
This paper is included in the Proceedings of the 
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the 
33rd USENIX Security Symposium 

is sponsored by USENIX.

VulSim: Leveraging Similarity of Multi-Dimensional 
Neighbor Embeddings for Vulnerability Detection

Samiha Shimmi, Ashiqur Rahman, and Mohan Gadde, Northern Illinois University; 
Hamed Okhravi, MIT Lincoln Laboratory; Mona Rahimi, Northern Illinois University

https://www.usenix.org/conference/usenixsecurity24/presentation/shimmi



VulSim: Leveraging Similarity of Multi-Dimensional
Neighbor Embeddings for Vulnerability Detection

Samiha Shimmi
Northern Illinois University

sshimmi@niu.edu

Ashiqur Rahman
Northern Illinois University

ashiqur.r@niu.edu

Mohan Gadde
Northern Illinois University

mgadde1@niu.edu

Hamed Okhravi
MIT Lincoln Laboratory

hamed.okhravi@ll.mit.edu

Mona Rahimi
Northern Illinois University

mrahimi1@niu.edu

Abstract

Despite decades of research in vulnerability detection, vulner-
abilities in source code remain a growing problem, and more
effective techniques are needed in this domain. To enhance
software vulnerability detection, in this paper, we first show
that various vulnerability classes in the C programming lan-
guage share common characteristics, encompassing semantic,
contextual, and syntactic properties. We then leverage this
knowledge to enhance the learning process of Deep Learning
(DL) models for vulnerability detection when only sparse data
is available. To achieve this, we extract multiple dimensions
of information from the available, albeit limited, data. We
then consolidate this information into a unified space, allow-
ing for the identification of similarities among vulnerabilities
through nearest-neighbor embeddings. The combination of
these steps allows us to improve the effectiveness and effi-
ciency of vulnerability detection using DL models. Evaluation
results demonstrate that our approach surpasses existing State-
of-the-art (SOTA) models and exhibits strong performance
on unseen data, thereby enhancing generalizability.

1 Introduction

Software vulnerabilities continue to be a major source of finan-
cial and reputational harm to corporations [52, 102]. Despite
intensive efforts from academia and industry to mitigate soft-
ware vulnerabilities, the number of reported vulnerabilities in
the Common Vulnerability and Exposure (CVE) database has
increased over time [62,70]. For instance, in 1999, a mere 321

DISTRIBUTION STATEMENT A. Approved for public release.
Distribution is unlimited.

This material is based upon work supported by the Under Secretary
of Defense for Research and Engineering under Air Force Contract No.
FA8702-15-D-0001. Any opinions, findings, conclusions or recommen-
dations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Under Secretary of Defense for Research
and Engineering.

CVE records were reported, whereas in 2023, this figure has
skyrocketed to around 29K. Effective detection of software
vulnerabilities is still a major and growing need.

One possible approach for detecting software vulnerabili-
ties is the usage of DL models. While DL models have been
used successfully in various other contexts, their adoption for
vulnerability detection faces multiple major challenges.

The lack of large-scale, publicly available, and reliable la-
beled datasets is extensively discussed in the literature as a
major challenge associated with the application of DL models
in vulnerability detection [40, 114]. Note that databases such
as the National Vulnerability Database (NVD) and SARD [81]
do exist, but the amount of data they contain is not sufficient
for training DL models. First, given the vast complexity of
modern software and its large number of degrees of freedom,
perhaps many millions of training samples would be nec-
essary to train DL models, while the entirety of the NVD,
spanning many decades and all types of software and vul-
nerability types, only contains around 220K vulnerabilities
at the time of writing this paper. It is worth mentioning that,
this figure represents reported vulnerabilities, requiring fur-
ther processing by retrieving corresponding information from
GitHub links, if available. However, the actual number of
usable vulnerable samples after processing is considerably
lower, as evidenced by studies [95, 116].

Moreover, the widely used SARD [81] dataset contains syn-
thetic samples, and as Chakrabarty et al. [13] demonstrated,
real-world examples are more complex than the synthetic
counterparts. The performance drop was observed to be 54%
in cases where the model was trained exclusively on non-
synthesized data [13,121]. Additionally, recent work by Chen
et al. [16] demonstrates that increasing the volume of the
training data does not necessarily enhance the performance of
the model and can reach a saturation point. This was observed
when they applied their recently complied large DiverseVul
dataset to several models.

Another limitation of the current datasets is data imbal-
ance where the number of vulnerable samples is substan-
tially lower than non-vulnerable ones. Models trained on

USENIX Association 33rd USENIX Security Symposium    1777



imbalanced datasets are biased toward non-vulnerable sam-
ples [13]. Based on this finding, in order to get a good perfor-
mance, one has to include approximately an equal number of
non-vulnerable samples when training DL models. This im-
plies that we cannot utilize all the samples from the existing
datasets.

To summarize, existing vulnerability datasets have a rela-
tively small number of usable samples necessary for proper
training of DL models, many existing samples are synthetic,
and there is an imbalance between the vulnerable and non-
vulnerable samples in the datasets. These reasons contribute
to general poor performance of DL models for vulnerability
detection, and even worse generalizability (e.g., F1 score in
SOTA dropping from 49% to 9.4%) [13, 16, 121]. With these
challenges in mind, we hypothesize and later validate the ef-
fectiveness of leveraging more properties from the existing
limited data to develop a more robust vulnerability detection
framework.

To address the above-mentioned challenges, we observe
that vulnerabilities often share common characteristics across
multiple primary dimensions, including meanings of the to-
kens (semantic), implementation purpose (context), and code
structure (syntax). We aim to leverage these properties along
with their neighboring information to design a vulnerabil-
ity prediction model with available, limited amounts of data.
Throughout the rest of the paper, when we use the term neigh-
bor, it refers to neighborhood using the Cosine similarity
metric for each code embedding.

In this work, we introduce VulSim, a technique for
Vulnerability detection based on multi-dimensional Similar
neighbors. Initially, we conduct an in-depth analysis of mul-
tiple codebases and subsequently leverage this knowledge
in VulSim. We consolidate the multi-dimensional informa-
tion into a unified space and assisted in better vulnerability
detection by leveraging insights from nearest neighbors. It
is worth mentioning that while we leveraged three existing
models SBERT [77], Code2vec [6], and CodeBERT [28] to
capture semantic, contextual, and syntactic properties respec-
tively, the novelty of our approach lies in consolidating all
three dimensions alongside neighboring information. This
approach enables the development of a robust vulnerability
detection model that surpasses the performance of each indi-
vidual model mentioned, including other SOTA approaches.

Our work highlights the discriminative capability of multi-
ple dimensions in code vulnerability analysis and introduces
a new framework that effectively captures valuable insights
from diverse code embeddings. By considering multiple di-
mensions from similar data, our approach maximizes the avail-
able information and mitigates the dataset limitation problem.
Along with retrieving information from different dimensions,
we also take the neighboring information into account. To
verify the generalizability of our approach, we train our model
on one dataset and test it on a completely new dataset with
unseen code samples.

In summary, we address the following research questions:

• RQ1: Are there dimensions, along which code vulnerabili-
ties are more commonly similar?

• RQ2: How does the guided training approach improve a)
the precision and recall rates and b) the generalizability
of DL models for vulnerability detection in comparison to
SOTA methods?

To overcome all the challenges we discussed earlier, our
work makes the following contributions:

• Addressing dataset limitations by consolidating multiple
properties and neighboring information: To compensate
for exiguous data, we leverage the commonalities spanning
over multiple vulnerability dimensions. Rather than expand-
ing the size of a dataset, we focus on enhancing the depth
of information derived from a limited number of samples.
Unlike existing approaches that focus on homogeneous
properties, such as source code or natural language vulner-
ability definitions [80, 98, 118, 120], our approach tackles
the challenge of consolidating information from diverse
properties. This approach enables us to draw conclusions,
even in situations where additional data might have been
helpful. Additionally, we consider the neighbor information
while detecting if a specific code is vulnerable or not. This
approach allows us to retrieve more information from the
limited amount of available data.

• Enhancing generalizability: We illustrate that by captur-
ing code vulnerabilities in multiple dimensions and focus-
ing the DL training process on primary dimensions, we
achieve improved generalizability of the trained models
and enable them to effectively detect new or unseen vulner-
abilities in real-world scenarios.

The evaluation results demonstrate that VulSim achieved
an accuracy of 75%, surpassing the SOTA techniques on
Microsoft CodexGLUE benchmark [56], where the lead-
ing model attained an accuracy of 69.29%. Moreover, our
model demonstrated its ability to generalize to an entirely
new dataset, achieving an accuracy of approximately 55%
and a recall of 85%. Our experimental results also demon-
strate that, in each dimension, the neighbor-based model was
able to uniquely identify several instances of vulnerabilities
which other dimensions failed to capture and thus demon-
strate the power of merging all three dimensions. These
findings highlight the robustness and effectiveness of Vul-
Sim in vulnerability detection tasks, even when applied
to diverse and previously unseen code samples. The arti-
facts of this paper are publicly available online at https:
//github.com/SamihaShimmi/VulSim/tree/main.

Section 2 describes the necessary background information
and Section 3 describes VulSim’s implementation. Section
4 presents the evaluation results of the proposed approach.

1778    33rd USENIX Security Symposium USENIX Association

https://github.com/SamihaShimmi/VulSim/tree/main
https://github.com/SamihaShimmi/VulSim/tree/main


Section 5 discusses VulSim’s limitations. We discuss the
related work in Section 6 and conclude the paper in Section
7.

2 Code Similarity Dimensions and
Initial Observations

Our technique relies on analyzing code similarity in multi-
ple dimensions: contextual, semantic, and syntactic. In this
section, we first provide a definition of each dimension and
provide examples to illustrate how different code segments
can be similar in one of these dimensions. In the following
subsections, we describe how we generate the embeddings
from functions by leveraging some existing models to get
different sets of properties. In the subsequent sections, we
leverage this knowledge to build VulSim.

Throughout the rest of the paper, we commonly refer to
the Common Vulnerability and Exposure (CVE) [62] and
Common Weakness Enumeration (CWE) [63]. While the
former is used to identify a specific vulnerability in a specific
piece of code (e.g., a buffer overflow at function x of source
file y of application z), the latter describes large categories of
vulnerabilities (e.g., Access of Memory Location After End
of Buffer).

