security of our implementation and eval-
uate our LibVMI-compatible prototype (open-source)
based on macro-benchmarks and real-world rootkits.1

2 Background: AMD SEV-SNP and SVSM

We now provide information on AMD SEV-SNP VMs (our
VMI targets) and AMD’s SVSM (used by our prototype).

2.1 Confidential VMs using AMD SEV-SNP
AMD SEV-SNP is an ISA extension that enables a new type
of VMs, so-called confidential VMs (also: TEE VMs), whose
memory and registers are protected against out-of-VM attack-
ers, e.g., malicious hypervisors [10]. SEV-SNP generates and
uses a unique crypto key in hardware for each confidential
VM to encrypt a VM’s private memory pages when storing
them in system RAM. All VM code and page tables, as well
as data pages marked for encryption in the in-VM page tables
(via the “C-bit”), are treated as private pages, i.e., are en-
crypted by SEV-SNP. Access to private pages succeeds only
from within the respective VM, thus protecting their confiden-
tiality [13]. SEV-SNP protects the integrity of private pages
and their address mappings using a reverse map table, which

100SEVen prototype at: https://github.com/sev-vmi/00seven

1652    33rd USENIX Security Symposium USENIX Association

https://github.com/sev-vmi/00seven


keeps track of a VM’s pages and thus enables denying out-of-
VM writes to private pages. Moreover, SEV-SNP protects a
VM’s execution contexts by relocating the VM’s save areas
(VMSAs)—storing a VM’s CPU registers on a VM exit (con-
text switch)—into private memory. If the hypervisor requires
register access, the in-VM OS must explicitly copy values
to dedicated shared, i.e., unencrypted, memory [15]. Finally,
SEV-SNP provides attestation support, enabling remote hosts
to verify the protection and initial state (code, data) of a VM.

VMPLs: AMD SEV-SNP recently introduced VMPLs for
providing intra-VM protection domains [10]. VMPLs are or-
thogonal to a CPU’s kernel and user modes. They allow for
multiple separate execution contexts per VM CPU (vCPU),
with VMPL-specific memory access permissions to the pri-
vate VM memory. SEV-SNP provides four hierarchically-
ordered VMPLs, called VMPL0 to VMPL3, with VMPL3
being the least privileged. VMPL0 can exclusively access
the full VM memory, adjust the memory views of all other
VMPLs, and register (“validate”) private pages to the VM,
including VMSA pages. By default, the VM starts execution
in VMPL0, while the others are unused. For each vCPU, the
hypervisor requires one VMSA per used VMPL, i.e., up to
four separate register sets per vCPU. A vCPU cannot switch
between VMSAs (incl. VMPLs) by itself. Instead, before en-
tering a VM, the hypervisor selects a vCPU’s next VMSA to
be scheduled, i.e., its register set and VMPL. The hypervisor
cannot tamper with the protected VMSAs and their associated
VMPLs, and the boot-time VMSAs are attested by SEV-SNP.

2.2 AMD Secure VM Service Module (SVSM)
AMD’s SVSM provides a bare-metal VMPL0 execution envi-
ronment in SEV-SNP VMs to host privileged services [11].
The QEMU/KVM hypervisor partitions the physical VM
memory into a large VMPL1 region and a VMPL0-exclusive
region at the top of the guest memory. The hypervisor maps
the SVSM into the VMPL0 region but the regular BIOS/UEFI
into the VMPL1 region, i.e., the VM OS is deprivileged inside
VMPL1. While the VM OS can still execute all privileged ker-
nel instructions in VMPL1, it can no longer execute VMPL0-
exclusive ones: pvalidate for registering private pages to
the SEV-SNP VM, and rmpadjust if used to mark pages for
storing a vCPU’s VMSA [14]. Therefore, SVSM manages
the VMSA and vCPU setup, and exposes a hypercall-based
service interface to VMPL1 that enables the VM OS boot
code to request memory page registration, proxied via the
SVSM. The VMSA and page setup steps occur only during
boot up (except for hot-plug events), not restricting or slowing
down the VM OS at runtime [10].

3 Setting: Confidential VM In(tro)spection

As shown in Figure 1, we envision an organization that wants
to securely offload services to a third party cloud platform,

analysis 
client

sensitive data
confidential VM

cloud hypervisor

malware

OS (infected)

cloud platform (untrusted)

host service

tenant VM

tenant VM

forensic remote

analysis of VM


(memory, registers)

VM owner’s 
remote host

Figure 1: A client deploys a confidential VM at an untrusted
cloud platform (dark gray). As the VM might become com-
promised (mid gray), the client wants to perform a remote
analysis of the protected VM to scan for attack traces. (light
gray: trusted, dark: untrusted cloud, mid: untrusted in-VM)

e.g., to benefit from the cloud’s resource scalability and avail-
ability. These services operate on highly sensitive data, e.g.,
health or financial data, customer data, or IP assets (intellec-
tual property). The client (“VM owner”) therefore decides
to deploy these services in confidential VMs, in our case
based on AMD SEV-SNP. However, as the VM might become
compromised at runtime, the VM owner wants to perform
a remote forensic analysis to search for attack traces. Mem-
ory forensics typically covers the aggregation of the target’s
memory, the identification of data structures, and finally the
analysis tasks [18, 27, 43]. The VM owner plans to augment
forensics with VM introspection (VMI), which leverages the
hypervisor’s control over the VMs to expand memory foren-
sics with additional techniques, including on-demand pausing
of the VM, CPU register inspection, and event-based analy-
sis [35, 42, 55]. Such runtime attack detection in confidential
VMs implies a new threat model, as discussed next.

3.1 Threat Model
Our threat model combines aspects of the model of remote
VMI for non-confidential VMs and that of confidential VMs.
We refer to the former as “classical VMI”. We trust the VM
owner that deploys confidential SEV-SNP VMs in a third
party cloud and wants to remotely inspect them using a trusted
client system (light gray, Figure 1). We regard the network
path between clients and VMs as untrusted. In contrast to the
classical VMI model, the VM owner does not fully trust the
cloud platform. We therefore follow the model of confidential
VMs in that we assume all system-level software of the cloud
platform (incl. the hypervisor) and co-located VMs to be
untrusted, e.g., compromised by an attacker (dark gray), and
trust the cloud’s CPU(s) and confidential VM implementation
(light gray) to be secure and free of exploitable vulnerabilities,
i.e., in our case, the SEV-SNP extension and attestation [10].

We follow a stronger model than confidential VMs regard-
ing the VM security in that we do not regard the whole confi-
dential VM as trusted. Instead, similar to the classical VMI

USENIX Association 33rd USENIX Security Symposium    1653



model, we assume a potential in-VM attacker (mid gray) that
has compromised the VM OS (e.g., malware, rootkits) that the
VM owner wants to remotely detect or analyze [27,35]. An at-
tacker might have gained control over the VM for instance by
exploiting in-VM network services or software supply chain
attacks against the VM’s package managers.

We assume the in-VM attacker to be distinct from the cloud
operator and not in control of the cloud platform (Figure 1).
That is, we explicitly exclude collusion attacks of the in-VM
attacker (mid gray) and the untrusted cloud platform (dark
gray) as they could otherwise give running VMs an opportu-
nity to remove attack traces prior to inspection. In § 6.1, we
will discuss the security impact of collusion attacks and the
limiting factors of a full mitigation using SEV-SNP in detail.

Finally, we exclude all side-channel and hardware attacks
that go beyond the guarantees of SEV-SNP and refer to orthog-
onal research on these topics, e.g., Cipherfix [57]. Similarly,
we regard the prevention of denial of service (DoS) attacks
issued by the cloud platform as out of scope, because current
confidential VMs cannot prevent them either [10]. However,
our VMI design will explore if we can detect or limit DoS
attacks by the hypervisor against our VMI operations. Fur-
thermore, we will discuss in-VM attackers trying to detect
and delay (or even DoS) analysis attempts to hide from them.

3.2 Design Goals and Requirements
To guide our secure remote introspection of confidential VMs
(00SEVen), we define eight major design requirements (R1–
R8) that capture the functional and threat model-specific se-
curity demands for a practical solution. In addition, we define
two desirable extra goals (E1+E2) going slightly beyond our
threat model achievable with the current hardware support.

R1 Remote Memory and Register Access: 00SEVen
must provide the VM owner full remote access to the VM’s
memory and virtual CPU registers (vCPU).

R2 Consistent Analysis: 00SEVen must support secure
pausing of the VM for a consistent memory and register analy-
sis. Cloud attackers must not be able to resume VM execution
without an explicit approval by 00SEVen.

R3 Event Traps: 00SEVen must enable event-based anal-
ysis by supporting secure traps on VM read/write accesses to
monitored memory pages or calls to kernel functions.

R4 Isolation from In-VM OS-level Attackers:
00SEVen’s VMI components and analysis results must be
protected against in-VM OS-level attackers to enable secure
analysis of user malware and kernel rootkits.

R5 Isolation from Cloud Attackers: 00SEVen’s VMI
components and analysis results must be protected against the
cloud platform (incl. the hypervisor) in line with the threat
model of confidential VMs (here: SEV-SNP).

R6 Secure Communication Channel: The network com-
munication between 00SEVen’s in-VM VMI components and
the VM owner must be protected against passive (sniffing), ac-

tive (tampering), and impersonation attacks by in-VM, cloud
platform, and network attackers.

R7 Small TCB: 00SEVen should keep the TCB and attack
surface small to minimize the risk of a compromise.

R8 Small Overhead on VM Workload: 00SEVen should
minimize the extra overhead imposed on the confidential
VM’s workload while no introspection is active.

(E1 Detect Analysis DoS:) 00SEVen should enable the
VM owner to detect DoS attempts (e.g., scheduling-based) by
cloud attackers (cf. R5) against VMI operations.

(E2 Hide Analysis from In-VM Attackers:) 00SEVen
should support hiding incoming remote analysis requests from
in-VM attackers, e.g., to prevent attackers from hiding attack
traces just in time (cf. R4).

00SEVen provides the foundation for secure remote VMI of
confidential VMs, using the example of AMD SEV-SNP. We
encourage future work to build on top of 00SEVen in order
to securely explore further VMI features and optimization
techniques [21, 24, 35, 62] or transfer our concepts to other
platforms, as discussed in § 8.2 for Intel TDX and Arm CCA.

3.3 (Un)Applicability of Existing VMI
Existing hypervisor-based VMI systems are inherently in con-
flict with our threat model. These systems rely on a trusted
hypervisor to control the target VMs and securely access their
memory or register content for the analysis [42]. However, in
our setting, the VM owner assumes the cloud provider to be
untrusted (cf. Figure 1 and R5). In fact, the hardware protec-
tion of SEV-SNP (cf. § 2.1) renders any out-of-VM approach
unfeasible. SEV-SNP blocks any out-of-VM inspection at-
tempts, including memory inspection [55, 62], injection of
forensic code [32], and vCPU register inspections.

