
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

FVD-DPM: Fine-grained Vulnerability Detection
via Conditional Diffusion Probabilistic Models
Miaomiao Shao and Yuxin Ding, Harbin Institute of Technology, Shenzhen

https://www.usenix.org/conference/usenixsecurity24/presentation/shao

FVD-DPM: Fine-grained Vulnerability Detection via Conditional Diffusion
Probabilistic Models

Miaomiao Shao
Harbin Institute of Technology, Shenzhen

Yuxin Ding∗

Harbin Institute of Technology, Shenzhen

Abstract
Software vulnerabilities pose a significant threat to soft-

ware security. Nevertheless, existing vulnerability detection
methods still struggle to effectively identify vulnerabili-
ties and pinpoint vulnerable statements. In this paper, we
introduce FVD-DPM: a novel Fine-grained Vulnerability
Detection approach via a conditional Diffusion Probabilistic
Model. FVD-DPM formalizes vulnerability detection as a
diffusion-based graph-structured prediction problem. Firstly,
it generates a new fine-grained code representation by extract-
ing graph-level program slices from the Code Joint Graph.
Then, a conditional diffusion probabilistic model is employed
to model the node label distribution in the program slices,
predicting which nodes are vulnerable. FVD-DPM achieves
both precise vulnerability identification (slice-level detec-
tion) and vulnerability localization (statement-level detection).
We evaluate FVD-DPM on five collected datasets and com-
pare it against nine state-of-the-art vulnerability detection ap-
proaches. Experimental results demonstrate that FVD-DPM
significantly outperforms the baseline approaches across vari-
ous evaluation settings.

1 Introduction

Software vulnerabilities (or vulnerabilities for short) are
security flaws resulting from errors in software design, devel-
opment, or configuration, rendering them a primary source
of software security issues. These vulnerabilities can be ex-
ploited by attackers to carry out malicious actions, posing
risks to the privacy and property security of software users.
Despite collaborative efforts from academia and industry to
enhance software security, vulnerabilities remain a significant
challenge [5]. One effective strategy for addressing vulner-
abilities is the development of detection models. An ideal
detection model should exhibit both robust identification and
localization capabilities. This entails the detection model not
only determining whether a code fragment is vulnerable but

∗Corresponding author: yxding@hit.edu.cn

also predicting the specific code lines (i.e., statements) that
are vulnerable. In this paper, vulnerable describes the status of
a code fragment, such as a vulnerable function, a vulnerable
statement. A vulnerable function represents a vulnerability,
while a vulnerable statement is part of a vulnerability. A vul-
nerable function contains at least one vulnerable statement.

Many traditional static analysis-based methods have been
proposed to detect vulnerabilities, showcasing their effective-
ness. These methods encompass symbolic execution-based
approaches [29], rule-based techniques [9, 19], and code
similarity-based methods [16, 28, 36]. The intricate program-
ming logic present in real-world software projects poses a
challenge for manually identifying detection rules or patterns,
significantly hampering the performance of traditional static
analysis-based methods. In recent years, the wealth of data
derived from open-source code has provided a favorable en-
vironment for constructing deep learning-based vulnerability
detection models. Leveraging the feature extraction capabili-
ties of deep learning facilitates the automatic identification of
latent vulnerability patterns, offering a novel approach to vul-
nerability detection. Numerous studies [15,17,26,32,39] have
demonstrated that deep learning-based methods outperform
traditional static analysis-based methods. However, existing
deep learning-based vulnerability detection approaches still
exhibit some limitations, as outlined below.

The program semantics have not been fully leveraged.
On one hand, some approaches [17, 26] convert source code
into token sequences and employ language models to de-
tect vulnerabilities. However, in contrast to natural language,
source code contains rich structural information. Conse-
quently, these approaches struggle to achieve good perfor-
mance due to their inability to capture the structural in-
formation of the program. On the other hand, some works
[21, 32, 33, 39] transform functions into graph-structured rep-
resentations, e.g., Abstract Syntax Tree (AST), Control Flow
Graph (CFG), Data Flow Graph (DFG), and Program Depen-
dency Graph (PDG). While these graph-structured representa-
tions can capture structural information about certain aspects
of the program, they often cannot obtain comprehensive and

USENIX Association 33rd USENIX Security Symposium 7375

precise vulnerability semantics. Specifically, these methods
typically extract program semantics from individual func-
tions, disregarding call relationships between functions. In
other words, these approaches lack the capability to perform
inter-procedural analysis for source code.

The detection granularity is coarse-grained. The detec-
tion granularity of existing deep learning-based approaches is
mostly at the file-level [6, 24], function-level [21, 26, 32, 39],
or slice-level [2, 15, 17, 18]. Upon analyzing a considerable
number of vulnerable samples, we observe that vulnerabilities
typically involve only a few statements. This implies that soft-
ware developers still need to invest a significant amount of
time manually scanning numerous statements to identify vul-
nerable ones. Hence, it is crucial to devise a more fine-grained
vulnerability detection approach capable of pinpointing vul-
nerable statements (i.e., vulnerability localization). However,
constructing a fine-grained detection approach that covers the
majority of vulnerabilities is challenging due to the substantial
semantic differences between various vulnerabilities.

In this paper, we present a novel Fine-grained Vulnerability
Detection approach based on a conditional Diffusion
Probabilistic Model (FVD-DPM) to alleviate the aforemen-
tioned limitations.

Fully leveraging program semantics. To extract compre-
hensive and precise semantic features, we combine control
flow, data flow, function calls, and code sequences to con-
struct a joint code representation, i.e., Code Joint Graph (CJG).
Firstly, we augment CFG with data flow based on the vari-
able define-use relations to generate PDG, enabling the
analysis of control and data dependencies within the function.
Next, we extend the PDG using Call Graph (CG) to facilitate
inter-procedural analysis. Furthermore, we incorporate code
sequence information into the extended graph to capture the
programming logic in the source code. CJG preserves both
structural and unstructured program semantics. Overall, CJG
enables both intra-procedural and inter-procedural control and
data flow analysis, capturing richer vulnerability semantics.

Fine-grained vulnerability detection. To train a fine-
grained vulnerability detection model, we initially generate
graph-level program slices from CJG. Subsequently, we for-
mulate vulnerability detection as a diffusion-based graph-
structured prediction problem. Specifically, we identify vul-
nerable statements by predicting node labels in the graph-level
slices using a conditional diffusion probabilistic model. Dif-
fusion probabilistic models (DPMs) belong to a class of gen-
erative models known for their ability to produce high-quality
images [12, 22]. The main idea of DPMs is to iteratively add
noise to an image and train a neural network to learn the noise
and restore the image. Motivated by that, we treat the node
label in each graph as an image in our vulnerability detection
task. Leveraging the graph information (nodes and edges), we
train a conditional diffusion probabilistic model by utilizing
the probabilistic diffusion of node labels to identify vulner-
able nodes. Previous studies have demonstrated that DPMs

excel at modeling complex image domains, describing the
distribution of neighboring pixels in the image and generating
diverse high-quality images. Hence, we are confident that
our FVD-DPM can effectively model node labels, extract-
ing implicit patterns of various vulnerabilities and achieving
high-performance fine-grained vulnerability detection.

Additionally, training deep learning-based models for fine-
grained detection requires large-scale datasets. Existing
datasets primarily fall into two categories: synthesized and
real-world. The granularity of real-world datasets [26, 38, 39]
is consistently coarse-grained (e.g., file-level or function-
level), making them unsuitable for training fine-grained detec-
tion models. In this paper, based on the utilization of existing
datasets in [15, 17], we construct a real-world, fine-grained
dataset. This dataset includes vulnerability labels at function,
slice, and statement levels. The datasets and source code pre-
sented in this paper are available online. 1

To the best of our knowledge, this paper makes the follow-
ing contributions:

• We propose a novel fine-grained code representation that
extracts graph-level program slices from CJG. The CJG
is obtained by integrating CFG, DFG, CG, and code se-
quence, enabling it to capture comprehensive and precise
vulnerability semantics within the source code.

• We formalize fine-grained vulnerability detection as a
diffusion-based graph-structured prediction problem. We
build a conditional diffusion probabilistic model to pre-
dict node labels. With this approach, we achieve vulner-
ability detection at both slice-level and statement-level.

• We employ Graph Attention Network (GAT) with hybrid
time encoding to predict noisy label at each timestep
during the diffusion process. Moreover, we enhance the
model by concurrently learning the mean and variance of
the noisy label distribution, and modifying loss function.

• We evaluate our FVD-DPM approach on collected
datasets, demonstrating its effectiveness in detecting vul-
nerabilities compared to state-of-the-art methods.

2 Motivating Examples

To highlight the motivation behind FVD-DPM, we use
a typical vulnerability in the Linux Kernel as an exam-
ple. Figure 1 presents the simplified vulnerable function
ksmbd_conn_handler_loop for clarity. We observe that
ksmbd fails to validate the SMB request protocol ID at line 23,
resulting in an out-of-bounds read vulnerability. Exploiting
this vulnerability successfully could lead to sensitive infor-
mation leakage or denial of service (DoS). The fix for this
vulnerability involves adding validation for the SMB request

1https://github.com/VulDet/FVD-DPM.git

7376 33rd USENIX Security Symposium USENIX Association

https://github.com/VulDet/FVD-DPM.git

Figure 1: An out-of-bounds read vulnerability (CVE-2023-
38430) in Linux Kernel.

protocol ID, as demonstrated in lines 24-32. This example
provides the following observations:

Observation 1. Comprehensive and precise program
semantic extraction is necessary. As illustrated in Figure 1,
the semantics of vulnerable code and non-vulnerable code are
different. Traditional static analysis-based detection methods
[4, 9, 19] may not capture this semantic difference adequately
because predefined rules or patterns are often simplistic and
incomplete. Furthermore, we observe that this vulnerability
involves multiple statements in two functions. It cannot be
easily detected by some existing deep learning-based methods
[21, 32, 39] because they may ignore the call relationships
between functions. Additionally, the change from lines 10-11
in the vulnerable code to lines 17-18 in the non-vulnerable
code underscores the significance of the natural order of code
statements in identifying vulnerable code.

In this paper, we combine control flow, data flow, function
calls and code sequence to construct a joint code representa-
tion (CJG). This graph not only denotes the control and data
dependencies among statements within and between func-
tions, but also captures the natural order of the source code.

