
This paper is included in the Proceedings of the 
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the 
33rd USENIX Security Symposium 

is sponsored by USENIX.

Windows into the Past: Exploiting Legacy Crypto 
in Modern OS’s Kerberos Implementation

Michal Shagam and Eyal Ronen, Tel Aviv University
https://www.usenix.org/conference/usenixsecurity24/presentation/shagam



Windows into the Past: Exploiting Legacy Crypto in Modern OS’s Kerberos
Implementation

Michal Shagam Eyal Ronen

Tel-Aviv University

Abstract

The Kerberos protocol is used by millions of users and net-
work administrators worldwide for secure authentication, key
distribution, and access control management to enterprise net-
works and services. Since its initial public deployment in
1989, the protocol has undergone many revisions to incor-
porate new cryptographic primitives and improve security.
For example, initially based solely on users’ passwords and
symmetric cryptographic primitives, current implementations
also support smartcard-based authentication with asymmet-
ric cryptographic primitives for improved security. However,
this iterative revision process has resulted in implementations
riddled with legacy crypto primitives and protocol designs.

In this work, we show how we can exploit this legacy crypto
to completely break the security of the enterprise network.
Firstly, while arguably more secure, smartcard-based authenti-
cation uses RSA encryption with the notorious PKCS #1 v1.5
padding scheme. Although the RSA decryption is done se-
curely inside the smartcard, a non-constant time unpadding
code runs on the client’s CPU. This makes both Windows’s
and several Linux distributions’ implementations vulnerable
to the Bleichenbacher attack that can recover cryptographic
session tokens. Secondly, we show that the RSA smartcard-
based authentication does not provide forward secrecy to the
cryptographic tokens that the server provisions to the client.
Thirdly, we propose and analyze different algorithmic ap-
proaches to minimize the overhead required to handle noisy
oracles in the Bleichenbacher attack. This general Bleichen-
bacher attack analysis may be of independent interest.

Finally, we demonstrate microarchitectural side channel-
based end-to-end attacks on the Windows Kerberos imple-
mentation. We start by showing how to recover tokens used
to encrypt session transferred remote files by Samba. We then
show how to amplify the number of decryptions performed
with a single user’s PIN code input, allowing us to accelerate
our attack and recover users’ (and admins’) credentials before
expiration. In addition, we describe a remote attack vector
that allows us to perform the attack and generate queries.

1 Introduction

The Kerberos protocol [53, 54] is used for secure authenti-
cation and access to remote services over insecure networks.
It is based on a centralized approach where a dedicated Key
Distribution Center (KDC) server is responsible for user au-
thentication and the distribution of keys. It is used across
many operating systems [8,9,21,24,26,43,60,71] and within
many organizations [16,20,25] and is therefore a prime target
for attacks [12, 39, 69]. Current implementations have added
support for asymmetric encryption [72] and smartcard-based
authentication [7].

Currently, smartcards [7] are considered a go-to secure
authentication tool. Smartcards often embed two factors of
authentication - something you have, which is the possession
of the smartcard itself, and something you know, which is the
smartcard pin code. The smartcard integration goal was to en-
hance the security of the Kerberos protocol [27], removing its
reliance on users’ passwords, which are a known weak point
(e.g., due to users choosing weak passwords, large password
breaches, phishing attacks, etc.) [17, 18, 34, 38, 49, 51, 67].

Moreover, as the private keys are stored and used only in-
side the secure smartcard, one can hope that the authentication
process will be more resilient to attacks against the crypto-
graphic implementations, such as Bleichenbacher’s padding
oracle attack [13]. However, although smartcards may se-
curely perform the RSA decryption calculation, they still rely
on the host computer to perform all the delicate handling of
the PKCS #1 v1.5 unpadding and verification. Even though
the Kerberos protocol does not provide a timing oracle to a
network adversary, running the unpadding and verification
code on the host machine may make it vulnerable to micro-
architectural side-channels-based Bleichenbacher attacks.

In this work, we set out to answer the following question:

Are modern implementations of Kerberos smartcard based
authentication secure against padding oracle attacks?

USENIX Association 33rd USENIX Security Symposium    6651



Table 1: Implementation Vulnerability Survey

OS Kerberos Smartcard Vulnerable
Protocol Interface

Windows Security
Package

basecsp both

macOS Heimdal OpenSC both
FreeBSD Heimdal OpenSC both
Ubuntu MIT OpenSC interface
RedHat MIT OpenSC interface
Gentoo MIT OpenSC interface
OpenSuse MIT OpenSC interface
CentOS MIT OpenSC interface
ArchLinux MIT OpenSC interface
Suse MIT OpenCryptoki no a

a We note that OpenCryptoki did include some non constant-
time code that was identified by the tools from [33], but exploit-
ing it using using a micro-architectural side-channel attack is
challenging and would probably require a prohibitively large
number of queries.

1.1 Our Contribution
Unfortunately, we discovered that all major implementations
of RSA [63] smartcard-based Kerberos authentication are vul-
nerable to padding oracle attacks based on microarchitectural
side channels. Moreover, protocols such as Samba [41] rely on
Kerberos for authentication and key distribution even though
Kerberos does not provide forward secrecy. This combination
leads to practical attacks that allow unprivileged machine-in-
the-middle (MiTM) adversaries to access restricted files in the
network. Finally, by exploiting the lack of a global rate limit
on the number of protocol sessions initiated in Windows, we
can accelerate our attack to stealthily steal nonexpired users’
authentication tokens that allow us to impersonate users and
admins in the network and gain access to all of their informa-
tion and capabilities.
More specifically, our contributions are as follows:
Survey of major RSA smartcard-based Kerberos imple-
mentations. We surveyed (using manual inspection of
open source code and reverse engineering of close source
binaries) the implementations used by the default config-
uration of Windows, MacOS, and several Linux distribu-
tions. The survey included all three major implementations
of the Kerberos protocol — Windows’ closed-source Secu-
rity Package and the open-source Heimdal and MIT imple-
mentations. Only MIT implemented the required mitigations
against Bleichenbacher’s attack, and both other implementa-
tions include nonconstant-time code that can be exploited. We
also surveyed the default smartcard interfaces used — Win-
dows’ closed-sourced basecsp, and the open-source OpenSC
and OpenCryptoki. Both basecsp and the widely deployed
OpenSC contain nonconstant-time code in their implementa-
tions of PKCS #1 v1.5 unpadding which make them vulnera-

ble to Bleichenbacher’s attack. The summary of our findings
can be found in Table 1, where from the 10 operating sys-
tems we surveyed, 9 were found to use a vulnerable default
configuration, including Windows, MacOS, and Ubuntu.

We note that as a step in the right direction, the recent Win-
dows 11 22H2 versions disabled the use of RSA smartcard
authentication in Kerberos (although the vulnerable imple-
mentations still remain). However, the currently supported
and widely used Windows 10 ( 70% of Windows comput-
ers [57]) and Windows 11 22H1 versions remain vulnerable.

Proof-of-Concept (PoC) of Bleichenbacher Oracle on Win-
dows. We exploited one of vulnerabilities we discovered in
Windows to implement a PoC of our micro-architectural side-
channel attack and create a Bleichenbacher padding oracle.
We then tested and analyzed the accuracy of the oracle.

Handling Noisy Oracles in the Bleichenbacher Attack.
Noisy oracles are a significant challenge to Bleichenbacher’s
attack. Although they are very important in practice, they have
only received very limited attention in the literature [15], and
the current trivial approach can double the number of required
queries [64]. We experimentally explored several methods to
improve the soundness of the Bleichenbacher attack and its
robustness to noisy oracles. Our novel traceback approach
utilizes the statistical properties of the attack. It allows us to
minimize the overhead of additional required queries com-
pared to a perfect oracle. While our approach might slightly
reduce the overall success rate, it is specifically suitable for
cases where we only have a limited time to perform our at-
tack. In this case, only attacks with a small number of queries
can succeed in time, so algorithms that require high query
overhead to handle noisy oracles (e.g., repeating queries to
improve soundness) will cause the attack to fail.

End-to-end attack implementation on Samba’s file en-
cryption. To show the practicality of our MiTM attack, we
experimentally verified our ability to recover files encrypted
using the SMB3 [44] protocol. The SMB3 encryption keys
are sent to the client as part of the Kerberos protocol. As
neither SMB3 nor Kerberos provides forward secrecy, we can
exploit our attack to recover the Kerberos and SMB3 keys
transferred in a previous session and recover the content of
the encrypted files. This is possible even with a slow attack
that may finish long after the target session expires.

Accelerated Stealthy Attack. The main bottleneck in our
attack is our ability to cause the client to initiate new protocol
sessions, as each initiated session results in a single padding
oracle query. In many cases this requires user interaction and
pin code entry, and results in only a small number of session
initiation attempts that allow for padding oracle queries. This
may result in a very slow attack that is potentially user de-
tectable. In order to actively exploit the recovered session
token (e.g., to impersonate an admin), our attack needs to
finish in less than 10 hours before the session token and ticket
expire. To overcome this limitation, we analyzed different user

6652    33rd USENIX Security Symposium USENIX Association



actions that initiate Kerberos protocol sessions. We found that
specific user actions may attempt to initiate a large number
of sessions (due to retries) without requiring the user’s PIN
code. Moreover, we discovered that although there is a limit
on the number of failed attempts a single action can initiate,
there is no global cap or rate limitation on the total number of
protocol sessions. Finally, we show how in some settings, we
can remove all requirements for user interaction by remotely
initiating the requests from a malicious webpage. The attack
is also stealthy as the user sees no notification, and all the
resulting messages are handled by our MiTM attacker without
interaction with any of the network’s servers.

Open Source Kerberos MiTM Attack Framework. To-
gether with the paper, we will release all of the code developed
for our attack. This includes the full code of our MiTM frame-
work that can manipulate Kerberos messages, and derive all
of the various keys and decrypt the different messages.

1.2 Responsible Disclosure

We started a responsible disclosure process with Microsoft,
the maintainers of the Heimdal Kerberos implementation, and
the OpenSC maintainers. OpenSC have fully patched their
PKCS #1 v1.5 code to be constant-time. We were allocated
CVE-BLINDED with a high severity jointly with a disclosure
from a concurrent work [33]. Microsoft acknowledged our
findings as an Elevation of Privilege attack. They are cur-
rently working on a fix which they plan to release in July
2024. Although they don’t have access to exact numbers, they
estimate that a large number of users use smartcards for Ker-
beros authentication and are affected by our findings. The
Heimdal team has confirmed our findings, and we are waiting
for updates regarding their patching plans.

1.3 Structure of the Paper

Section 2 provides background and describes related work.
Section 3 presents our threat model, describes our padding
oracle, and our survey of vulnerable nonconstant-time code
in Kerberos implementations. Section 4 describes our Proof-
of-Concept padding oracle implementation, and Section 5
describes a full end-to-end attack on Windows. Section 6 ex-
plains how we accelerated our attack, and Section 7 discusses
how to efficiently handle noisy oracles in the Bleichenbacher
attack and present an active user impersonation attack. Sec-
tion 8 describes how to optimize the process of finding a
session that can be decrypted before it expires. Finally, Sec-
tion 9 discusses the root causes for our attack and proposes
various mitigations.