Existing in-VM VMI approaches suffer from functional and
security issues. While in-VM forensic tools (cf. § 1) can suc-
cessfully access the private VM memory, they are unprotected
against in-VM OS-level attackers. Therefore, in-VM attackers
can easily tamper with the tools and their results, violating R4
and R6 (§ 3.2). In addition, they lack several VMI features,
e.g., secure VM pausing for a consistent analysis (R2) and
VM traps (R3). Unfortunately, it is non-trivial to protect and
securely extend existing in-VM tools within our threat model.
In SEV-SNP (and other confidential VMs), several important
resources required by existing VMI systems are still handled
by the untrusted hypervisor, which prevents a direct transfer
of out-of-VM techniques [32, 55, 62]. The hypervisor con-
trols the scheduling of vCPUs and the second-level memory
mappings (incl. permissions) via nested page tables (NPTs).
Furthermore, the untrusted hypervisor is still in the sole con-
trol of vCPU event interception [13]. Therefore, in-VM tools
can neither use NPTs to isolate their memory space from
in-VM attackers [32,55,62] (R5), nor pause vCPUs for a con-
sistent introspection (R2), nor directly monitor page accesses
or intercept VM executions (R3) [28].

1654    33rd USENIX Security Symposium USENIX Association



analysis 
client

VMPL0 (in-VM) sensitive data
confidential cloud VM

malware

OS (infected)

steal,

tamper

E2EE

VMI requests

(encrypted)

VM owner’s 
remote host

network fwd vmi-calls hypervisor

VMI agent

attested E2EE 
virtio channel

Figure 2: 00SEVen’s design: secure in-VM agents enable re-
mote VMI of confidential VMs. VM owners query the agents
via attested end-to-end encrypted (E2EE) network channels.
(light gray: trusted, dark: untrusted cloud, mid: untr. in-VM)

4 Design of 00SEVen

Next, we present the design of 00SEVen, our remote VMI
solution. In § 5, we focus on its implementation details.

4.1 Design Overview
As shown in Figure 2, 00SEVen combines a secure in-VM
agent with VMI-specific hypervisor extensions. Together they
provide the VM owner with remote analysis capabilities (R1),
securely overcoming the limitations imposed by SEV-SNP.
Our new VMI agent forms 00SEVen’s in-VM TCB, while
the rest of the VM and the cloud platform stay untrusted. In
order to start a remote VMI session, the VM owner executes a
00SEVen-compatible forensic client application on a trusted
system. The client connects via a network (reverse) proxy run-
ning at the cloud platform to our agent inside the SEV-SNP
VM and uses SEV’s hardware-assured remote attestation to
authenticate it [12]. The VM owner then uses the client to
issue VMI requests to our in-VM agent as required for the
forensic analysis. The agent performs the requested VMI op-
erations on behalf of the VM owner, e.g., accessing memory
or register content (described in § 4.2), and returns the results.
The workflow of 00SEVen will be familiar to users of the
common LibVMI [42] framework. However, in contrast to
LibVMI, which interacts with a local hypervisor, our client
library remotely communicates with 00SEVen’s securely at-
tested in-VM agent, not with the untrusted cloud hypervisor.

In-VM Agent Our in-VM agent forms the core of
00SEVen’s VMI. The agent is responsible for processing the
introspection commands of the analyst by implementing the
respective VMI operations (cf. § 4.2). While SEV-SNP pro-
tects the in-VM agent against out-of-VM attackers (incl. the
hypervisor), it is crucial for a secure VMI that the agent is
also protected against in-VM attackers, e.g., a compromised
VM OS (R4–R6). Therefore, we leverage SEV-SNP’s VM

privilege levels (VMPLs) for in-VM isolation [10] (cf. § 2.1).
We deploy the modules of our VMI agent inside VMPL0,
which forms a special in-VM management domain. VMPL0
provides our agent with full VM memory access (R1) and the
capability to define per-VMPL memory permissions (read,
write, execute) that restrict access of less privileged VMPLs
to a memory subrange. In addition, VMPL0 securely man-
ages the VMSA pages and therefore enables our agent full
access to all registers of each vCPU (R1). 00SEVen depriv-
ileges the untrusted VM OS and user services inside a less
privileged VMPL (cf. § 2.2). That way, at boot time, our agent
can define VMPL memory permissions for the less privileged
VMPLs that isolate our agent and the vCPU registers, i.e.,
VMSA pages, from in-VM attackers (R4). For ease of dis-
cussion and without loosing generality, we assume the VM
OS and services to be relocated only into VMPL1, ignoring
the even less privileged VMPL2 or VMPL3. The VM OS
running in VMPL1 can still execute every privileged CPU
instruction except those restricted to VMPL0 (see § 2.2). Our
agent executes in a bare-metal environment without an OS
kernel, independent of the potentially compromised VM OS
(R8). By refusing the use of a full-blown OS inside VMPL0,
(in contrast to, e.g., Hecate [28]), we keep 00SEVen’s TCB
and attack surface significantly smaller (R7).

Hypervisor Integration We extend the untrusted hypervi-
sor to assist 00SEVen’s in-VM agent with scheduling, remote
communication, and VM control primitives. Together with
new in-VM security checks, that way, our agent can securely
enable remote VMI despite the untrusted hypervisor’s VM
control. During regular workloads, we want the hypervisor to
execute the VM OS in VMPL1 without additional overhead
by our VMI system (R8). On remote VMI requests by the
VM owner, we expect the hypervisor to schedule our VMPL0
agent to perform VMI operations. However, existing hyper-
visors (e.g., KVM) do not yet distinguish between different
VMPLs when scheduling vCPUs or delivering I/O events. We
therefore extend the hypervisor with VMPL-aware scheduling
and I/O operations. That way, we can bind a virtual I/O device
for our VMI remote channel exclusively to VMPL0, i.e., our
agent’s domain. The channel device demands scheduling of
VMPL0 from the hypervisor on VMI requests and permits
channel I/O only by our agent. All other I/O devices (e.g.,
disk, NIC) stay associated with the VM OS in VMPL1, keep-
ing their performance unaffected by our agent (R8). When
finishing the requested VMI operations, our agent hyper-calls
into the hypervisor to re-schedule VMPL1 execution. In § 4.2,
we will present 00SEVen’s hypervisor interfaces for VMI
control primitives: VM pausing and trapping.

Secure Client-to-Agent Communication The VMI chan-
nel between 00SEVen’s in-VM agent and the VM owner’s
remote client requires additional protection. In the current
SEV-SNP design, all hardware device I/O must pass through

USENIX Association 33rd USENIX Security Symposium    1655



the untrusted hypervisor. Therefore, we must rely on a packet
forwarding service at the hypervisor-level to forward our VMI
channel messages via the network to the remote client (cf. Fig-
ure 2), affecting their security (R6). In order to protect our
VMI messages, the remote client and the in-VM agent use
an end-to-end encrypted (E2EE) connection (R6). Otherwise,
attackers could tamper with the messages to hide attack traces
or leak private VM memory by exploiting inspection requests.
00SEVen’s connection endpoint is isolated from out-of-VM
(cloud, network) and in-VM attackers by placing the pro-
tocol stacks directly inside VMPL0—letting packets leave
VMPL0 only in E2EE form. As the agent operates only on
the (E2EE) application-layer messages rather than full net-
work packets, we preserve a small in-VM TCB (R7). Being
located in VMPL0, the VMI channel operates independent
of the untrusted VM OS in VMPL1 (R8)—not passing any
packets through the VMPL1 network stack. To prevent im-
personation attacks, we combine certificates with SEV-SNP’s
remote attestation for mutual authentication (see § 5.3).

4.2 VMI Work Flow

We now describe 00SEVen’s VMI (R1) and its hypervisor
extensions for secure VM pausing (R2) or event traps (R3).

4.2.1 Modus Operandi

00SEVen supports multiple forms of remote analysis triggers
and modes. A typical use case is the scanning for attack traces
or active malware by the VM owner as part of an incident
response process, e.g., triggered by an intrusion detection
system or as part of a periodic security check. Beyond man-
ually or periodically triggered analysis, 00SEVen re-enables
more advanced use cases by supporting event-based triggers
based on page access monitoring or code execution traps
(cf. § 4.2.5). That way, 00SEVen can notify the client-side
analysis script, e.g., if an in-VM attacker tries to tamper with
a memory page of a sensitive service (R3). 00SEVen’s main
analysis mode then enables the remote analyst (VM owner) to
perform a consistent analysis of the VM by providing secure
pausing of the untrusted VMPL1 services, i.e., the VM OS
and user processes (cf. § 4.2.4). In contrast to existing foren-
sic tools that require downloading a full VM memory dump
for a client-side offline analysis, 00SEVen enables interactive
and selective remote memory and register introspection of the
VM state and thus better scalability by avoiding gigabyte-size
memory dump transfers. Depending on the analysis results,
the VM owner can then quarantine or resume the VM.

4.2.2 Remote VMI Interface

00SEVen’s remote interface enables flexible analysis tasks
by the VM owner. 00SEVen’s in-VM agent implements fun-
damental operations required for VMI and exposes them via

1 c o n n e c t _ t o _ a g e n t ( t a r g e t _ v m )
2 pause_vmpl (OS) / / c o n s i s t e n t , l i k e LibVMI
3 t e n t r y = ksym_va ( " i n i t _ t a s k " ) + t a s k s _ o f f
4 w h i l e ( t r u e ) { / / scan t h e l i s t
5 proc = t e n t r y − t a s k s _ o f f
6 exec = read_s tr_va ( p roc + comm_off )
7 i f ( exec == " malware " ) { . . . }
8 . . .
9 }

10 resume_vmpl (OS) / / VMPL1 OS
11 di sconnec t_ from_agent ( )

Figure 3: Simplified excerpt of a client script scanning the
remote VM’s process list for malware. (_va: VM virtual addr.)

an RPC-like interface to the remote client. These operations
form the basis for high-level VMI tasks by providing memory
and register access (cf. § 4.2.3). Furthermore, the agent ex-
poses secure VM control primitives for pausing (cf. § 4.2.4)
or trapping (cf. § 4.2.5) the VM. That way, analysts have
full control of the VMI and can implement flexible analysis
scripts tailored to their use cases. Our operations are simi-
lar to the features of the common LibVMI framework [42],
which makes it possible to adopt many existing LibVMI client
analysis scripts and tools built on it, e.g., Volatility’s VMI plu-
gin [56]. In our prototype, the remote analysis client is based
on LibVMI. We extend LibVMI with a new 00SEVen driver,
i.e., API backend, which sets up the attested E2EE connection
and sends VMI operation and VM control requests to our
agent, instead of interfacing with a local hypervisor.

Figure 3 shows a simplified client script for remotely in-
specting the process list using 00SEVen. In the preamble
(lines 1+2), the VM owner’s client connects to 00SEVen’s
in-VM agent and requests secure pausing of the VM OS for
a consistent analysis (cf. § 4.2.4). Afterwards, the client re-
solves symbols to get the address of the process list of the
Linux-based VM OS (line 3) and issues multiple memory read
requests to 00SEVen’s agent to scan the list (lines 4–9). The
agent receives the requests via the E2EE channel and performs
the respective memory accesses inside the VM. As we will
discuss in § 4.2.3, the client might perform some steps locally
to speed up the analysis process, e.g., by caching page table
information [21, 42]. Finally, in the epilogue (lines 10+11),
the client resumes the VM execution if no malware has been
found and disconnects from the agent.

4.2.3 VMI Operations

We now outline the basic VMI operations 00SEVen supports.