2.1 Semantic Dimension
Semantic dimension refers to the natural meaning and inter-
pretation of code tokens, treating them similarly to words
in natural language. It aims to capture the meaning of code
tokens.

For instance, consider two vulnerable methods in Listing
1 and 2 for the BigVul [26] dataset. The first method is re-
sponsible for freeing the memory associated with various
components of the streamCG data structure, ensuring that any
necessary cleanup or deallocation routines are called using the
provided callback functions. The latter is designed to allocate
memory for a TcpSession object.

While the primary objectives of these two methods differ
significantly (one allocates memory, and the other deallocates
it), they both include the keyword "stream" in their names.
This repetition of "stream" in their names indicates their asso-
ciation with the manipulation of streaming data.

In the case of the streamFreeCG method, the word "stream"
appears not only in the function’s name but also in the parame-
ter name. Furthermore, within the function’s body, "stream" is
used twice in the function calls, namely, "streamFreeNACK"
and "streamFreeConsumer."

Likewise, in the function StreamTcpSessionPoolAlloc, the
term "stream" is included once in its function name and
twice in the function calls for "StreamTcpCheckMemcap"
and "StreamTcpSessionClear." This shared usage of the term
"stream" in their respective names and function calls signifies
a certain semantic similarity between these two methods.

Note that this assessment of semantic similarity is based
on the frequent usage of the word "stream" and the context in
which these methods operate within the codebase.

Method "streamFreeCG" is vulnerable to "CVE-2018-
12453", while method "StreamTcpSessionPoolAlloc" is vul-
nerable to "CVE-2018-14568". If we observe closely, we
notice that although these two code samples share some se-
mantic information, their context and syntax are different.
This demonstrates the power of semantic dimension in this
case while the two other dimensions are different.

Listing 1: streamFreeCG method to deallocate memory

1 void streamFreeCG(streamCG cg)
2 {
3 raxFreeWithCallback(cg−>pel,(void () (void*))

streamFreeNACK);
4 raxFreeWithCallback(cg−>consumers,(void() (void) )

streamFreeConsumer);
5 zfree (cg) ;
6 }

Listing 2: A Semantically-similar method to streamFreeCG

1 static void *StreamTcpSessionPoolAlloc(void)
2 {
3 void *ptr = NULL;
4 if (StreamTcpCheckMemcap((uint32_t)sizeof

(TcpSession))== 0)
5 return NULL;
6 ptr = SCMalloc(sizeof(TcpSession)) ;
7 if ( unlikely ( ptr == NULL))
8 return NULL;
9 StreamTcpSessionClear() ;
10 return ptr ;
11 }

2.2 Contextual Dimension

Contextual dimension considers the surrounding code, de-
pendencies, and environment in which the code operates. It
focuses on understanding the intended functionality and be-
havior of the code, going beyond its specific structure or gram-
mar.

Consider the two examples from the CWE website in List-
ings 3 and 4 [63]. The first example above takes an IP address
from a user, verifies that it is well-formed, and then looks up
the hostname and finally copies it into a buffer.

The second one (Listing 4) applies an encoding procedure
to an input string and stores it in a buffer. Both of them are
writing data to buffer. We consider these two methods to be
contextually similar. Both of them are vulnerable to CWE-
119: Improper Restriction of Operations within the Bounds
of a Memory Buffer. We observe that although having the
same objective, they vary semantically and syntactically. For

USENIX Association 33rd USENIX Security Symposium    1779



example, as opposed to the methods in the Listings 1 and 2,
these two methods do not share words with a similar meaning
and also their basic structures are syntactically different. This
finding highlights the significance of the contextual similarity
while the methods are not similar in other dimensions.

Listing 3: A vulnerable example from CWE website

1 void host_lookup(char *user_supplied_addr )
2 {
3 struct hostent *hp;
4 in_addr_t *addr;
5 char hostname[64];
6 in_addr_t inet_addr ( const char *cp);

7 /* routine that ensures user_supplied_addr is in
the right format for conversion */

8 validate_addr_form ( user_supplied_addr ) ;
9 addr = 10 inet_addr ( user_supplied_addr ) ;
10 hp = gethostbyaddr ( addr , 12 sizeof ( struct

in_addr) , AF_INET);
11 strcpy (hostname, hp−>h_name);
12 }

Listing 4: Another vulnerable example from CWE that shares
similar contextuality

1 char * copy_input(char * user_supplied_string )
2 {
3 int i , dst_index ;
4 char *dst_buf = (char*)malloc(4* sizeof (char)*

MAX_SIZE);
5 if ( MAX_SIZE <= strlen(user_supplied_string)
6 {
7 die ("user string too long , die evil hacker!") ;
9 }
9 dst_index = 0;
10 for ( i = 0; i < strlen ( user_supplied_string ) ;

i++ )
11 {
12 if ( ’&’ == user_supplied_string [ I ] )
13 {
14 dst_buf [ dst_index++] = ’&’;
15 dst_buf [ dst_index++] = ’a’ ;
16 dst_buf [ dst_index++] = ’m’;
17 dst_buf [ dst_index++] = ’p’ ;
18 dst_buf [ dst_index++] = ’ ; ’ ;
19 }
20 else if ( ’<’ == user_supplied_string [ I ] )
21 {
22 /* encode to &lt; */
23 }
24 else
25 dst_buf [ dst_index++] =

user_supplied_string [ i ];
26 }
27 return dst_buf ;
28 }

2.3 Syntactic Dimension
Syntactic dimension refers to the structure, grammar, and
arrangement of symbols in code. It emphasizes the correct
formation and arrangement of tokens, keywords, operators,
and other language constructs according to the defined rules
and conventions of the language.

For example, consider the two methods from BigVul dataset
in Listings 5 and 6 where the first one is vulnerable to "CWE-
189:Numeric Errors" and the second one is vulnerable to
"CWE-119:Improper Restriction of Operations within the
Bounds of a Memory Buffer". The basic syntactical structure
of the methods is the same.

Listing 5: A method from BigVul dataset

1 void PaymentRequest::NoUpdatedPaymentDetails()
2 {
3 spec_−>RecomputeSpecForDetails();
4 }

Listing 6: A syntactically similar method from BigVul dataset

1 void InitPrefMembers()
2 {
3 settings_ −>InitPrefMembers()
4 }

Both of them share a similar signature, with each function
having a void return type and not accepting any parameters.
Both functions consist of only one line of code, invoking a
method on a class member object. Although syntactically sim-
ilar, they do not share any similar semantics or functionality.
The first one, invokes the RecomputeSpecForDetails() method
on the spec_ object. On the other hand, the second function,
InitPrefMembers(), calls the InitPrefMembers() method on
the settings_ object, suggesting the initialization of preference-
related members.

The above-mentioned examples motivate us to incorpo-
rate these dimensions to facilitate vulnerability detection. We
hypothesize (and later validate) that this multi-dimensional
similarity analysis allows us to efficiently utilize the limited
amount of past vulnerability data to more accurately reason
about vulnerabilities in a piece of code.

Additionally, we conducted an initial experiment with the
vulnerable records from the BigVul dataset to check how
the neighboring information can also be utilized in order to
detect if a piece of code is vulnerable or not. Neighboring
information is fetched using the cosine similarity metric for
embeddings in each dimension. More detail about neighbor
calculation is presented in Section 3. We fetched the neigh-
bor information for 8,740 vulnerable samples. We looked for
the closest matching neighbor in each dimension. We exper-
imented with both CWE and CVE. The first part of Figure
1 shows the Venn diagram for CVE. The blue, orange, and
green refer to being neighbors in contextual, semantic, and

1780    33rd USENIX Security Symposium USENIX Association



syntactic dimensions respectively. We stored the CVE and
CWE information for the first closest neighbor in each di-
mension. We notice that the CVE for the top neighbor of
199 records is actually the same in all three dimensions. We
further notice some records where the top neighbor shares the
same CVE in only one dimension. However, in the majority of
the cases, they share the same CVE for at least one dimension.
Among 8,740 records, for 3650 records the top most similar
record was not similar in any dimension. A similar trend is
also observed when we consider CWE information in the
second part of the diagram. Note that in this demonstration,
we only considered the topmost neighbor. Our hypothesis was
that considering the top n neighbors instead would improve
the precision of our analysis in determining the vulnerabil-
ity of a piece of code. Later in Section 4, we establish the
validity of this hypothesis quantitatively and show that Vul-
Sim outperforms the state-of-the-art vulnerability detection
models.

Code2vec

205

SBERT

3042

CodeBERT
75

Code2vec

433

SBERT

2838

CodeBERT

223

199
19 434

1116

510

67 806

1433

CVE CWE

3650 2430Semantic
Context

Syntax

Figure 1: Venn Diagram of similarities of weaknesses and
vulnerabilities in Context, Semantic and Syntax dimensions.

In the following subsections, we describe how we generated
embeddings to gather information about these code dimen-
sions. We explain how and why we selected some specific
models for each dimension.

2.4 Semantic Embedding of Methods
Natural language processing (NLP) has made signifi-
cant advancements with word embedding techniques like
word2vec [58, 59] improving the ability to represent words in
a continuous vector space. These embeddings capture the se-
mantic meaning of words, allowing for similarity calculations
between words based on their vector representations [68].
Previous efforts have explored applying word embedding
techniques to source code, with promising results [17, 25, 42].

One pre-trained model based on transformers, called
“Sentence-BERT” (SBERT), generates embeddings for sen-
tences, including code snippets [77]. SBERT uses a shallow
fully-connected neural network to model each sentence as a
continuous vector, ensuring that sentences with similar con-
texts are represented closely in the vector spacer [6]. In the
case of multiple-word contexts, SBERT takes the average
of the word vectors and generates real-valued vectors. The

model learns distributed representations of training sentences
and produces fixed-length, low-dimensional vector represen-
tations for any given sentence.

We use the SBERT model to transform the semantic mean-
ing of terms within vulnerable and safe code fragments into
embeddings. This transformation enables the measurement of
semantic relevance among code snippet embeddings and the
tagging of non-labeled instances. By treating code snippets as
a natural language, the semantic model generates embeddings
that capture the semantic properties of each term. The differ-
ences in semantics between vulnerable and non-vulnerable
instances are then measured by computing the distance be-
tween their code embeddings.