2 Background

2.1 Kerberos protocol
The Kerberos protocol [53, 54] is a trusted third-party au-
thentication protocol. Initially developed in the late 1980s,
it is based on the Needham-Schroeder symmetric-key pro-
tocol [52] from the 1970s, although newer implementa-
tions also support key transfer using asymmetric encryp-
tion. The protocol is widely used across operating sys-
tems [8, 9, 21, 24, 26, 43, 60, 71] and has several widely used
implementations including: MIT [47], Heimdal [29, 30], and
Microsoft [43]. The Kerberos protocol defines a protocol
between three types of entities:
1. Client or principal — this includes the host computer itself

and the user
2. Key Distribution Center (KDC) — The third-party trusted

server (also known as the domain server) that provides
the authentication service.

3. Application service server (Application Server) — A
server that provides access to the network resources such
as remote files, remote powershell and email server.

We note that some of the Kerberos entities, such as the KDC
and the Application Server, are often implemented on the
same physical computer.

2.1.1 Tokens in Kerberos

Kerberos uses tokens (which are called tickets) which are
provided to the client during authentication, and can be used
by the client to prove their identity and permissions to ap-
plication servers. The tokens contain encrypted information
that allows servers in the network to verify the validity of
the tokens. The tokens can be used for a limited amount of
time, known as a lifetime. After the token expires, the client
needs to repeat the authentication process. The default token
lifetime on Windows is 10 hours, this can be extended for up
to 7 days with a process called ticket renewal [45].

The two main types of tokens used in Kerberos are called
Ticket-granting-tickets (TGTs) and Ticket-granting-service
(TGSs) sent in the Kerberos protocol messages AS-REP and
TGS-REP respectively. The TGT ticket is used by the client
to request TGS tickets. The TGS service ticket is then used by
the client to gain access to different services on the network.

2.1.2 PKINIT

PKINIT is an extension of the Kerberos version 5 proto-
col [70] adapting it to support asymmetric encryption and
allowing the authentication of clients without relying on (po-
tentially weak or compromised) user passwords. The asym-
metric encryption in PKINIT is used to transfer a symmetric
key which we refer to as the session token. This session token
is then used to derive the rest of the keys used in the remainder
of the protocol.

USENIX Association 33rd USENIX Security Symposium    6653



2.1.3 Open Source Kerberos Implementations

The Microsoft Windows implementation of Kerberos is
closed-source. The most common open source implementa-
tions of Kerberos, which can be used on additional operating
systems, are the MIT KRB5 [8, 9, 16, 21, 24, 26, 47, 55, 60, 61,
71] implementation and the Heimdal [23, 29, 65] implementa-
tion. The Heimdal [29] Kerberos implementation, in addition
to being open-source, was created as an implementation inde-
pendent of US regulations and export restrictions. Therefore
Heimdal [48] was historically used when export restrictions
hindered the use of the MIT implementation.

2.1.4 Microsoft Active Directory

For Windows Servers, Active Directory (AD) [42] implements
a domain Server, acting as the trusted party KDC, providing
authentication and network resources and services including
a centralized remote filesystem, remote powershell and out-
look email service. The remote filesystem is most commonly
implemented using the Samba [41, 44] protocol that relies
on the Kerberos protocol for authentication (although some
legacy authentication protocols may still be supported).

2.2 Smartcards and Multifactor Authentica-
tion

Smartcards [7] are physical devices with integrated chips that
can securely store cryptographic certificates used for identifi-
cation and authentication of users. To prevent the compromise
of the private keys, smartcards can usually use them internally
to perform cryptographic operations on behalf of the user.

In general, three common factors can be used for authenti-
cation: something you know, something you have, and some-
thing you are. Multifactor authentication is the use of two
or more authentication factors. Possession of the smartcard
provides the something you have factor. Smartcards are com-
monly used with a personal identification number (PIN) limit-
ing the amount of incorrect attempts in order to prevent brute-
force attacks which covers the something you know factor as
well. Smartcards can also be incorporated with a fingerprint
reader that also require biometric authentication (something
you are) to use the smartcard.

2.2.1 Kerberos RSA Smartcard-based Authentication

Users can authenticate and log on to a Client using a password
or alternatively with a smartcard [7]. When a user logs in or
unlocks a Client, they connect the smartcard to the Client, and
then the user is prompted for their pin code. The smartcard
holds a private key and a public certificate that correspond to
the user, and if the PIN is correct, the certificate is sent to the
Client who verifies the certificate and username correspond.
The client then initiates the Kerberos [27] authentication pro-
tocol, while requesting the smartcard to perform the asym-

metric cryptographic operations (e.g., RSA decryption and
signing) on its behalf.

The Client initiates the Kerberos authentication protocol by
sending an AS-REQ message which is a request for a ticket
granting ticket. The message includes the user’s certificate
and is signed by the smartcard.

The Server responds by sending the Client an AS-REP
packet that includes the TGT. The AS-REP message includes
an RSA ciphertext that encrypts a symmetric key that is used
to decrypt the session token allowing the encryption and de-
cryption of the current packet and the rest of the session. This
RSA ciphertext is sent to the smartcard for decryption, and
it is the main target of our attack. A more detailed descrip-
tion of the key scheme can be found in the protocol technical
specification [70].

2.3 Padding Oracle Attacks

Padding schemes are used to encode messages before encryp-
tion. After decryption, the resulted plaintext is “unpadded”
to recover the original message. The unpadding process usu-
ally involves verification of the padding. Code that imple-
ments this unpadding and verification process may leak some
information about whether the decrypted padded message
conforms to a specific padding structure. Attackers can use
side-channel attacks to learn this information and exploit it
to mount adaptive chosen ciphertext attacks that can recover
the plaintext value. Side-channels can include indicative error
messages, timing variations, memory access patterns, etc.

2.3.1 RSA padding

Padding schemes are used in many implementations of RSA
in order to add semantical security and prevent malleability.
We will describe the padding standard PKCS#1 V1.5 [31, 50]
which is used for RSA encryption and is vulnerable to chosen
ciphertext attacks such as the Bleichenbacher attack [13].

Let (N,e) be an RSA public key, let (N,d) be the cor-
responding private key, and let ℓ be the length of N (in
bytes). The encryption and padding of a message m con-
taining k ≤ ℓ−11 bytes is performed as follows:
1. First, a random nonzero padding string PS of byte-length

ℓ−3− k ≥ 8 is chosen.
2. Set m∗ to be 0x00||0x02||PS||0x00||m. Note that the

length of m∗ is exactly ℓ bytes.
3. Interpret m∗ as an integer 0 < m∗ < N and compute the

ciphertext c = m∗e mod N.
The decryption routine computes m′ = cd mod N and parses
m′ as a byte string. It then checks whether m′ is padding
standard conforming:
m′ = 0x00||0x02||PS′′||0x00||m′′ where PS′′ is a string con-
sisting of at least 8 nonzero bytes. If the message is found to
be conforming the decryption routine returns m′′ (which will

6654    33rd USENIX Security Symposium USENIX Association



be equal to m∗ if the ciphertext was not modified). Otherwise
the decryption routine fails.

2.3.2 Bleichenbacher’s Attack on PKCS#1 v1.5 Padding

Appendix A provides a high level description of the Bleichen-
bacher [13] chosen ciphertext padding oracle attack on the
padding scheme defined above. The attack allows an attacker
to compute a private key operation without knowing the se-
cret private key. The attack relies on the RSA homomorphic
property of multiplication.

Attack Prerequisites Bleichenbacher’s attack assumes
the existence of an oracle Bl which given an RSA ciphertext
c as input answers whether c decrypts to a PKCS #1 v1.5
conforming message. More formally, let (N,d) be an RSA
private key. The oracle Bl performs the following for every
ciphertext c

Bl(c) =

{
1 if cd mod N has valid PKCS #1 v1.5 padding
0 otherwise

2.3.3 Bleichenbacher Oracle Notation

In this paper, we follow previous work [11, 64] and consider
three different checks that can be performed by an implemen-
tation when validating the RSA-decrypted padded plaintext.
All of the implementations we surveyed checked that the
padded plaintext indeed begins with the expected value of
0x0002. This check was followed by some combinations of
the following checks:

First Check Verifies there is at least one zero byte within
the padded plaintext.

Second Check Validates the first 8 bytes of the padding
string are nonzero.

Third Check Verifies the length of the unpadded data.
We denote an oracle that performs all three checks as FFF

and the most permissive oracle that doesn’t perform all three
as TTT. An ignored check is denoted with a T.

2.4 Flush+Reload Cache Attack
Microarchitectural side-channel attacks, such as cache side-
channel attacks, exploit information leakage from the hard-
ware infrastructure itself. The cache is often a shared resource
between users and can be used as a side channel to learn
information on another process without authorization or Ad-
ministrative privileges. Attackers can use this side channel to
bypass security mitigations applied on virtual memory since
the cache side channel relies on the physical addresses.

Flush+Reload [74] is a side channel technique that allows
monitoring of access to memory lines in shared pages. The
monitored memory lines are flushed from memory and later
the memory line is reloaded. The amount of cycles it takes

for the memory line to be reloaded can indicate whether the
memory line was in the cache. The attack can be used to target
the last level cache, L3, allowing monitoring when the victim
and the attacker do not share the same execution core.

2.5 SMB3
The Samba protocol [41] allows the authorized transfer of
remote resources, shares, between computers on a network.
In previous versions of the Samba protocol, remote files and
large resources were transfered as plaintext and an attacker
could recover the unencrypted files sent over the network by
simply eavesdropping and reconstructing the files.

SMB3 [44] introduced the encrypted transfer option for
remote resources. The principal is authenticated and the files
are sent via an encrypted session. The encrypted session is
created as a Kerberos based encrypted session. The Kerberos
session is established and used to send the encrypted SMB3
session token. Therefore if an attacker can decrypt the Ker-
beros session, they can extract the SMB3 session token and
reconstruct the files sent over the encrypted session thus ex-
ploiting the lack of forward secrecy.

2.6 Related Work
2.6.1 Attacks on Kerberos

Since the Kerberos protocol is used across many operating
systems for secure authentication and managing access cre-
dentials, it is a prime target for many attacks such as Ker-
beroasting [39], pass the ticket attacks [69], pass the hash
attacks [12], and golden ticket attacks.

There have been several credential dumping attacks on
compromised hosts [19]. The attacker gains read access to
the memory of the lsass process, Local Security Authority
Subsystem Service, and extracts the stored credentials from
memory. Microsoft has since implemented several layers of
encryption and isolation techniques [46].

A recent related attack on legacy crypto in Kerberos from
Google Project Zero [22] showed that the use of legacy cryp-
tography and lack of authentication of parts of the ticket re-
quest message allows an attacker to replace the requested
encryption key types with a 40-bit RC4 [59] key allowing a
bruteforce attack. This allows the adversary to recover and ex-
ploit the ticket returned in the response to the request service
ticket message.