Observation 2. Detection models must identify global
contextual information of nodes in the CJG. As shown
in Figure 1, only three statements are vulnerable. This em-
phasizes the necessity of building a fine-grained detection
model. Existing GNN-based detection approaches [2,8,32,39]
typically propagate a node’s information to its first-order
or second-order adjacent nodes. However, in a vulnerable
sample, different vulnerable statements may be separated by

dozens of non-vulnerable statements. This indicates that vul-
nerable nodes in graph-level code representations may not
be in each other’s first-order or second-order neighborhood.
Consequently, these GNN-based models may struggle to infer
whether a potential vulnerable node directly affects another, as
they often ignore the global contextual information of nodes,
thereby hindering their ability to detect vulnerabilities.

Based on the above observations, we formalize vulnerabil-
ity detection as a diffusion-based graph-structured prediction
problem to enhance the detection of fine-grained vulnerabil-
ities. We extract graph-level program slices from CJG and
then construct a conditional diffusion probabilistic model
to predict node labels within these graph-level slices. This
model considers all nodes in the entire graph as a whole, and
then models the joint distribution of node labels, which can
effectively capture the global contextual information of nodes.

3 Methodology

In this section, we introduce our vulnerability detection
framework, FVD-DPM. As illustrated in Figure 2, FVD-DPM
extracts Graph-based Vulnerability Candidate slices (GrVCs)
and introduces a conditional diffusion probabilistic model
for detecting vulnerabilities. The framework comprises two
stages: 1) Generate CJG from source code and utilize program
slicing technology to extract GrVCs from the CJG, thereby
obtaining fine-grained vulnerability representations. 2) Con-
struct a conditional diffusion probabilistic model to predict
node label distribution for GrVCs, thereby achieving precise
identification and localization of vulnerable code.

3.1 Feature Extraction
To capture comprehensive and precise program semantics,

we introduce a novel graph-level code representation: Code
Joint Graph (CJG). We construct the CJG by integrating CFG,
DFG, CG, and the code sequence. The CJG not only incor-
porates control and data flows within and between functions
but also preserves the natural sequential order of the code.
However, a function typically comprises dozens or even hun-
dreds of statements, with vulnerabilities concentrated in only
a few of them. Training a detection model on the entire graph
might diminish the ability to extract significant vulnerability
features, making it challenging to precisely locate vulnerable
statements. Consequently, our approach involves extracting
graph-level program slices from the CJG to obtain a more
fine-grained vulnerability representation.

3.1.1 Generating Code Joint Graph

We combine multiple code representations, including CFG,
DFG, CG, and code sequence, to generate the CJG. Next, we
will briefly introduce each type of code representation and
explain how we integrate them into the CJG.

USENIX Association 33rd USENIX Security Symposium 7377

Figure 2: Overview of FVD-DPM.

Control Flow Graph (CFG). CFG explicitly delineates
all paths a program will take during execution. Path selection
is influenced by conditional statements such as if, for, and
switch. In the CFG, nodes are linked by directed edges to
signify the transfer of control.

Data Flow Graph (DFG). DFG monitors variable usage
across the program. Any data flow entails accessing or modi-
fying specific variables. An edge in the DFG signifies subse-
quent access or modification of related variables.

Call Graph (CG). Call Graph illustrates the relationships
between function calls, tracing from the caller to the callee.
Integrating the Call Graph allows for inter-procedural analysis,
enabling the capture of more comprehensive control and data
flow information.

Code Sequence (CS). To preserve the inherent order of
the source code, we introduce CS edges to sequentially con-
nect each statement. The inclusion of these edges serves to
maintain the programming logic conveyed by the source code.

Specifically, we utilize the static analysis tool Joern2 to
automatically generate CFG and DFG for each function. By
combining CFG and DFG, we can generate PDG. All gener-
ated graphs are stored in the database Neo4j3. Subsequently,
we conduct data flow inspection via reaching definition anal-
ysis. This analysis tracks the definitions and uses of variables
in the function to determine which definitions lead to a given
point of use. To generate CG, we query all nodes related to
functions from the database, which are named as function
nodes and constitute the nodes of the CG. We can generate a
callee list (the type of node is Callee in it) for each function

2https://joern.io/
3https://neo4j.com/

node. If a function name in the callee list corresponds to a
node in the CG, then an edge is added from the caller to the
callee. Consequently, the CG can be constructed.

A function f can be denoted by a CJG G = (V,E), where
four distinct attribute edges (control-flow edges, data-flow
edges, function-call edges, and code-sequence edges) share
the same node set V . Each node v ∈ V possesses two
attributes: code signifies a statement in the source code, and
type indicates specific node type. The edge set E comprises
a set of directed edges, where each edge symbolizes a
particular dependency relationship between a pair of nodes.
Specifically, the node’s type in CJG includes the follow-
ing 23 types: Function, ExpressionStatement, Label,
Condition, CFGEntryNode, IdentifierDeclStatement,
UnaryExpression, GotoStatement, Parameter, Callee,
CallExpression, BreakStatement, InfiniteForNode,
ContinueStatement, ClassDefStatement, Statement,
IncDecOp, ReturnStatement, Expression, CFGExitNode,
ForInit, AssignmentExpr, and IfStatement. These node
types are defined internally by the Joern. We list the most
common eight node types and the average number of nodes
of each type per function in the appendix (see Table 9).

3.1.2 Extracting Slicing Entry Nodes

To achieve a more fine-grained representation of vulnera-
ble code, we perform program slicing to extract graph-level
program slices, i.e., GrVCs, from the CJG. During program
slicing execution, a starting node is necessary to extract gen-
eral program’s characteristics from the CJG. In this context,
we introduce the concept of slicing entry nodes. The slic-

7378 33rd USENIX Security Symposium USENIX Association

https://joern.io/
https://neo4j.com/

(a) Source code (b) Program slicing

Figure 3: An example of generating Graph-based Vulnerability Candidate slices (GrVCs).

ing entry node is an entry point to extract features that may
be associated with a vulnerability, but it cannot conclusively
identify the presence of a vulnerability.

Through the analysis of numerous vulnerable codes, we
observe that the majority of vulnerabilities are closely linked
to API/library function calls, sensitive variables (array and
pointer variables), and arithmetic expressions. Concurrently,
many existing studies [2, 17, 18] highlight the misuse of
API/library functions as a major vulnerability cause. More-
over, various vulnerability types (e.g., null pointer dereference,
double free, buffer overflow) are frequently associated with
array and pointer variables, extensively utilized in traditional
static analysis methods [4, 9]. Furthermore, arithmetic ex-
pressions often contribute to vulnerabilities such as integer
overflow. Hence, we select slicing entry nodes by matching
these three types of characteristics that may be related to
vulnerabilities.

In total, we selected 762 API/library function calls, all
of which come from several static vulnerability detectors
[3,4,9]. These functions primarily encompass input validation,
encryption and decryption, access control and authorization,
file and directory operations, and sensitive data processing.
More details of these functions are available in our online
dataset. We select slicing entry nodes based on the node’s
type and code attributes within CJG. For instance, if a node
has the type ExpressionStatement and its code contains the
character ‘=’, it can be considered an arithmetic expression-
related node, and thus, we consider it as a slicing entry node.
According to our statistics, an average of 4% of the nodes in
a CJG are slicing entry nodes.

3.1.3 Program Slicing

After selecting the slicing entry nodes, we extract GrVCs
from the CJG. Specifically, starting from the slicing entry
node, we iteratively perform forward and backward slicing
until all nodes in the CJG are traversed, thus finding all nodes
that are reachable from the slicing entry node. Finally, all
reachable nodes are connected based on their dependency

edges to generate the GrVCs. The GrVCs is essentially a
subgraph of the CJG.

Figure 3 provides an example to illustrate the process
of generating GrVCs. As shown in Figure 3a, the function
collect_mounts() fails to adequately consider the possi-
bility of execution after a path has been unmounted. This
fault allows local users to exploit user-namespace root access
for a MNT_DETACH umount2 system call, causing a denial of
service (DoS). There is only one slicing entry node in this
example, represented by the red circle in Figure 3b. In our
approach, we first extract the control flow, data flow, and code
sequence information of the vulnerable code to construct the
CJG, as depicted in Figure 3b. We then introduce function-call
edges (i.e., Edge 5 → 14) through inter-procedural analysis.
To reduce irrelevant nodes, we designate Node 3, associated
with sensitive variables, as the slicing entry node for forward
and backward slicing. After slicing, Node 7 is removed since
there is no reachable path between Node 7 and Node 3.

3.1.4 Initial Node Embedding

After generating GrVCs, we convert all nodes in the graph
into low-dimensional vectors to obtain acceptable inputs for
deep learning models. We derive an initial node represen-
tation based on the code and type attributes. For code, we
transform it into a token sequence and employ Word2Vec
to train a token embedding model. Specifically, we use our
training dataset to train a specific Word2Vec model for each
dataset, ensuring that the vector representation is derived from
domain-specific vocabulary. Subsequently, we obtain the code
representation of each node by averaging the vectors of all
tokens. Regarding the node type, we employ label encoding.
Finally, we concatenate the vector representations of the code
and type to obtain the initial node embedding.

3.2 Diffusion-based Vulnerability Prediction
In the following, we describe the detailed implementation

process of using a conditional diffusion probabilistic model

USENIX Association 33rd USENIX Security Symposium 7379

Figure 4: Illustration of FVD-DPM training on GrVCs.

for fine-grained vulnerability detection. Our goal is to develop
a diffusion-based vulnerability detection method that captures
the node label dependencies characterized by a graph.

Specifically, we formalize this diffusion process using a
GrVCs, denoted as Gi(Vi,Ei). The graph Gi(Vi,Ei) consists of
a node set Vi and an edge set Ei. The node label of the graph
Gi(Vi,Ei) is represented by yi, with values of 0 (vulnerable)
and 1 (non-vulnerable). We perform supervised learning on
Gi(Vi,Ei) to predict the node label yi. Additionally, given that
the node label yi is discrete, we relax it into an one-hot vector
to yield continuous values. The initial node feature matrix
X and adjacency matrix A of Gi(Vi,Ei) have been obtained.
Thus the formal representation of the graph can be denoted
as Gi(Vi,X ,A), abbreviated as Gi.