Physical Memory Access 00SEVen’s basic memory access
operation takes a physical memory address of the VM (PAvm)
as input. Our agent maps the PAvm and then uses the result-
ing virtual address (VAvmpl0) to access the page, returning

1656    33rd USENIX Security Symposium USENIX Association



the requested content to the remote analyst. In contrast to
out-of-VM VMI, there is no need to explicitly translate the
VM address to a host-level virtual address, as it will be au-
tomatically handled by the hardware on the in-VM access.
Before each access, the agent must check that the requested
physical address range does not overlap with the VMPL0-
exclusive memory region containing our agent’s code and
data (§ 5.1). Otherwise, in-VM attackers might maliciously
modify kernel pointers or remap page table entries to let
them point into the VMPL0 region to cause a corruption of
00SEVen on incautious VMI write requests. Furthermore,
the agent must ensure that the PAvm is correctly mapped as
private (encrypted) or shared page as registered in SEV-SNP
(§ 2.1). This information must be encoded as a bit (“C-bit”)
in each PAvm but might be unavailable or untrusted when the
PAvm is taken from VMPL1’s memory or page tables. As
VMPL0 registers private pages in SEV-SNP (cf. § 2.1), the
agent can keep track of each page bit to correctly map them,
requiring only 1 MiB for a VM with 32 GiB RAM and 4 KiB
page size. Optionally, the agent can pre-map all pages linearly
(VAvmpl0 = PAvm +offset) for a direct VAvmpl0 lookup.

Virtual Memory Access For accessing virtual kernel or
process addresses of the VMPL1-located VM OS, 00SEVen
requires an address translation step. Our VMPL0 agent uses
page tables (PTs) separate from those of the untrusted VM OS.
That way, in-VM attackers cannot tamper with our agent’s
address space, e.g., by remapping PT entries, thus preserving
00SEVen’s isolation guarantees. Consequently, for accessing
a virtual address of the VM OS (VAvmpl1), 00SEVen must
translate the VAvmpl1 to a PAvm before the agent can access it
via a VAvmpl0, as described before. The translation requires a
page table walk through the respective PTs of the VM OS [43].
Depending on the virtual address space of the VAvmpl1, the
physical address (PAvm) of the respective root PT (directory ta-
ble base) can be located using different existing methods [43]:
for kernel VAs based on the Linux ’init_top_pgt’ kernel sym-
bol, for process VAs inside the OS process list (Figure 3), or
for the current address spaces in the CR3 registers accessible
in the vCPUs’ VMSAs (§ 3.3). We refer to the forensic lit-
erature for more details, e.g., [43]. With our remote client
being based on LibVMI (§ 4.2.2), the client performs kernel
symbol translations locally, e.g., based on the symbol table of
the compiled VM Linux kernel [51]. For walking the VM OS
page tables, our remote client issues the respective physical
memory and CR3 read requests to our agent as required for
the VAvmpl1 ⇒ PAvm translation. After translation, 00SEVen’s
agent can then map and access the target virtual address via
the resolved PAvm, before returning the result to the client.

Note that while the separation of VMPL0 and VMPL1 PTs
requires an additional address translation step, it is important
to preserve the isolation of 00SEVen’s VMI agent from in-
VM attackers. In Appendix A, we argue why existing VMI
techniques that directly share PTs between the VMI agent and

the target VM OS—eliminating the translation steps—are not
secure for confidential SEV VMs. Furthermore, we explain
how 00SEVen mitigates the translation overhead by adopting
LibVMI’s client-side caching strategies, and outline future
ideas for offloading address translation steps to the agent.

Virtual CPU Register Access Our agent securely manages
the register save states (VMSAs) of the vCPUs. The VMPL0
setup code allocates and registers one VMSA page per VMPL
for each vCPU [15]. When a vCPU of an SEV-SNP VM is
yielded, the CPU stores the general purpose, control, and vir-
tualization registers of the vCPU in the respective private
VMSA page (cf. § 3.3). Therefore, our agent can directly in-
spect the register state of paused vCPUs (§ 4.2.4). To prevent
in-VM attackers from tampering with vCPU registers, our
agent protects VMSA pages using VMPL permissions.

4.2.4 Secure Pausing for a Consistent Analysis

00SEVen supports secure pausing of in-VM attackers for a
consistent memory and register introspection (R2). That is,
00SEVen stops in-VM attackers from tampering with the VM
memory and registers during the analysis, e.g., to hide attack
traces via page table manipulation. But 00SEVen must not
fully stop vCPU execution because the in-VM agent must
still perform the analysis. Instead, only the execution of the
untrusted VM OS and user space services should be paused,
i.e., the VMPL1 domain. Furthermore, in our threat model,
00SEVen cannot trust the hypervisor to keep VMPL1 paused
throughout the analysis. Therefore, we temporarily disable
virtualization support in the EFER CPU control registers of all
VMPL1 VMSAs to prevent their execution while performing
the analysis in VMPL0. First, we extend the hypervisor with
two new hypercalls from VMPL0 to the hypervisor—one
to request pausing of all VMPL1 contexts, yielding them if
active, and one for resuming them. Second, on a pause re-
quest, we let our VMPL0 agent iterate all VMPL1 VMSAs,
i.e., saved register states (§ 3.3), and atomically unset the
virtualization-enable CPU register bit EFER.SVME. If the reg-
ister updates succeed, VMPL1 has been paused by the hyper-
visor, and we have locked VMPL1 execution, i.e., all attempts
by the hypervisor to resume it will be blocked by the CPU. If
the hypervisor maliciously ignores a pause request, e.g., to
keep colluding in-VM rootkits scheduled (cf. § 6.1), the CPU
register updates will fail as the VMSAs are not paused [11],
causing the agent to notice and retry. The remote analyst will
detect the attack, as the analysis will not proceed (E1). On a
resume request, the agent re-enables all VMPL1 VMSAs by
setting their EFER.SVME and requests their scheduling by the
hypervisor. As shown in Figure 3 (lines 2 and 10), we expose
pause and resume APIs to the remote analyst.

USENIX Association 33rd USENIX Security Symposium    1657



sensitive data
00SEVen 
VMI agent malware

OS (infected)

hypervisor

VM
PL

0

VM
PL

1

       1.  #NPF 
(VMPL violation)

2.  schedule

     VMPL0

3.  analysis

VMSAs

vmpl 1

5.  increase instr.

  pointer

4.  emulate 
     access

6.  continue

#NPF handler

Figure 4: 00SEVen’s VMPL0 agent combines VMPL permis-
sions with instruction emulation for secure page monitoring.
(light gray: trusted, dark: untrusted cloud, mid: untr. in-VM)

4.2.5 Event-based VMI

00SEVen provides support for event-based VMI (R3): SEV-
enabled memory access traps and kernel function traps.

Page R/W-Monitoring 00SEVen enables the remote ana-
lyst to request the monitoring of read and/or write accesses
to private VM pages. That way, the analyst can for instance
write-monitor a function pointer table in the VM OS, e.g., the
system call table, to detect malicious tampering attempts by
a rootkit. Existing VMI implements page monitoring using
NPT permissions which we cannot trust [58]. Instead, to mon-
itor a page, our agent securely modifies the VMPL1 memory
permissions for that page to non-readable or non-writable us-
ing SEV’s RMPADJUST CPU instruction, restricting access of
the VM OS. On an access trap, the agent informs the analyst
and waits for VMI requests while keeping the VM OS paused.

Figure 4 shows 00SEVen’s control flow on an access trap.
VMPL1’s access is blocked by the VMPL permission and
results in a nested page fault (NPF) at the untrusted hypervi-
sor [13] (step 1). We extend the hypervisor’s #NPF-handler
to forward such VMPL violations to our agent by scheduling
VMPL0 (step 2). The agent inspects the #NPF details (given
in the vCPU’s VMSA [13]) and, if a violation is associated
with a monitored page, securely pauses the vCPU’s VMPL1,
notifies the remote analyst, and waits for analysis requests
(step 3). After the analysis, our agent must proceed execution
of VMPL1. Existing hypervisor-based VMI grants VMPL1
temporary page access and uses hardware single-stepping
to securely perform the trapped access [58]. However, only
the untrusted hypervisor can intercept the single-stepping
exception, and the hypervisor could simply resume VMPL1
execution without informing our agent, resulting in relaxed
VMPL permissions, i.e., a disabled trap. Therefore, instead,
our agent reads VMPL1’s instruction pointer register (RIP)
to decode and emulate the violating memory access, i.e., per-
forming it on behalf of VMPL1 (step 4) [38]. That way, the
VMPL restrictions are never relaxed such that we do not risk

disabled monitoring traps. During emulation, our agent trans-
lates the VMPL1 memory address using the vCPU’s VMPL1
PTs, checks that it does not overlap with VMPL0 memory,
and then maps it temporarily into VMPL0. We must extract
the page offset of the target address from the instruction itself,
as SEV masks the offset in the #NPF details for security rea-
sons [41, 59]. Finally, after access emulation in VMPL0, the
agent updates the VMPL1 registers in the VMSA, including
the RIP to step over the emulated instruction (step 5), clears
the #NPF to prevent a fault replay [28], and calls into the
hypervisor to resume execution (step 6). As VMPL0 has ex-
clusive control over the VMSAs and VMPL permissions, the
monitoring is protected against the untrusted hypervisor and
in-VM attackers (details in Appendix B).

Kernel-Function Traps Conceptually, 00SEVen also sup-
ports execution traps for the VMPL1 OS kernel. That way, an
analysis is triggered on execution of a certain OS function,
e.g., a system call [60]. This is realized by injecting VMPL0
trampolines at the beginning of VMPL1 kernel functions. For
more technical background, we refer to Appendix C.

5 Implementation

We now describe details of our 00SEVen implementation for
the QEMU/KVM hypervisor and a VM with Linux OS.

5.1 Agent Integration and Startup

We currently implement 00SEVen’s in-VM agent and its mod-
ules as an extension to AMD’s SVSM infrastructure [11]
(see § 2.2). The SVSM provides a bare-metal VMPL0 en-
vironment written in Rust, which handles the vCPU (i.e.,
VMSA) and memory setup that is specific to SEV-SNP. QE-
MU/KVM maps 00SEVen together with the SVSM into a
VMPL0-exclusive memory region, separated from the VM
OS. 00SEVen’s agent builds on SVSM’s memory and VMSA
management facility to provide analysts with our new se-
cure VMI and communication channel infrastructure, isolated
from in-VM attackers. On VM startup, the SVSM sets up the
vCPUs (i.e., VMSAs) and the VMPL memory protection of
the VMPL0 region, starts 00SEVen’s VMI agent, and trans-
fers control to VMPL1 for the Linux boot process. Figure 5
shows our implementation, excluding SVSM’s modules.

During startup, 00SEVen’s agent prepares the network com-
munication with the remote analyst. The agent first initializes
the dedicated virtual channel device with the hypervisor and
then sets up a raw server socket that asynchronously listens
for a remote connection by the VM analyst. On a successful
connection, the agent starts a VMI session controlled by the
remote analyst’s operation requests, as described in § 4.2.