Since we are interested in pure semantic information, and
other dimensions are covered by different models in this work,
we use the SBERT model. We opted not to use other com-
plex alternatives such as GraphCodeBERT [38] since along
with semantic information, they also well capture other infor-
mation such as semantics as demonstrated by [57] that we
intentionally do not want to utilize in this dimension. How-
ever, other semantic models such as word2vec [59] might also
be utilized.

2.5 Contexual Embedding of Methods
Several code embedding methods have been developed to cap-
ture both semantic and structural information of code. Tree-
based approaches, especially those based on abstract syntax
trees (ASTs), have shown promise in improving vulnerability
detection [5, 72].

To get the contextual properties, we use a recent approach
called code2vec that leverages the AST structure of code
to identify informative paths that capture the functionality
of methods [6]. Code2vec uses an attention mechanism to
compute a weighted average of the path vectors, allowing
it to generate descriptive method names that represent the
context of a method. The model is pre-trained on a large
dataset of Java GitHub repositories, consisting of millions
of samples, and has shown superior performance in various
tasks, including vulnerability detection [21].

In their original work [6], the authors demonstrated the
ability to detect method names for a given method based on
functionality. Motivated by that work, we selected code2vec
for our contextual space embeddings. As demonstrated by
Alon et al. [6], vulnerable methods sharing the same function-
ality or context are therefore placed in closer space and we
can leverage this information to detect if a piece of code is
vulnerable or not.

2.6 Syntactic Embedding of Methods
Measuring syntactical properties of software artifacts as
a similarity metric is common in the software engineer-
ing domain, including design and source code analysis ap-

USENIX Association 33rd USENIX Security Symposium    1781



plications [32, 34, 84, 85, 112]. This property is widely
adopted in various applications, such as in code refactor-
ing [64, 86, 99, 100], system remodularizations [29, 67, 97],
mining features from object-oriented code [4], improving
feature localization [73], and extracting code-relevant descrip-
tion sentences [12]. Structural measures are also utilized in
software security to detect spam emails and ransomware ap-
plications [7, 35, 82].

We leveraged CodeBERT [28] model to capture the syn-
tactic properties of source code. CodeBERT leverages the
neural architecture of BERT, using stacked transformers in
a bidirectional structure to capture long-range dependencies
required for learning vulnerable code patterns. The model is
pre-trained on both programming language (PL) and natural
language (NL) data, learning distributed representations of
both artifacts. It incorporates a hybrid objective function that
includes a pre-training task of detecting replaced tokens. In
CodeBERT architecture, the text-code encoder generates plau-
sible tokens for masked positions, and the text-code decoder
(discriminator) is trained to detect alternative token samples
generated by the encoder. The application of CodeBERT for
code analysis reveals latent patterns within software code
and shows promise in facilitating various downstream tasks,
including vulnerability detection.

CodeBERT captures syntactic information through its train-
ing process on a large dataset of code snippets. In their work,
Karmakar et al. [43] demonstrated the syntactic property of
CodeBERT by getting 89.45% accuracy for syntactic task
- AST node tagging. Although basic BERT was also show-
ing almost similar accuracy, we selected CodeBERT because
it is specifically trained on source code. A similar observa-
tion was found by Wan et al. [104] where they observed that
the syntax structure of code has been well preserved in dif-
ferent hidden layers of CodeBERT. A very recent study by
Ma et al. [57] demonstrated several aspects of syntactic and
semantic properties of several models such as CodeBERT,
GraphCodeBERT, and several LLMs. Their study demon-
strated the skill of CodeBERT in several syntactic tasks such
as syntax pair node prediction, and token syntax tagging. It
is worth mentioning that other models such as GraphCode-
Bert, UnixCoder [37], and CodeT5 [108] were also having
competitive performance. All these models including Code-
BERT were performing their best in different layers and in
general, all of them were performing well in syntactical tasks.
However, models other than CodeBERT were also performing
well in semantic tasks such as semantic relation prediction
and semantic propagation. Since we wanted to emphasize
syntactic properties, we utilized CodeBERT embeddings. In-
terestingly LLMs such as StarCoder [46], CodeLlama [79]
and CodeT5+ [107] did not exhibit advantages over the pre-
trained models in syntactic tasks.

3 VulSim’s Implementation

This section discusses the implementation of our multi-
dimensional and neighbor-based classification approach for
classifying vulnerable and safe methods, VulSim.

3.1 Dataset
We selected two commonly used C language datasets for
evaluation. We focus on C because it is widely used in system
building and its memory unsafety makes it more prone to
large classes of vulnerabilities, notably memory corruption
bugs that constitute around 70% of vulnerabilities [60, 101].

Table 1: Dataset statistics.

Devign BigVul
Number of Vul Methods 12,460 11,823
Number of Safe Methods 14,858 253,096
Number of Vul Ours 12,425 8,740
Number of Safe Ours 14,822 8,922

3.1.1 Devign

The Devign dataset [119] is commonly used in this do-
main [41, 74, 109]. The dataset comprises functions from
the QEMU [2] and FFmpeg [1] open-source projects, labeled
as vulnerable or non-vulnerable. The dataset is carefully con-
structed through manual classification of commits related
to vulnerability fixes and extensive cross-validation, result-
ing in a balanced dataset of 12,460 vulnerable and 14,858
non-vulnerable methods. Devign is also utilized in the Mi-
crosoft CodexGLUE benchmark for evaluating vulnerability
models [56]. Table 1 shows the total number of records in
this dataset. In our work, we removed 71 records since Ast-
miner [8, 44], the open-source tool we utilized was unable
to generate AST representation for these records. All other
records are analyzed without any modification.

3.1.2 BigVul

The BigVul dataset [26] offers a comprehensive collection
of labeled vulnerability instances across various software
systems, including vulnerabilities in different programming
languages such as C. Its large-scale nature and diverse range
of vulnerability types make it suitable for benchmarking and
training vulnerability detection techniques. In our study, we
utilized the BigVul dataset only to test the performance and
generalizability of our proposed approach. Table 1 reports the
total number of records in the BigVul dataset. Since it is not
a balanced dataset, we took approximately an equal number
of samples from the safe methods. Once again, we had to
remove some of the samples because they had incomplete

1782    33rd USENIX Security Symposium USENIX Association



information (lacked CVE and CWE information), which we
leveraged in our analysis. Additionally, a small number of
records are discarded because Astminer fails to run on them.
In total, we used the remaining 8,740 vulnerable and 8,922
safe samples for our analysis.

3.2 Distributed Representation of Code
To build a consolidated space, we initially built three sets
of embeddings, based on semantic, contextual, and syntactic
properties of the C functions in the Devign dataset.

(i) Semantic Space: To leverage SBERT (Sentence-BERT)
for generating embeddings to conduct semantic analysis on
methods, we used the approach proposed by the authors [77].
In order to do the classification, we used SBERT as a classifier
by utilizing the approach suggested in the related work [36].
Initially, we divided the dataset into a 90-10% ratio for train-
ing and testing purposes. Subsequently, we input the source
code into a transformer-based binary classifier to classify it
as either vulnerable or non-vulnerable.

To preserve the semantic space, we extracted the generated
embeddings for the remaining part of our analysis.

To configure the model training process for classification,
we used the default setup where the total number of epochs
was set to 3, per device train batch size was 8, the batch size
for evaluation was set to 20, the warmup steps for learning
rate scheduler was 500, and weight decay was set to 0.01 since
changing parameters like increasing warmup steps or epoch
size did not improve the performance.

(ii) Contextual Space: The code2vec model [6] was origi-
nally trained in the Java programming language. Leveraging
the open-source approach proposed by Coimbra et al. [21], we
re-trained code2vec on code snippets, written in C, to account
for the potential differences between the two languages.

For this, we initially generated the counterpart ASTs for the
functions in our dataset, using Astminer. Among the 27,318
methods, Astminer was unable to generate the ASTs for 71
records. The remaining 27,247 AST representations were
converted to the code2vec acceptable format to re-train the
model for learning common patterns of C-related AST-based
patterns.

As suggested in [21], we re-trained the network for 20
epochs, following the default hyper-parameters of the original
code2vec with a batch size of 1,024, embedding size of 128,
and the dropout rate of 0:25. Among the generated models
we selected the model with the highest F1 score and used
that model for validation purposes. Since the trained model
[21] is already in the CodexGlue [56] leaderboard and shows
good accuracy, we trusted their default parameters. Finally,
we generated and stored the embeddings.

(iii) Syntactic Space: The original CodeBERT model [28]
is initially trained in 6 programming languages, excluding C
language. For this reason, we fine-tuned CodeBERT on code

snippets, written in C on the Devign dataset by following the
instructions on CodexGLUE [55]. In this case, we retrained
the model for 5 epochs with a block size of 400, training batch
size of 32, and evaluation batch size of 64 with a learning rate
of 2e5 which was the default setup. Once again, we used the
default parameter since the model is already at the top list of
the CodexGlue benchmark.

For the construction of the syntactic space, we followed a
similar approach by reading and storing the embeddings for
our analysis.

The ultimate re-generated fine-tuned model generated an
accuracy of 64.60% as shown in Figure 2 which is slightly
higher than the original codeBERT model as the CodexGLUE
leaderboard showed (62.08%). Given the three spaces we
built, we then passed the embeddings to a feature genera-
tion component which calculates the relative closeness of
the embeddings to training embeddings within each space
individually.

3.3 Feature Generation

(i) Measuring Distance: In each space, we conducted in-
dividual pairwise similarity measurements between the em-
beddings of the functions. This similarity assessment was
performed based on cosine similarity, a widely used approach
utilized by several other efforts to calculate distance between
vectors [6,66,110]. Cosine similarity can be determined using
the following equation where Ai and Bi are the i-th component
of vector A and B:

Similarity(A,B) =
∑

k
i=1 AiBi√

∑
k
i=1 A2

i

√
∑

k
i=1 B2

i

The similarity value between two vectors A and B ranges
from -1 to 1. When the angle between the vectors is smaller,
the value of cosine similarity is larger which indicates that
the values are closer to each other.

Given each set of the embeddings, we then calculated four
k × k matrices of cosine similarity scores between all the
embedding pairs, where k is the number of the embeddings
present in the dataset. The matrices are symmetric as the top
half of each matrix diagonally mirrors the bottom half.