As depicted in Figure 4, the training process of FVD-
DPM comprises two sub-processes: forward diffusion and
reverse diffusion. Forward diffusion involves gradually inject-
ing Gaussian noise into the node labels until converging to a
standard Gaussian distribution. In contrast, reverse diffusion
entails progressively denoising from the standard Gaussian
distribution, conditioned on the graph structure of GrVCs,
thereby reconstructing node labels. Within each GrVCs, we
anticipate the presence of similar features between adjacent
nodes. Graph Attention Network (GAT) is suitable for captur-
ing the structural information of these graphs. Therefore, we
employ GAT to learn the abstract features of GrVCs. Addi-
tionally, we aim to predict the noisy label distribution at each
timestep based on the GAT.

3.2.1 Forward Diffusion Process

Following the models of [12, 13], the specific process of
forward diffusion is as follows. Given the node label y(0)i = yi
and the number of diffusion timesteps T , we assume that
y(0)i conforms to the initial data distribution q(y). Gaussian
noise is continuously injected into the data distribution during
the forward diffusion process. The variance of the Gaussian
noise injected at each timestep is fixed, and the mean depends
only on the noisy label at the previous timestep. The for-
ward diffusion process is defined as a Markov process, where
y(t)i depends only on y(t−1)

i . Therefore, the forward diffusion
process can be defined as follows:

q
(

y(1)i , · · · ,y(T)i

∣∣∣y(0)i

)
=

T

∏
t=1

q
(

y(t)i

∣∣∣y(t−1)
i

)
. (1)

q
(

y(t)i

∣∣∣y(t−1)
i

)
= N

(
y(t)i ;

√
1−βty

(t−1)
i ,βt I

)
. (2)

where I is an identity matrix, and βt ∈ [0,1] is the fixed vari-
ance schedule for the noise injected at the timestep t. The
variance schedule βt increases linearly with the increase of
t, and βT = 1. If we sample from the Gaussian distribution
N(µ,σ2) and the parameters µ and σ are learned from the
neural network, there is a risk of gradient vanishing during
the back-propagation process because the sampling process is
non differentiable. To address this issue, we exploit the repa-
rameterization technique [14]. Specifically, we sample z from

7380 33rd USENIX Security Symposium USENIX Association

a standard Gaussian distribution and calculate µ+σ∗ z. This
operation is equivalent to performing an affine transformation,
transferring randomness to the constant z. Given the notion
αt = 1−βt and ᾱt = ∏

t
s=1 αs, we have:

q
(

y(t)i

∣∣∣y(0)i

)
= N

(
y(t)i ;

√
ᾱty

(0)
i ,(1− ᾱt)I

)
. (3)

When t = T , the final noisy label obtained from the forward
diffusion process confirms to a standard Gaussian distribution,
i.e., q

(
y(T)i |y(0)i

)
≈ N

(
y(T)i ;0, I

)
.

3.2.2 Conditional Reverse Process

The reverse diffusion process is essentially a conditional
probabilistic diffusion process, involving the reconstruction
of the node label y(0)i from Gaussian noise conditioned on
the graph structure Gi and y(T)i . The y(T)i is sampled from the
standard Gaussian distribution N(0, I). The reverse diffusion
process can be defined as the conditional probability distribu-
tion pθ

(
y(0)i , · · · ,y(T−1)

i

∣∣y(T)i ,Gi
)
, learning to reconstruct the

forward diffusion process given by q(·). It is also a Markov
process and can be defined as:

pθ

(
y(0)i , · · · ,y(T−1)

i

∣∣y(T)i ,Gi
)
=

T

∏
t=1

pθ

(
y(t−1)

i

∣∣y(t)i ,Gi
)
. (4)

pθ

(
y(t−1)

i

∣∣y(t)i ,Gi
)
= N

(
y(t−1)

i ;µθ(y
(t)
i ,Gi),Σθ

)
. (5)

3.2.3 Learning the Mean µθ and the Variance Σθ

To estimate the mean µθ and the variance Σθ, we first
calculate the inverse distribution q

(
y(t−1)

i

∣∣y(t)i ,y(0)i
)
. Based

on equations (2), (3) and Bayes theorem, we can calculate
q
(
y(t−1)

i

∣∣y(t)i
)
, which is also a Gaussian distribution denoted

as N
(
µ̂t , Σ̂t

)
. Assuming Z̄t ∼ N(0, I), the calculation for the

mean µ̂t and variance Σ̂t are as follows:

µ̂t =
1√
αt

(
y(t)i − βt√

1− ᾱt
Z̄t

)
. (6)

Σ̂t =
1− ᾱt−1

1− ᾱt
βt . (7)

Then we employ GAT to parameterize the distribution
pθ

(
y(t−1)

i

∣∣y(t)i ,Gi
)
, and apply it to match the data distribution

q
(
y(t−1)

i

∣∣y(t)i
)
, gradually reconstructing the target distribution

from the standard Gaussian distribution. The mean µθ can be
calculated based on the following equation:

µθ(y
(t)
i ,Gi) =

1√
αt

(
y(t)i − βt√

1− ᾱt
Zθ

(
y(t)i ,Gi

))
. (8)

In the limit of infinite diffusion timesteps, the mean µθ

is more effective in determining the distribution than the

variance Σθ. However, Nichol and Dhariwal [22] pointed out
that the first few timesteps of the diffusion process contribute
the most to the variational lower bound of the log-likelihood.
Therefore, it appears that we could improve the log-likelihood
by selecting a better Σθ. To achieve this, we set Σθ to the
weighted sum of βt and Σ̂t as follows.

Σθ = exp
(
κlogβt +(1−κ)logΣ̂t

)
(9)

Here, κ is a learnable parameter vector.
As the number of diffusion timesteps T is usually large,

FVD-DPM needs to sequentially calculate dozens or even
hundreds of timesteps to obtain an accurate node label distri-
bution in the reverse diffusion process. This results in training
one graph taking several tens or even hundreds of times longer
than general deep learning models, significantly reducing the
training speed of the model. To address this issue, we sam-
ple timestep T during the model training process. Detailed
description is in Appendix A.

3.2.4 GAT with Hybrid Time Encoding

Due to the randomness of sampling timesteps, we may not
effectively predict the noise at each sampled timestep t using
GAT. To enhance noise prediction, we aim to make the GAT
model remember the noise level at the timestep t. Therefore,
we follow the position encoding method in Transformer [30]
and inject time encoding information into the learning pro-
cess of GAT. However, absolute time encoding alone cannot
estimate the relative positions between sampled timesteps. To
overcome this limitation, we combine relative time encoding
and absolute time encoding to construct hybrid time encoding.
As shown in Figure 4, for absolute time encoding, we directly
concatenate the time encoding with the input embedding of
GAT. For relative time encoding, we incorporate it into each
layer of GAT by modifying the self attention calculation pro-
cess. Both the absolute time encoding abs(t) and relative
time encoding rel(t) consist of sine and cosine functions of
different frequencies and fully connected layers. Thus, we
parameterize Zθ

(
y(t)i ,Gi

)
using an improved GAT as follows:

α
m
i,v,u =

exp
(
φ(ωT[(W mhi,v ⊕W mhi,u)+ rel(t)])

)
∑l∈Nv exp

(
φ(ωT[(W mhi,v ⊕W mhi,l)+ rel(t)])

) .
(10)

ai,v = σ

(1
M

M

∑
m=1

∑
u∈Nv

α
m
i,v,u

(
W mhi,u + rel(t)

))
. (11)

h
′
i,v = ϕ

(
ai,v +abs(t)

)
⊕ y(t)i,v . (12)

Zθ(y
(t)
i ,Gi) = MLP(h

′
i). (13)

where M is the number of attention heads, αm
i,v,u is the weight

coefficient calculated by the m-th attention head, W m is a
learnable weight matrix, and ω is a learnable weight vector.
The φ(·) and ϕ(·) represent the LeakyReLU and ELU acti-
vation functions, respectively. The Nv denotes the first-order

USENIX Association 33rd USENIX Security Symposium 7381

neighboring node set of node v. Here, hi,v is initialized by con-
catenating the node feature xi,v ∈ X and the noisy label y(t)i,v .
Additionally, the symbol .T represents transposition. After
learning the graph representation using the GAT model, we ap-
ply an MLP to map the graph representation onto a final two-
dimensional output vector to estimate the noise Zθ

(
y(t)i ,Gi

)
.

3.2.5 Training Objective

The training goal of FVD-DPM model is to maximize the
log-likelihood of the target distribution. DPMs generally opti-
mize log-likelihood based on their variational lower bound,
and employ KL divergence to derive Lvlb. However, directly
predicting Zθ can be better than predicting µθ, especially when
combined with a reweighted loss function [12]:

Lsimple = E
t,y(0)i ,Z

[∥∥Z̄t −Zθ

(
y(t)i ,Gi

)∥∥2
]
. (14)

This goal can be viewed as a reweighted form of Lvlb, which
does not include the term of affecting Σθ. Since Lsimple does
not rely on Σθ, we define a new hybrid training objective:

Lhybrid = Lsimple +λLvlb. (15)

To achieve the identification and localization of vulnera-
bilities, we employ two distinct schemes. Firstly, we select
the node with the highest probability, and its label is used as
the prediction for the graph, achieving vulnerability identifi-
cation. Additionally, by mapping the predicted node labels
back to the statements in the source code, we can pinpoint the
vulnerable statements, achieving vulnerability localization.

4 Evaluation

4.1 Experimental Setup
4.1.1 Research Questions

We aim to answer the following research questions:

• RQ1: How effective is FVD-DPM when compared to
state-of-the-art vulnerability detection approaches?

• RQ2: How effective is CJG in vulnerability detection
compared to existing code representations?

• RQ3: Can FVD-DPM perform better in vulnerability
detection by incorporating hybrid time encoding into
GAT, and simultaneously learning mean and variance of
the noisy label distribution?

• RQ4: How effective and precise is FVD-DPM in locating
different types of vulnerabilities?

To answer these questions, we implement FVD-DPM in
Python using Pytorch.4 We employ the static analysis tool

4https://pytorch.org/

Joern-0.3.1 to parse the source code and generate CFG, DFG,
CG, and PDG. We utilize the database Neo4j-2.1.5 to store
and access these graphs. The experiments are conducted on
a Linux server equipped with NVIDIA GeForce RTX 4090
GPU and Intel(R) Core(TM) i9-13900K CPU running at 4.60
GHz. We utilize a word embedding vector size of 128 to train
the Word2Vec model, from which the embedding representa-
tion of node codes can be obtained. The embedding dimension
of the nodes in GrVCs is 129. The main hyper-parameters
for training FVD-DPM are as follows: the Adam optimizer
with a learning rate of 5e-3 is used for training the model up
to 15000 epochs; the number of diffusion timesteps T is 40;
the batch size is set to 64; the number of GAT layers is 2; the
hidden dimensions and the number of heads in GAT are 32
and 2, respectively. We use an optional linear skip connection
between each GAT layer and apply a dropout probability of
0.5. The number of nodes in each GrVCs is set to 400.