1658    33rd USENIX Security Symposium USENIX Association



 user 
space

00SEVen 
agent VMI

QEMU/KVM

  remote channel
  access / interact trustedT out-VM untr.U1

in-VM untr.U2

VM
PL

0

VM
PL

1

vsock-tcp relay

VMSAs

rootkit

VMI hypercalls

PTs 
vmpl 1

vmpl-aware vsock

drivers

virtio rings

tcp/ip

user 
spacemalwareservices

VM
 O

S

vmpl1 
perm.

vsock denies

vmpl1 mmio

denied

access

vsock driver
attested TLS

Linux kernel

NPT

perm.

Figure 5: 00SEVen’s implementation: in-VM agent, network
relay, and VMPL-aware hypervisor extensions (blue). (light
gray: trusted, dark: untrusted cloud, mid: untr. in-VM)

5.2 Channel Device and Scheduling
We extend QEMU/KVM’s VM setup process to prepare
00SEVen’s VMPL-aware remote channel (§ 4.1). We adapted
QEMU to allocate a dedicated virtual MMIO (memory-
mapped I/O) page next to the VMPL0 memory region and
associate a virtual MMIO-based I/O bus with it (virtio-
mmio [49]). We bind the bus to VMPL0 (cf. next) and attach
a virtual socket device (vsock) [49] to it as our remote chan-
nel device. A vsock device enables hypervisor services—in
00SEVen’s case, a network relay—to connect to a socket-like
interface in the VM and exchange messages without requir-
ing complex network stacks (R7). We ported the required
virtio drivers [5] into VMPL0 (Figure 5) and implemented
SEV-SNP support for them in line with SEV’s shared memory-
based GHCB interface [15] (Guest-Hypervisor Communica-
tion Block), such that our agent can interact with the channel
device via read and write GHCB requests to the MMIO page.

VMPL-aware MMIO We extend QEMU/KVM to support
VMPL-aware virtual MMIO devices. On each virtual MMIO
access by a VM, QEMU virtio-mmio devices can now in-
spect the accessor’s VMPL and deny the access based on that.
00SEVen uses this mechanism to bind its remote channel de-
vice to VMPL0 (i.e., our VMI agent) by making its bus permit
MMIO operations only by VMPL0, preventing any MMIO
access by VMPL1 attackers. On a VM exit of a vCPU, our ex-
tension augments KVM’s kvm_run structure (=̂ interface to
QEMU) with the current VMPL of that vCPU. Furthermore,
we extend QEMU’s MMIO device callbacks to propagate the
VMPL as a new access attribute to the MMIO target device.

VMPL-aware Scheduling As described in § 4.1, we extend
QEMU/KVM with VMPL-aware scheduling requests. That
way, 00SEVen’s channel device can demand explicit schedul-
ing of VMPL0 on VMI requests by the remote analyst, such
that the agent can read the channel and process the requests

(§ 4.2). On a scheduling request, QEMU/KVM yields the
vCPU, lets it switch from its VMPL1 register set (VMSA) to
its VMPL0 set, and resumes the vCPU. Note that by default, a
vsock device would instead inject an interrupt (IRQ) into the
VM on a new message. However, QEMU/KVM does not yet
support VMPL-aware IRQ delivery. Furthermore, in SVSM,
VMPL0 executes with masked IRQs in SEV-SNP’s restricted
injection mode, which prevents hypervisors from arbitrarily
injecting interrupts into VMPL0, decreasing 00SEVen’s at-
tack surface [10]. In Appendix D, we provide technical details
on IRQ issues we had to overcome when scheduling VMPL0.

5.3 Attested Remote Communication

The remote communication of 00SEVen’s agent with the VM
analyst is built on top of the vsock channel. 00SEVen uses the
channel to pass their messages via shared virtio rings between
VMPL0 and a network relay service at the hypervisor which
forwards them via TCP/IP through the network, as shown
in Figure 5. Technically, the agent and client exchange VMI
requests and results (§ 4.2) using two separate transport layers:
VSOCK for the agent–relay interconnect and TCP/IP for the
relay–client one. To protect the messages, we integrate a TLS
server endpoint into our agent and a TLS client endpoint into
the remote analysis client. That way, the communication is
end-to-end protected against in-VM and out-of-VM attackers
even though it passes through the untrusted hypervisor.

Network Relay The relay is a Linux user space service
that manages a VSOCK client and a TCP server socket (e.g.,
socat). The relay waits for an incoming remote client TCP/IP
connection by the VM analyst. Upon receiving a connection,
the relay connects to our in-VM agent via the vsock channel
device and then starts forwarding packet payloads, i.e., TLS
messages, between the agent and remote client.

Authentication and Attestation 00SEVen’s TLS channel
combines mutual certificate-based authentication with AMD
SEV’s remote attestation [12]. We use a client TLS certificate
that is pinned by 00SEVen’s agent to verify the VM owner’s
remote client, e.g., shipped to the agent inside an encrypted
VM disk image. To enable authentication of the agent, we
bind the TLS connection to the hardware-assured attestation
report of SEV. The attestation measurement covers the VM’s
load-time state including 00SEVen’s SVSM image with all
agent modules. In addition, the SEV hardware adds the VMPL
of the report-generating VM component to the attestation re-
port. Therefore, the VM owner can remotely verify that it is in
fact communicating with the VMPL0-protected agent of the
owner’s VM, not an attacker-controlled VM or an imposter
agent in VMPL1. To bind the TLS connection to the attesta-
tion, the agent adds the hash of a fresh TLS server public key
to the attestation report and sends the report via TLS to the

USENIX Association 33rd USENIX Security Symposium    1659



client [37]. The client verifies the binding by checking if the
keys in the agent’s TLS certificate and the report match.

5.4 VMI-assisting Hypercalls

00SEVen adds new hypercalls to QEMU/KVM that securely
support the agent’s VM control primitives (cf. § 4.1). The
hypercalls are commands without arguments: pausing or re-
suming the VMPL1 contexts (§ 4.2.4), switching back to
VMPL1 after an r/w-trap (§ 4.2.5) or to VMPL0 on a function
trap (Appendix C). The calls are implemented as new GHCB
requests, i.e., extend SEV’s facility for guest-to-hypervisor
communication [15]. The VMPL switches change a vCPU’s
active VMSA (§ 4.1). On a VMPL1 pause request, we prevent
the vCPU/s running the VMI agent from switching back to
VMPL1 and let QEMU pause (later resume) all other vCPUs.

6 Security Analysis

We now analyze the security of 00SEVen against two non-
colluding adversaries: in-VM and out-of-VM attackers (see
§ 3.1). The in-VM attackers aim to evade detection, e.g., by
compromising the agent. The out-of-VM attackers aim to gain
access to the private memory and register values of the VMs
or their VMI results, e.g., by tampering with VMI operations.
Considering these two attackers, 00SEVen aims to protects the
VMI operations and their requests and enables the detection,
prevention, or analysis of in-VM attacks as follows.

00SEVen’s VMPL0-located agent forms its in-VM TCB.
The agent’s security is built on top of SEV-SNP’s hardware-
enforced memory and register protection [10]. Inside VMPL0,
the agent is protected against out-of-VM cloud attackers and
can leverage VMPL permissions to block access attempts
by in-VM VMPL1 attackers. The client uses SEV’s remote
attestation to verify the protection and initial state of the VM,
including the VMPL0 and VMPL1 code and data. That way,
the client can detect manipulated VMI agents or VMPL1 boot-
up code, preventing, e.g., attempts to integrate backdoors or
map a second, hidden VM OS to an unknown address.

As SEV VMs rely on support by the hypervisor, the same
holds for 00SEVen. Beyond scheduling and memory setup,
00SEVen offloads new VM control tasks to the hypervisor via
new hypercalls (e.g., pausing, VMPL switch). However, the
hypercalls expose only a minimal attack surface, and 00SEVen
is designed to actively prevent malicious hypervisor behavior
on these tasks (e.g., VMPL1-locking on pausing) or remotely
observe it as anomalous VMI freezes. 00SEVen’s pausing
of VMPL1 can therefore securely enable consistent memory
forensics, i.e., in-VM attackers cannot manipulate or remap
any data during the analysis, thus preventing attempts to hide
attack traces. On memory introspection, the range and C-bit
checks of the VMPL0 agent (cf. § 4.2.3) rule out attacks that
map pages or pointers to VMPL0 or unprotected memory.

The network forwarding of 00SEVen’s remote channel is
also offloaded to the hypervisor, but the communication is
TLS-protected and authenticated using certificates and SEV’s
remote attestation. Therefore, neither out-of-VM nor in-VM
attackers can tamper with or leak VMI operation requests or
results. The channel’s interface to the untrusted hypervisor
is based on MMIO-based virtio [49] such that it exposes a
minimal attack surface—in contrast to PCIe-based device I/O.

00SEVen currently relies on cooperation by the untrusted
hypervisor to protect MMIO and shared pages against access
by in-VM attackers, because SEV-SNP’s VMPL permissions
are enforced only for private VM pages [13]. 00SEVen’s QE-
MU/KVM extension for VMPL-aware MMIO blocks MMIO
accesses by VMPL1 to the channel device to prevent reconfig-
uration attacks. Optionally, the device configuration could be
write-protected after device setup. 00SEVen’s agent requires
shared pages for the channel’s virtio rings and for GHCB
buffers used to perform hypercalls and MMIO requests (§ 5.2).
In-VM attackers might tamper with these pages to change
GHCB requests or perform DoS attacks against the remote
channel. In addition, they might try to detect if a new analysis
is pending by observing virtio ring changes (E2). That way,
attackers could try to hide attack traces just before an analysis
in order to evade it. Optionally, 00SEVen could extend the
hypervisor with per-VMPL nested PT views to entirely block
VMPL1 access to shared pages, or adopt SEV’s vTOM fea-
ture [28] at the cost of extra complexity and device I/O over-
head. However, note that 00SEVen’s channel is TLS-protected
and 00SEVen detects misbehaving hypercalls, limiting attacks
against shared pages. Furthermore, in-VM attackers cannot
trap page accesses by VMPL0 or the hypervisor but rather
need to continuously scan all shared pages for changes to time
an attack—increasing their risk of detection. Finally, as soon
as VMPL1 has been paused for an analysis, VMPL1 can no
longer interfere with any buffers (R2).

6.1 Beyond 00SEVen: Collusion Attacks

00SEVen’s design excludes collusion attacks between the un-
trusted cloud platform (incl. hypervisor) and in-VM attackers
(cf. § 3.1). The biggest risk of collusion attacks are attempts to
delay the VMI until all traces of an in-VM attacker have been
erased. As the untrusted hypervisor is in control of the vCPU
and VMPL scheduling, the hypervisor can delay scheduling
of our agent and warn in-VM attackers of a pending VMI
request message. That way, the in-VM attackers gain time to
finish their attack and delete their attack traces to prevent de-
tection or analysis. While 00SEVen’s secure pausing locks the
VMPL1 contexts, such that the hypervisor cannot resume their
execution until the VMI has finished, there is an exploitable
time window between the pausing request and the locking of
the VMPL1 contexts (cf. § 4.2.4). The root cause of this is
SEV-SNP’s reliance on the hypervisor to switch into VMPL0
and yield the VMPL1 contexts before they can be locked. The

1660    33rd USENIX Security Symposium USENIX Association



hypervisor’s platform control also makes it hard to prevent all
communication between the hypervisor and VMPL1. Even
if some direct channels could be blocked, e.g., shared pages,
there are several ways to create other (covert) channels not
controllable by VMPL0, e.g., based on timed scheduling or
VM exit events.