(ii) Ranking and Scoring:
We developed a ranking mechanism by selecting the top n

embeddings with the highest similarity score in each space,
weights were calculated as:

Score =
n−1

∑
i=0

(n− i)wi

where n is the desired number of the closest neighbor embed-
dings to be considered for labeling the vectors. The i specifies
the neighbors index, which are sorted in descending order
according to their distance from a target vector. As such the

USENIX Association 33rd USENIX Security Symposium    1783



closest neighbor has a higher vote (larger contribution) in
determining the label of the given vector. Here wi denotes the
cosine similarity value for the current record with i-th similar
value. This is, in particular, important in scenarios, where the
distance variance of n-top embeddings to the target embed-
ding is large. This ranking mechanism was independently
repeated for each individual space.

Given the ranking mechanism, we generated two scores for
each test vector, one with selecting the n-top weak neighbors
(bad score) and the other with safe neighbors (good score).
To elaborate more, for a specific record, if 1st record (i =
1) is good and has a similarity value of wi with the target,
the score will be added to the good score. Similarly, for i
=2, if the record is bad, that score will be added to the bad
score, and so on. As such, two scores were assigned to each
vector, representing its similarity to vulnerable and safe code
fragments. The scores were independently generated in each
space, according to close neighbors of each particular space.
These neighbor-based scores are finally leveraged to detect if
a piece of code is vulnerable or not.

3.4 Classification

For classification, we adopted a decision tree-based classifier.
This choice aimed to prevent the complexity of the classi-
fication algorithm from overshadowing the differences in
classification capability among semantic, syntactic, and con-
textual properties. Additionally, we prioritized the simplicity
and interpretability of the chosen model to gain clear insights
into the prediction process. We configured the classifier with
a Gini index, a maximum depth of 3, and a minimum of 5
samples per leaf.

For each item in the dataset, we fed the classifier with two
sets of scores as we described in subsection 3.3. Based on
these scores, the classifier classifies each sample as vulnerable
or non-vulnerable. We trained the classifier with a ratio of
90%-10% for training and test sets.

For comparison purposes, we initially classified the embed-
dings based on individual vulnerable and safe scores in each
individual space. Furthermore, we applied the same classifier
to evaluate the combined power of all three property sets,
creating a hybrid model, and considering all three properties
simultaneously. In this case, we fed the classifier with 6 scores
(2 from each space).

The classification assumption is that both, vulnerable and
safe, code snippets will be mapped closer to the embeddings
with similar features within at least one of the semantic, con-
text, syntactic, or hybrid spaces.

4 Evaluation

To evaluate our approach, we performed experiments using
different values of n, specifically 3 and 5, to explore the im-

pact of different neighborhood sizes on the accuracy and
performance of the technique.

0

10

20

30

40

50

60

70

80

VulSim SBERT CodeBERT Code2vec

Accuracy (%)

Figure 2: Accuracy of Original Models on Devign dataset.

4.1 RQ1: Evaluating the Impact of Utilizing
Neighbors’ Information from Multiple Di-
mensions

In this section, we assessed the ability of each space to detect
vulnerabilities based on two key perspectives: the accuracy of
classification and the uniqueness of identified vulnerability.
This evaluation offers insights into the strengths and limi-
tations of each space, providing an understanding of their
individual contributions to vulnerability detection.

4.1.1 Detection Accuracy

Figure 2 represents the initial accuracy of the original mod-
els we leveraged for multiple dimensions. Table 3 illustrates
the individual performance of each model (with neighboring
information utilized) considered separately, their pair-wise
combination, and the results of the hybrid model (VulSim)
given the aggregated information.

By supplying the decision tree-based classifier with corre-
sponding good and bad scores for each model, our context-
based model demonstrated the highest average accuracy of
74% across various values of n. Notably, the semantic-only
space also made a significant contribution, achieving accura-
cies of 61% and 65% for different n values. In contrast, the
performance of the syntactic space was comparatively lower,
yielding an accuracy of approximately 55%.

Moving on to the evaluation of double-dimensional spaces,
the semantic-contextual model outperformed other models
with an accuracy of 75%. Looking at VulSim results, it re-
veals that the overall performance of the multi-dimensional
model, remained at 75% accuracy, showing that the inclusion
of the syntactic property of the code did not result in a sig-
nificant improvement in overall accuracy in this dataset, as
presented in Table 3. It is worth mentioning that, although the

1784    33rd USENIX Security Symposium USENIX Association



Table 2: Uniquely-detected instances in the Single-, Double-, and Hybrid-dimensional spaces are examined in our analysis.

Within Group Between Group VulSim
n = 5 n = 3 n = 5 n = 3 n = 5 n = 3

G
ro

up
1

(S
in

gl
e)

Safe Weak Safe Weak Safe Weak Safe Weak Safe Weak Safe Weak
Semantic 6 28 0 155 0 0 0 0 163 444 175 511
Syntactic 37 28 59 1 19 19 34 1 6 765 5 820
contextual 2 494 0 463 0 0 0 0 33 2 97 128

G
ro

up
2

(D
ou

bl
e)

Semantic-contextual 0 72 138 117 0 155 0 89 107 100 0 0
Semantic-Syntactic 18 164 25 89 0 0 0 0 33 2 97 128
Syntactic-contextual 118 30 6 41 0 0 0 0 163 444 175 511

Total Safe:1,494 Vulnerable: 1,231

Table 3: Accuracy of Single, Double and Multi spaces in clas-
sifying weak code for n = 5 and n = 3 of selected neighbors.

Single Dimension
n = 5 n = 3

Semantic Space
Acc. Prc. Rec. Acc. Prc. Rec.

Weak
60.92%

0.72 0.22
64.81%

0.69 0.40
Safe 0.59 0.93 0.63 0.86

Syntactic Space
Weak

55.01%
0.52 0.06

54.75%
0.42 0.00

Safe 0.55 0.96 0.55 1.00
Contextual Space

Weak
74.31%

0.76 0.62
74.09%

0.75 0.65
Safe 0.73 0.84 0.74 0.82

Double Dimensions
n = 5 n = 3

Semantic-Contextual Space
Acc. Prc. Rec. Acc. Prc. Rec.

Weak
75.41%

0.77 0.65
75.34%

0.76 0.67
Safe 0.75 0.84 0.75 0.82

Semantic-Syntactic Space
Weak

60.92%
0.72 0.22

74.09%
0.75 0.65

Safe 0.59 0.93 0.74 0.82
Syntactic-Contextual Space

Weak
74.31%

0.76 0.62
64.81%

0.69 0.40
Safe 0.73 0.84 0.63 0.86

Multi-Dimensions (VulSim)
n = 5 n = 3

Semantic-Contextual-Syntactic Space
Acc. Prc. Rec. Acc. Prc. Rec.

Weak 75.41% 0.77 0.65 75.34% 0.76 0.67
Safe 0.75 0.84 0.75 0.82

accuracy, precision, and recall were comparatively lower, the
following subsection will delve into the contributions of the
syntactic space, demonstrating uniquely identified instances
by each space and thereby underscoring the importance of
incorporating multidimensional space. Moreover, since we in-
corporated multiple spaces in our final hybrid VulSim model,
the lower precision and recall rate of syntactic dimension do

not have any negative impact since the hybrid model is ex-
hibiting the best performance. Armed with this information,
one may consider assigning higher weights to the more impor-
tant dimensions to bias the model toward learning from those
sets of attributes. Alternatively, one could opt to pass only the
crucial dimensions to the final simple classifier. Additionally,
it is important to note that this characteristic may not necessar-
ily hold true in other datasets, as the nature of vulnerabilities
and their relationships could vary among codebases.

In summary, if we look at Figure 2 once again, it provides a
brief overview of how leveraging information from neighbors
across different dimensions impacts accuracy. The accuracy
of the original SBERT (54.46%), Code2vec (62.12%), and
CodeBERT (64.6%) models we initially utilized to capture
multiple dimensions is depicted along with VulSim (75.41%).
From the diagram, it is evident that combining these three di-
mensions and incorporating neighbor information in VulSim
leads to an increase in accuracy.

4.1.2 Uniqueness of Detected Instances

In addition to assessing the accuracy of the models, we con-
ducted a thorough analysis of each space’s capability to de-
tect unique instances that were misclassified by the other
spaces. This investigation serves to support VulSim, which
emphasizes the extraction of multiple sets of properties from
a limited-size dataset to uncover additional rules.

Within Group: The analysis results are presented in Table
2. In the "Within Group" section, the number of correctly
classified records that were uniquely identified by each single-
dimension (Group 1) and double-dimension (Group 2) model
is displayed out of a total of 1,231 weak entries in the test set.
Among the single dimensions, the contextual space stands
out by successfully identifying 494 and 463 unique instances
(for five and three neighbors, respectively) compared to the
other two single dimensions. This observation aligns with
the highest accuracy of 74.31% and 74.09% achieved by this
model, as shown in Table 3.

In the realm of double dimensions, the contextual-semantic
space outperforms the other double-dimension spaces by iden-

USENIX Association 33rd USENIX Security Symposium    1785



tifying 117 unique instances that were missed by both the
semantic-syntactic and syntactic-contextual spaces. Further-
more, when the number of neighbors is increased from three
to five, the semantic-syntactic space emerges as the winner,
identifying 164 unique vulnerabilities in the source code.

Between Group: The syntactic space identified 19 and
1 unique instances, respectively with 3 and 5 neighbors, in
the between-group analysis. These instances were not only
overlooked by the semantic and contextual single dimensions
but also by the other three two-dimensional spaces that in-
corporated additional dimensional information. On the other
hand, the semantic and contextual spaces, as individual enti-
ties, did not exhibit unique instances when compared to the
more comprehensive double-dimensional spaces.

This observation is intriguing as it demonstrates that despite
having the lowest accuracy among the single-space models, as
shown in Table 3, the ability of the syntactic space to identify
unique instances surpasses that of other models.

Hybrid: Significantly, the utilization of the hybrid model,
which integrates similarity scores from all dimensions, re-
sulted in the identification of 444, 765, and 2 records that were
exclusively recognized when employing n = 5, a scenario in
which the single-dimension models respectively semantic,
syntactic, and contextual failed to recognize these instances
despite possessing information about the same neighbors.
This outcome not only underscores the effectiveness of lever-
aging neighbor information but also underscores the value
of combining multiple attributes for precise classification of
vulnerable and safe cases, as we proposed.