2.6.2 Attacks on RSA PKCS #1 v1.5

Since the original Bleichenbacher paper [13] there has been
a long line of work attacking RSA PKCS #1 v1.5 [11, 28,
36, 40, 73]. For example, the DROWN attack [10] a cross
protocol MiTM attack exploiting SSLv2 [58] protocol flaws
allowing an attacker to decrypt TLS [59] connections using
the RSA key exchange when the same private key was used

USENIX Association 33rd USENIX Security Symposium    6655



for both TLS and SSLv2. The Return Of Bleichenbacher’s
Oracle Threat, ROBOT [14], a chosen ciphertext attack us-
ing different server responses based on whether the padding
is conforming, a padding oracle, to sign a message with the
private key. The 9 Lives of Bleichenbacher’s Cat [64] also ex-
ploits microarchitectural side channels and downgrade attacks
for several TLS [59] implementations.

In an independent concurrent work, Kario [33] surveyed
open-source implementations of PKCS #1 v1.5 decryption
using an automated testing approach and have also found that
OpenSC has vulnerable non constant-time code. Using their
automated tool, OpenCryptoki was also shown to have non
constant-time code.

3 Padding Oracles in Kerberos PKINIT

We have conducted a systematic analysis of the security of
all major RSA smartcard-based Kerberos implementations
in respect to Bleichenbacher’s padding oracle attack. In this
section we will describe the threat model we assume for our
attack and the parts of the protocol we analysed. We will then
present some examples of the different types of oracles we
found.

3.1 Timing Base Padding Oracles
Unlike the TLS protocol [62], Kerberos does not seem to pro-
vide a network adversary with a timing oracle. As explained
in section 2.2.1, the RSA ciphertext encrypts a symmetric key
that is used to decrypt an authenticated ciphertext included
in the same message. If a modified ciphertext results in a
plaintext with incorrect padding, the Kerberos protocol will
simply discard the message. Moreover, even if a modification
of the ciphertext results in a plaintext with correct padding,
the resulting symmetric key will be changed, and the symmet-
ric authenticated decryption will fail. This will also cause the
Kerberos protocol to discard the message.

Although the amount of time until the message is discarded
differs in both cases, there is no externally visible difference
in the response, as the client will simply not respond. More-
over, from our experiment, it seems that on Windows, the TCP
connection used for the attack is closed independently of the
type of error, preventing an oracle based on a lower communi-
cation layer such as the ROBOT attack [14]. To conclude, in
our experiments, we were not able to find any timing-based
oracles. However, as we will show, the code that runs on
the client may still be vulnerable to micro-architectural side-
channel attacks, which can still allow us to build a padding
oracle.

3.2 Threat Model
Our threat model is depicted in Figure 1 and is derived from
the Kerberos’ main goal of allowing authentication over an

Figure 1: Threat Model Overview - we assume a network
with honest servers and an honest user trying to log in using
an uncompromised smartcard and client machine. A mali-
cious MiTM is able to intercept and modify packets over the
network and to communicate with an unprivileged malicious
program running on the Client.

insecure network. Thus we assume that all parties that partic-
ipate in the protocol are honest and not compromised. This
includes the servers (i.e., the KDC and various applications
service servers), clients, users and smartcards. The users use
smartcards to authenticate their clients to the KDC using Ker-
beros and for the provisioning of tokens and cryptographic
keys for secure authenticated communication with the various
application service servers (e.g., securely accessing remote
files). The goal of our attack is to gain unauthorized access to
network resources.

As we assume that the network itself is insecure, a MiTM
attacker can sniff, intercept, and modify packets sent between
the client and the servers (e.g. a compromised router). To
allow microarchitectural side channel attacks, we further as-
sume that the honest user’s computer, the Client, also runs
unprivileged malicious code. The code can be an unprivileged
program that the honest user ran, a program currently running
under a different user account that is logged on to the same
computer, assuming the other user may be compromised or de-
ceived into running our code. Moreover, previous work shows
that JavaScript code from a malicious website running in-
side the user’s browser may perform such micro-architectural
attacks [35, 37, 56, 66, 68]. Note that for our experiments,
we used unprivileged native code running under a different
user account. Finally, for our accelerated attack (described in
Section 6.2), we further assume that the honest targeted user
accesses a malicious website.

Note that we assume that the communication between the
client and the smartcard is secure, and that the PIN codes are
not compromised.

6656    33rd USENIX Security Symposium USENIX Association



3.3 Oracle Description

As described in section 2.2.1, our attack focuses on the client’s
RSA decryption that occurs while handling the Kerberos AS-
REP message, specifically the PK-AS-REP message which is
part of the Kerberos PKINIT extension. RSA is used as a key
encapsulation mechanism (KEM) to encrypt symmetric keys
that are required to decrypt the rest of the message and derive
the Kerberos session token which we want to recover in our
attack.

Following The 9 Lives of Bleichenbacher’s Cat [64] paper,
we can partition the RSA decryption process in Kerberos to
three main stages:
1. Mathematical Calculation and Data Conversion —

First, the RSA ciphertext is decrypted and the result-
ing plaintext is converted into a byte array. In our case,
this stage runs on the smartcard.

2. PKCS #1 v1.5 Verification - The byte array is then
checked for conformity to the PKCS #1 v1.5 padding
scheme and the padding is removed.

3. Protocol Level – If the byte array passes the verification
stage, the Kerberos protocol will try to use the resulting
plaintext as a 3DES symmetric key. If the resulting plain-
text size is equal to the expected key length or padding
oracle mitigations were implemented, the resulting key
will be used to decrypt the rest of the AS-REP message.

In our attack we need to overcome two main challenges:
The first is that we don’t have direct access to the smartcard,
and thus can’t exploit padding oracles in the first stage of
the decryption. The second and more significant challenge is
that the client does not respond to any failure in the AS-REP
decryption process. As the symmetric encryption part of the
AS-REP is authenticated, even if PKCS #1 v1.5 validation of
the modified RSA plaintext passes, the symmetric decryption
will fail and the packet will simply be dropped and ignored.
To overcome theses challenges, we searched for nonconstant-
time code at the PKCS #1 v1.5 verification and Protocol
level stages, that can be targeted using microarchitectural
side-channel attacks.

3.4 Nonconstant Time Implementations

We surveyed all three major implementations of the Kerberos
protocol — Windows’ close-source Security Package and the
open-source Heimdal and MIT implementations for noncon-
stant time code. While MIT properly implemented mitigations
against Bleichenbacher’s attack, both other implementations
include nonconstant-time code that can be exploited for a
padding oracle attack. We also surveyed the default smart-
card interfaces used — Windows’ close-sourced basecsp, and
the open-source OpenSC and OpenCryptoki. We found that
the most widely used interfaces, basecp and OpenSC include
nonconstant-time code. Table 1 shows which packages are
uses by default in 10 OSs we surveyed, and that 9 of them

1 int VerifyPKCS2Padding(inBuffer, inLen, out){
2 ...
3 if ((*(char *)(inLen - 2 + inBuffer)==’\x02’)
4 && (*(char *)(inLen - 1 + inBuffer)==’\0’)){
5 pcur = (char *)(inLen + inBuffer);
6 do {
7 if (*pcur == ’\0’) break;
8 pcur -= 1;
9 inLen -= 1;

10 } while (inLen != 0);
11 int i = 0;
12 if (inLen != 0) {
13 //Allocate output buffer
14 //copy plaintext to output
15 ...
16 return SUCCESS;
17 }
18 ... }
19 }
20 return ERROR;
21 }

Listing 1: Simplified Decompiled VerifyPKCS2Padding

use nonconstant-time code, and Table 2 shows the specific
oracles we found in each package. We will now describe sev-
eral examples of nonconstant-time code in Windows which is
arguably the most widely used Kerberos implementation. For
examples of nonconstant-time decryption in other OSs, see
the full version of the paper.

3.4.1 PKCS #1 v1.5 Verification Oracles

While the smartcard performs the RSA decryption itself, the
padding removal and verification is performed on the Client
and implemented in the basecsp smartcard interface which has
two vulnerable functions. Listing 1 shows a simplified code of
the function VerifyPKCS2Padding. It verifies the padding is
correct by verifying the first two bytes are \x00\x02 and that
the message contains an additional \x00 byte to indicate the
beginning of the data. The code lines 5 to 18, which search
for an additional zero byte, are only performed when the first
two padding bytes are correct leading to a TTT type padding
oracle. Moreover, the code lines 13 to 16, which copies the
buffer, only run if a \x00 byte was detected, targeting these
code lines leads to a different FTT padding oracle.

Listing 2 shows a simplified code of the function CSPUn-
padData. It calls the VerifyPKCS2Padding function on
line 3. Only if the padding check and removal is success-
ful then the copy and swap buffer code in lines 5 to 8 runs,
leading to an FTT padding oracle.

3.4.2 Protocol Level Oracles

Windows’ Security Package does not implement any of the
standard mitigations against Bleichenbacher attacks. Listing 3
shows a simplified code of the function CPImportKey. The
call to function FIsLegalKeySize at line 6 is only made if

USENIX Association 33rd USENIX Security Symposium    6657



Table 2: Padding Oracle Summary

Oracle Type Implementation Function Name Nonconstant time code
FTT Security Package CPImportKey Conditional check for plaintext length
FTF Security Package CPImportKey Conditional call to 3DES decryption
TTT Basecsp VerifyPKCS2Padding Conditional search for zero byte
FTT Basecsp VerifyPKCS2Padding Conditional buffer copy
FTT Basecsp CSPUnpadData Conditional buffer copy
FFT Heimdal p11_rsa_private_decrypt Nonconstant time call to interface
FTT Heimdal hx509_cms_unenvelope Conditional check for plaintext length
FTF Heimdal hx509_cms_unenvelope Conditional call to 3DES decryption
FFT OpenSC pkcs15_prkey_decrypt Conditional buffer copy
FFT OpenSC sc_pkcs1_strip_02_padding Conditional buffer copy

- MIT pkcs7_decrypt -
- OpenCryptoki - -

1 int CSPUnpadData(inBufferCtx, outLen, out){
2 ...
3 result = VerifyPKCS2Padding(...);
4 if (result == 0) {
5 //Swap byte order in plaintext
6 //and copy to outBuf
7 ...
8 *out = outBuf; }
9 ...

10 return result;
11 }

Listing 2: Simplified Decompiled CSPUnpadData

1 int CPImportKey(csInfo){
2 ...
3 int result = CspUnpadData(csInfo,&len,&out);
4 if (result == SUCCESS){
5 ...
6 int isLegal = FIsLegalKeySize(len,out);
7 if (isLegal){
8 Decrypt_3DES(encData,out,len,&decData);
9 ...