However, the cloud and in-VM attackers must be careful
to not risk detection of collusion. For instance, while small
analysis delays might be hidden in the network jitter of the
remote channel, too many or long delays could be detected by
the client. If the hypervisor ignores a secure pausing request,
causing the agent to loop in the locking process (§ 4.2.4), the
remote client will eventually detect the analysis DoS. Fur-
thermore, hypervisor-VMPL1 interactions might leave new
memory traces detectable via VMI. So even if collusion at-
tacks are possible to DoS or delay an analysis, they increase
the risk of detection. In addition, memory traps can still pre-
vent malicious VMPL1 read/write accesses to critical regions,
e.g., the syscall table. In § 8.1, we suggest SEV changes that
further harden 00SEVen against collusion.

7 Evaluation

We now evaluate the analysis performance of our 00SEVen
prototype, its effectiveness for detecting or preventing existing
rootkits, and its VMPL0 memory and CPU overhead.

00SEVen’s open-source prototype (§ 1, footnote 1) consists
of our in-VM agent that extends the SVSM, extensions to QE-
MU/KVM, and extended LibVMI library for analysis clients.
It supports remote VMI operations, secure pausing, and page
monitoring traps. As SVSM currently supports only Linux
VMs, we focus on VMI of Linux—even though conceptually,
support for other OSes is possible. The prototype does not yet
support function traps and the optional shared buffer isolation.

As the evaluation testbed, we use a Dell PowerEdge R6515
server as our cloud platform running Ubuntu 22.04 with our
modified 5.14 kernel on a 2.85 GHz AMD 7443P CPU. The
Dell server hosts our 00SEVen prototype including an SEV-
SNP Ubuntu VM serving as the VMI target. As the LibVMI
remote analysis client, we use a Debian 12 server with a
3.2 GHz AMD 74F3 CPU that shares a LAN with the VMI
target. For comparison, we measure three additional setups:
LibVMI with KVMi, and 00SEVen with a local (same-host)
LibVMI—with TLS and without (TCP-only). Our baseline
is LibVMI with the standard KVMi backend (v12) that we
measure locally (same-host) on the Dell server targeting a non-
SEV VM—KVMi lacks remote VMI support. By evaluating
00SEVen with local (TLS / TCP-only) and remote (TLS)
clients, we can distinguish sheer network and TLS overhead.

7.1 (Remote) Analysis Performance
We now evaluate the VMI performance of our four setups.
To foster a better comparison, we incorporate all compatible

Table 1: VMI policies and their targets, adopted from [44].
P1. process list P6. process memory map
P2. escalated privileges P7. keyboard sniffers
P3. VFS hooks P8. module list
P4. TTY keyloggers P9. TCP4 “netstat-ops”
P5. syscall table hooks P10. open files

policies of Liu et al. [44], which resemble techniques used by
rootkits. As shown in Table 1, this also includes two policies
focused on protecting user input against key loggers (P4,P7),
a scenario which is less relevant in a full remote setup but un-
derline 00SEVen’s generality. We measured the initialization
and analysis time of each setup for 50 iterations per policy,
cleaning LibVMI’s caches before every run. 00SEVen’s local
and remote setups showed negligible one-shot initialization
times <2 s, while KVMi’s default config takes ≤10 s. Fig-
ure 6 compares the LibVMI analysis times of the four se-
tups. The analysis time captures all VMI queries to KVMi or
00SEVen’s agent for the paused target VM. During the analy-
sis, 00SEVen schedules only its agent, avoiding overhead by
VMPL switches. The median analysis times are 68–151 ms
for KVMi, 65–148 ms for 00SEVen with local TCP-only
client, 65–157 ms with local, and 69–204 ms with remote
TLS client. That is, compared to KVMi, 00SEVen faces rea-
sonable average median overheads of +1.91 % (TCP-only),
+6.85 % (local TLS), and +20.0 % (remote TLS).

00SEVen’s relative overhead increases with the number of
queries (cf. x-labels, Figure 6). Each VMI read inherently
requires a page to be copied out of SEV-protected memory
and sent via the VMI channel to the LibVMI client. The effect
on the local setups is significantly smaller, showing that the
biggest overhead can be attributed to the per-query network
overhead. For small query numbers (≤ 34, incl. initialization),
00SEVen was even slightly faster than KVMi. In addition,
the local results show that our TLS support, currently miss-
ing CPU acceleration and zero-copy, adds noticeable extra
overhead. Therefore, optimizing the TLS code and decreas-
ing the number of remote messages by using more caching
and offloading strategies (cf. Appendix A) could further im-
prove 00SEVen’s performance. For instance, the P5 overhead
is small because LibVMI’s client-side page cache makes it
require only 17 VMI queries to 00SEVen’s agent (incl. initial-
ization) for iterating the hundreds of co-located syscalls.

7.1.1 Microbenchmark Results

To gain additional insights on the VMI performance, we per-
form two microbenchmarks. First, we evaluate a single physi-
cal page read. We measured the total time on the client-side
for 00SEVen’s local (loopback) TCP-only and TLS settings,
and determined how much each of the agent’s sub-operations
contributes to the results (using rdtsc with fences). On av-
erage, a single physical page read took 0.100 ms (∼279.4 k

USENIX Association 33rd USENIX Security Symposium    1661



P1 (180) P2 (233) P3 (18) P4 (34) P5 (17) P6 (419) P7 (17) P8 (362) P9 (17) P10 (472)
50

100

150

200

250

A
n
a
ly

si
s

T
im

e
[m

se
c]

KVMi local-tcp-00SEVen local-tls-00SEVen remote-tls-00SEVen

Figure 6: Analysis times for a local KVMi and three 00SEVen setups: local-TCP, local-/remote-TLS (number of VMI queries in
brackets at the x-axis labels, notably including the pause/resume/initialization requests that are not part of the time measurements).

ticks) with the TCP and 0.160 ms (∼453 k ticks) with the
TLS channel, showing the high impact of TLS. The runtime
is dominated by message passing and scheduling overhead;
Appendix E contains a more detailed breakdown.

Second, we measure the page translation (VM OS virtual
address to physical) overhead. The page translation requires
a page table (PT) walk, each step of which requires a high-
level interaction between the 00SEVen client and agent (plus
a CR3 lookup if not already cached). When disabling caching
(except for the CR3 register) and TLS, this benchmark took
0.24ms on average on our system with 2MB pages, i.e., with
three uncached PT level lookups and CR3 being cached.

7.2 Intrusion and Malware Detection
00SEVen is not limited to inspecting rootkits but can detect
any attack leaving traces in memory. For instance, a common
trace of an intrusion or data exfiltration attempt are anomalous
network connections, e.g., to known malicious command-
and-control servers. Therefore, cloud platforms can monitor
the network traffic of VMs for suspicious connections and
inform a customer on a potential incident. 00SEVen enables
customers to securely identify the malicious process to which
the suspicious connection belongs, even if the VM is already
compromised. To this end, we implemented a policy that
iterates the list of open file descriptors of each active process,
and looks for IP sockets with the given suspicious source or
destination IP to report the corresponding process name. That
is, we iterate over all active processes starting from the init
task (similar to P1 and Figure 3), and for each process, we
iterate over all file descriptors referenced by the task struct
(similar to P10), parsing their type-specific information to find
sockets that are connected to the suspicious IP in question.
00SEVen’s respective median introspection times for a single
suspicious connection are 102.2, 116.2, and 122.3 ms (TCP-
only, local-TLS, remote-TLS), with 30 VMI queries in total.

On a successful intrusion, attackers often install malware
for additional exploitation steps. First, malware then tries to
stop security services to prevent detection, e.g., the Linux
ClamAV [1] anti-virus scanner daemon. 00SEVen allows to
detect such malware intrusions by periodically scanning the
kernel’s process list to verify if the AV services are still run-

ning, e.g., using P1 of § 7.1. If an AV service has unexpectedly
stopped, the remote analyst can use 00SEVen to keep the OS
securely paused and directly start to further investigate the
active attack, e.g., scanning processes for malware signatures.

7.3 Rootkit Detection and Active Trapping
We now evaluate 00SEVen’s capability of detecting or pre-
venting rootkits. We adapted four open-source Linux rootkits
(three also used in [44]) to our VM’s v5 kernel: Sutekh, Spy,
Diamorphine, and Randkit [2–4, 6]. Sutekh hooks the umask
and execve syscalls by overwriting their function pointers in
the syscall table to enable userspace processes to gain root
privileges. Spy is a keylogger that registers itself as a keyboard
listener to log all entered keystrokes. Diamorphine hooks the
kill, getdent, and getdent64 syscalls to enable processes
to request service via signals, e.g., hiding of files or threads.
Randkit hooks the getrandom syscall and the read methods
of the u/random device files to inject an insecure random data
generation (all zeros, or xor128), rendering, e.g., all derived
crypto seeds and keys vulnerable. For each rootkit, we imple-
mented policies (inspired by Table 1) that detect an infection
and evaluated their analysis performance. Our policies check
if the syscall table entries point to valid (in-kernel) functions
to detect their hooks (Sutekh, Diamorphine, Randkit), check
for privileged shells (Sutekh), and check for registered key-
board notifiers (Spy). Sutekh required a median analysis time
of 256, 265, and 282 ms (tcp-only, local, remote), Spy of 213,
217, and 217 ms, Diamorphine of 129, 131, and 132 ms, and
Randkit of 115, 129, and 131 ms. That is, the analysis times
show reasonable performance, allowing to periodically scan
the VMs for common rootkit infections.

Instead of detecting rootkits post-mortem, 00SEVen can
also actively prevent the infection process using page access
traps (§ 4.2.5). This is an advantage over approaches like
RDMI [44] that have no trap support. We implemented event-
based policies for all three rootkits that successfully leverage
page write-traps that trigger when the rootkits are trying to
tamper with the syscall table or keyboard notifier list. That
way, the remote client can directly pause the VM and per-
form an analysis of the stopped exploitation chain. However,
page traps add non-negligible overhead. They should be used

1662    33rd USENIX Security Symposium USENIX Association



preferably to monitor suspicious accesses to critical pages,
e.g., write attempts to the syscall table. We measured the trap-
and-resume overhead of a single write (ADD) showing me-
dian overheads of 13.0 µs for KVMi’s traps (single stepping-
based), 738.5 µs and 761.8 µs for 00SEVen’s emulation-based
traps in the local setups, and in the remote one ∼1–3 ms
if the VM is not yielded, otherwise ∼45 ms (includes net-
work overhead). 00SEVen’s overhead is caused by the VMPL
switches, TLS and network overhead, and missing single step-
ping. Suppressing VMPL switches accelerates the local setups
to 85.7 µs and 93.3 µs, showing that 00SEVen benefits from
reduced switching overhead, e.g., by adding a dedicated agent
vCPU or improving AMD SEV (cf. § 8.1). To further de-
crease 00SEVen’s overhead, LibVMI’s trap handlers could be
partially offloaded into the agent’s userspace to avoid com-
munication overhead, and the emulation could be optimized.