4.1.2 Datasets

To evaluate the performance of FVD-DPM in detecting
vulnerabilities in various scenarios and to compare it with
existing state-of-the-art detection methods, we established our
dataset using two sources: (1) Two well-known datasets, i.e.,
NVD and SARD, which have been widely used in previous
detection approaches [2,15,17,35]. (2) Three real-world open-
source projects, namely OpenSSL, Libav, and Linux Kernel,
were manually collected from the GitHub repository.

We followed the methodology in [38] to collect the three
open-source projects. Since only a small proportion of com-
mits on GitHub are related to vulnerabilities, we selected
vulnerability-related fixing commits by matching a set of
predefined vulnerability keywords (e.g., vulnerability, out
of bound, use after free, memory leak, null pointer, deref-
erence, buffer overflow) in the commit messages. For each
vulnerability-related fixing commit, we first extracted the vul-
nerable code file, patched code file, and diff file. Subse-
quently, if a function originates from a vulnerable code file
and has at least one statement deleted or changed (indicated by
"-" in the diff file), it is labeled as vulnerable; otherwise, it is
labeled as non-vulnerable. Deleted or changed statements are
considered vulnerable statements. Each node in GrVCs repre-
sents a statement in the source code; nodes corresponding to
vulnerable statements are labeled as vulnerable, while the rest
are labeled as non-vulnerable. If at least one node in a GrVCs
is vulnerable, the entire GrVCs is labeled as vulnerable. More
details are in Appendix B.

Real-world data often includes more non-vulnerable exam-
ples than vulnerable ones. A model trained on such imbal-
anced datasets may tend to classify samples into the majority
class. Additionally, DPM model treats each GrVCs as an
image. If all pixels in an image are identical, having an abun-
dance of such images would not benefit model training. To
address these challenges, we employ resampling on datasets

7382 33rd USENIX Security Symposium USENIX Association

https://pytorch.org/

Table 1: Statistics on datasets.
Dataset #Version #Vul. Fs #Fs #Vul. GrVCs #Non-Vul. GrVCs #GrVCs #Nodes #Edges

NVD - 937 2,011 4,355 8,526 12,881 870,855 4,633,355
SARD - 2,851 5,879 4,742 22,720 27,462 240,202 580,908

OpenSSL 0.9.6-3.0.7 2,009 2,302 6,677 3,362 10,039 221,262 684,357
Libav 0.6-11.5 1,666 1,956 7,710 4,334 12,044 334,964 1,372,749

Linux Kernel 2.6-5.17 1,178 1,528 4,036 2,287 6,323 272,267 1,099,651
Total - 8,641 13,676 27,520 41,229 68,749 1,939,550 8,371,020

with severely imbalanced samples. Since the positive and neg-
ative sample sizes in the NVD are already balanced, we do not
perform any resampling on it. For other datasets, we randomly
selected approximately 10% of the original non-vulnerable
functions to construct our negative samples.

Table 1 displays the statistics of our datasets, indicating a
total of 13,676 C/C++ functions collected, with 8,641 being
vulnerable. Column 2 provides information on the scope of
project versions affected by vulnerabilities in our datasets.
Column 5 shows the count of vulnerable GrVCs, and column
6 represents the count of non-vulnerable GrVCs. Columns 8
and 9 present the total numbers of nodes and edges in GrVCs,
respectively. For each dataset, we randomly select 80% of
the GrVCs for training, with the remaining 20% allocated for
validation and testing.

4.1.3 Evaluation Metrics

We employ widely used metrics, including Recall (R), F1
score (F1), Area Under Curve (AUC), and Matthews Correla-
tion Coefficient (MCC), to evaluate vulnerability identifica-
tion and localization systems. Additionally, Intersection over
Union (IoU) is also used to evaluate vulnerability localization
results. The metric IoU = |U∩V |

|U∪V | is proposed in [15], where
U is the set of truly vulnerable statements and V is the set of
detected vulnerable statements.

4.1.4 Baseline Methods

To evaluate the effectiveness of FVD-DPM in vulnerability
identification, we compare it with seven state-of-the-art detec-
tion methods. Cppcheck [4] and Flawfinder [9] are both rule-
based detection tools. Devign [39] builds an extended Code
Property Graph (CPG) and employs a GNN model to identify
vulnerabilities at the functional-level. VulDeePecker [18] and
SySeVR [17] are slice-level detection methods that extract
sequence-level program slices from PDG and use BGRU to
identify vulnerabilities. VulDeeLocator [15] converts source
code into intermediate code and employs BGRU to detect
vulnerabilities. MVD [2] extracts graph-level program slices
from PDG and utilizes a flow-sensitive GNN model to learn
code representations and identify vulnerabilities.

Moreover, to assess the effectiveness of FVD-DPM in vul-
nerability localization, we compare it with four state-of-the-

art localization methods. Cppcheck [4] performs semantic
checks on nodes in the AST by calling various rule classes.
VulDeeLocator [15] applies an attention layer to build a gran-
ularity refinement module. It selects the top k statements with
the highest attention weight as the vulnerability localization
result. DeepLineDP [25] employs a Hierarchical Attention
Network (HAN) to calculate the vulnerability risk of the code
token and then sums the risks of all tokens in each statement
to form statement-level risks, thereby ranking all statements
to achieve vulnerability localization. VulChecker [20] is a tool
that performs statement-level vulnerability detection, utilizing
message-passing graph neural networks to learn code embed-
ding representations. It constructs a new code representation
(i.e., ePDG) based on LLVM intermediate representation (IR).

4.2 RQ1: Performance of Proposed Approach
To answer this RQ, we compare FVD-DPM with seven

state-of-the-art vulnerability identification approaches and
four state-of-the-art vulnerability localization approaches.
Specifically, we train and test all approaches except for De-
vign, VulDeeLocator, and MVD on five datasets. For each
approach, we adjust the hyper-parameters through grid search
to obtain the optimal model. Due to the unavailability of com-
plete code disclosure by Design, VulDeeLocator, and MVD,
we directly cite research results from their articles.

Vulnerability identification (slice-level detection). Table
2 shows the average comparative results of our FVD-DPM
with state-of-the-art vulnerability identification methods. Ad-
ditionally, Figure 5 displays the F1 score of Flawfinder, Cp-
pcheck, VulDeePecker, SySeVR, and FVD-DPM on each
dataset. Overall, FVD-DPM achieves better results and out-
performs state-of-the-art vulnerability identification methods.
On average, FVD-DPM attains an F1 score of 85.73%, a Re-
call of 82.93%, an AUC of 86.40%, and an MCC of 72.14%.
Flawfinder and Cppcheck, as representatives of rule-based de-
tectors, perform the worst among all approaches. The reason
is that predefined detection rules or patterns cannot cover the
majority of vulnerabilities, limiting the effectiveness of these
rule-based detectors. Furthermore, FVD-DPM improves the
F1 score over Devign by 12.47%. This indicates that, although
GNN’s powerful capability in extracting program semantics
can make Devign perform outstandingly, the existence of
redundant nodes unrelated to vulnerabilities in CPG limits

USENIX Association 33rd USENIX Security Symposium 7383

Devign’s ability to detect vulnerabilities.

Table 2: Comparison with state-of-the-art vulnerability identi-
fication approaches (metrics unit: %).

Method F1 R AUC MCC
Flawfinder 49.73 52.86 - 10.07
Cppcheck 61.09 71.43 - -

MVD 65.20 61.50 - -
VulDeePecker 71.48 77.62 77.65 51.20

Devign 73.26 - - -
SySeVR 79.72 81.26 - 60.49

VulDeeLocator 85.90 82.07 - -
FVD-DPM (ours) 85.73 82.93 86.40 72.14

Figure 5: Comparing FVD-DPM with state-of-the-art vulner-
ability identification approaches on each dataset (F1 score).

VulDeePecker, SySeVR, MVD, and VulDeeLocator are
all slice-based detection approaches. As shown in Figure 5,
VulDeePecker performs worse than SySeVR on all datasets.
The reason for this is that VulDeePecker only considers vul-
nerability characteristics related to API function calls and
ignores control dependencies in the source code. Further-
more, we observe that FVD-DPM improves F1 score and
MCC over SySeVR by 6.01% and 11.65%, respectively. One
of the main reasons is that our graph-level program slices (i.e.,
GrVCs) can extract more comprehensive and precise program
semantics than the sequence-level slices generated by Sy-
SeVR. Notably, compared to the best vulnerability detection
approach VulDeeLocator, FVD-DPM achieves competitive
result. In addition, MVD is most similar to our approach, both
of which are vulnerability detection methods based on graph-
level program slices. MVD performs worse than FVD-DPM
in terms of each metric. There are two main reasons for this
result. On one hand, GrVCs extracted from CJG is more effec-
tive than the graph-level slices extracted from PDG by MVD
in extracting vulnerability features. On the other hand, our
proposed conditional diffusion probabilistic model, which can
capture the global contextual information of nodes, is more
effective than the GNN-based model in node classification.

Vulnerability localization (statement-level detection).
After evaluating the vulnerability identification capability of

FVD-DPM, we assess its effectiveness in locating vulnerable
statements. Table 3 presents comparative results on the metric
IoU between FVD-DPM and three state-of-the-art localization
methods. Here, IoU is the average value measured on IoUs
between the detected vulnerable code and the ground-truth
vulnerable code in the test dataset. We observe that FVD-
DPM significantly outperforms the three existing state-of-the-
art vulnerability localization methods on all datasets.

Table 3: The performance comparison of different vulnerabil-
ity localization approaches (metrics unit: %).