10 }
11 }
12 return SUCCESS;
13 }

Listing 3: Simplified Decompiled CPImportKey

function CspUnpadData is successful, leading to a FTT or-
acle. Moreover, the call for 3DES decryption at line 8 only
occurs if the resulting plaintext size corresponds to a legal
3DES key size, this leads to a stricter FTF type oracle.

4 Padding Oracle Proof-of-Concept

In this section we will describe our padding oracle PoC on
Windows. As described in Section 3, we had the choice of sev-
eral different oracles to target with a microarchitectural side-
channel attack. Such attacks can be relatively noisy, while the

Bleichenbacher attack requires a large number of queries and
can be very sensitive to errors. This means that we need to
take care when we choose our oracle and calibrate our attack.

The oracle which is arguably the easiest to target is the
conditional call to 3DES decryption in CPImportKey as we
can target the actual 3DES decryption process (e.g., access
to the 3DES SBOXs tables in memory). As the decryption
takes a relatively long time and includes a very large number
of repeated memory access, it results in an attack with very
high accuracy. However, this is a relatively strict FTF padding
oracle as it requires the first zero byte after the padding to be
at the specific location corresponding to an accepted 3DES
key size. This requirement decreases the probability of getting
a conforming plaintext by a factor of 2−8, and significantly
increases the total number of queries required by the full
attack.

The most permissive oracle that requires the smallest
number of total queries is the TTT oracle in VerifyP-
KCS2Padding. However, we found that, both the TTT and
FTT oracles in VerifyPKCS2Padding are compiled to very
short assembly code that co-resides in the same cachelines
as other code segments that are not part of the oracles. This
resulted in a very low accuracy that was not suitable for our
needs.

Finally, we decided to exploit the FTT padding oracle in
CPImportKey. Although it is stricter, the probability of con-
forming to it decreases by less than a factor of 2 compared
to the more permissive TTT oracle. On the other hand, it is
much easier to target with a microarchitectural side-channel
attack leading to a much higher accuracy of our attack.

4.1 Experimental Oracle Calibration
In order to verify the existence of the padding oracle on Win-
dows, we created a setup with a Windows domain Server,
Windows Server 2019 running Active Directory and a Client

6658    33rd USENIX Security Symposium USENIX Association



0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Time from FIN+ACK [sec]

20

40

60

80

100

Ac
ce

ss
 T

im
e 

[C
yc

le
s]

Conforming
Nonconforming

Figure 2: Calibration Hit and Access Time Cycle Count Com-
parison - A comparison of cache hit patterns of all calibration
hits for both message types synchronized using the FIN+ACK
packet time reference frame. The time range chosen, between
0.12 and 0.14 seconds after FIN+ACK, is shown by the dashed
black lines.

running a Windows 10 operating system with users that can
login using smartcards. The setup Client has a dual-core CPU,
Core i7-7600U processor. We used a YubiKey USB token
based smartcard with 2048-bit RSA key.

We implemented a MiTM attacker (that runs on a sepa-
rate computer on the same LAN) that can receive AS-REQ
messages from the client and respond with AS-REP mes-
sages with a modified RSA ciphertext. We implemented un-
priviliged attack code that runs on the client and uses the
Flush+Reload [74] attack to monitor the cacheline that stores
the code of the oracle we exploit. Note that the native attack
code runs under a different user account than the one we tar-
get. The attack code starts its measurement after receiving a
command from the MiTM machine and stops after receiving
another command from the MiTM machine with a specified
delay. The attack code then sends back a trace of all cache
hits (where the access time is below a fixed threshold). We
tested this setup by sending 4000 AS-REP messages to the
client, with interleaved conforming and nonconforming RSA
padding. Note that we don’t assume clock synchronization
between the MiTM attacker and the client, and that network
packet handling and processing is asynchronous and may vary
in time. We used the network packets to synchronize our at-
tack and align the different traces. We synchronized our attack
to the time where the MiTM attacker receives a FIN-ACK
packet from the client that confirms the AS-REP message was
received.1

Figure 2 shows the distribution of the resulting cache
hits for messages with conforming and nonconforming RSA
padding aligned using the time the FIN+ACK message was
received by the MiTM attacker. Although we receive a large

1This TCP FIN+ACK messages are always sent by the network stack
and is unrelated to the decryption process. After receiving the FIN+ACK
message, the MiTM attacker sends a notification messages to the attack code
running on the client machine which is then used to sync the resulting trace.

Table 3: Hit Count Message Distribution

Amount 0 1 2 3 4
conf. 0.07 0.12 0.36 0.36 0.09

nonconf. 0.9984 0.0013 10−4 3 ·10−4 5 ·10−5

number of hits also for nonconforming messages, by using the
alignment and restricting ourselves to the specific time range
of 0.12 to 0.14 seconds after the FIN+ACK message, we can
get a relatively robust signal. Table 3 shows the distribution
of hit counts within the above range for single messages. The
distribution was calculated from an extensive experiment with
≈ 27000 conforming messages and≈ 66700 non-conforming
messages. Note that we still get some conforming messages
with zero hits, and nonconforming messages with one hit.

Note that the resulting oracle is still too noisy to be used
for a full attack. A straightforward solution is to follow the
approach of Ronen et al. [64] and repeat measurements to
improve the oracle’s accuracy at the cost of a significant over-
head in the number of oracle queries required to finish the
attack. In the next section, we will assume a reliable padding
oracle based on repetitions. In Section 7, we will delve deeper
into this problem of noisy oracles and describe and analyze
different approaches to handle them more efficiently.

5 End-to-end Attack

We will now describe how we can mount a full end-to-end
attack on Kerberos. After validating the existence of a padding
oracle, the main remaining challenge for our attack is the
requirement for user interaction. The Kerberos authentication
protocol can only be initiated by the client as a result of some
user action, for example, an attempt by the user to login to the
client machine. Such a login attempt will cause the client to
initiate a protocol session and to send an AS-REQ message.

In the first stage of the attack, our MiTM attacker can for-
ward the AS-REQ message to the KDC and receive from it
the resulting AS-REP message, that includes the RSA cipher-
text we want to decrypt (which will allow us to recover the
session token). The MiTM can now use the Bleichenbacher
attack algorithm to maliciously modify the RSA ciphertext
and use the oracle we presented in Section 4. As described
in Section 3, due to the validation of the symmetric decryp-
tion process, the protocol session will fail even if the RSA
plaintext passes the padding verification.

After this first stage, there is no more interaction with the
KDC. Each future protocol session initiated by the user will
cause the client to send a new AS-REQ message. The MiTM
will use the same AS-REP messaged he received from the
KDC in the first stage, and will modify the RSA ciphertext
according to the Bleichenbacher attack algorithm depending

USENIX Association 33rd USENIX Security Symposium    6659



on the previous result of the oracle query.

After a login attempt, if a protocol session fails, the client
will retry to initiate the protocol up to 3 times. If all 3 attempts
fail, the user might be alerted that an error has occurred.2 This
means that we can use a single login attempt for up to 3
padding Oracle queries or 2 if we want to let the protocol
finish successfully on the last attempt and ensure the stealth-
iness of the attack. Assuming a full Bleichenbacher attack
will require more than 10000 queries, we require more than
5000 login attempts by the user before we are able to decrypt
a single session ticket, which could take a very long time
period. As the session ticket expires after about 10 hours, it
will not be usable anymore.

5.1 Attack on Samba’s file encryption

In this attack scenario, the MiTM has monitored and saved
packets from a previous or ongoing Kerberos session where
the User accessed an application service and data the User
was authorized to access was sent over the Kerberos based
encrypted session. We specifically target the SMB3 [41] pro-
tocol where the User accesses files on a remote filesystem
and shared files are transferred over an encrypted session.
The goal of the SMB3 protocol is to encrypt and protect the
transfer of the remote files so that only authenticated and
authorized users can access them. We exploit the fact that nei-
ther Kerberos nor SMB3 provide forward secrecy in respect
to the Kerberos’ long-term RSA keys and encryption. I.e., if
we can compromise the RSA keys, or break a specific RSA
ciphertext, we can decrypt and recover the sessions’ token.
Using the session token and the transcript of the protocol
we can derive all the encryption keys used in the resulting
SMB3 session to decrypt the files sent over the network. Al-
though the corresponding session tokens usually expire after
10 hours by default on Windows, the same long-term RSA
keys stored on the smartcard can be used for years without
change. This means that as long as our MiTM can record
the protocol transcript of a specific session and the SMB3
encrypted files, it can run the attack as long as the user doesn’t
rotate the long-term keys on the smartcard. In the end of the
attack, the recovered session ticket will enable the attacker to
decrypt the files.

We have implemented a full end-to-end attack based on the
padding oracle described in section 4. We will open source
all the code used for the attack, including the full code for the
Kerberos and SMB3 key derivation and file decryption. Note
that to speed up our experiments, we used the acceleration
technique described in Section 6.

2E.g., the user might notice some resources are not available.

6 Attack Acceleration

The attack described in Section 5 can take a very long time
to finish, and it only allows for a passive decryption of data
sent in the past. In this section, we will describe how we can
significantly accelerate our attack. In Section 7 we will show
how to efficiently use the resulting noisy oracle to allow us
to break Kerberos sessions before they expire, and use the
recovered tokens to impersonate users in the network.

6.1 Initiation of Kerberos Sessions

As we mentioned before, our attack relies on the client ma-
chine attempting to initiate Kerberos sessions. After a user
attempts to login and inputs their PIN code, windows will
initiate a new Kerberos session, and if it fails, it will retry up
to a total of 3 attempts without requesting the user to reenter
their PIN code (thus handling temporary connectivity issues).
The amount of authentication attempts is part of the domain
group policy and can be configured depending on the network
requirements (with default value of 3).

The logon process occurs infrequently and can take up to
several minutes resulting in a very low query rate. However,
we discovered that other user actions can lead to a much higher
number of protocol initiation attempts. Moreover, some of
them do not require the user to reenter their PIN code. For
example, a user attempts to access remote files will initiate a
Kerberos authentication attempt without requiring any addi-
tional user input.

File permissions are checked after the Kerberos session
is established, therefore Kerberos session establishment at-
tempts are generated before permissions are checked. For this
reason, the domain user isn’t required to have permission to
access the shared folder in order for the vector to work.

Although the number of authentication attempts is limited
by the group policy, the actual number of attempts per user
action is significantly higher. This is presumably because a
failure in the authentication, will cause a failure in a higher
level code, that will cause it to also retry. Moreover, there is
no global limitation on the total number or rate of attempts!
The actions can therefore be repeated in order to initiate a
large number of sessions at a very fast rate.

Table 4 shows a comparison of the amount of queries gener-
ated by different user actions and whether the actions require
the PIN input. Generating the authentication requests can be
as simple as opening file explorer with one of the recently
used files being a file or folder that requires user authentica-
tion to access or accessing one of these files in notepad or in
the run app.