In the analysis of the semantic space, an interesting ob-
servation emerged: when considering a smaller number of
closest neighbors (n= 3), a higher number of unique instances
(155) were identified compared to expanding the neighbor
information to n = 5, which only revealed 28 unique weak
instances. This finding suggests that, in this specific dataset,
vulnerabilities tend to have a less broad set of similar key-
words within the code. In other words, vulnerabilities in the
dataset seem to exhibit more distinct semantic patterns when a
smaller neighborhood is considered, indicating that their key-
word associations are not as widely shared as when a larger
neighborhood is taken into account.

To answer RQ1, we conclude that consolidating informa-
tion from distinct spaces achieved the highest accuracy in
detecting weak and safe methods in C code. While certain
dimensions exhibit lower accuracy, they still enable the model
to identify unique examples that were missed by others. This
underscores the importance of considering not only accuracy
but also the ability of each space to detect instances that may
be overlooked by other spaces. Thus, our results emphasize
the value of incorporating multiple spaces to achieve a more
comprehensive and effective detection approach as imple-
mented in VulSim.

4.2 RQ2: Evaluating the Effectiveness of Ap-
proach vs. State-of-the-art (SOTA)

In this research question, we aim to evaluate VulSim in terms
of two key aspects: the accuracy of detection and, also gen-
eralizability of the model, by comparing the hybrid model
to the current state of the art. As such, we can assess the
performance of our approach and understand its effectiveness
in accurately detecting vulnerabilities as well as its ability
to generalize to unseen codebases different from that seen
during training.

0

10

20

30

40

50

60

70

80

90

VulSim ReGVD CSGVD Yuan et al.

Accuracy (%) Precision (%) Recall (%)

Figure 3: Accuracy of state-of-the-art vulnerability detection
models on Devign dataset.

4.2.1 Detection Accuracy

Table 4 presents the leaderboard of the Microsoft
CodexGLUE benchmark [56] on the Devign dataset for de-
fect detection. Each model in the table is accompanied by a
brief description and its corresponding accuracy. The leader-
board includes a total of 15 models, with the lowest accu-
racy recorded at 59.37%. The highest-performing model,
UniXcoder-nine-MLP, achieves an accuracy of 69.29%. Inter-
estingly, the amalgamated space exhibited a superior accuracy
of 75.41% when incorporating information from the five near-
est neighbors in the hybrid space.

In addition to the models listed on the leaderboard, we
conducted experiments with the original transformer-based
classifiers, and the accuracy of these models are reported in
Figure 2. Notably, these values are slightly different than the
accuracy recorded on the leaderboard for the same dataset.

We additionally conducted a comparison with SOTA vul-
nerability detection methods (Figure 3). We compared our
approach with ReGVD [69], CSGVD [94] and the approach
proposed by Yuan et al. [113]. ReGVD is a programming-
language-independent technique that utilizes graph neural
networks to detect vulnerability. ReGVD considers a mixture

1786    33rd USENIX Security Symposium USENIX Association



between the sum and max poolings to produce a graph embed-
ding for the source code. This graph embedding is then fed
into a single fully connected layer followed by a softmax layer
and predicts the vulnerabilities in the source code. Another
model, CSGVD accepts the control flow graph of the source
code as input and deals the vulnerability detection as a graph
classification task. Yuan et al. [113] developed a Behavior
Graph Model to connect the behaviors of different functions
and enhance the detection ability of existing DL-based meth-
ods using this information. We additionally attempted to im-
plement VulChecker [61], a DL frame- work that detectors
instruction- and line-level vulnerability and Devign, that used
a gated graph neural network model with the Conv module for
graph-level classification. VulChecker is trained on a differ-
ent dataset and we were unable to implement their model due
to some reproducibility errors. We also faced reproducibil-
ity issues with DeVign [119], and also confirmed from the
raised issue on their GitHub repository [22]. Similarly, another
SOTA tool ReVeal was not reproducible, as their data was
no longer available, which we also verified from the GitHub
issues [78]. Attempt to re-implement SOTA fine-tuning LLM
based model [83] also failed due to a replication error ("hug-
gingface_hub.errors.HFValidationError: Repo id must be in
the form ’repo_name’ or ’namespace/repo_name’: ’/home/ma-
user/modelarts/inputs/model_2/’. Use repo_type argument if
needed."). We did not find the model in the GitHub repository
that we had to provide in order to successfully run their code.

As can be observed in Figure 3, VulSim outperformed all
other baseline models in terms of accuracy, precision, and
recall where the closest accuracy was detected by CSGVD
(64.46%). The accuracy of ReGVD, mentioned by the authors
was 63.69%, and the recreated accuracy for ReGVD in our
experiment was 61.79%. Yuan et al. [113] did not provide any
accuracy measurement in the paper. However, VulSim per-
formed better than their approach in terms of both precision
(77% compared to 52%) and recall (65% compared to 62%).

4.2.2 Detection Generalizability

In order to evaluate the applicability and versatility of our
approach, we subjected VulSim to a completely new and pre-
viously unseen dataset, BigVul, which was not utilized during
the training process. The objective was to evaluate how well
our model could perform on this novel dataset, which differed
significantly from the Devign dataset used for training. This
experiment allowed us to gain insights into the model’s capac-
ity to generalize its learning and effectively handle real-world
scenarios beyond the data with which it was familiar.

The results of the experiment are presented in Table 5.
Despite the substantial change in the dataset, our model dis-
played a high performance by accurately identifying 85%
of the weak methods within the different-style code, which
serves a completely different application with a precision of
53%. The recall increased significantly from 65% to 85% (for

Table 4: Accuracy of state-of-the-art learning-based models
according to leader board from the CodeXGLUE Benchmark
on Devign dataset.

Model Architecture Acc%
VulSim Multi-Dimensional neighbor-based 75.41
UniXcoder-nine-MLP Not accessible 69.29
CoTexT [75] T*-based encoder-decoder 66.60
C-BERT [10] AST-based bidirect T*-based 65.45
A-BERT Adversary-specific T*-based 65.37
RefactorBERT Refactoring-specific bidirect T*-based 65.08
VulBERTa-MLP Vul-specific BERT&MLP 64.75
VulBERTa-CNN Vulnerability-specific BERT&CNN 64.42
ContraBERT_C Not accesible 64.17
ContraBERT_G Not accesible 63.32
PLBART [3] Bidirectional T*-based 63.18
RoBERTa [55] Bidirectional T*-based 61.05
TextCNN [55] CNN-based NL pre-trained 60.69
BiLSTM [55] Bidirectional LSTM-based 59.37

T*: Transformer-based

Table 5: Generalizability of approach in classifying weak code
for n = 5 and n = 3 of selected neighbors on unseen data.

VulSim
n = 5 n = 3

Acc. Prc. Rec. Acc. Prc. Rec.
Weak 55.86% 0.53 0.85 54.33.% 0.52 0.80
Safe 0.66 0.28 0.61 0.30

5 neighbors) and similarly from 67% to 80% (for 3 neighbors).
This change in the testing dataset led to a notable enhance-
ment in the retrieval of vulnerable code detection rather than
a deterioration. However, it is important to note that more
number of false positives (lower precision) was the trade-off
for the improved recall.

The performance evaluation of the models in the
CodexGLUE benchmark was conducted based on training
and testing on the Devign dataset. Initially, our intention was
to test the top models on the benchmark on the same BigVul
dataset to facilitate comparison. However, we encountered
limitations in accessing the source code and data for some
of the top-performing models, making their implementation
infeasible. Specifically, CoText could not be re-implemented
due to library issues.

Among the models, we were able to evaluate, as can be
observed from Table 6, VulBERTa-MLP reported an accu-
racy of 64.75%. Upon regeneration, our results showed a
comparable accuracy of 64.71%. However, VulSim outper-
formed VulBERTa-MLP in terms of recall rate to detect vul-
nerable code (85% compared to 37%) and overall accuracy
(55% compared to 49.72%). Vulberta-CNN reported an accu-
racy of 64.42. Upon re-generation using their provided code,
we achieved 53.60% accuracy which is around 11% lower
than the reported value. While testing on Big-Vul dataset,
it gave an accuracy of around 54.6% which is similar to

USENIX Association 33rd USENIX Security Symposium    1787



Table 6: Generalizability of approach in classifying weak code for other models on BigVul dataset

Reported Re-generated Tested on BigVul
Acc. (%) Acc. (%) Prc. Rec. Acc. (%) Prc. Rec.

VulBERTa-MLP 64.75 64.71 0.65 0.51 49.72 0.49 0.37
VulBERTa-CNN 64.42 53.60 0.48 0.12 54.60 0.50 0.13
ReGVD 63.69 61.79 0.63 0.41 48.91 0.48 0.34

VulSim. However, in terms of recall, it performed poorly
compared to VulSim (13% compared to 85% of Vulsim),
which means it did not do a good job of recognizing vul-
nerable records successfully. Additionally, we compared our
results with ReGVD [69]. ReGVD achieved a lower recall
rate (33.90%) and overall accuracy (48.91%) compared to
VulSim and VulBERTa.

This outcome signifies the robustness and adaptability of
VulSim, as it successfully recognized a significant portion of
vulnerable methods even when faced with previously unseen
and diverse code structures. These findings underscore the
potential of VulSim in effectively detecting weak methods in
various code contexts and highlight the importance of further
optimizing the precision to enhance the overall performance
and reliability of the model.

4.3 Report

In addition to classifying methods as safe or vulnerable, our
framework generates a comprehensive report containing in-
formation about the two closest neighbors of a given method
in each space to provide insightful context for human-in-the-
loop evaluation. An example report generated by VulSim is
illustrated in Figure 4 in Appendix A. This report assists in
manually checking a function by providing a brief descrip-
tion and the top two neighbors in each dimension, along with
descriptions to aid vulnerability detection.

5 Threats to Validity

Potential biases can arise from the usage of a C-based dataset.
While the proposed approach has demonstrated promising
results, establishing its generalizability to other programming
languages requires further experimentation. Nevertheless, a
noteworthy advantage of our approach is its capability to ac-
count for semantic properties even in scenarios where the
code’s structure and syntax significantly differ. This charac-
teristic enables the model to make reasonable decisions even
in the presence of substantial code variations. To address
this threat, we can minimize its impact by assigning higher
weights to the semantic properties when transferring models
trained in one language to be applied in an environment using
a different programming language.