7.4 In-VM Requirements and Overhead
00SEVen is designed with a small idle load and TCB (R7+8)
without a full-fledged OS kernel. Our in-VM TCB consists
of only ∼13.3 kLOC (≈12.5 k in Rust), including the SVSM
(≈6.5), our VMI agent (∼5.1), and virtio drivers (∼1.7). By
default, SVSM reserves only 256 MiB of a VM’s RAM for
VMPL0, i.e., 6.25 % for a 4 GiB VM. Our actual memory
requirement is even smaller (in the order of 10 MiB) but
depends on the number of vCPUs and the virtio ring size.
00SEVen’s agent does not impose performance overhead on
VM workloads while no analysis is active (R8). By default,
only the VM OS in VMPL1 is getting scheduled. VMPL0 is
scheduled only if either VMPL1 calls into a SVSM memory
service—which is typically done only during boot—or if the
VM owner sends a remote request to 00SEVen’s agent. In
the ”idle state”, 00SEVen’s VMPL0 components cause no
overhead, in contrast to other recent (non-VMI) SEV designs,
e.g., Hecate [28], which must actively virtualize scheduling
and device I/O for VMPL1 (cf. § 9).

8 Discussion

We now propose SEV extensions further improving VMI and
explain 00SEVen’s portability to other confidential platforms.

8.1 Improving AMD SEV for Secure VMI
00SEVen would benefit from new optimizations and features
for AMD SEV. 00SEVen’s agent would benefit from VMPL0
support for directly yielding and locking lower-privileged
VMPLs and intercepting VM exit events without relying on
the hypervisor. That way, 00SEVen’s secure pausing feature
would not depend on support by the hypervisor, and 00SEVen
could directly trap writes to control registers (e.g., to CR3 to
trap page table switches) or use single-stepping for easier
page access monitoring (§ 4.2 and Appendix C). 00SEVen

would also benefit from VMPL permissions for shared mem-
ory pages to prevent in-VM attackers from tampering with
its virtio and hypercall buffers without relying on the hyper-
visor (§ 6). Finally, as already observed by Ge et al. [28],
VMPL switches through the hypervisor cause non-negligible
overhead. Hardware support for directly switching VMPLs
without hypervisor intervention would improve the perfor-
mance of 00SEVen, especially its page/function traps.

8.2 Other Confidential (VM) Platforms
00SEVen’s current implementation is tailored to AMD SEV-
SNP VMs. However, 00SEVen’s concepts generalize to other
confidential VM platforms, all of which are incompatible with
existing VMI techniques by default (§ 3.3). In the following,
we discuss how the concepts of 00SEVen can be implemented
in Intel TDX [34] and Arm CCA [16].

Intel TDX Intel’s confidential VMs are called trusted do-
mains (TDs) and provide similar protection guarantees as
SEV VMs using per-TD crypto keys. Intel has announced
support for TD partitioning in future Intel TDX version 1.5,
which enables up to four nested VM environments inside a
single TD—comparable to VMPLs. TD partitioning provides
the foundation for the isolation of 00SEVen’s in-VM agent
and the deprivileging of the untrusted VM OS. Intel’s TDs
also have a state-save area comparable to AMD’s VMSAs,
which are a key component for register introspection.

Arm CCA Arm CCA introduces realms that provide secure
execution environments, e.g., for confidential VMs. In con-
trast to SEV and TDX, the isolation between realms is not
based on VM-unique crypto keys but on nested PTs (stage 2
PTs). These NPTs are managed by the new trusted realm man-
agement monitor (RMM), which acts as intermediate between
the realms and untrusted host hypervisor. The RMM executes
with hypervisor-like privileges (EL2), sharing some similar-
ities with the TDX monitor. As the RMM manages NPTs
for all realms, it should be possible to redesign existing NPT-
based isolation concepts to protect an in-VM agent or create
a co-located VMI VM [55, 62]. That way, a special per-realm
domain for integrating concepts of 00SEVen’s agent could be
created. Some of 00SEVen’s monitoring approaches could be
adapted to benefit from RMM’s trusted NPT management.

9 Related Work

Memory Forensic, VMI, and Kernel Monitors Most re-
lated to 00SEVen is work on non-confidential VMI and mem-
ory forensic, e.g., out-of-VM [42, 62] and in-VM [55] VMI.
In Table 2, we provide a comparison of 00SEVen with exist-
ing VMI approaches. 00SEVen takes inspiration from these
designs to fill the gap of enabling VMI techniques securely

USENIX Association 33rd USENIX Security Symposium    1663



Table 2: Comparison of VMI designs for non-confidential
VMs with 00SEVen. (HV =̂ hypervisor, NPT =̂ nested PT)

Agent conf.
Name Place Isolation TCB VMs
LibVMI HV virt./HV HV ✕
SIM [55] in-VM NPTs in-VM/HV ✕
ImEE [62] 2nd VM NPTs co-VM/HV ✕
00SEVen in-VM VMPLs VMPL0/SEV ✔

for SEV-SNP VMs. To the best of our knowledge, 00SEVen
is the first solution enabling secure remote VMI for con-
fidential VMs. LibVMI [42] is a common framework for
non-confidential VMI providing memory and register access,
address and symbol translation, as well as event-based traps.
We designed 00SEVen to provide similar features and based
our remote client on it to enable reuse of existing analysis
scripts and tools (cf. § 4.2.2). Zhao et. al [62] use the hypervi-
sor to provide fast out-of-VM VMI using a special co-located
VM (ImEE) that shares the untrusted page tables of the target
VM securely using NPT permissions. SIM [55] provides an
in-VM VMI agent for non-confidential VMs that is protected
by the hypervisor and uses special call gates to switch into
the agent without a VM exit. In contrast, 00SEVen focuses
on remote VMI for SEV-SNP VMs, uses VMPLs to protect
its in-VM agent, and designs VMI techniques not trusting the
hypervisor. Bridging the semantic gap [35] is a fundamen-
tal issue of VMI, rendering all these techniques relevant to
00SEVen. Katana and LogicMem [24, 52] enable automatic
symbol and data structure extraction, which is an orthogo-
nal feature useful for 00SEVen. Similarly, Oliveri et. al [50]
proposed OS-agnostic memory forensic, not requiring prior
knowledge on the target, i.e., the VM OS. VMIfresh [21]
improves LibVMI’s caching (Appendix A) using active moni-
toring of PT changes to prevent stale entries. 00SEVen could
adopt this approach using its r/w-page traps.

Other related work includes remote memory aggregation
and forensics for trusted execution environments (TEEs).
PCIleech [25] and RDMI [44] enable memory access via
devices with (remote) direct memory access. While they pro-
vide fast access, they are vulnerable to redirection attacks by
a malicious OS or hypervisor [17, 36] and are not tailored
to VMI, lacking respective features, e.g, VM pausing and
event traps. While there is no work on VMI for SEV VMs,
Smile [63] provides secure live memory inspection for Intel
SGX enclaves. Similar to 00SEVen, Smile had to securely
overcome the hardware-based memory protection of enclaves.
In contrast to 00SEVen, Smile relies on a semi-trusted out-
of-enclave agent in the system management mode and faces
different design challenges. Furthermore, 00SEVen provides
additional features, e.g., secure in-VM pausing and event traps.
Guerra et. al [33] add VMI modules into Arm TrustZone to
inspect the non-secure system but not the Arm TEE itself.

Further related work includes kernel security monitors.
Nested Kernel [22] redesigns FreeBSD to provide an isolated
in-kernel monitor which deprivileges the kernel by interpos-
ing on all page table changes (e.g., via x86-64’s write-protect
bit) and enforcing kernel code integrity and data protection.
In-VM OSes might adopt the monitor for extra security while
00SEVen watches the monitor and other OS resources. Future
work could explore if parts of 00SEVen’s in-VMI agent could
be offloaded into an in-kernel monitor. SVA [20] provides
compiler-based VMs that instrument the VM OS to intercept
its operations outside the VM and enforce security policies,
e.g., memory safety. Future work could explore compiler-
based methods inside confidential VMs to assist 00SEVen.

SEV Research There is several orthogonal research on con-
fidential SEV VMs. Most related is Hecate [28], which sup-
ports legacy OSes inside SEV-SNP VMs by tailoring a single-
VM capable nested hypervisor to SEV-SNP. In addition,
Hecate drafts support for in-VM kernel code integrity and net-
work filter policy enforcement. Similar to Hecate, 00SEVen re-
designs non-confidential hypervisor techniques securely for
SEV-SNP VMs. However, 00SEVen’s focus is on secure re-
mote VMI and a small TCB with negligible runtime overhead
while no analysis is active. Narayanan et. al [48] integrate a
virtual TPM as a new orthogonal SVSM service into VMPL0,
which could augment the attestation of 00SEVen’s remote
channel. Veil [7] is parallel work that provides an alternative
VMPL0 service framework, similar to SVSM. Veil provides
flexible VMPL management and a set of secure services, e.g.,
an append-only audit log writable by the VMPL1 OS. How-
ever, Veil does not support VMI functionalities like 00SEVen.
A future prototype of 00SEVen could replace AMD’s SVSM
with Veil, and integrate 00SEVen’s VMI agent and VSOCK
channel. Offensive work on SEV VMs explores their weak-
nesses (e.g., cipher side-channels) and proposes countermea-
sures orthogonal to 00SEVen [19, 23, 39–41, 57].

10 Conclusion

00SEVen re-enables an essential security technique for confi-
dential SEV VMs: secure remote VMI. 00SEVen introduces
new concepts to redesign existing non-confidential VMI tech-
niques for SEV-SNP VMs. By leveraging the recent virtual
machine privilege levels of SEV-SNP, 00SEVen realizes an in-
VM VMI agent that is hardware-isolated from out-of-VM and
in-VM attackers. 00SEVen’s agent provides the VM owner
with secure remote inspection capabilities of the private VM
memory and registers, as well as secure pausing and trapping
mechanisms for consistent and event-based analysis. Using
00SEVen, highly sensitive customers, e.g., of the finance and
health sector, can securely offload their workloads to the cloud
while retaining full introspection access for periodic security
scans, incident response, or attack detection and analysis.

1664    33rd USENIX Security Symposium USENIX Association



References

[1] ClamAV. https://wiki.ubuntuusers.de/ClamAV/ .

[2] Diamorphine. https://github.com/m0nad/Diamorphine .

[3] randkit. https://github.com/vrasneur/randkit .

[4] Sutekh. https://github.com/PinkP4nther/Sutekh .

[5] VirtIO-drivers-rs. https://github.com/rcore-os/

virtio-drivers .

[6] Spy, 2021. https://github.com/jarun/spy .

[7] A. Ahmad, B. Ou, C. Liu, X. Zhang, and P. Fonseca.
Veil: A Protected Services Framework for Confidential
Virtual Machines. ACM ASPLOS ’23, 2024.

[8] Amazon Web Services. Amazon EC2 now supports
AMD SEV-SNP, 2023. https://aws.amazon.com/about-

aws/whats-new/2023/04/amazon-ec2-amd-sev-snp/.

[9] Amazon Web Services. Nitro Enclaves, 2023. https:
//aws.amazon.com/ec2/nitro/nitro-enclaves/.

[10] AMD Inc. SEV-SNP: Strengthening VM Isolation with
Integrity Protection and More. Technical report, January
2020.

[11] AMD Inc. Secure VM Service Module for SEV-SNP
Guests. Technical report, August 2022. Revision: 0.50.