The rate of generated AS-REQs varies greatly between
these sources due to the additional overheads (e.g., user in-
teraction). While runas generates about 4 or 5 queries per
minute, the additional actions that do not require reentering
the PIN are significantly faster and can reach over 50 queries

6660    33rd USENIX Security Symposium USENIX Association



Table 4: Action Query Generation Comparison

Process Session Retries PIN required
login ∼3 yes

unlock ∼3 yes
First credential use ∼80 yes

runas ∼2 yes
file explorer ∼20 no

more ∼2 no
cat ∼20 no

remote file access ∼70 no
in run app

remote file access ∼80 no
in notepad

1 <html>
2 <head>
3 <meta http-equiv="refresh" content="4">
4 </head>
5 <iframe src="file://win-r3f0hi0ntca\mysecret\

classifiedsecrets.txt">
6 </iframe>
7 </html>

Listing 4: Crafted HTML Example

per minute.

6.2 Remote Access Vector

The actions we surveyed can significantly increase the amount
of queries per PIN code entry, however the attack is still highly
dependent on the honest user actions and the rate of actions.
In order to remove this dependency, we found a remote vector
which allows a malicious website to trigger the authentication
process without any user interaction, by attempting to access
remote files.

As described above, remote file access attempts can trig-
ger the authentication process and generate AS-REQ ticket
requests. In contrast to our micro-architectural attack code
that can run under a different user account, only code run-
ning under our target user can trigger these accesses. As we
don’t want to assume that the target user will run our code, we
show how we can trigger these accesses by only requiring the
target user to access a malicious website. There are several
methods a website can cause the browser to attempt to access
remote files, e.g., using an image input, iframe input, or links.
In addition, the crafted HTML file can specify an automatic
refresh, which causes the browsers to keep sending requests.
The example HTML code in Listing 4 demonstrates one of
the methods to generate requests. Line 5 accesses a remote
file which generates requests and line 3 automatically reloads
the html site which causes line 5 to be repeated continuously.

Although these remote file access attempts will fail due to

our attack (and, in fact, the files might not exist at all), the
attack can remain stealthy since there are many ways to hide
the file access errors in the browser. For example, loading
an image or an iframe to an unseen location or a very small
area on the screen. There is also the option of displaying
alternative text when loading fails. This means that the user
gets no notification of any error and remains unaware of our
stealthy attack. Moreover, the attack can continue running as
long as the malicious website’s tab is opened. The attack will
continue even when the targeted user views another tab, uses
another application instead of the browser, or even locks the
computer or switches to another Windows user.

In order to determine the practicality of this vector, the three
most common browsers were inspected: Google Chrome,
Edge (also Chromium based) and Microsoft Internet Explorer.
Our attack works on all browsers for HTML files that are
locally stored on the machine. The behavior for HTML files
retrieved directly from remote websites is different due to dif-
ferent mitigations implemented in order to secure file access.
While all three browsers generated queries for local HTML
files, Edge and Chrome, both based on Chromium, blocked
these attempts for the remote HTML sites. Thus, our attack
will work on all browsers if we can cause our user to open a
locally stored malicious HTML file (e.g., after downloading
it from a malicious website and saving it locally). In addi-
tion, even for the case of remote HTML files, there is a vast
amount of recent vulnerabilities published [1–6] that can be
exploited to implement this remote vector. We thus argue that
our remote attack vector is practical as, with high probability,
many more similar vulnerabilities still remain.

Even after the acceleration, the overhead required to handle
the noisy oracle might prevent us from finishing our attack
before the Kerberos session expires. In the next section, we
will describe how to reduce the overhead and perform a full
end-to-end attack to hijack Kerberos sessions.

7 Bleichenbacher Attack with Noisy Oracles

As was described by Capol [15], the literature on Bleichen-
bacher attacks mostly focused on perfect oracles without any
noise. However, in practice, many oracles are noisy. Ronen et
al. [64] handled a noisy oracle by simply repeating each “pos-
itive” query multiple times to reduce the false positive rate to
a negligible level. This approach is based on the intuition that
the attack algorithm can recover from a false negative with
some overhead, but a false positive might cause the attack to
fail. As the overhead of repeating each false query is larger
than the overhead of false negatives, only positive queries are
repeated.

The general idea suggested by Ronen et al. [64] is to re-
duce the false positive rate to a negligible level (false positives
should never occur) while paying the price in query overhead
due to both repeated queries and the increased false negative
rate. We argue that this approach is sub-optimal in both their

USENIX Association 33rd USENIX Security Symposium    6661



0 25 50 75 100 125 150 175 200
Number of Queries Between Positive Queries

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Fr
ac

tio
n 

of
 P

os
iti

ve
 Q

ue
rie

s

Between 10k and 30k
Under 10k

Figure 3: Comparison of the amount of false queries between
consecutive positives queries for ciphertexts deciphered in
under 10k queries and between 10k and 30k queries (using a
perfect oracle

and our settings. In both settings, we want to be able to finish
the attack in a limited time period (30 seconds timeout in [64]
and 10 hours until ticket expiration in our case). This changes
our optimization goals. We don’t want to ensure that all at-
tacks succeed (no false positive), but maximize the percentage
of attacks that finish successfully below a fixed query number
threshold. In Section 5 we show how we can exploit our at-
tack even if we can’t finish it in less than 10 hours. However,
using the attack acceleration we present in Section 6, an under
10 hours attack becomes practical and minimizing the query
overhead becomes significant.

7.1 False Postive Detection

To minimize the query overhead, our novel approach does
not try to prevent false positives with costly query retries,
but instead we accept a non-negligible false positive rate. If
we are able to detect when a false positive occurred, we can
instead trace back to a previous correct state of the attack. As
we will show, the cost of such a detection and trace back is
smaller on average than the cost of reducing the false positive
rate.

The main remaining question is how to detect a false posi-
tive before the attack finishes. For this, we exploit a statistical
property of the attack that is unique to the subset of "fast"
messages that can be attacked successfully under our timing
constraints before the token expires. We recorded ≈ 40000
RSA ciphertexts generated by the KDC for the AS-REP mes-
sage. For each ciphertext, we simulated a Bleichenbacher
attack with a maximal cutoff threshold of 30000 queries. The
attack was able to decrypt≈ 11500 (≈ 29%) of the ciphertexts
in under 30000 queries, and ≈ 3200 (≈ 8%) of the ciphertext
in under 10000 queries.

Figure 3 shows the number of false queries between con-
secutive positive queries. We can see that for the subset of

“Under 10k” messages, a sequence of more than 30 consec-
utive false queries only occurs with a negligible probability,
and we don’t see any sequences of more than 70 consecutive
false queries. Moreover, our experiments showed that if we
reach an incorrect state due to a false positive, we will get
very long sequences of false queries. This means that we can
use such long sequences to detect that a false positive has oc-
curred. Our trace-back algorithm saves the state of the attack
for the last 15 positive queries; if a sequence of more than
100 false queries is detected, the algorithm’s state is reverted
to the earliest saved position. Note that we use conservative
numbers to handle multiple false positives.

We developed a low overhead query repetition algorithm
tailored to the hit count distribution shown in Table 3. It
doesn’t require any repetition for the vast majority of both
false and negative queries, repeating a query only in a small
number of borderline cases. The resulting oracle still has a
low but not negligible false positive rate and thus requires our
trace-back approach.

Our low overhead repetition algorithm works as follows:
1. A zero hits result is taken as a definite nonconforming

query result. It is not repeated. This leads to 7% of false-
negative results, but the attack can recover and still works
with a slightly larger number of queries.

2. A two hits or more result is taken as a definite conforming
query result and is not repeated.

3. A single hit is a borderline result which is repeated up to 3
times:

(a) If the result of the next query is two hits or more, the
repetition stops and the original query is considered
conforming.

(b) If the next query is borderline or 0 hits, we continue
to the next query.

4. If no query had two hits or more, the original query is
considered nonconforming. This results in a very small
number of false-negative results, but again the attack can
recover.

Note that our traceback algorithm has one exception. Revert-
ing the first positive query (i.e., the first multiplier found in
phase 2 of the attack as described in Appendix A) may re-
quire a very large number of additional queries. Thus, for
the first positive query, instead of the usual repetition algo-
rithm. As the majority of 5 has only a negligible false positive
probability, we never revert it.

7.2 Noisy Oracle Simulation
To test our novel traceback approach, we created a simu-
lated noisy oracle based on the distribution from Table 3.
We used this oracle in our simulation to compare our low-
overhead traceback approach with two other higher-overhead
algorithms. The first is the “double” conservative algorithm
that repeats each positive query (hit count > 1) and requires
both attempts to be positive to return a positive result. The

6662    33rd USENIX Security Symposium USENIX Association



1 ⋅ 104 1.6 ⋅ 104 2 ⋅ 104 3 ⋅ 104
Number of Queries

0.0

0.2

0.4

0.6

0.8

1.0
At

ta
ck

 S
uc

ce
ss

 R
at

e

Perfect
Traceback
Double
Majority

Figure 4: Comparison of noisy oracle handling methods in
performed simulation experiment

second is the less conservative “majority” algorithm that, af-
ter the first positive query, can attempt up to two more times,
requiring a majority of two positives to return a positive result.
The “double” algorithm has fewer queries and a lower false
positive rate compared to the “majority” at the cost of a higher
false negative rate.

Figure 4 shows the results of our simulation comparing the
fraction of the attacks that were able to finish successfully
with a given number of queries. Note that as we are only
interested in “fast” attacks, we limited the simulation to ci-
phertexts that can be decrypted with less than 10000 queries
assuming a perfect not noisy oracle, which we also used as
our baseline. As we can see, only our traceback-based attack
is able to decrypt a non-negligible number of messages in less
than 10000 queries with a noisy oracle, reaching a success
rate of over 40% of the messages decrypted in less than 10000
queries with a perfect oracle.

7.3 Kerberos Sessions Hijacking
Using our efficient traceback attack to handle the noisy oracle,
we were able to exploit the remote vector approach for a full
end-to-end attack that allowed us to recover session tokens
in less than 6 hours, before they expire. The session token
can be exploited to gain access to all of the resources and
services the user has permission for. For example, if we target
an admin user, we can exploit the session token to open a
remote powershell with full admin permissions.

We ran our full traceback attack and were able to success-
fully hijack in less than 10 hours 15 out 17 different session
tokens generated by the KDC (taken from the “Under 10k”
set). The full experiment results are provided in Appendix B.
Using our remote vector, we were able to achieve an aver-
age rate of 25.8 queries per minute, which translates to up
to 16,000 queries within a 10-hour span. Our trackback ap-
proach combined a low false negative rate of 1.74% achieved
a very small query overhead. The overhead for most attacks
was under 1500, with several attacks having an overhead of

≈ 1000. This is much lower than the minimal overhead of
≈ 2000 incurred by any approach that requires even a single
repetition for a positive query to reduce the false positive rate.

8 Optimizing Attack Retires With Early Abort

To hijack a session, we need to be able to finish the attack
and decrypt its token before it expires, i.e., in less than 10
hours. The attack we described in Section 7 is able to perform
a little over 16000 queries in 10 hours. This means we can
only successfully attack tokens whose messages can be de-
crypted with less than 16000 noisy queries. A naive approach
to finding such a message would be simply trying to run the
full attack with a 16000 queries (ten-hour) limit on a message
from a new session. If the attack doesn’t finish in time, we
retry the attack with a new message from a new session until
the attack succeeds.