Furthermore, achieving consistent functionality sharing
among various vulnerabilities is challenging because of gran-

ularity concerns. In some cases, a single method may not fully
encapsulate the intended functionality, leading to higher-level
functionality that spans across multiple methods. This situ-
ation necessitates the identification of all relevant scattered
methods to accurately determine functional similarity among
vulnerabilities.

Conversely, opting for a file-level comparison may result in
the selection of files that contain small and irrelevant compo-
nents unrelated to the actual functionality of the file, such as
a method for serializing the output [27]. This issue highlights
the importance of striking a balance in selecting the level of
granularity for functionality representation to ensure that rele-
vant and meaningful similarities are captured while avoiding
the inclusion of extraneous and unrelated elements.

One limitation arose from the token size constraints of
transformer-based models, which affected the generation of
CodeBERT embeddings. To accommodate the token size
limit of 512, we had to truncate the tokens, which may have
resulted in the loss of some syntactic information from the
code snippets. Furthermore, during the fine-tuning process of
the code2vec model for the DeVign dataset, 71 records were
discarded as they could not be represented in AST format.
Although these discarded records only account for 0.002% of
the entire dataset, we recognize the potential impact on the
representativeness of the model.

To mitigate the influence of these limitations, we carefully
considered the impact on the overall system’s performance.
While the token truncation in CodeBERT embeddings might
have affected the full context representation, we selected an
appropriate token size to balance model performance and
computational efficiency. Additionally, the discarded records
were a very small fraction of the samples in the dataset.

6 Related Works

In the field of vulnerability detection, two primary approaches
are widely used: static and dynamic analysis of the source
code. While static analysis examines the source code without
executing it, dynamic analysis involves executing the pro-
gram with specific input data. Hybrid analysis, which com-
bines both static and dynamic approaches, is also commonly
practiced.

Machine learning (ML) techniques have been leveraged
for vulnerability detection, categorized into four main types
as proposed by Ghaffarian and Shahriari [33]: prediction
models based on software metrics, anomaly detection ap-

1788    33rd USENIX Security Symposium USENIX Association



proaches, vulnerable code pattern recognition, and miscel-
laneous approaches. The first category utilizes source code
files, object-oriented classes, and binary components to train
ML models for vulnerability detection. For instance, Moshtari
et al. [65] proposed a semi-analysis framework for within-
project and cross-project vulnerability prediction. Anomaly
detection methods, such as Chucky proposed by Yamaguchi
et al. [111], identify software defects by detecting unusual
patterns in the source code. Pattern recognition techniques,
like the N-gram text-mining approach used by Pang et al. [71],
analyze large data sets to detect source code vulnerabilities.
Transformer-based deep learning approaches have also been
utilized for vulnerability detection, with models like Vulberta
proposed by Hanif and Maffeis [39] that pre-trains RoBERTa
with a custom tokenization pipeline.

Several efforts contributed to vulnerability detection. For
instance, Du et al. [24] proposed a lightweight framework
called Leopard, which assesses vulnerabilities through pro-
gram metrics and ranking mechanisms. Li et al. [47] intro-
duced IVDetect, an interpretable vulnerability detector that
provides vulnerability interpretations based on vulnerable
statements and their surroundings.

Other efforts have explored incorporating semantic infor-
mation in vulnerability detection, as seen in efforts by Wang et
al. [106], Choi et al. [20], Li et al. [50], Liu et al. [53], Zhou et
al. [119], Li et al. [49], and Sun et al. [93]. Chan et al. [14] and
Zhao et al. [117] explored vulnerability detection during code
editing and utilized function fingerprints and code differences,
respectively. Le and Babar [45] used real-world data to inves-
tigate ML models for automating function-level vulnerability
assessment tasks such as predicting Common Vulnerability
Scoring System. Benjamin et al. [91] reproduced 9 State-of-
the-Art vulnerability detection models and answered research
questions in three areas, model capabilities, training data, and
model interpretation.

Cai et al. [11] proposed a vulnerability detection method
based on deep learning with complex network analysis
and subgraph partition. Another recent work is VDDA
[15] where the authors utilized deep learning and attention
mechanism-based combined architecture for vulnerability de-
tection. Mirsky et al. [61] proposed VulChecker, DL frame-
work that detectors instruction and line level vulnerability.
Their methodology lacks consideration for all vulnerability
types in general. Instead, it focuses on 5 Common Weakness
Enumeration (CWE) categories, employing separate models
to detect vulnerabilities within each of these specific cate-
gories. Cheng et al. [18] proposed Path-Sensitive Code Em-
bedding utilizing a pre-trained value-flow path encoder via
self-supervised contrastive learning. Wang et al. [105] de-
veloped a multi-relational, gated graph neural network vul-
nerability detection by combining probabilistic learning and
statistical assessment to develop a “mixture-of-experts” ap-
proach to address the shortage of vulnerable training code
samples. They further exploited transfer learning to port vul-

nerability detection models across programming languages.
While our approach focused on detecting vulnerabilities at

the function-level granularity, other researchers like Hin et al.
[33] and Li et al. [39], Fu and fu2022linevul [30], Dong et
al. [23] explored the detection of vulnerabilities at the state-
ment level. Zhang et al. [115] also proposed statement-level
vulnerability detection approach CPVD that combines Graph
Attention Network and Domain Adaptation Representation
Learning to detect vulnerability in source code. Addition-
ally, [48, 51, 87, 96] worked on code gadget/slice-level vulner-
ability detection.

Recent work focuses on vulnerability detection based on
Large Language Models (LLM)-based approaches [19, 31,
54, 76, 83]. As demonstrated by Steenhoek et al. [92] LLMs
generally struggled with vulnerability detection tasks. A re-
cent work by Shestov et al. [83] demonstrated better perfor-
mance of fine-tuned LLM compared to CodeBERT-like mod-
els. However, more research needs to be done to compare their
work with SOTA vulnerability detection tools [9, 88–90, 103]
to better validate such approaches.

In contrast to the aforementioned efforts, our approach aims
to utilize multiple properties of source code to maximize the
potential of detecting vulnerabilities. By considering various
aspects of code representation and neighbor information, we
seek to enhance the effectiveness of vulnerability detection in
VulSim.

7 Conclusion and Future Works

In this paper, we introduce VulSim, a vulnerability detection
tool. Through the analysis of diverse code embeddings, we
initially hypothesize and subsequently validate that incorpo-
rating multiple dimensions of code properties (i.e., syntactic,
semantic, and contextual) alongside neighboring information
enhances vulnerability detection. Experimental results indi-
cate, that VulSim outperforms other SOTA vulnerability detec-
tion models and exhibits good results when tested on unseen
data. Future work includes applying our approach to identify
vulnerabilities in other languages as well as studying the im-
pact of applying it in a domain-specific fashion (e.g., to certain
types of applications or certain types of vulnerabilities).

8 Acknowledgement

The work in this paper was partially funded by the Office of
Naval Research (ONR) (Grant#: G2A62826).

USENIX Association 33rd USENIX Security Symposium    1789



References
[1] Ffmpeg. https://github.com/FFmpeg/FFmpeg, note = Accessed:

2023-04-04.

[2] Qemu. https://github.com/qemu/qemu, note = Accessed: 2023-
04-04.

[3] AHMAD, W. U., CHAKRABORTY, S., RAY, B., AND CHANG, K.-W.
Unified pre-training for program understanding and generation, 2021.

[4] AL-MSIE’DEEN, R., SERIAI, A.-D., HUCHARD, M., URTADO, C.,
AND VAUTTIER, S. Mining features from the object-oriented source
code of software variants by combining lexical and structural simi-
larity. In 2013 IEEE 14th International Conference on Information
Reuse Integration (2013), pp. 586–593.

[5] ALADICS, T., HEGEDŰS, P., AND FERENC, R. An ast-based code
change representation and its performance in just-in-time vulnerability
prediction. In International Conference on Software Technologies
(2022), Springer, pp. 169–186.

[6] ALON, U., ZILBERSTEIN, M., LEVY, O., AND YAHAV, E. code2vec:
Learning distributed representations of code. ACM on Programming
Languages 3, POPL (2019), 1–29.

[7] ALZAHRANI, A., ALSHEHRI, A., ALSHAHRANI, H., ALHARTHI,
R., FU, H., LIU, A., AND ZHU, Y. Randroid: structural similarity
approach for detecting ransomware applications in android platform.
In 2018 IEEE International Conference on Electro/Information Tech-
nology (EIT) (2018), IEEE, pp. 0892–0897.

[8] ASTMINER. astminer. https://github.com/
JetBrains-Research/astminer, 2007. Accessed: 2023-28-
07.

[9] BIGELOW, D., HOBSON, T., RUDD, R., STREILEIN, W., AND
OKHRAVI, H. There’s a hole in the bottom of the c: On the effec-
tiveness of allocation protection. In Proceedings of the IEEE Secure
Development Conference (SecDev18) (Oct 2018).

[10] BURATTI, L., PUJAR, S., BORNEA, M., MCCARLEY, S., ZHENG, Y.,
ROSSIELLO, G., MORARI, A., LAREDO, J., THOST, V., ZHUANG,
Y., AND DOMENICONI, G. Exploring software naturalness through
neural language models, 2020.

[11] CAI, W., CHEN, J., YU, J., AND GAO, L. A software vulnerability
detection method based on deep learning with complex network anal-
ysis and subgraph partition. Information and Software Technology
164 (2023), 107328.

[12] CAO, Y., ZOU, Y., AND XIE, B. Extracting code-relevant description
sentences based on structural similarity. In Proceedings of the 11th
Asia-Pacific Symposium on Internetware (New York, NY, USA, 2019),
Internetware ’19, Association for Computing Machinery.

[13] CHAKRABORTY, S., KRISHNA, R., DING, Y., AND RAY, B. Deep
learning based vulnerability detection: Are we there yet? IEEE Trans-
actions on Software Engineering 48, 9 (2022), 3280–3296.

[14] CHAN, A., KHARKAR, A., MOGHADDAM, R. Z., MOHYLEVSKYY,
Y., HELYAR, A., KAMAL, E., ELKAMHAWY, M., AND SUNDARE-
SAN, N. Transformer-based vulnerability detection in code at edittime:
Zero-shot, few-shot, or fine-tuning? arXiv preprint arXiv:2306.01754
(2023).