Method NVD SARD OpenSSL Libav Linux
Kernel

Cppcheck 15.27 9.89 48.79 42.82 27.33
DeepLineDP 31.05 14.67 18.53 24.31 30.02

VulDeeLocator 32.60 36.30 - - -
FVD-DPM 59.04 72.35 63.13 62.95 72.70

FVD-DPM outperforms Cppcheck in terms of IoU by an
average of 37.21%. The fundamental reason for this perfor-
mance gap is that the predefined detection rules in Cppcheck
cannot cover the majority of vulnerabilities, resulting in low
localization performance. FVD-DPM, on average, improves
IoU by 42.32% over DeepLineDP. One of the main reasons is
that DeepLineDP adopts HAN to learn the sequence features
of the source code, ignoring the control and data dependencies
of the program. FVD-DPM is roughly 31.59% higher than
VulDeeLocator. This difference can be attributed to the limi-
tations of the localization module in VulDeeLocator. Specifi-
cally, VulDeeLocator applies an attention layer to construct a
code granularity refinement module, which selects the most
suspicious k statements based on attention weights as the lo-
calization result. Due to both the varying lengths of functions
and the varying numbers of vulnerable statements they con-
tain, fixing the value of k significantly reduces the localization
performance of VulDeeLocator. Instead, FVD-DPM applies
a DPM model to predict node labels in graph-level program
slices and corresponds each node label to a statement in the
source code, thereby achieving more effective localization.

Table 4: Comparative results of VulChecker and FVD-DPM
on the Juliet dataset (metrics unit: %).

Method CWE190 CWE121 CWE122 CWE415 CWE416
VulChecker 97.00 85.40 79.00 100.00 90.90
FVD-DPM 97.87 88.30 90.93 94.83 88.23

Additionally, to achieve a fair comparison with VulChecker,
we use the Juliet dataset introduced in [20] to evaluate FVD-
DPM. The dataset includes the following five vulnerability
types: integer overflow (CWE-190), stack overflow (CWE-
121), heap overflow (CWE-122), double free (CWE-415), and
use-after-free (CWE-416). As shown in Table 4, FVD-DPM
achieves competitive results with VulChecker overall on these

7384 33rd USENIX Security Symposium USENIX Association

Table 5: Effectiveness of CJG in vulnerability identification and localization (metrics unit: %).

Dataset Model Structure Vulnerability Identification Vulnerability Localization

F1 R AUC MCC F1 R AUC MCC IoU

NVD
DPM+CPG 70.87 67.23 79.09 60.25 73.60 63.61 81.73 74.20 47.26
DPM+PDG 76.56 76.15 82.81 65.80 78.99 78.50 89.21 78.92 55.55
DPM+CJG 78.63 78.54 83.79 67.61 77.21 75.17 87.54 77.14 59.04

SARD
DPM+CPG 77.32 74.52 83.93 69.55 72.34 64.57 82.23 72.72 62.81
DPM+PDG 76.20 69.47 82.27 68.92 75.93 69.51 84.69 76.14 63.03
DPM+CJG 83.82 81.01 89.09 80.34 83.66 80.87 90.40 83.64 72.35

OpenSSL
DPM+CPG 77.12 67.67 78.60 57.20 58.98 45.48 72.60 60.93 43.92
DPM+PDG 83.17 78.66 81.54 62.02 72.36 70.07 84.98 72.05 53.63
DPM+CJG 88.99 86.80 85.15 68.80 79.09 81.27 90.56 78.97 63.13

Libav
DPM+CPG 80.59 72.80 81.89 64.25 67.19 53.67 76.72 68.64 53.29
DPM+PDG 84.68 81.42 84.37 68.55 77.85 76.98 88.43 77.74 60.27
DPM+CJG 87.11 82.70 85.10 68.22 79.62 75.40 87.65 79.64 62.95

Linux Kernel
DPM+CPG 84.63 79.74 86.41 74.10 76.91 68.21 84.01 77.15 62.97
DPM+PDG 86.82 80.08 87.01 73.14 81.03 78.23 89.08 81.00 67.61
DPM+CJG 90.09 85.59 88.85 75.71 81.97 80.88 90.39 81.88 72.70

five vulnerability types. This demonstrates that both our CJG
built from source code and ePDG built from LLVM IR are
effective in capturing fine-grained program semantics. Com-
pared to VulChecker, FVD-DPM achieves an 11.93% higher
AUC on CWE-122. This is likely because heap memory allo-
cation and release typically involve many API/library function
calls. FVD-DPM generates program slices by analyzing rele-
vant API/library functions, enabling it to extract fine-grained
vulnerability characteristics more effectively, thereby better
detecting this vulnerability type.

4.3 RQ2: Effectiveness of Code Joint Graph

The two most widely used and effective code representa-
tions are PDG and CPG. Many state-of-the-art vulnerability
detection approaches [2,8,17,18] extract program slices from
PDG or CPG to detect vulnerabilities. Therefore, to evaluate
the effective of our CJG in vulnerability detection, we replace
CJG with PDG and CPG. We then extract graph-level program
slices from these two graph structures using the same program
slicing technique. Finally, we apply our designed conditional
diffusion probabilistic model to detect vulnerabilities.

We evaluate the effectiveness of CJG in vulnerability detec-
tion using the same settings as those for answering RQ1. As
shown in Table 5, DPM+PDG, DPM+CPG and DPM+CJG
denote that we apply our designed DPM model to train vul-
nerability detection models based on PDG, CPG, and CJG, re-
spectively. From the table, we observe that, compared with the
state-of-the-art baseline approaches in RQ1, the DPM+CPG,
DPM+PDG, and DPM+CJG models obtain competitive or
better detection performance in most cases. This phenomenon
further demonstrates the effectiveness of our DPM model
for detecting vulnerabilities. Overall, for each dataset, CJG

outperforms CPG and PDG in most metrics. A main rea-
son is that CJG captures more comprehensive and precise
code semantics, including control and data flows within and
between functions, as well as the natural order of the code.
Moreover, the relationships between statements preserved in
CJG enable the DPM trained on CJG to better capture the
joint dependencies of node labels.

It is worth noting that CPG achieves the worst detection
performance in most cases. There are two main reasons for
this performance gap. Firstly, CPG may not perform well in
the graph model learning process, as information from AST
cannot flow across the graph. Another important reason is the
issue of node labeling errors. Because there is a one-to-one
correspondence between nodes in CJG/PDG and statements
in the source code, statement-level vulnerability labels can
be directly assigned to nodes in these graphs, with almost
no annotation errors. However, AST nodes in CPG are usu-
ally composed of partial tokens in a statement, which may
not necessarily indicate vulnerabilities, making it difficult to
determine the labels of such nodes. Therefore, compared to
CPG, we believe that PDG and CJG are more suitable for
combining our designed diffusion probabilistic model to train
a graph-based fine-grained vulnerability detection model.

Additionally, we provide an evaluation of the impact of dif-
ferent types of edges in CJG on model performance. Overall,
the model’s performance gradually improved as we added
different types of dependency edges to the CFG. Detailed
analysis can be found in Appendix C.

4.4 RQ3: Ablation Study

One of the main contributions of our approach FVD-DPM,
is the utilization of GAT with hybrid time encoding to predict

USENIX Association 33rd USENIX Security Symposium 7385

Table 6: Comparative experiments on models with and without hybrid time encoding (metrics unit: %).

Time Encoding Vulnerability Identification Vulnerability Localization

F1 R AUC MCC F1 R AUC MCC IoU
Without 77.20 69.72 80.28 60.64 74.96 72.21 86.04 74.97 58.22

With 86.05 83.34 86.15 71.90 79.72 78.05 88.97 79.65 66.00

Table 7: Experimental results achieved by different objectives (metrics unit: %).

Objective Vulnerability Identification Vulnerability Localization

F1 R AUC MCC F1 R AUC MCC IoU
Lsimple 84.98 81.64 85.32 71.05 77.82 74.76 87.32 77.88 63.67
Lhybrid 86.41 83.62 86.30 72.61 79.62 77.08 88.48 79.63 66.05

noisy labels at each timestep. By incorporating hybrid time
encoding into GAT, FVD-DPM can effectively retain infor-
mation about the noise level for each timestep. In addition,
we estimate the noisy label distribution by simultaneously
learning its mean and variance. Correspondingly, we define
a new hybrid training objective, which is the weighted sum
of the simplified loss Lsimple and the variational lower bound
(VLB). To evaluate the effectiveness of these two improve-
ments, we conduct two groups of comparative experiments:
1) With time encoding vs. without time encoding; 2) Hybrid
objective Lhybrid vs. simplified objective Lsimple.

Impact of time encoding. Table 6 illustrates the impact
of hybrid time encoding on FVD-DPM’s performance. We
observe that after removing the time encoding in GAT, FVD-
DPM shows a significant decrease in all metrics. In terms
of vulnerability localization, F1 score, AUC, MCC, and IoU
decrease by an average of 4.76%, 2.93%, 4.68%, and 7.78%,
respectively. This can be explained that the time encoding
injected to GAT helps the model predict noisy labels, thereby
achieving more effective fine-grained vulnerability detection.

Impact of different objectives. As shown in Table 7, over-
all, the hybrid objective Lhybrid significantly achieves better
detection results than the simplified objective Lsimple. There-
fore, we usually prefer to employ Lhybrid over Lsimple as it can
improve detection performance without reducing likelihood.

Moreover, an evaluation of the performance of FVD-DPM
under diverse training epochs is provided in Appendix D.

4.5 RQ4: Results on Different CWE Types

In this experiment, we evaluate the performance of FVD-
DPM in locating different types of vulnerabilities. By count-
ing the number of samples of different CWE vulnerability
types on the SARD dataset, we select the most common eight
types (i.e., CWE-78, CWE-121, CWE-122, CWE-124, CWE-
126, CWE-127, CWE-195, CWE-134) for evaluation.

Figure 6 presents the evaluation metrics for each vulnera-
bility type. We observe that FVD-DPM demonstrates good
performance in locating vulnerable statements across different

vulnerability types. Overall, FVD-DPM excels in vulnerabil-
ity type CWE-195 and performs less effectively in CWE-121.
The primary reason for this performance gap is that CWE-195
(i.e., signed to unsigned conversion error) exhibits a straight-
forward vulnerability pattern, usually associated with only
one code statement. However, the vulnerability pattern of
CWE-121 is complex and may involve multiple statements
in various functions, making it more challenging to identify.
Additionally, CWE-121 vulnerabilities often lead to program
crashes, emphasizing the need for increased attention to such
vulnerabilities. In future research, exploring methods to fur-
ther enhance the model’s ability for locating CWE-121 vul-
nerabilities would be valuable.

4.6 Applications to New Versions and Projects
To test the detection capability of FVD-DPM on new ver-

sions of the same project and on new projects, we manu-
ally collect 18 known vulnerabilities from new versions of
OpenSSL, Libav, and Linux Kernel, as well as from new
projects like OpenBSD, Asterisk, FreeRDP, and Wireshark.