Assuming P<16k is the probability that a message can be
decrypted with less than 16000 noisy queries, such an attack
is expected to take on average 1

P<16k
·10 hours. We will now

show how to significantly reduce the overall attack time using
our early abort method.

8.1 Early Abort Optimization

Our early abort optimization is based on the following insight:
There is a strong correlation between the number of queries
required to find the first positive query (i.e., to find the first
multiplier in phase 2 of the attack as described in Appendix A)
and the probability the message can be decrypted with a small
number of queries.

Our optimization runs as follows: We run the attack till
we reach a threshold of a fixed number of queries, which we
denote Qth. If no positive query has been detected, i.e., the
first multiplier was not found, we early abort and rerun the
attack on a new message. Otherwise, we continue to run the
attack until it either succeeds or we reach the 16k query limit.
If the attack doesn’t succeed, we will again try to attack a
new message. The value of Qth has a significant effect on the
average complexity of the attack. A lower value will allow
us to early abort faster, but will increase the probability we
will early abort attacks that could have succeeded. We used
a simulation to explore the attack complexity with different
values of Qth. Note that setting Qth = 16k results in the naive
retry approach.

We tested our attack using a simulated noisy oracle over
the ≈ 40000 RSA ciphertexts generated by the KDC, running
the attack (without early abort) 5 times for each ciphertext.
In each run of the attack, we stored the number of queries
required to find the first multiplier, and the number of queries
required to finish the attack. Using the results, for each value
of Qth, we can calculate the following values:

P<16k(Qth) — The probability that, for a random ciphertext,

USENIX Association 33rd USENIX Security Symposium    6663



Qth P<16k P>16k Q<16k nmsgs Tq
200 0.006 0.0000 8657 160 40578
300 0.009 0.0000 8642 109 41267
400 0.012 0.0001 8619 83 41941
500 0.015 0.0002 8666 66 41352
600 0.018 0.0003 8743 55 41822
700 0.020 0.0003 8763 49 42684

1000 0.029 0.0005 8878 34 42854
2000 0.056 0.0015 9217 17 43080
3000 0.083 0.0027 9528 12 43159

16000 0.178 0.0375 11115 5 84949

Table 5: Comparison of Early Abort Based on the First Multi-
plier

the first multiplier will be found with less than Qth queries and
that the attack will succeed with less than 16k noisy queries.
P>16k(Qth) — The probability that, for a random ciphertext,
the first multiplier will be found with less than Qth queries
but the attack will require more than 16k noisy queries to
succeed.
Q<16k(Qth) — The average query count to decrypt a random
ciphertext, assuming the first multiplier is found with less than
Qth queries and that the attack will succeed with less than 16k
noisy queries.
nmsgs(Qth) — The average number of random ciphertext we
need till we find a ciphertext such that the first multiplier will
be found with less than Qth queries and that the attack will
succeed with less than 16k noisy queries. calculated as:

nmsgs(Qth) =
1

P<16k(Qth)

Tq(Qth) — The expected number of messages required to
finish the full attack. It is calculated as:

Tq(Qth) = nmsgs · (Q<16k ·P<16k +16000 ·P>16k

+Qth · (1−P<16k−P>16k))

The resulting values as a function of Qth are shown in
Table 5. The last row with Qth = 16000 is equivalent to the
naive approach that simply tries to attack all messages without
early abort. Using low Qth values can reduce the total attack
time by half compared to the naive approach. We note that for
low Qth values (i.e., below 400), the results are slightly noisy
due to the low probability of P>16k(Qth). For the experimental
verification of the attack, we use a conservative value of 600
for Qth.

8.2 Experimental Results
We implemented our early abort attack and experimentally
verified it. In our attack we use a Qth with a value of 600.

# nmsgs Tq T [hours] Q<16k
1 36 29336 18.4 8309
2 30 26185 16.4 8680
3 29 27023 16.9 9367

Table 6: Experimental results for token recovery using the
early abort attack.

Table 6 shows the number of messages (nmsgs), total queries
(Tq), and total attack time in hours (T [hours]) for each token
recovered. It also shows the number of queries required for
the successful decryption of the last message (Q<16k). We
note that the attack seems to be faster than our simulated
attack, with a much lower number of messages required before
we are able to recover a token. We believe that this might
be due to the distribution of errors. In our simulation, we
assume uniform and independent error distribution, but in
reality, they may occur in bursts. We leave the analysis of
the noise distribution and its effect on such attacks for future
work.

9 Conclusions

Modernizing operating systems in general, and their security
mechanisms in particular, is a difficult task that requires updat-
ing cryptographic implementations while trying to maintain
backward compatibility. In Kerberos, this process lead to a
convoluted combination of modern and legacy cryptographic
primitives and designs. Although the Kerberos protocol is
critical to the security of countless sensitive networks, and
has undergone countless updates, its default configuration for
the most security sensitive use cases (that require 2FA) is still
vulnerable to an attack published more than 25 years ago.

9.1 The Danger of Legacy Crypto

Our research can highlight the many different ways legacy
crypto can be exploited to implement a full end-to-end attak.
We will now discuss some of the root causes we identified
and how we propose to mitigate them.

Using Nonconstant-time Crypto Legacy Crypto such as
the RSA PKCS #1 v1.5 based encryption is notoriously hard
to implement securely. In more than 25 years we have seen
countless cycles of new attacks and new mitigations (espe-
cially but not limited to TLS). While it is possible to use the
lessons learnt in TLS and try and implement the decryption
with constant-time code, and add the required Bleichenbacher
mitigations (as was done in the MIT implementation), we
believe this is not the right path to move forward. A better
alternative such as ECDSA and ECDH based options are al-
ready supported in Kerberos, we should push for complete
deprecation of RSA PKCS #1 v1.5.

6664    33rd USENIX Security Symposium USENIX Association



Unauthenticated Data In our attack we exploited the fact
that many parts of Kerberos messages are not authenticated
(e.g., to spoof both AS-REP and error messages). This was
also exploited in the downgrade attack by Google Project
Zero [22]. Although a complete overhaul of Kerberos to in-
clude strong authentication might be a challenging task, there
are other options to reduce the risk. For example, Kerberos
can be used over more modern and vetted protocols such as
TLS [32]. Using such options can help prevent attackers from
exploiting such vulnerabilities in the Kerberos protocol.

Lack of Forward Secrecy Protocols such as SMB3 rely
on Kerberos for authentication and key distribution. To pro-
tect the sensitive data of such protocols, Kerberos should
ensure forward secrecy. This can be done with a redesign
that adds forward secrecy to the protocol, such as incorporat-
ing ephemeral Diffie-Hellman key exchange or tunneling the
communication using a modern and secure protocol such as
TLS (similar to the proposal for Kerberos above). In any case,
the security properties of the protocols that rely on Kerberos
should be well-defined and communicated to the users.

Unlimited Access to 2FA token Although it is not a weak-
ness by itself, our attack relies on the fact that there is no
global rate limit to the number of calls to the smartcard. Al-
though an initial PIN code entry is required, we were able
to cause the client machine to use the smartcard to decrypt
more than 10000 RSA ciphertexts without any user interac-
tion. This is several orders of magnitude more than what we
can expect in a normal operation. Smartcards should provide
an option to configure some policy for rate limitations. More-
over, the OS can also force user interaction by limiting the
amount of calls to the smartcard before asking the user to
reenter their PIN code, this should be implemented using a
global counter.

9.2 Further Research
In this work, we provide an efficient algorithm to lower the
Bleichenbacher’s attack overhead when using noisy oracles.
Our algorithm is focused on efficiency in the subset of “fast”
attacks that require a relativity low number of queries. This is
motivated by time constrained attack scenarios where slower
attacks will fail to finish on time in any case. As we have
shown, other approaches might improve the success rate when
we consider other subsets of messages. We believe that fur-
ther exploration of the problem space will reveal many more
interesting approaches and tradeoffs that can optimize the
attack for more real world scenarios.

Acknowledgments

We thank Orr Dunkelman and Yossi Oren for the helpful dis-
cussions and Eitan Lezmy for his technical help with testing
various versions of Windows. This project has been supported

by Len Blavatnik and the Blavatnik Family foundation, the
Blavatnik ICRC, Robert Bosch Technologies Israel Ltd, and
ISF grant no. 1807/23.

References

[1] CVE-2022-4182., November 29 2022. https://
nvd.nist.gov/vuln/detail/CVE-2022-4182.

[2] CVE-2023-1814., April 4 2023. https:
//nvd.nist.gov/vuln/detail/CVE-2023-1814.

[3] CVE-2023-1823., April 4 2023. https:
//nvd.nist.gov/vuln/detail/CVE-2023-1823.

[4] CVE-2023-2459., May 2 2023. https:
//nvd.nist.gov/vuln/detail/CVE-2023-2459.

[5] CVE-2023-2460., May 2 2023. https:
//nvd.nist.gov/vuln/detail/CVE-2023-2460.

[6] CVE-2023-2940., May 30 2023. https:
//nvd.nist.gov/vuln/detail/CVE-2023-2940.

[7] ISO/IEC JTC 1/SC 17. Identification cards — Inte-
grated circuit cards — Part 15: Cryptographic informa-
tion application. Standard, International Organization
for Standardization, Geneva, CH, June 2016.

[8] Apple. Applosxkrb5, 2023. https:
//opensource.apple.com/source/Kerberos/
Kerberos-62/KerberosClients/KerberosApp/
Documentation/using-osx.html?f=text.

[9] ArchLinux. Arch krb5, 2023. https:
//wiki.archlinux.org/title/Kerberos.

[10] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky,
Nadia Heninger, Maik Dankel, Jens Steube, Luke
Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne
Engels, Christof Paar, and Yuval Shavitt. DROWN:
Breaking TLS with SSLv2. In 25th USENIX Security
Symposium, August 2016.

[11] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto,
Lorenzo Simionato, Graham Steel, and Joe-Kai Tsay. Ef-
ficient Padding Oracle Attacks on Cryptographic Hard-
ware. Research Report RR-7944, INRIA, April 2012.

[12] Tripwire Blake Strom, Microsoft 365 Defender;
Travis Smith. Pass the hash - blake strom, microsoft
365 defender; travis smith, tripwire, 2020. https:
//attack.mitre.org/techniques/T1550/002/.

[13] Daniel Bleichenbacher. Chosen ciphertext attacks
against protocols based on the RSA encryption standard
PKCS #1. In CRYPTO, 1998.