[15] CHANG, J., MA, Z., CAO, B., AND ZHU, E. Vdda: An effective
software vulnerability detection model based on deep learning and
attention mechanism. In 2023 26th International Conference on
Computer Supported Cooperative Work in Design (CSCWD) (2023),
IEEE, pp. 474–479.

[16] CHEN, Y., DING, Z., ALOWAIN, L., CHEN, X., AND WAGNER, D.
Diversevul: A new vulnerable source code dataset for deep learning
based vulnerability detection. In Proceedings of the 26th International
Symposium on Research in Attacks, Intrusions and Defenses (2023),
pp. 654–668.

[17] CHEN, Z., AND MONPERRUS, M. A literature study of embeddings
on source code. arXiv preprint arXiv:1904.03061 (2019).

[18] CHENG, X., ZHANG, G., WANG, H., AND SUI, Y. Path-sensitive
code embedding via contrastive learning for software vulnerability
detection. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis (2022), pp. 519–531.

[19] CHESHKOV, A., ZADOROZHNY, P., AND LEVICHEV, R. Evalua-
tion of chatgpt model for vulnerability detection. arXiv preprint
arXiv:2304.07232 (2023).

[20] CHOI, M.-J., JEONG, S., OH, H., AND CHOO, J. End-to-end pre-
diction of buffer overruns from raw source code via neural memory
networks. arXiv preprint arXiv:1703.02458 (2017).

[21] COIMBRA, D., REIS, S., ABREU, R., PĂSĂREANU, C., AND ER-
DOGMUS, H. On using distributed representations of source code
for the detection of c security vulnerabilities. arXiv preprint
arXiv:2106.01367 (2021).

[22] DEVIGNISSUE. Devignissue. https://github.com/epicosy/
devign/issues, 2007. Accessed: 2023-07-29.

[23] DONG, Y., TANG, Y., CHENG, X., YANG, Y., AND WANG, S. Sedsvd:
Statement-level software vulnerability detection based on relational
graph convolutional network with subgraph embedding. Information
and Software Technology 158 (2023), 107168.

[24] DU, X., CHEN, B., LI, Y., GUO, J., ZHOU, Y., LIU, Y., AND JIANG,
Y. Leopard: Identifying vulnerable code for vulnerability assessment
through program metrics. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE) (2019), IEEE, pp. 60–71.

[25] EFSTATHIOU, V., AND SPINELLIS, D. Semantic source code models
using identifier embeddings. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR) (2019), IEEE,
pp. 29–33.

[26] FAN, J., LI, Y., WANG, S., AND NGUYEN, T. N. Ac/c++ code vulner-
ability dataset with code changes and cve summaries. In Proceedings
of the 17th International Conference on Mining Software Repositories
(2020), pp. 508–512.

[27] FANG, C., LIU, Z., SHI, Y., HUANG, J., AND SHI, Q. Functional
code clone detection with syntax and semantics fusion learning. In
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis (2020), pp. 516–527.

[28] FENG, Z., GUO, D., TANG, D., DUAN, N., FENG, X., GONG, M.,
SHOU, L., QIN, B., LIU, T., JIANG, D., ET AL. Codebert: A pre-
trained model for programming and natural languages.

[29] FOKAEFS, M., TSANTALIS, N., STROULIA, E., AND CHATZIGEOR-
GIOU, A. Jdeodorant: identification and application of extract class
refactorings. In 2011 33rd International Conference on Software
Engineering (2011), IEEE, pp. 1037–1039.

[30] FU, M., AND TANTITHAMTHAVORN, C. Linevul: A transformer-
based line-level vulnerability prediction. In Proceedings of the 19th
International Conference on Mining Software Repositories (2022),
pp. 608–620.

[31] FU, M., TANTITHAMTHAVORN, C. K., NGUYEN, V., AND LE, T.
Chatgpt for vulnerability detection, classification, and repair: How far
are we? In 2023 30th Asia-Pacific Software Engineering Conference
(APSEC) (2023), IEEE, pp. 632–636.

[32] GARLAN, D., SCHMERL, B., AND CHENG, S.-W. Software
architecture-based self-adaptation. In Autonomic computing and net-
working. Springer, 2009, pp. 31–55.

[33] GHAFFARIAN, S. M., AND SHAHRIARI, H. R. Software vulnerabil-
ity analysis and discovery using machine-learning and data-mining
techniques: A survey. ACM Computing Surveys (CSUR) 50, 4 (2017),
1–36.

[34] GODFREY, M. W., AND ZOU, L. Using origin analysis to detect
merging and splitting of source code entities. IEEE Transactions on
Software Engineering 31, 2 (2005), 166–181.

1790    33rd USENIX Security Symposium USENIX Association

https://github.com/FFmpeg/FFmpeg 
https://github.com/qemu/qemu
https://github.com/JetBrains-Research/astminer
https://github.com/JetBrains-Research/astminer
https://github.com/epicosy/devign/issues
https://github.com/epicosy/devign/issues


[35] GOMES, L. H., CASTRO, F. D., ALMEIDA, V. A., ALMEIDA, J. M.,
ALMEIDA, R. B., AND BETTENCOURT, L. M. Improving spam
detection based on structural similarity. SRUTI 5 (2005), 12–12.

[36] GOOGLE. Sbert vs. data2vec on text classification.

[37] GUO, D., LU, S., DUAN, N., WANG, Y., ZHOU, M., AND YIN, J.
Unixcoder: Unified cross-modal pre-training for code representation.
arXiv preprint arXiv:2203.03850 (2022).

[38] GUO, D., REN, S., LU, S., FENG, Z., TANG, D., LIU, S., ZHOU,
L., DUAN, N., SVYATKOVSKIY, A., FU, S., ET AL. Graphcode-
bert: Pre-training code representations with data flow. arXiv preprint
arXiv:2009.08366 (2020).

[39] HANIF, H., AND MAFFEIS, S. Vulberta: Simplified source code pre-
training for vulnerability detection. arXiv preprint arXiv:2205.12424
(2022).

[40] HANIF, H., NASIR, M. H. N. M., AB RAZAK, M. F., FIRDAUS, A.,
AND ANUAR, N. B. The rise of software vulnerability: Taxonomy of
software vulnerabilities detection and machine learning approaches.
Journal of Network and Computer Applications 179 (2021), 103009.

[41] JAIN, R., GERVASONI, N., NDHLOVU, M., AND RAWAT, S. A code
centric evaluation of c/c++ vulnerability datasets for deep learning
based vulnerability detection techniques. In Proceedings of the 16th
Innovations in Software Engineering Conference (2023), pp. 1–10.

[42] KANADE, A., MANIATIS, P., BALAKRISHNAN, G., AND SHI, K.
Learning and evaluating contextual embedding of source code. In
International Conference on Machine Learning (2020), PMLR,
pp. 5110–5121.

[43] KARMAKAR, A., AND ROBBES, R. What do pre-trained code models
know about code? In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE) (2021), IEEE, pp. 1332–
1336.

[44] KOVALENKO, V., BOGOMOLOV, E., BRYKSIN, T., AND BACCHELLI,
A. Pathminer: a library for mining of path-based representations of
code. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR) (2019), IEEE, pp. 13–17.

[45] LE, T. H. M., AND BABAR, M. A. On the use of fine-grained vulner-
able code statements for software vulnerability assessment models. In
Proceedings of the 19th International Conference on Mining Software
Repositories (2022), pp. 621–633.

[46] LI, R., ALLAL, L. B., ZI, Y., MUENNIGHOFF, N., KOCETKOV, D.,
MOU, C., MARONE, M., AKIKI, C., LI, J., CHIM, J., ET AL. Star-
coder: may the source be with you! arXiv preprint arXiv:2305.06161
(2023).

[47] LI, Y., WANG, S., AND NGUYEN, T. N. Vulnerability detection with
fine-grained interpretations. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (2021), pp. 292–
303.

[48] LI, Z., ZOU, D., XU, S., JIN, H., ZHU, Y., AND CHEN, Z. Sysevr:
A framework for using deep learning to detect software vulnerabili-
ties. IEEE Transactions on Dependable and Secure Computing 19, 4
(2021), 2244–2258.

[49] LI, Z., ZOU, D., XU, S., JIN, H., ZHU, Y., ZHANG, Y., CHEN, Z.,
AND LI, D. Vuldeelocator: A deep learning-based system for de-
tecting and locating software vulnerabilities. IEEE Transactions on
Dependable and Secure Computing (2021).

[50] LI, Z., ZOU, D., XU, S., OU, X., JIN, H., WANG, S., DENG, Z.,
AND ZHONG, Y. Vuldeepecker: A deep learning-based system for
vulnerability detection. arXiv preprint arXiv:1801.01681 (2018).

[51] LI, Z., ZOU, D., XU, S., OU, X., JIN, H., WANG, S., DENG, Z.,
AND ZHONG, Y. Vuldeepecker: A deep learning-based system for
vulnerability detection. arXiv preprint arXiv:1801.01681 (2018).

[52] LIN, G., WEN, S., HAN, Q.-L., ZHANG, J., AND XIANG, Y. Soft-
ware vulnerability detection using deep neural networks: a survey.
Proceedings of the IEEE 108, 10 (2020), 1825–1848.

[53] LIU, S., DIBAEI, M., TAI, Y., CHEN, C., ZHANG, J., AND XIANG,
Y. Cyber vulnerability intelligence for internet of things binary. IEEE
Transactions on Industrial Informatics 16, 3 (2019), 2154–2163.

[54] LU, G., JU, X., CHEN, X., PEI, W., AND CAI, Z. Grace: Empowering
llm-based software vulnerability detection with graph structure and
in-context learning. Journal of Systems and Software 212 (2024),
112031.

[55] LU, S., GUO, D., REN, S., HUANG, J., SVYATKOVSKIY, A.,
BLANCO, A., CLEMENT, C., DRAIN, D., JIANG, D., TANG, D.,
LI, G., ZHOU, L., SHOU, L., ZHOU, L., TUFANO, M., GONG, M.,
ZHOU, M., DUAN, N., SUNDARESAN, N., DENG, S. K., FU, S.,
AND LIU, S. Codexglue: A machine learning benchmark dataset for
code understanding and generation, 2021.