[12] AMD Inc. SEV Secure Nested Paging Firmware ABI
Specification. Technical report, November 2022.

[13] AMD Inc. AMD64 Architecture Programmer’s Man-
ual Volume 2: System Programming. Technical report,
January 2023.

[14] AMD Inc. AMD64 Architecture Programmer’s Manual
Volume 3: General-Purpose and System Instructions.
Technical report, June 2023.

[15] AMD Inc. SEV-ES Guest-Hypervisor Communication
Block Standardization. Technical report, January 2023.

[16] ARM Limited. ARM Confidential Compute Archi-
tecture, 2023. https://www.arm.com/architecture/

security-features/arm-confidential-compute-

architecture.

[17] A. Atamli, G. Petracca, and J. Crowcroft. IO-Trust:
An out-of-Band Trusted Memory Acquisition for Intru-
sion Detection and Forensics Investigations in Cloud
IOMMU Based Systems. In ARES, 2019.

[18] T. Barabosch, N. Bergmann, A. Dombeck, and E. Padilla.
Quincy: Detecting Host-Based Code Injection Attacks
in Memory Dumps. In DIMVA, 2017.

[19] R. Buhren, H.-N. Jacob, T. Krachenfels, and J.-P. Seifert.
One Glitch to Rule Them All: Fault Injection Attacks
Against AMD’s Secure Encrypted Virtualization. In
ACM CCS, 2021.

[20] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Se-
cure virtual architecture: a safe execution environment
for commodity operating systems. In ACM SOSP, 2007.

[21] T. Dangl, S. Sentanoe, and H. P. Reiser. VMIFresh:
Efficient and Fresh Caches for Virtual Machine Intro-
spection. In ARES, 2022.

[22] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell,
and V. Adve. Nested Kernel: An Operating System
Architecture for Intra-Kernel Privilege Separation. In
ACM ASPLOS, 2015.

[23] S. Deng, M. Li, Y. Tang, S. Wang, S. Yan, and Y. Zhang.
CipherH: Automated Detection of Ciphertext Side-
channel Vulnerabilities in Cryptographic Implementa-
tions. In USENIX Security, 2023.

[24] F. Franzen, T. Holl, M. Andreas, J. Kirsch, and
J. Grossklags. Katana: Robust, Automated, Binary-
Only Forensic Analysis of Linux Memory Snapshots.
In RAID, 2022.

[25] U. Frisk. PCILeech. https://github.com/ufrisk/pcileech.

[26] U. Frisk. The LeechCore Physical Memory Acquisition
Library. https://github.com/ufrisk/LeechCore.

[27] T. Garfinkel and M. Rosenblum. A Virtual Machine In-
trospection Based Architecture for Intrusion Detection.
In NDSS, 2003.

[28] X. Ge, H.-C. Kuo, and W. Cui. Hecate: Lifting and
Shifting On-Premises Workloads to an Untrusted Cloud.
In ACM CCS, 2022.

[29] Google. GRR Rapid Reponse. https://github.com/
google/grr.

[30] Google Cloud. Confidential Computing con-
cepts, 2023. https://cloud.google.com/compute/
confidential-vm/docs/about-cvm.

[31] A. Gowda, M. Withrow, and H. Bontha. Kata confidential
containers with Azure Kubernetes Service, 2023. https:

//techcommunity.microsoft.com/t5/azure-confidential-

computing/aligning-with-kata-confidential-containers-

to-achieve-zero-trust/ba-p/3797876 .

[32] Z. Gu, Z. Deng, D. Xu, and X. Jiang. Process Implant-
ing: A New Active Introspection Framework for Virtu-
alization. In IEEE Symposium on Reliable Distributed
Systems, 2011.

USENIX Association 33rd USENIX Security Symposium    1665

https://wiki.ubuntuusers.de/ClamAV/
https://github.com/m0nad/Diamorphine
https://github.com/vrasneur/randkit
https://github.com/PinkP4nther/Sutekh
https://github.com/rcore-os/virtio-drivers
https://github.com/rcore-os/virtio-drivers
https://github.com/jarun/spy
https://aws.amazon.com/about-aws/whats-new/2023/04/amazon-ec2-amd-sev-snp/
https://aws.amazon.com/about-aws/whats-new/2023/04/amazon-ec2-amd-sev-snp/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://github.com/ufrisk/pcileech
https://github.com/ufrisk/LeechCore
https://github.com/google/grr
https://github.com/google/grr
https://cloud.google.com/compute/confidential-vm/docs/about-cvm
https://cloud.google.com/compute/confidential-vm/docs/about-cvm
https://techcommunity.microsoft.com/t5/azure-confidential-computing/aligning-with-kata-confidential-containers-to-achieve-zero-trust/ba-p/3797876
https://techcommunity.microsoft.com/t5/azure-confidential-computing/aligning-with-kata-confidential-containers-to-achieve-zero-trust/ba-p/3797876
https://techcommunity.microsoft.com/t5/azure-confidential-computing/aligning-with-kata-confidential-containers-to-achieve-zero-trust/ba-p/3797876
https://techcommunity.microsoft.com/t5/azure-confidential-computing/aligning-with-kata-confidential-containers-to-achieve-zero-trust/ba-p/3797876


[33] M. Guerra, B. Taubmann, H. P. Reiser, S. Yalew, and
M. Correia. Introspection for ARM TrustZone with
the ITZ Library. In IEEE International Conference on
Software Quality, Reliability and Security (QRS), 2018.

[34] Intel Corporation. Intel Trust Domain Extensions (Intel
TDX), 2023. https://www.intel.com/content/
www/us/en/developer/articles/technical/
intel-trust-domain-extensions.html.

[35] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion.
SoK: Introspections on Trust and the Semantic Gap. In
IEEE S&P, 2014.

[36] D. Jang, H. Lee, M. Kim, D. Kim, D. Kim, and B. B.
Kang. ATRA: Address Translation Redirection Attack
against Hardware-Based External Monitors. In ACM
CCS, 2014.

[37] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing,
and M. Vij. Integrating Remote Attestation with Trans-
port Layer Security. CoRR, abs/1801.05863, 2018.

[38] M. Lentz, R. Sen, P. Druschel, and B. Bhattacharjee. Se-
Cloak: ARM Trustzone-Based Mobile Peripheral Con-
trol. In ACM MobiSys, 2018.

[39] M. Li, L. Wilke, J. Wichelmann, T. Eisenbarth,
R. Teodorescu, and Y. Zhang. A Systematic Look at
Ciphertext Side Channels on AMD SEV-SNP. In IEEE
S&P, 2022.

[40] M. Li, Y. Zhang, and Z. Lin. CrossLine: Breaking
"Security-by-Crash" Based Memory Isolation in AMD
SEV. In ACM CCS, 2021.

[41] M. Li, Y. Zhang, Z. Lin, and Y. Solihin. Exploiting Un-
protected I/O Operations in AMD’s Secure Encrypted
Virtualization. In USENIX Security, 2019.

[42] LibVMI Project. LibVMI: Simplified Virtual Machine
Introspection. https://github.com/libvmi/libvmi .

[43] M. H. Ligh, A. Case, J. Levy, and A. Walters. The Art of
Memory Forensics: Detecting Malware and Threats in
Windows, Linux, and Mac Memory. Wiley Publishing,
1st edition, 2014.

[44] H. Liu, J. Xing, Y. Huang, D. Zhuo, S. Devadas, and
A. Chen. Remote Direct Memory Introspection. In
USENIX Security, 2023.

[45] M. Morbitzer, M. Huber, and J. Horsch. Extracting
Secrets from Encrypted Virtual Machines. In ACM
CODASPY, 2019.

[46] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel. SEV-
ered: Subverting AMD’s Virtual Machine Encryption.
In EuroSec, 2018.

[47] M. Morbitzer, S. Proskurin, M. Radev, M. Dorfhuber,
and E. Salas. SEVerity: Code Injection Attacks against
Encrypted Virtual Machines. In IEEE Security and
Privacy Workshops (SPW), 2021.

[48] V. Narayanan, C. Carvalho, A. Ruocco, G. Almási,
J. Bottomley, M. Ye, T. Feldman-Fitzthum, D. Buono,
H. Franke, and A. Burtsev. Remote attestation of SEV-
SNP confidential VMs using e-vTPMs, 2023. https:
//arxiv.org/pdf/2303.16463.pdf.

[49] OASIS Open. Virtual I/O Device (VIRTIO) Version 1.1.
OASIS Committee, 2019.

[50] A. Oliveri, M. Dell’Amico, and D. Balzarotti. An OS-
agnostic Approach to Memory Forensics. In NDSS,
2023.

[51] B. D. Payne. An Introduction to Virtual Machine Intro-
spection Using LibVMI (slides). In Malware Memory
Forensics Workshop (MMF), 2014.

[52] Z. Qi, Y. Qu, and H. Yin. LogicMEM: Automatic Pro-
file Generation for Binary-Only Memory Forensics via
Logic Inference. In NDSS, 2022.

[53] S. Rostedt. ftrace, 2008. https://www.kernel.org/

doc/Documentation/trace/ftrace.txt .

[54] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor:
A Tiny Hypervisor to Provide Lifetime Kernel Code
Integrity for Commodity OSes. In ACM SOSP, 2007.

[55] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure
In-VM Monitoring Using Hardware Virtualization. In
ACM CCS, 2009.

[56] Volatility Foundation. Volatility. https://github.
com/volatilityfoundation/volatility/.

[57] J. Wichelmann, A. Pätschke, L. Wilke, and T. Eisenbarth.
Cipherfix: Mitigating Ciphertext Side-Channel Attacks
in Software. In USENIX Security, 2023.

[58] F. Wilhelm. Tracing Privileged Memory Accesses to
Discover Software Vulnerabilities. Master thesis, Karl-
sruhe Institute of Technology, Germany, 2015.

[59] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisen-
barth. SEVurity: No Security Without Integrity : Break-
ing Integrity-Free Memory Encryption with Minimal
Assumptions . In IEEE S&P, 2020.

[60] C. Willems, R. Hund, and T. Holz. CXPInspector:
Hypervisor-Based, Hardware-Assisted System Monitor-
ing. Technical report, Ruhr-Universitat Bochum, 2012.

[61] B. Wójcik. Windows Hot Patching Mechanism Ex-
plained, 2020. https://dev.to/bartosz/windows-
hot-patching-mechanism-explained-2m1f.

1666    33rd USENIX Security Symposium USENIX Association

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://github.com/libvmi/libvmi
https://arxiv.org/pdf/2303.16463.pdf
https://arxiv.org/pdf/2303.16463.pdf
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://github.com/volatilityfoundation/volatility/
https://github.com/volatilityfoundation/volatility/
https://dev.to/bartosz/windows-hot-patching-mechanism-explained-2m1f
https://dev.to/bartosz/windows-hot-patching-mechanism-explained-2m1f


[62] S. Zhao, X. Ding, W. Xu, and D. Gu. Seeing Through
The Same Lens: Introspecting Guest Address Space At
Native Speed. In USENIX Security, 2017.

[63] L. Zhou, X. Ding, and F. Zhang. Smile: Secure Memory
Introspection for Live Enclave. In IEEE S&P, 2022.

[64] Z. Zhou, M. Yu, and V. D. Gligor. Dancing with Giants:
Wimpy Kernels for On-Demand Isolated I/O. In IEEE
S&P, 2014.