USENIX Association 33rd USENIX Security Symposium    6665

https://nvd.nist.gov/vuln/detail/CVE-2022-4182
https://nvd.nist.gov/vuln/detail/CVE-2022-4182
https://nvd.nist.gov/vuln/detail/CVE-2023-1814 
https://nvd.nist.gov/vuln/detail/CVE-2023-1814 
https://nvd.nist.gov/vuln/detail/CVE-2023-1823 
https://nvd.nist.gov/vuln/detail/CVE-2023-1823 
https://nvd.nist.gov/vuln/detail/CVE-2023-2459 
https://nvd.nist.gov/vuln/detail/CVE-2023-2459 
https://nvd.nist.gov/vuln/detail/CVE-2023-2460 
https://nvd.nist.gov/vuln/detail/CVE-2023-2460 
https://nvd.nist.gov/vuln/detail/CVE-2023-2940 
https://nvd.nist.gov/vuln/detail/CVE-2023-2940 
https://opensource.apple.com/source/Kerberos/Kerberos-62/KerberosClients/KerberosApp/Documentation/using-osx.html?f=text
https://opensource.apple.com/source/Kerberos/Kerberos-62/KerberosClients/KerberosApp/Documentation/using-osx.html?f=text
https://opensource.apple.com/source/Kerberos/Kerberos-62/KerberosClients/KerberosApp/Documentation/using-osx.html?f=text
https://opensource.apple.com/source/Kerberos/Kerberos-62/KerberosClients/KerberosApp/Documentation/using-osx.html?f=text
https://wiki.archlinux.org/title/Kerberos
https://wiki.archlinux.org/title/Kerberos
https://attack.mitre.org/techniques/T1550/002/
https://attack.mitre.org/techniques/T1550/002/


[14] Hanno Böck, Juraj Somorovsky, and Craig Young. Re-
turn of Bleichenbacher’s oracle threat (ROBOT). In
USENIX Security Symposium, 2018.

[15] Livia Capol. Experimenting with the bleichenbacher
attack. 2021.

[16] Cern. Cern centos, 2023.
http://lxsoft102.cern.ch/cern/
centos/7.3/cr/x86_64/repoview/
system_environment.libraries.group.html.

[17] CSO. Cso-the 15 biggest data breaches of the 21st cen-
tury, 2022. https://www.csoonline.com/article/
534628/the-biggest-data-breaches-of-the-
21st-century.html.

[18] Omkar Dastane, Kinn Bakon, and Zainudin Johari. The
effect of bad password habits on personal data breach.
International Journal of Emerging Trends in Engineer-
ing Research, 8:6950–6960, 10 2020.

[19] SpiderLabs; Edward Millington Ed Williams, Trustwave.
Os credential dumping: Lsass memory, 2020. https:
//attack.mitre.org/techniques/T1003/001/.

[20] Enlyft. Companies using active directory, 2023.
https://discovery.hgdata.com/product/
microsoft-active-directory.

[21] Fedora. Fedora krb5, 2023.
https://fedoraproject.org/wiki/
Kerberos_KDC_Quickstart_Guide.

[22] James Forshaw. rc4 is still considered harmful, 2022.
https://googleprojectzero.blogspot.com/2022/
10/rc4-is-still-considered-harmful.html.

[23] FreeBSD. Freebsd heim, 2023. https:
//docs.freebsd.org/en/books/handbook/
security/#kerberos5.

[24] Gentoo. Gentoo krb5, 2023.
https://wiki.gentoo.org/wiki/
Kerberos_Windows_Interoperability.

[25] HGInsights. Hgdata companies using active directory,
2023. https://discovery.hgdata.com/product/
microsoft-active-directory.

[26] IBM. Ibm krb5, 2023. https://www.ibm.com/
docs/en/spectrum-conductor/2.4.1?topic=
setup-installing-kerberos-server-client.

[27] Naomaru Itoi and Peter Honeyman. Smartcard integra-
tion with kerberos v5. In Proceedings of the USENIX
Workshop on Smartcard Technology on USENIX Work-
shop on Smartcard Technology, WOST’99, page 7, USA,
1999. USENIX Association.

[28] Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky.
Bleichenbacher’s attack strikes again: Breaking PKCS#1
v1.5 in XML encryption. In ESORICS, 2012.

[29] Assar Westerlund Johan Danielsson. Heim-
dal kerberos implementation, 1998. https:
//www.heimdal.software/.

[30] Assar Westerlund Johan Danielsson. Heimdal—an inde-
pendent implementation of kerberos 5, 1998. https://
www.usenix.org/legacy/publications/library/
proceedings/usenix98/freenix/heimdal2.pdf.

[31] Jakob Jonsson and Burt Kaliski. Public-Key Cryptogra-
phy Standards (PKCS) #1: RSA Cryptography Specifi-
cations Version 2.1. RFC 3447, February 2003.

[32] Simon Josefsson. Using Kerberos Version 5 over the
Transport Layer Security (TLS) Protocol. RFC 6251,
May 2011.

[33] Hubert Kario. Everlasting ROBOT: the marvin attack.
ESORICS, page 1442, 2023.

[34] Sowmya Karunakaran, Kurt Thomas, Elie Bursztein, and
Oxana Comanescu. Data breaches: User comprehension,
expectations, and concerns with handling exposed data.
In SOUPS @ USENIX Security Symposium, 2018.

[35] Daniel Katzman, William Kosasih, Chitchanok
Chuengsatiansup, Eyal Ronen, and Yuval Yarom. The
gates of time: Improving cache attacks with transient
execution. In USENIX Security Symposium, 2023.

[36] Vlastimil Klíma, Ondrej Pokorný, and Tomás Rosa. At-
tacking rsa-based sessions in SSL/TLS. In CHES, 2003.

[37] Yeu-Pong Lai and Wei-Feng Wu. The defense in-depth
approach to the protection for browsing users against
drive-by cache attacks. Secur. Commun. Networks,
8(7):1422–1430, 2015.

[38] Wenting Li, Ping Wang, and Kaitai Liang. Hpake:
Honey password-authenticated key exchange for fast
and safer online authentication. Trans. Info. For. Sec.,
18:1596–1609, jan 2023.

[39] Tim Medin. Kerberoasting attack - tim medin, 2015.
https://github.com/nidem/kerberoast/.

[40] Christopher Meyer, Juraj Somorovsky, Eugen Weiss,
Jörg Schwenk, Sebastian Schinzel, and Erik Tews. Revis-
iting SSL/TLS implementations: New Bleichenbacher
side channels and attacks. In USENIX Sec, 2014.

[41] Microsoft. server message block (smb)
protocol - microsoft, 2021. https://
winprotocoldoc.blob.core.windows.net/
productionwindowsarchives/MS-SMB/[MS-
SMB].pdf.

6666    33rd USENIX Security Symposium USENIX Association

http://lxsoft102.cern.ch/cern/centos/7.3/cr/x86_64/repoview/system_environment.libraries.group.html
http://lxsoft102.cern.ch/cern/centos/7.3/cr/x86_64/repoview/system_environment.libraries.group.html
http://lxsoft102.cern.ch/cern/centos/7.3/cr/x86_64/repoview/system_environment.libraries.group.html
https://www.csoonline.com/article/534628/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/534628/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/534628/the-biggest-data-breaches-of-the-21st-century.html
https://attack.mitre.org/techniques/T1003/001/
https://attack.mitre.org/techniques/T1003/001/
https://discovery.hgdata.com/product/microsoft-active-directory
https://discovery.hgdata.com/product/microsoft-active-directory
https://fedoraproject.org/wiki/Kerberos_KDC_Quickstart_Guide
https://fedoraproject.org/wiki/Kerberos_KDC_Quickstart_Guide
https://googleprojectzero.blogspot.com/2022/10/rc4-is-still-considered-harmful.html
https://googleprojectzero.blogspot.com/2022/10/rc4-is-still-considered-harmful.html
https://docs.freebsd.org/en/books/handbook/security/#kerberos5
https://docs.freebsd.org/en/books/handbook/security/#kerberos5
https://docs.freebsd.org/en/books/handbook/security/#kerberos5
https://wiki.gentoo.org/wiki/Kerberos_Windows_Interoperability
https://wiki.gentoo.org/wiki/Kerberos_Windows_Interoperability
https://discovery.hgdata.com/product/microsoft-active-directory
https://discovery.hgdata.com/product/microsoft-active-directory
https://www.ibm.com/docs/en/spectrum-conductor/2.4.1?topic=setup-installing-kerberos-server-client
https://www.ibm.com/docs/en/spectrum-conductor/2.4.1?topic=setup-installing-kerberos-server-client
https://www.ibm.com/docs/en/spectrum-conductor/2.4.1?topic=setup-installing-kerberos-server-client
https://www.heimdal.software/
https://www.heimdal.software/
https://www.usenix.org/legacy/publications/library/proceedings/usenix98/freenix/heimdal2.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix98/freenix/heimdal2.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix98/freenix/heimdal2.pdf
https://github.com/nidem/kerberoast/
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-SMB/[MS-SMB].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-SMB/[MS-SMB].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-SMB/[MS-SMB].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-SMB/[MS-SMB].pdf


[42] Microsoft. Active directory technical
specification - microsoft, 2022. https:
//winprotocoldoc.blob.core.windows.net/
productionwindowsarchives/MS-ADTS/[MS-
ADTS].pdf.

[43] Microsoft. Kerberos protocol extensions - mi-
crosoft, 2022. https://learn.microsoft.com/
en-us/openspecs/windows_protocols/ms-kile/
2a32282e-dd48-4ad9-a542-609804b02cc9.

[44] Microsoft. server message block (smb) pro-
tocol version 2 and 3 - microsoft, 2022.
https://winprotocoldoc.blob.core.windows.net/
productionwindowsarchives/MS-SMB2/[MS-
SMB2].pdf.

[45] Microsoft. Ticket lifetimes - microsoft, 2022.
https://learn.microsoft.com/en-us/windows/
security/threat-protection/security-
policy-settings/maximum-lifetime-for-user-
ticket?source=recommendations.

[46] Microsoft. whats-new-in-credential-protection, 2022.
https://learn.microsoft.com/en-us/windows-
server/security/credentials-protection-
and-management/whats-new-in-credential-
protection.

[47] MIT. Mit kerberos implementation - mit, 2002. https:
//web.mit.edu/kerberos/.

[48] MIT. Mitheim, 2007. http://web.mit.edu/macdev/
KfM/Common/Documentation/download.html.

[49] MIT. dictionary attacks and mitigations, 2023.
https://web.mit.edu/kerberos/krb5-latest/
doc/admin/dictionary.html.

[50] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and
Andreas Rusch. PKCS #1: RSA Cryptography Specifi-
cations Version 2.2. RFC 8017, November 2016.

[51] Collins W. Munyendo, Yasemin Acar, and Adam J. Aviv.
"in eighty percent of the cases, i select the password
for them": Security and privacy challenges, advice, and
opportunities at cybercafes in kenya. In 2023 IEEE
Symposium on Security and Privacy (SP), 2023.

[52] Roger M. Needham and Michael D. Schroeder. Us-
ing encryption for authentication in large networks of
computers. Commun. ACM, 21(12):993–999, dec 1978.