As shown in Table 8, we identify 7 of the 8 known vulner-
abilities in the new versions and 7 of the 10 known vulnera-
bilities in the new projects. Moreover, we detect 5 unknown
vulnerabilities in the new versions, which are similar to some
already disclosed vulnerabilities (as confirmed by our manual
inspection). Additionally, two vulnerabilities in the FreeRDP
project are missed by our model because the CWE types of
these examples, CWE-20 and CWE-787, are not included in
our training dataset. This implies that if new vulnerability
types are encountered in new projects or versions not covered
by the original dataset, the model may need to be retrained
with these additional datasets.

5 Insights and Findings

We have successfully introduced the DPM model to vul-
nerability detection, yielding promising performance. This
extends the applicability of DPMs to new domains. With

7386 33rd USENIX Security Symposium USENIX Association

Figure 6: Locating results for the most common eight CWE vulnerability types on the SARD dataset.

Table 8: The 19 vulnerabilities detected and the 4 vulnerabili-
ties missed by FVD-DPM in new versions and new projects.

Project CVE ID Vulnerable file Status

OpenSSL
3.0.8-3.3

CVE-2023-6237 rsa_sp800_56b_check.cDetected
CVE-2023-0465 x509_vfy.c Detected

- v3ext.c Detected
- smime.c Detected
- drbg_ctr.c Detected

Libav
12

CVE-2017-9051 nsvdec.c Missed
- mpegvideo_parser.c Detected
- avconv_vaapi.c Detected

Linux
Kernel
6.2-6.5

CVE-2024-27388 gss_rpc_xdr.c Detected
CVE-2024-26593 i2c-i801.c Detected
CVE-2024-26592 transport_tcp.c Detected
CVE-2023-40791 scatterlist.c Detected
CVE-2023-38430 connection.c Detected

OpenBSD
5.8

CVE-2022-48437 x509_verify.c Detected
CVE-2021-46880 x509_verify.c Detected
CVE-2020-16088 ca.c Detected

Asterisk
18.2.0 CVE-2023-49294 manager.c Detected

FreeRDP
2.0-3.5

CVE-2023-39354 nsc.c Detected
CVE-2022-39318 libusb_udevice.c Missed
CVE-2020-13398 crypto.c Missed

Wireshark
4.2.5

CVE-2024-24476 addr_resolv.c Detected
CVE-2016-5358 packet-ppi.c Detected
CVE-2016-5353 packet-umts_fp.c Missed

our training dataset containing numerous real-world vulnera-
bilities, FVD-DPM can effectively tackle complex projects.
Moreover, our collected real-world vulnerability dataset, con-
taining ground-truth labels at function, slice, and statement
levels, offers data support for future research in vulnerability
detection, localization, and repair.

Table 5 illustrates that the performance enhancement of
FVD-DPM is not substantial when transitioning from PDG to
CJG. This might be due to the lack of inter-procedural depen-
dencies among many functions in our training datasets. We
calculated the proportion of functions with inter-procedural
dependencies in each dataset: NVD 2.5%, SARD 34.5%,
OpenSSL 35.7%, Libav 27.8% and Linux Kernel 19.6%. We

can see that the dataset with the smallest proportion of func-
tions with inter-procedural dependencies corresponds to the
worst model performance. This phenomenon indicates that
when there are too few functions with inter-procedural depen-
dencies in the training dataset, FVD-DPM struggles to learn
useful program information from inter-procedural analysis
effectively. Further analysis can be found in Appendix E.

In the training phase of FVD-DPM, we employ a relatively
balanced training dataset, ensuring that the DPM model can
effectively learn diverse vulnerability patterns. This approach
equips FVD-DPM with the ability to identify vulnerabilities
comprehensively. Consequently, even in real-world vulner-
ability scenarios, FVD-DPM effectively leverages learned
knowledge of vulnerability patterns to identify potential vul-
nerabilities. Table 8 shows that FVD-DPM accurately de-
tects the majority of vulnerabilities in new versions and new
projects, proving its applicability in real-world situations.

6 Threats to Validity

External validity. External validity of our approach is influ-
enced by two factors. First, we focus on detecting vulnerabili-
ties in C/C++ source code within specific software projects,
implying that the detection model might require adjustments
when applied to other programming languages or software
projects. Nonetheless, our approach is generic and has the
potential to be extended to other programming languages and
software projects. Second, attackers may employ adversarial
machine learning techniques to poison our training datasets,
potentially leading to the model missing certain vulnerabil-
ities during deployment. Although this attack is possible, it
is challenging because we use code samples collected from
large-scale open-source repositories to enhance the coverage
and diversity of our datasets. It is unlikely to inject adversar-
ial samples into some large, actively-maintained open-source
projects without being noticed by developers and users.

Internal validity. We may encounter label errors during
the process of automatically generating ground-truth labels
for nodes. These errors can impact the model’s ability to
identify real vulnerabilities. To avoid the harmful effects of
incorrect node labeling on the model’s performance, future
research should develop more effective and precise node label-

USENIX Association 33rd USENIX Security Symposium 7387

ing methods. While we can partially explain the effectiveness
of FVD-DPM, further research is needed in this interpretable
direction. Additionally, in the future, we will explore the po-
tential of leveraging popular large language models (LLMs),
such as ChatGPT, in fine-grained vulnerability detection.

7 Related Work

7.1 Classical Vulnerability Detection Methods

Existing detection methods can be categorized into dy-
namic detection methods and static detection methods. Dy-
namic detection methods, such as symbolic execution [1]
and fuzzing [10], are commonly used to identify vulnerabili-
ties in binary code. These methods detect vulnerabilities by
monitoring the program’s running state, execution paths, and
registration status. However, when applied to large-scale soft-
ware systems, these methods encounter issues related to sig-
nificant time and space overhead. In contrast, static analysis
does not require the program to be running. Consequently, an
increasing number of static detection methods have been pro-
posed. Among these, source code-based static vulnerability
detection stands out as a prominent technique, encompassing
symbolic execution-based methods, rule-based methods, and
code similarity-based methods.

Symbolic execution-based methods [29] represent source
code using an intermediate language, combining symbolic
execution and constraint solving to analyze vulnerabilities.
Rule-based detection methods (e.g., ITS4 [31], Flawfinder [9],
RATS and Yasca [19]) maintain an internal library of features
for various vulnerability types and use lexical analysis algo-
rithms to match these entries for identifying vulnerable code.
Due to their reliance on simple parsers and predefined rules,
these tools often yield a high false positive rate. The funda-
mental process of code similarity-based methods [16, 28, 36]
involves transforming source code into an easily analyzable
intermediate representation, and using a matching algorithm
for similarity detection. However, in these methods, the man-
ual extraction process of features is notably time-intensive,
and the features often exhibit task-specific tendencies.

7.2 Deep Learning-based Detection

Deep learning-based approaches can automatically cap-
ture vulnerability patterns. Considering the scope of detec-
tion granularity, existing deep learning-based methods can be
roughly divided into function-based methods and slice-based
methods. Function-based methods typically focus on a single
function to identify vulnerabilities. These methods always ex-
tract graph-level representations, such as AST, CFG and PDG,
from the function to analyze vulnerable code [21, 32, 33, 39].
Li et al. introduced SySeVR [17], and VulDeePecker [18] as
slice-based solutions for detection. Thereafter, an increasing

number of slice-based methods were proposed [2, 8, 11]. Ad-
ditionally, VulCNN [35] converts source code into an image
and uses CNN to identify vulnerabilities.

Most of the aforementioned detection approaches can deter-
mine whether a file, function or code slice is vulnerable. How-
ever, these methods generally lack the capability to locate vul-
nerable statements. To address this issues, Wattanakriengkrai
et al. [34] employed local interpretable model-agnostic Expla-
nations (LIME) to identify risky code tokens, thus statements
containing these tokens are predicted as vulnerable. Both
VulDeeLocator [15] and DeepLineDP [25] identify vulner-
able statements by designing a granularity refinement mod-
ule behind the recurrent neural network based on attention
mechanisms. Recently, Mirsky et al. [20] proposed a tool that
achieves instruction-level vulnerability detection.

7.3 Diffusion Probabilistic Models

Taking inspiration from non-equilibrium statistical physics,
Sohl-Dickstein et al. [27] introduced the concept of DPMs.
This idea gained prominence with the development of denois-
ing diffusion probabilistic models (DDPMs) [12], bringing
DPMs to the forefront of image generation. DPMs have dis-
rupted the longstanding dominance of generative adversar-
ial networks (GANs) in demanding tasks of image synthe-
sis, showing immense potential across various domains. To
achieve more precise predictions and enhance the efficiency
of the sampling process, researchers have introduced several
improved versions of DDPMs [7, 22]. Recent studies have
demonstrated the remarkable achievements of DDPMs across
diverse domains, including computer vision [7], natural lan-
guage processing [37], and multi-modal modeling [23].

The fundamental idea behind all these approaches is to
progressively introduce random noise to the data and then
remove the noise step by step to generate new data samples.
Recently, researchers have uncovered the capability of DPMs
to make predictions on complex graph-structured data, such
as molecular structure prediction [13]. Inspired by this, we
aim to employ DPMs in the field of vulnerability detection.

8 Conclusion

Fine-grained vulnerability detection is a challenging and
largely unexplored task. In this paper, we propose an effective
fine-grained detection approach, FVD-DPM, by formalizing
vulnerability detection as a diffusion-based graph-structured
prediction problem. FVD-DPM generates a new fine-grained
code representation (GrVCs) by extracting program slices
from the Code Joint Graph to capture more precise vulner-
ability semantics. Based on this, we design a conditional
diffusion probabilistic model to predict node labels. Overall,
FVD-DPM can simultaneously achieve vulnerability identifi-
cation and localization.

7388 33rd USENIX Security Symposium USENIX Association

Acknowledgments

This research was partially supported by the National
Natural Science Foundation of China (Grant No.61872107)
and Scientific Research Foundation in Shenzhen (Grant No.
JCYJ20230807094318038).

References

[1] Eman Alatawi, Tim Miller, et al. Leveraging abstract
interpretation for efficient dynamic symbolic execution.
In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 619–624.
IEEE, 2017. https://doi.org/10.1109/ASE.2017.
8115672.

[2] Sicong Cao, Xiaobing Sun, Lili Bo, Rongxin Wu, Bin Li,
and Chuanqi Tao. MVD: memory-related vulnerability
detection based on flow-sensitive graph neural networks.
In Proceedings of the 44th International Conference on
Software Engineering, pages 1456–1468, 2022. https:
//doi.org/10.1145/3510003.3510219.