A Caching and Offloading Strategies

We can accelerate 00SEVen’s memory access operations
(§ 4.2.3) by adopting client- or agent-side optimizations.

Client-side Caching As 00SEVen’s current remote client
is based on an extended version of LibVMI [42] (cf. § 4.2.2),
we can benefit from LibVMI’s performance-enhancing client-
side caching [51]. We adopt LibVMI’s page-level data
caching to avoid additional network overhead for follow-up
accesses to the same physical VM page, e.g., when reading
multiple fields of a structure or page table entries [42, 51].
That is, the client requests whole page reads (4 KiB) of the
agent and caches {PAvm → page buffer} mappings, where
PAvm is the physical page address, to enable client-local
follow-up accesses to the same memory page. That way, we
avoid extra communication overhead. Furthermore, we ac-
celerate the address translation process (VAvmpl1 → PAvm)
required when accessing virtual addresses of the VMPL1
VM OS (cf. § 4.2.3). LibVMI supports multiple related
client-side caches, which maintain {kernel symbol→PAvm}2,
{VAvmpl1 →PAvm}, and {process ID→PAvm(root PT)} map-
ping entries that decrease the number of required VMPL1
page table walks and remote memory access requests.

Address Translation Offloading to Agent Beside client-
side caching, future extensions of 00SEVen’s in-VM agent
could accelerate virtual address access. We could offload
the VMPL1 page table walk to the agent to decrease the
communication overhead between agent and remote client
by avoiding VMPL1 page table (PT) transfers. Furthermore,
we could then adjust LibVMI’s page-level data caching from
{PAvm → page buffer} to {VAvmpl1 → page buffer}, such that
the remote client does not need to calculate and send physical
addresses (PAvm) to the agent anymore.

Alternatively, an extension could explore how to eliminate
the translation steps from VAvmpl1 to VAvmpl0. By securely
using parts of the untrusted VM OS (VMPL1) PTs directly
from within our agent, we could omit the additional trans-
lation (VAvmpl1 → PAvm) and mapping (PAvm → VAvmpl0)
steps. However, existing VMI techniques following such an

2actually {ksym →VAvmpl1}, but PAvm is statically derived for Linux [43]

approach [55, 62] are not applicable to 00SEVen. In fact,
they rely on a trusted hypervisor managing nested PT en-
tries, permissions, or trapping PT changes of VMPL1. Oth-
erwise, attackers might manipulate or relocate PTs, e.g., to
hide attack traces or corrupt the VMI agent. Trusting the hy-
pervisor violates the threat model of SEV-SNP and 00SEVen,
rendering these designs insecure for confidential VMI. More-
over, SEV-SNP currently lacks support for VMPL0-controlled
nested PTs and intercepting VMPL1’s PT switches (cf. § 8.1).
We therefore leave a design open for future work.

B Security Details on Page R/W-Monitoring

In § 4.2.5, we described how 00SEVen leverages VMPL
permissions to securely trap read and/or write accesses by
VMPL1 to private VM pages. That way, the remote analyst
can perform event-based VMI triggered by the monitoring
traps. Even though the hypervisor is untrusted, 00SEVen en-
forces a scheduling of its in-VM agent on r/w-traps. Only
VMPL0 has the privileges required to resolve the VMPL1
access violation for resuming the trapped instruction. The
RMPADJUST instruction for modifying VMPL permissions is
only usable from within the SEV-SNP VM and can only ad-
just permissions of less privileged VMPLs. Therefore, neither
the hypervisor nor the VM OS running in VMPL1 can tamper
with the VMPL1 permissions. Furthermore, only our VMPL0
agent can access the vCPU registers of VMPL1 in the respec-
tive VMSA to perform an instruction decoding and emulation.
Therefore, the hypervisor must schedule 00SEVen’s agent
to successfully resume the trapped instruction. If the hyper-
visor tries to directly re-schedule the VM OS (VMPL1) on
the access violation, the nested page fault (NPF) will be re-
raised. Attempts to modify the page’s SEV-SNP attributes,
e.g., making a private page shared or trying to directly mod-
ify the VMPL1 permissions, will either result in page data
corruption or in the page becoming invalid for the VM, re-
quiring a re-registration (“validation” [10]) only resolvable by
VMPL0. The only option left is that if the in-VM attacker and
hypervisor collude (excluded from our threat model, cf. § 3.1
and § 6.1), they might skip the failed memory access entirely.

C Kernel Function Traps

In § 4.2.5, we introduced 00SEVen’s support for event-based
VMI triggers by describing the page read/write-access traps.
Conceptually, 00SEVen also supports trapping the execution
of VMPL1 kernel code. That way, an analysis can be trig-
gered on execution of a certain VM OS function, e.g., a sys-
tem call [60]. While we could adapt our page read/write-
monitoring idea to trap page execution by marking pages as
non-executable in the VMPL1 permissions, this approach
would introduce significant emulation complexity. On a
read/write-trap, 00SEVen’s VMPL0 agent must emulate a sin-

USENIX Association 33rd USENIX Security Symposium    1667



gle memory-accessing VMPL1 instruction to resume VMPL1.
However, on a code execution trap, the agent would need to
emulate all instructions located at the monitored memory
page, including all kinds of control flow instructions, e.g.,
function calls. Alternatively, we could fall back on hardware
single-stepping, but as discussed in § 4.2.5, we then could
not guarantee that our agent can re-enable the trap afterwards,
because single-stepping requires the untrusted hypervisor.

Instead, 00SEVen can inject VMPL0 trampolines at the
beginning of VMPL1 kernel functions using compiler-
assistance, similar to how ftrace is implemented in Linux [53]
or hot patching in Windows [61]. The injected code serves
as pseudo-breakpoints that, if enabled by our agent, call into
VMPL0 for analysis. We inline a loop that performs a hy-
pervisor call (VMGEXIT instruction), telling the hypervisor to
schedule our VMPL0 agent, and a check of the return regis-
ter. The trampoline uses the statically-known GHCB MSR
interface [15] to pass the request number to the hypervisor.
After the analysis, our agent sets the return register inside
the VMPL1 VMSA of the trapped vCPU in order to confirm
a successful trap handling to the trampoline. Otherwise, the
trampoline loop retries the call to prevent the hypervisor from
ignoring our scheduling request, similar to how AMD SVSM
handles service calls [11]. That way, we can reliably inject
code execution traps. While we cannot hide our injected code,
we can reliably set the VMPL1 permissions as non-writable to
prevent tampering by in-VM attackers, because all code pages
are treated as private VM pages in SEV-SNP and are there-
fore affected by VMPL permissions (cf. § 2.1). The injected
code is disabled by default by a prepended jump instruction
skipping the call loop. Our agent can replace the jump with
a NOP in memory when the remote analyst requests to en-
able a function trap. However, note that the context switches
between VMPL1 and VMPL0 through the hypervisor cause
non-negligible overhead, limiting frequent execution tracing.

D Interrupts on VMPL Scheduling

In § 5.2, we explained that 00SEVen’s remote channel de-
vice schedules the VMPL0-agent on new request messages.
Similarly, 00SEVen schedules VMPL0 when forwarding
nested page faults to the agent on read/write-monitoring
traps (§ 4.2.5). However, one additional concern must be
addressed: When scheduling VMPL0, there must be no event
injections by the hypervisor into the VM, e.g., device interrupt
requests (IRQ) or non-maskable interrupts (NMI). Otherwise,
as 00SEVen’s VMPL0 executes in SEV-SNP’s restricted injec-
tion mode to be protected against malicious event injections
by the untrusted hypervisor [10], an event injection attempt
would result in a hardware error raised by the CPU when
trying to resume VMPL0 execution. Therefore, we imple-
ment the following additional steps in QEMU/KVM: On a
VMPL0 scheduling request, we temporarily disable NMIs
for the vCPU in the hypervisor. Furthermore, we check for

Message passing and context 

switches (46.0%)

0.16ms

0.10ms

0ms

TLS overhead: 37.5%

(VMI client and agent, but 

dominated by TLS implementation 

in agent)

VMI agent: 10.3%
(breakdown see on the right)

VMI client: 6.3%

Serialize and send 

response: 7.1%

Parse req.: 1.8%

Read page: 1.3%

VMI agent breakdown

(absolute ratios)

Figure 7: Breakdown of page access microbenchmark costs.

a pending IRQ injection for the VM OS by other devices.
If so, we stash the pending (VMPL1) IRQ in a new field
inside KVM’s vCPU data structure. On the back-schedule
to VMPL1, KVM then restores the stashed IRQ to deliver
it to the VM OS and re-enables NMIs for the vCPU. That
way, we prevent NMIs (e.g., caused by Linux’s CPU stall
detection) and pending (device) IRQs from causing errors
or getting dropped (potentially causing a vCPU hang). Note
that VMPL0 currently executes with IRQs turned off, i.e.,
there will be no new IRQ injection attempts during VMPL0
execution beyond the stashed one.

E Microbenchmark Breakdown

Figure 7 provides a detailed breakdown of our page read mi-
crobenchmark (§ 7.1.1). The TLS overhead contributes to
37.5 % of the overall runtime. Due to its slow TLS imple-
mentation, the agent overall consumes 41 % of the overall
overhead, with the most dominant sub-operations being the
encrypt-send (86.3 % of the agent), unpack-decrypt (5.3 %),
and packet de-/serialize (3.2 %/2.1 %) operations, rather than
the actual page access. Ignoring the TLS parts, the agent con-
tributes only 10.3 %, out of which most cycles are spent on
parsing the VMI request and preparing the VMI response;
the actual page read takes 1.3 % on average. The client con-
tributes 6.3 %, mainly for issuing VMI requests and parsing
responses. The remaining parts of the total overhead (46.0 %)
are caused by the message channel through the VSOCK de-
vice, QEMU process, and socat packet forwarding service
and the corresponding context switches. This reveals an opti-
mization potential, e.g., by replacing socat with a QEMU-
integrated proxy service to reduce process context switches.

1668    33rd USENIX Security Symposium USENIX Association


	Introduction
	Background: AMD SEV-SNP and SVSM
	Confidential VMs using AMD SEV-SNP
	AMD Secure VM Service Module (SVSM)

	Setting: Confidential VM In(tro)spection
	Threat Model
	Design Goals and Requirements
	(Un)Applicability of Existing VMI

	Design of 00SEVen
	Design Overview
	VMI Work Flow
	Modus Operandi
	Remote VMI Interface
	VMI Operations
	Secure Pausing for a Consistent Analysis
	Event-based VMI


	Implementation
	Agent Integration and Startup
	Channel Device and Scheduling
	Attested Remote Communication
	VMI-assisting Hypercalls

	Security Analysis
	Beyond 00SEVen: Collusion Attacks

	Evaluation
	(Remote) Analysis Performance
	Microbenchmark Results

	Intrusion and Malware Detection
	Rootkit Detection and Active Trapping
	In-VM Requirements and Overhead

	Discussion
	Improving AMD SEV for Secure VMI
	Other Confidential (VM) Platforms

	Related Work
	Conclusion
	Caching and Offloading Strategies
	Security Details on Page R/W-Monitoring
	Kernel Function Traps
	Interrupts on VMPL Scheduling
	Microbenchmark Breakdown