[53] Dr. Clifford Neuman, Sam Hartman, Kenneth Raeburn,
and Taylor Yu. The Kerberos Network Authentication
Service (V5). RFC 4120, July 2005.

[54] Dr. Clifford Neuman and Theodore Ts’o. The Ker-
beros Network Authentication Service (V5). RFC 1510,
September 1993.

[55] OpenSuse. Opensuse krb5, 2023. https:
//doc.opensuse.org/documentation/leap/
security/html/book-security/cha-security-
kerberos.html#sec-security-kerberos-admin-
kdc.

[56] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadha-
van, and Angelos D. Keromytis. The spy in the sandbox:
Practical cache attacks in javascript and their implica-
tions. In CCS, pages 1406–1418. ACM, 2015.

[57] PCWorld. Windows 10 continues to dominate windows
11, 2023. https://www.pcworld.com/article/
2094755/windows-10-doesnt-give-windows-11-
a-chance.html.

[58] Tim Polk and Sean Turner. Prohibiting Secure Sockets
Layer (SSL) Version 2.0. RFC 6176, March 2011.

[59] Andrei Popov. Prohibiting RC4 Cipher Suites. RFC
7465, February 2015.

[60] RedHat. Redhat krb5, 2023. https:
//access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/7/html/
system-level_authentication_guide/
configuring_a_kerberos_5_server.

[61] RedHat. Redhat krb5, 2023. https:
//access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/7/html/system-
level_authentication_guide/krb-smart-cards.

[62] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, August 2018.

[63] R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosys-
tems. Commun. ACM, 21(2):120–126, feb 1978.

[64] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi
Shamir, David Wong, and Yuval Yarom. The 9 lives
of bleichenbacher’s CAT: new cache attacks on TLS
implementations. In IEEE Symposium on Security and
Privacy, 2019.

[65] Samba. Sambaheim, 2022. https://www.samba.org/
samba/security/CVE-2022-3437.html.

[66] Michael Schwarz, Clémentine Maurice, Daniel Gruss,
and Stefan Mangard. Fantastic timers and where to
find them: High-resolution microarchitectural attacks in
javascript. In Financial Cryptography, 2017.

USENIX Association 33rd USENIX Security Symposium    6667

https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-ADTS/[MS-ADTS].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-ADTS/[MS-ADTS].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-ADTS/[MS-ADTS].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-ADTS/[MS-ADTS].pdf
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-kile/2a32282e-dd48-4ad9-a542-609804b02cc9
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-kile/2a32282e-dd48-4ad9-a542-609804b02cc9
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-kile/2a32282e-dd48-4ad9-a542-609804b02cc9
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-SMB2/[MS-SMB2].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-SMB2/[MS-SMB2].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-SMB2/[MS-SMB2].pdf
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/maximum-lifetime-for-user-ticket?source=recommendations
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/maximum-lifetime-for-user-ticket?source=recommendations
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/maximum-lifetime-for-user-ticket?source=recommendations
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/maximum-lifetime-for-user-ticket?source=recommendations
https://learn.microsoft.com/en-us/windows-server/security/credentials-protection-and-management/whats-new-in-credential-protection
https://learn.microsoft.com/en-us/windows-server/security/credentials-protection-and-management/whats-new-in-credential-protection
https://learn.microsoft.com/en-us/windows-server/security/credentials-protection-and-management/whats-new-in-credential-protection
https://learn.microsoft.com/en-us/windows-server/security/credentials-protection-and-management/whats-new-in-credential-protection
https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/
http://web.mit.edu/macdev/KfM/Common/Documentation/download.html
http://web.mit.edu/macdev/KfM/Common/Documentation/download.html
https://web.mit.edu/kerberos/krb5-latest/doc/admin/dictionary.html
https://web.mit.edu/kerberos/krb5-latest/doc/admin/dictionary.html
https://doc.opensuse.org/documentation/leap/security/html/book-security/cha-security-kerberos.html#sec-security-kerberos-admin-kdc
https://doc.opensuse.org/documentation/leap/security/html/book-security/cha-security-kerberos.html#sec-security-kerberos-admin-kdc
https://doc.opensuse.org/documentation/leap/security/html/book-security/cha-security-kerberos.html#sec-security-kerberos-admin-kdc
https://doc.opensuse.org/documentation/leap/security/html/book-security/cha-security-kerberos.html#sec-security-kerberos-admin-kdc
https://doc.opensuse.org/documentation/leap/security/html/book-security/cha-security-kerberos.html#sec-security-kerberos-admin-kdc
https://www.pcworld.com/article/2094755/windows-10-doesnt-give-windows-11-a-chance.html
https://www.pcworld.com/article/2094755/windows-10-doesnt-give-windows-11-a-chance.html
https://www.pcworld.com/article/2094755/windows-10-doesnt-give-windows-11-a-chance.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/configuring_a_kerberos_5_server
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/configuring_a_kerberos_5_server
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/configuring_a_kerberos_5_server
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/configuring_a_kerberos_5_server
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/configuring_a_kerberos_5_server
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/krb-smart-cards
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/krb-smart-cards
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/krb-smart-cards
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/krb-smart-cards
https://www.samba.org/samba/security/CVE-2022-3437.html
https://www.samba.org/samba/security/CVE-2022-3437.html


[67] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Bor-
bala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,
and Elie Bursztein. Protecting accounts from creden-
tial stuffing with password breach alerting. In USENIX
Security, 2019.

[68] Franco Tommasi, Christian Catalano, and Ivan Taurino.
Browser-in-the-middle (bitm) attack. Int. J. Inf. Sec.,
21(2):179–189, 2022.

[69] Ryan Becwar; Vincent Le Toux. Pass the ticket,
2020. https://attack.mitre.org/techniques/
T1550/003/.

[70] Brian Tung and Larry Zhu. Public Key Cryptography
for Initial Authentication in Kerberos (PKINIT). RFC
4556, June 2006.

[71] Ubuntu. Ubuntu krb5, 2023. https://ubuntu.com/
server/docs/kerberos-introduction.

[72] Working Group WG1363. Ieee standard specifications
for public-key cryptography. IEEE Std 1363-2000,
pages 1–228, 2000.

[73] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian
Zhang. STACCO: differentially analyzing side-channel
traces for detecting SSL/TLS vulnerabilities in secure
enclaves. In CCS, 2017.

[74] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A high resolution, low noise, l3 cache Side-Channel
attack. In USENIX Security, 2014.

A Bleichenbacher Attack algorithm

Below is a description of how an attacker can use the Ble-
ichenbacher oracle Bl to perform an RSA secret key operation,
such as decryption, on c without knowing the secret exponent
d. We refer the reader to [13] for a more complete description.

High Level Attack Description Let c be an integer. To
compute m = cd mod N, the attack proceeds as follows:

Phase 1: Blinding The attacker repeatedly iterates over
integers beginning at s0 and computes c∗← c ·se

0 mod N. The
attacker checks if c∗ is a conforming ciphertext by evaluating
Bl(c∗). When an s0 is found such that Bl(c∗) = 1. The phase
ends. This step can be skipped completely if c is already a
valid PKCS #1 v1.5 ciphertext in which case s0 = 1.
We note that when the oracle returns a positive result
(Bl(c∗) = 1) the attacker knows that the corresponding mes-
sage m∗ = m ·s0 mod N starts with 0x0002. Thus, it holds that
m · s0 mod N ∈ [2B,3B) where B = 28(ℓ−2) and ℓ is the length
of N in bytes. Finally, the condition of m ·s0 mod N ∈ [2B,3B)

Table 7: Experimental Attack Results

Session Success Attack Total Perfect
Time Query Oracle

(hours) Query
1 True 5.44 8422 7203
2 True 4.89 7805 7362
3 True 5.96 9151 7587
4 True 5.64 8787 7713
5 True 5.22 8180 7178
6 True 5.88 8956 7797
7 True 5.71 8746 7291
8 False - - 8363
9 True 5.52 8512 7310

10 True 5.63 8742 7340
11 True 6.13 8864 7245
12 False - - 7192
13 True 5.09 7806 7230
14 True 5.48 8603 7645
15 True 5.66 8992 7919
16 True 6.30 9889 9070
17 True 7.43 11449 9449

implies that there exists an integer r such that 2B≤ m · s0−
rN < 3B, or equivalently:

2B+ rN
s0

≤ m <
3B+ rN

s0
.

Phase 2: Range Reduction Having established that
2B+rN

s0
≤ m < 3B+rn

s0
, the attacker proceeds to choose a new

integer multiplier s, computes c∗← c · se mod N and checks
that Bl(c∗) = 1. When a suitable s is found, the adversary
can further reduce the possible ranges of m, further detailed
in [13]. The attack terminates when the possible range of m
is reduced to a single candidate.

The original algorithm was published in 1998 and was
known as the ’Million Message Attack’. However, since then
there have been many optimizations for the attack [11]. In
some implementations, not all parts of the padding scheme
are verified and the attack can be adapted.

B Session Hijacking Experimental Results

Table 7 shows the experimental results of our full end-to-
end session hijacking attack. For each successful attack, we
give the attack time, the total queries required for the attack
(including repetitions as described in Section 4.1). We also
provide a baseline of the number of required queries assuming
a perfect oracle. Two attacks were stopped due to errors that
prevented them from finishing on time.

6668    33rd USENIX Security Symposium USENIX Association

https://attack.mitre.org/techniques/T1550/003/
https://attack.mitre.org/techniques/T1550/003/
https://ubuntu.com/server/docs/kerberos-introduction
https://ubuntu.com/server/docs/kerberos-introduction

	Introduction
	Our Contribution
	Responsible Disclosure
	Structure of the Paper

	Background
	Kerberos protocol
	Tokens in Kerberos
	PKINIT
	Open Source Kerberos Implementations
	Microsoft Active Directory

	Smartcards and Multifactor Authentication
	Kerberos RSA Smartcard-based Authentication

	Padding Oracle Attacks
	RSA padding
	Bleichenbacher's Attack on PKCS#1 v1.5 Padding
	Bleichenbacher Oracle Notation

	Flush+Reload Cache Attack
	SMB3
	Related Work
	Attacks on Kerberos
	Attacks on RSA PKCS #1 v1.5


	Padding Oracles in Kerberos PKINIT
	Timing Base Padding Oracles
	Threat Model
	Oracle Description
	Nonconstant Time Implementations
	PKCS #1 v1.5 Verification Oracles
	Protocol Level Oracles


	Padding Oracle Proof-of-Concept
	Experimental Oracle Calibration

	End-to-end Attack
	Attack on Samba's file encryption

	Attack Acceleration
	Initiation of Kerberos Sessions
	Remote Access Vector

	Bleichenbacher Attack with Noisy Oracles
	False Postive Detection
	Noisy Oracle Simulation
	Kerberos Sessions Hijacking

	Optimizing Attack Retires With Early Abort
	Early Abort Optimization
	Experimental Results

	Conclusions
	The Danger of Legacy Crypto
	Further Research

	Bleichenbacher Attack algorithm
	Session Hijacking Experimental Results