[3] Checkmarx. https://www.checkmarx.com/.

[4] Cppcheck. https://cppcheck.sourceforge.io/.

[5] CVEdetails.com. # Of Vulnerabilities. https://www.
cvedetails.com/.

[6] Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee
Ng, John Grundy, and Aditya Ghose. Automatic fea-
ture learning for predicting vulnerable software com-
ponents. IEEE Transactions on Software Engineering,
47(1):67–85, 2018. https://doi.org/10.1109/TSE.
2018.2881961.

[7] Prafulla Dhariwal and Alexander Nichol. Diffusion mod-
els beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794, 2021.
https://doi.org/10.48550/arXiv.2105.05233.

[8] Yukun Dong, Yeer Tang, Xiaotong Cheng, Yufei Yang,
and Shuqi Wang. SedSVD: Statement-level software
vulnerability detection based on relational graph convo-
lutional network with subgraph embedding. Information
and Software Technology, 158:107168, 2023. https:
//doi.org/10.1016/j.infsof.2023.107168.

[9] Flawfinder. https://dwheeler.com/flawfinder/.

[10] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. Collafl:
Path sensitive fuzzing. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 679–696. IEEE, 2018.
https://doi.org/10.1109/SP.2018.00040.

[11] Wenbo Guo, Yong Fang, Cheng Huang, Haoran Ou,
Chun Lin, and Yongyan Guo. HyVulDect: A hybrid se-
mantic vulnerability mining system based on graph neu-
ral network. Computers & Security, page 102823, 2022.
https://doi.org/10.1016/j.cose.2022.102823.

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. De-
noising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851,
2020. https://dl.acm.org/doi/abs/10.5555/
3495724.3496298.

[13] Hyosoon Jang, Seonghyun Park, Sangwoo Mo, and
Sungsoo Ahn. Diffusion probabilistic models for struc-
tured node classification. In ICML 2023 Workshop
on Structured Probabilistic Inference {\&} Generative
Modeling, 2023. https://openreview.net/forum?
id=CxUuCydMDU.

[14] Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. stat, 1050:1, 2014. https://hdl.
handle.net/11245/1.434281.

[15] Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen,
Yawei Zhu, and Hai Jin. VulDeeLocator: a deep
learning-based fine-grained vulnerability detector. IEEE
Transactions on Dependable and Secure Computing,
19(4):2821–2837, 2021. https://doi.org/10.1109/
TDSC.2021.3076142.

[16] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao
Qi, and Jie Hu. VulPecker: an automated vulnerability
detection system based on code similarity analysis. In
Proceedings of the 32nd annual conference on computer
security applications, pages 201–213, 2016. https:
//doi.org/10.1145/2991079.2991102.

[17] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu,
and Zhaoxuan Chen. SySeVR: A framework for using
deep learning to detect software vulnerabilities. IEEE
Transactions on Dependable and Secure Computing,
19(4):2244–2258, 2021. https://doi.org/10.1109/
TDSC.2021.3051525.

[18] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin,
Sujuan Wang, Zhijun Deng, and Yuyi Zhong. VulDeeP-
ecker: A deep learning-based system for vulnerabil-
ity detection. arXiv preprint arXiv:1801.01681, 2018.
https://doi.org/10.14722/ndss.2018.23158.

[19] Rahma Mahmood and Qusay H Mahmoud. Evalu-
ation of static analysis tools for finding vulnerabili-
ties in java and c/c++ source code. arXiv preprint
arXiv:1805.09040, 2018. http://arxiv.org/abs/
1805.09040.

USENIX Association 33rd USENIX Security Symposium 7389

https://doi.org/10.1109/ASE.2017.8115672
https://doi.org/10.1109/ASE.2017.8115672
https://doi.org/10.1145/3510003.3510219
https://doi.org/10.1145/3510003.3510219
https://www.checkmarx.com/
https://cppcheck.sourceforge.io/
https://www.cvedetails.com/
https://www.cvedetails.com/
https://doi.org/10.1109/TSE.2018.2881961
https://doi.org/10.1109/TSE.2018.2881961
https://doi.org/10.48550/arXiv.2105.05233
https://doi.org/10.1016/j.infsof.2023.107168
https://doi.org/10.1016/j.infsof.2023.107168
https://dwheeler.com/flawfinder/
https://doi.org/10.1109/SP.2018.00040
https://doi.org/10.1016/j.cose.2022.102823
https://dl.acm.org/doi/abs/10.5555/3495724.3496298
https://dl.acm.org/doi/abs/10.5555/3495724.3496298
https://openreview.net/forum?id=CxUuCydMDU
https://openreview.net/forum?id=CxUuCydMDU
https://hdl.handle.net/11245/1.434281
https://hdl.handle.net/11245/1.434281
https://doi.org/10.1109/TDSC.2021.3076142
https://doi.org/10.1109/TDSC.2021.3076142
https://doi.org/10.1145/2991079.2991102
https://doi.org/10.1145/2991079.2991102
https://doi.org/10.1109/TDSC.2021.3051525
https://doi.org/10.1109/TDSC.2021.3051525
https://doi.org/10.14722/ndss.2018.23158
http://arxiv.org/abs/1805.09040
http://arxiv.org/abs/1805.09040

[20] Yisroel Mirsky, George Macon, Michael Brown, Carter
Yagemann, Matthew Pruett, Evan Downing, Sukarno
Mertoguno, and Wenke Lee. VulChecker: Graph-
based vulnerability localization in source code. In
31st USENIX Security Symposium, Security 2022,
2023. https://www.usenix.org/conference/
usenixsecurity23/presentation/mirsky.

[21] Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen,
Trung Le, Quan Hung Tran, and Dinh Phung. ReGVD:
Revisiting graph neural networks for vulnerability de-
tection. In Proceedings of the ACM/IEEE 44th Inter-
national Conference on Software Engineering: Com-
panion Proceedings, pages 178–182, 2022. https:
//doi.org/10.1145/3510454.3516865.

[22] Alexander Quinn Nichol and Prafulla Dhariwal. Im-
proved denoising diffusion probabilistic models. In
International Conference on Machine Learning, pages
8162–8171. PMLR, 2021. https://proceedings.
mlr.press/v139/nichol21a.html.

[23] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya
Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mc-
grew, Ilya Sutskever, and Mark Chen. GLIDE: To-
wards photorealistic image generation and editing with
text-guided diffusion models. In International Con-
ference on Machine Learning, pages 16784–16804.
PMLR, 2022. https://proceedings.mlr.press/
v162/nichol22a.html.

[24] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli.
Fine-grained just-in-time defect prediction. Journal of
Systems and Software, 150:22–36, 2019. https://doi.
org/10.1016/j.jss.2018.12.001.

[25] Chanathip Pornprasit and Chakkrit Kla Tantithamtha-
vorn. DeepLineDP: Towards a deep learning approach
for line-level defect prediction. IEEE Transactions
on Software Engineering, 49(1):84–98, 2022. https:
//doi.org/10.1109/TSE.2022.3144348.

[26] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo La-
zovich, Jacob Harer, Onur Ozdemir, Paul Ellingwood,
and Marc McConley. Automated vulnerability detec-
tion in source code using deep representation learn-
ing. In 2018 17th IEEE international conference on
machine learning and applications (ICMLA), pages 757–
762. IEEE, 2018. https://doi.org/10.1109/ICMLA.
2018.00120.

[27] Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In
International conference on machine learning, pages
2256–2265. PMLR, 2015. https://dl.acm.org/
doi/abs/10.5555/3045118.3045358.

[28] Hao Sun, Lei Cui, Lun Li, Zhenquan Ding, Zhiyu Hao,
Jiancong Cui, and Peng Liu. VDSimilar: Vulnerability
detection based on code similarity of vulnerabilities
and patches. Computers & Security, 110:102417, 2021.
https://doi.org/10.1016/j.cose.2021.102417.

[29] Julian Thomé, Lwin Khin Shar, Domenico Bianculli,
and Lionel Briand. Search-driven string constraint solv-
ing for vulnerability detection. In 2017 IEEE/ACM
39th International Conference on Software Engineer-
ing (ICSE), pages 198–208. IEEE, 2017. https://doi.
org/10.1109/ICSE.2017.26.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems,
30, 2017. https://dl.acm.org/doi/abs/10.5555/
3295222.3295349.

[31] John Viega, Jon-Thomas Bloch, Yoshi Kohno, and Gary
McGraw. ITS4: A static vulnerability scanner for c
and c++ code. In Proceedings 16th Annual Computer
Security Applications Conference (ACSAC’00), pages
257–267. IEEE, 2000. https://doi.org/10.1109/
ACSAC.2000.898880.

[32] Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei
Tan, Songfang Huang, Dingyi Fang, Yansong Feng,
Lizhong Bian, and Zheng Wang. Combining graph-
based learning with automated data collection for code
vulnerability detection. IEEE Transactions on Infor-
mation Forensics and Security, 16:1943–1958, 2020.
https://doi.org/10.1109/TIFS.2020.3044773.

[33] Wenhan Wang, Ge Li, Sijie Shen, Xin Xia, and Zhi Jin.
Modular tree network for source code representation
learning. ACM Transactions on Software Engineering
and Methodology (TOSEM), 29(4):1–23, 2020. https:
//doi.org/10.1145/3409331.

[34] Supatsara Wattanakriengkrai, Patanamon Thongta-
nunam, Chakkrit Tantithamthavorn, Hideaki Hata, and
Kenichi Matsumoto. Predicting defective lines using
a model-agnostic technique. IEEE Transactions on
Software Engineering, 48(5):1480–1496, 2020. https:
//doi.org/10.1109/TSE.2020.3023177.

[35] Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo
Xu, and Hai Jin. VulCNN: An image-inspired scalable
vulnerability detection system. In Proceedings of the
44th International Conference on Software Engineering,
pages 2365–2376, 2022. https://doi.org/10.1145/
3510003.3510229.

[36] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu,
Zimu Yuan, Feng Li, Binghong Liu, Yang Liu, Wei Huo,

7390 33rd USENIX Security Symposium USENIX Association

https://www.usenix.org/conference/usenixsecurity23/presentation/mirsky
https://www.usenix.org/conference/usenixsecurity23/presentation/mirsky
https://doi.org/10.1145/3510454.3516865
https://doi.org/10.1145/3510454.3516865
https://proceedings.mlr.press/v139/nichol21a.html
https://proceedings.mlr.press/v139/nichol21a.html
https://proceedings.mlr.press/v162/nichol22a.html
https://proceedings.mlr.press/v162/nichol22a.html
https://doi.org/10.1016/j.jss.2018.12.001
https://doi.org/10.1016/j.jss.2018.12.001
https://doi.org/10.1109/TSE.2022.3144348
https://doi.org/10.1109/TSE.2022.3144348
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ICMLA.2018.00120
https://dl.acm.org/doi/abs/10.5555/3045118.3045358
https://dl.acm.org/doi/abs/10.5555/3045118.3045358
https://doi.org/10.1016/j.cose.2021.102417
https://doi.org/10.1109/ICSE.2017.26
https://doi.org/10.1109/ICSE.2017.26
https://dl.acm.org/doi/abs/10.5555/3295222.3295349
https://dl.acm.org/doi/abs/10.5555/3295222.3295349
https://doi.org/10.1109/ACSAC.2000.898880
https://doi.org/10.1109/ACSAC.2000.898880
https://doi.org/10.1109/TIFS.2020.3044773
https://doi.org/10.1145/3409331
https://doi.org/10.1145/3409331
https://doi.org/10.1109/TSE.2020.3023177
https://doi.org/10.1109/TSE.2020.3023177
https://doi.org/10.1145/3510003.3510229
https://doi.org/10.1145/3510003.3510229

Table 9: The most common eight node types and the average number of nodes of each type in each function.
ExpressionStatement Condition CFGEntryNode IdentifierDeclStatement Statement Parameter ReturnStatement IncDecOp

82 51 35 20 19 11 4 4

Wei Zou, et al. MVP: Detecting vulnerabilities us-
ing patch-enhanced vulnerability signatures. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 1165–1182, 2020. https://dl.acm.org/doi/
abs/10.5555/3489212.3489278.

[37] Peiyu Yu, Sirui Xie, Xiaojian Ma, Baoxiong Jia,
Bo Pang, Ruiqi Gao, Yixin Zhu, Song-Chun Zhu, and
Ying Nian Wu. Latent diffusion energy-based model for
interpretable text modelling. In International Confer-
ence on Machine Learning, pages 25702–25720. PMLR,
2022. https://par.nsf.gov/biblio/10351401.

[38] Yunhui Zheng, Saurabh Pujar, Burn Lewis, Luca Bu-
ratti, Edward Epstein, Bo Yang, Jim Laredo, Alessan-
dro Morari, and Zhong Su. D2a: A dataset built
for ai-based vulnerability detection methods using dif-
ferential analysis. In 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering: Soft-
ware Engineering in Practice (ICSE-SEIP), pages
111–120. IEEE, 2021. https://doi.org/10.1109/
ICSE-SEIP52600.2021.00020.

[39] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning
Du, and Yang Liu. Devign: Effective vulnerability
identification by learning comprehensive program se-
mantics via graph neural networks. Advances in neu-
ral information processing systems, 32, 2019. https:
//doi.org/10.48550/arXiv.1909.03496.

Appendix

A Improving Model Training Speed

We note that y(t)i can be sampled from the original data y(0)i .
Thus, in the actual training process, we do not need to train the
model on all timesteps. By directly sampling to timestep t, we
can obtain the y(t)i at that timestep and use the GAT to predict
the injected noise. Specifically, we sample T ′ timesteps from
T diffusion steps. In our experiments, the value of T ′ is 16.
This method can significantly improve the training speed of
the model. Its training process is described as: 1) Randomly
sample a node label y(0)i from the initial data distribution q(y).
2) Randomly sample a timestep t from 1 to T , to represent
the level of injected Gaussian noise. 3) Randomly sample a
t-level Gaussian noise Zt , and then inject Zt into y(0)i using
Equation (3). 4) Train the GAT model to predict the noise
acting on y(0)i based on y(t)i .

B Details of Data Collection and Labeling

Our dataset comprises two parts: (1) NVD and SARD.
NVD focuses on 19 popular C/C++ open-source software
projects (as in [18]), providing corresponding vulnerable code
files and patched code files. SARD is essentially a synthetic
dataset with a smaller complexity of vulnerable samples com-
pared to those present in real-world scenarios.5 As vulnerable
functions and statements are already labeled in these two
datasets, we only need to construct labels for GrVCs and its
nodes. (2) Three open-source projects (i.e., OpenSSL, Libav,
and Linux Kernel). These projects are popular among de-
velopers and offer diverse functionalities. Specifically, we
followed the data collection methodology in [38]. The dataset
construction and labeling process entails the following steps:

• Commit message filtering. We identify vulnerability-
related fixing commits by matching a set of predefined
vulnerability keywords.

• Code preprocessing. For each vulnerability-related fix-
ing commit, we extract vulnerable code file, patched
code file, and diff file. Then we extract functions and
statements involving changes from the diff file.

• Automatic data labeling. If a function from a vulnerable
code file has at least one statement that was deleted or
changed (indicated by "-" in the diff file), it is labeled
as vulnerable; otherwise, it is labeled as non-vulnerable.
Deleted or changed statements are considered vulnerable
statements.

• Manual verification. We conduct manual verification on
a small proportion of samples to ensure the accuracy and
reliability of the annotations.

C Analysis of the Various Components of CJG

In this experiment, we progressively added data-flow edges,
function-call edges, and code-sequence edges to CFG. Then,
we extracted GrVCs based on graph structures at different
stages and applied our DPM-based detection model for train-
ing and testing. As shown in Table 10, overall, the model’s
performance gradually improved as we added different types
of dependency edges to the CFG. Notably, the model’s per-
formance with CFG+DF significantly surpassed that of the
CFG, highlighting the substantial contribution of data flow
to extracting vulnerability features. However, the inclusion

5https://samate.nist.gov/SARD

USENIX Association 33rd USENIX Security Symposium 7391

https://dl.acm.org/doi/abs/10.5555/3489212.3489278
https://dl.acm.org/doi/abs/10.5555/3489212.3489278
https://par.nsf.gov/biblio/10351401
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://doi.org/10.48550/arXiv.1909.03496
https://doi.org/10.48550/arXiv.1909.03496
https://samate.nist.gov/SARD

Table 10: Contributions of different edge types in Code Joint Graph (metrics unit: %).

Code representation Vulnerability Identification Vulnerability Localization

F1 R AUC MCC F1 R AUC MCC IoU
CFG 82.45 76.33 82.72 60.03 71.81 55.97 82.68 72.17 60.76

CFG+DF 82.69 79.22 84.73 69.16 79.29 77.90 88.91 79.22 61.14
CFG+DF+CG 82.74 80.02 85.02 69.10 78.95 78.94 89.41 78.88 61.77

CFG+DF+CG+CS (CJG) 85.28 82.28 85.91 70.51 79.60 77.15 88.53 79.55 64.90

Table 11: Performance comparison of FVD-DPM on original and augmented datasets (metrics unit: %).

Dataset Vulnerability Identification Vulnerability Localization

F1 R AUC MCC F1 R AUC MCC IoU
Original 78.63 78.54 83.79 67.61 77.21 75.17 87.54 77.14 59.04

Augmented 81.52 79.63 86.54 74.15 84.07 78.82 89.37 84.18 60.14

of inter-procedural analysis in CFG+DF+CG did not yield a
significant improvement in detection performance. One possi-
ble reason for this is the small proportion of functions with
inter-procedural dependencies in our dataset (less than 1/4
of the total functions), which may restrict the model’s ability
to benefit from inter-procedural analysis. We provide further
analysis of this phenomenon in Appendix E.

D Results under Diverse Training Epochs

(a) AUC

(b) IoU

Figure 7: localization results of FVD-DPM on the test set
under diverse training epochs.

Figure 7 illuminates the dynamic evolution of model met-
rics across various epochs for each dataset. Notably, the scores
for all metrics exhibit a pronounced and swift upsurge during
the initial 2000 epochs. Subsequently, within the epoch range
of 2000 to 7000, the scores of all metrics show a fluctuating
and slow growth trend. Beyond the 7000-epoch mark, a note-
worthy observation is the model’s gradual convergence. This
detailed analysis enhances our understanding of the temporal
dynamics governing the model’s localization capabilities, of-
fering valuable insights into its evolving behavior throughout
the training process.

E Effectiveness of Inter-procedural Analysis

To study the impact of inter-procedural analysis on FVD-
DPM in vulnerability detection, we augmented the NVD
dataset with new functions featuring inter-procedural depen-
dencies and retrained FVD-DPM on the augmented dataset.
Due to the challenge of re-collecting real-world functions with
inter-procedural dependencies, we utilized data augmentation
techniques to create new functions. Specifically, we employed
multiple code refactoring methods to generate transformed
code that retained the same labels as the original function.
We used a total of 14 types of code refactoring methods, in-
cluding adding arguments, renaming methods, renaming local
variables, and adding print statements. Through this data aug-
mentation, we added 120 new functions with inter-procedural
dependencies to the NVD dataset.

We retrained and tested FVD-DPM on the augmented
dataset and compared the results with those from the original
dataset. As shown in Table 11, FVD-DPM achieves better per-
formance on the augmented dataset. This demonstrates that
by adding more functions with inter-procedural dependencies,
FVD-DPM can capture more comprehensive vulnerability
semantics. Therefore, function-call edges included in CJG are
effective for FVD-DPM in detecting vulnerabilities.

7392 33rd USENIX Security Symposium USENIX Association

	Introduction
	Motivating Examples
	Methodology
	Feature Extraction
	Generating Code Joint Graph
	Extracting Slicing Entry Nodes
	Program Slicing
	Initial Node Embedding

	Diffusion-based Vulnerability Prediction
	Forward Diffusion Process
	Conditional Reverse Process
	Learning the Mean and the Variance
	GAT with Hybrid Time Encoding
	Training Objective

	Evaluation
	Experimental Setup
	Research Questions
	Datasets
	Evaluation Metrics
	Baseline Methods

	RQ1: Performance of Proposed Approach
	RQ2: Effectiveness of Code Joint Graph
	RQ3: Ablation Study
	RQ4: Results on Different CWE Types
	Applications to New Versions and Projects

	Insights and Findings
	Threats to Validity
	Related Work
	Classical Vulnerability Detection Methods
	Deep Learning-based Detection
	Diffusion Probabilistic Models

	Conclusion
	Improving Model Training Speed
	Details of Data Collection and Labeling
	Analysis of the Various Components of CJG
	Results under Diverse Training Epochs
	Effectiveness of Inter-procedural Analysis