[56] LU, S., GUO, D., REN, S., HUANG, J., SVYATKOVSKIY, A.,
BLANCO, A., CLEMENT, C. B., DRAIN, D., JIANG, D., TANG, D.,
LI, G., ZHOU, L., SHOU, L., ZHOU, L., TUFANO, M., GONG, M.,
ZHOU, M., DUAN, N., SUNDARESAN, N., DENG, S. K., FU, S.,
AND LIU, S. Codexglue: A machine learning benchmark dataset for
code understanding and generation. CoRR abs/2102.04664 (2021).

[57] MA, W., LIU, S., ZHAO, M., XIE, X., WANG, W., HU, Q., ZHANG,
J., AND LIU, Y. Unveiling code pre-trained models: Investigating
syntax and semantics capacities. ACM Transactions on Software
Engineering and Methodology.

[58] MIKOLOV, T., CHEN, K., CORRADO, G., AND DEAN, J. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781 (2013).

[59] MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO, G. S., AND
DEAN, J. Distributed representations of words and phrases and their
compositionality. In Advances in neural information processing sys-
tems (2013), pp. 3111–3119.

[60] MILLER, M. Trends, challenges, and strategic shifts in the software
vulnerability mitigation landscape (feb 2019). URL https://github.
com/microsoft/MSRC-Security-Research.

[61] MIRSKY, Y., MACON, G., BROWN, M., YAGEMANN, C., PRUETT,
M., DOWNING, E., MERTOGUNO, S., AND LEE, W. Vulchecker:
Graph-based vulnerability localization in source code. In 31st
USENIX Security Symposium, Security 2022 (2023).

[62] MITRE. Common vulnerabilities and exposures. https://cve.
mitre.org/cve/, 2005. Accessed: 2023-10-20.

[63] MITRE. Common weakness enumeration. https://cwe.mitre.
org/, 2005. Accessed: 2020-10-20.

[64] MOGHADAM, I. H., AND CINNÉIDE, M. Ó. Automated refactoring
using design differencing. In 2012 16th European Conference on
Software Maintenance and Reengineering (2012), IEEE, pp. 43–52.

[65] MOSHTARI, S., SAMI, A., AND AZIMI, M. Using complexity metrics
to improve software security. Computer Fraud & Security 2013, 5
(2013), 8–17.

[66] MOSOLYGÓ, B., VÁNDOR, N., HEGEDŰS, P., AND FERENC, R. A
line-level explainable vulnerability detection approach for java. In
Computational Science and Its Applications – ICCSA 2022 Workshops
(Cham, 2022), O. Gervasi, B. Murgante, S. Misra, A. M. A. C. Rocha,
and C. Garau, Eds., Springer International Publishing, pp. 106–122.

[67] NASEEM, R., MAQBOOL, O., AND MUHAMMAD, S. Improved sim-
ilarity measures for software clustering. In 2011 15th European Con-
ference on Software Maintenance and Reengineering (2011), IEEE,
pp. 45–54.

[68] NASEEM, U., RAZZAK, I., KHAN, S. K., AND PRASAD, M. A
comprehensive survey on word representation models: From classical
to state-of-the-art word representation language models. Transactions
on Asian and Low-Resource Language Information Processing 20, 5
(2021), 1–35.

USENIX Association 33rd USENIX Security Symposium    1791

https://cve.mitre.org/cve/
https://cve.mitre.org/cve/
https://cwe.mitre.org/
https://cwe.mitre.org/


[69] NGUYEN, V.-A., NGUYEN, D. Q., NGUYEN, V., LE, T., TRAN,
Q. H., AND PHUNG, D. Regvd: Revisiting graph neural networks for
vulnerability detection. In Proceedings of the ACM/IEEE 44th Interna-
tional Conference on Software Engineering: Companion Proceedings
(2022), pp. 178–182.

[70] OKHRAVI, H. A cybersecurity moonshot. IEEE Security & Privacy
19, 3 (2021), 8–16.

[71] PANG, Y., XUE, X., AND NAMIN, A. S. Predicting vulnerable soft-
ware components through n-gram analysis and statistical feature se-
lection. In 14th International Conference on Machine Learning and
Applications (2015), IEEE, pp. 543–548.

[72] PARTENZA, G., AMBURGEY, T., DENG, L., DEHLINGER, J., AND
CHAKRABORTY, S. Automatic identification of vulnerable code:
Investigations with an ast-based neural network. In 2021 IEEE 45th
Annual Computers, Software, and Applications Conference (COMP-
SAC) (2021), IEEE, pp. 1475–1482.

[73] PENG, X., XING, Z., TAN, X., YU, Y., AND ZHAO, W. Improving
feature location using structural similarity and iterative graph mapping.
Journal of Systems and Software 86, 3 (2013), 664–676.

[74] PHAN, L., TRAN, H., LE, D., NGUYEN, H., ANIBAL, J., PEL-
TEKIAN, A., AND YE, Y. Cotext: Multi-task learning with code-text
transformer. arXiv preprint arXiv:2105.08645 (2021).

[75] PHAN, L., TRAN, H., LE, D., NGUYEN, H., ANIBAL, J., PEL-
TEKIAN, A., AND YE, Y. Cotext: Multi-task learning with code-text
transformer, 2021.

[76] PURBA, M. D., GHOSH, A., RADFORD, B. J., AND CHU, B. Soft-
ware vulnerability detection using large language models. In 2023
IEEE 34th International Symposium on Software Reliability Engineer-
ing Workshops (ISSREW) (2023), pp. 112–119.

[77] REIMERS, N., AND GUREVYCH, I. Sentence-bert: Sentence embed-
dings using siamese bert-networks. arXiv preprint arXiv:1908.10084
(2019).

[78] REVEALISSUE. Revealissue. https://github.com/
VulDetProject/ReVeal/issues, 2007. Accessed: 2023-07-
29.

[79] ROZIERE, B., GEHRING, J., GLOECKLE, F., SOOTLA, S., GAT,
I., TAN, X. E., ADI, Y., LIU, J., REMEZ, T., RAPIN, J., ET AL.
Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950 (2023).

[80] RUSSELL, R., KIM, L., HAMILTON, L., LAZOVICH, T., HARER, J.,
OZDEMIR, O., ELLINGWOOD, P., AND MCCONLEY, M. Automated
vulnerability detection in source code using deep representation learn-
ing. In international conference on machine learning and applications
(2018), IEEE, pp. 757–762.

[81] SARD. Nist software assurance reference dataset. https://samate.
nist.gov/SARD/, 2004. Accessed: 2021-06-04.

[82] SHEIKHALISHAHI, M., SARACINO, A., MEJRI, M., TAWBI, N., AND
MARTINELLI, F. Fast and effective clustering of spam emails based
on structural similarity. In International Symposium on Foundations
and Practice of Security (2015), Springer, pp. 195–211.

[83] SHESTOV, A., CHESHKOV, A., LEVICHEV, R., MUSSABAYEV, R.,
ZADOROZHNY, P., MASLOV, E., VADIM, C., AND BULYCHEV, E.
Finetuning large language models for vulnerability detection. arXiv
preprint arXiv:2401.17010 (2024).

[84] SHIMMI, S., AND RAHIMI, M. Leveraging code-test co-evolution
patterns for automated test case recommendation. In Proceedings
of the 3rd ACM/IEEE International Conference on Automation of
Software Test (2022), pp. 65–76.

[85] SHIMMI, S., AND RAHIMI, M. Mining software repositories for patt-
ernizing attack-and-defense co-evolution. In Proceedings of the 1st
International Workshop on Mining Software Repositories Applications
for Privacy and Security (2022), pp. 2–6.

[86] SIMON, F., STEINBRUCKNER, F., AND LEWERENTZ, C. Metrics
based refactoring. In Proceedings fifth european conference on soft-
ware maintenance and reengineering (2001), IEEE, pp. 30–38.

[87] SKOWYRA, R., CASTEEL, K., OKHRAVI, H., ZELDOVICH, N., AND
STREILEIN, W. Systematic analysis of defenses against return-
oriented programming. In Research in Attacks, Intrusions, and De-
fenses (2013), S. J. Stolfo, A. Stavrou, and C. V. Wright, Eds., Springer
Berlin Heidelberg, pp. 82–102.

[88] SKOWYRA, R., GOMEZ, S. R., BIGELOW, D., LANDRY, J., , AND
OKHRAVI, H. QUASAR: Quantitative Attack Space Analysis and
Reasoning. In Proceedings of IEEE Annual Computer Security Appli-
cations Conference (ACSAC’17) (Dec 2017).

[89] SONG, D., LETTNER, J., RAJASEKARAN, P., NA, Y., VOLCKAERT,
S., LARSEN, P., AND FRANZ, M. Sok: Sanitizing for security. In
2019 IEEE Symposium on Security and Privacy (SP) (2019), IEEE,
pp. 1275–1295.

[90] SRIVASTAVA, P., PENG, H., LI, J., OKHRAVI, H., SHROBE, H., AND
PAYER, M. FirmFuzz: Automated IoT Firmware Introspection and
Analysis. In Proceedings of the ACM CCS IoT Security & Privacy
Workshop (IoTS&P) (Nov 2019).

[91] STEENHOEK, B., RAHMAN, M. M., JILES, R., AND LE, W. An
empirical study of deep learning models for vulnerability detection.
In 2023 IEEE/ACM 45th International Conference on Software Engi-
neering (ICSE) (2023), IEEE, pp. 2237–2248.

[92] STEENHOEK, B., RAHMAN, M. M., ROY, M. K., ALAM, M. S.,
BARR, E. T., AND LE, W. A comprehensive study of the capabilities
of large language models for vulnerability detection. arXiv preprint
arXiv:2403.17218 (2024).

[93] SUN, H., CUI, L., LI, L., DING, Z., HAO, Z., CUI, J., AND LIU, P.
Vdsimilar: Vulnerability detection based on code similarity of vulner-
abilities and patches. Computers & Security 110 (2021), 102417.

[94] TANG, W., TANG, M., BAN, M., ZHAO, Z., AND FENG, M. Csgvd: A
deep learning approach combining sequence and graph embedding for
source code vulnerability detection. Journal of Systems and Software
199 (2023), 111623.

[95] TANG, Z., HU, Q., HU, Y., KUANG, W., AND CHEN, J. Sevuldet:
A semantics-enhanced learnable vulnerability detector. In 2022 52nd
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN) (2022), IEEE, pp. 150–162.

[96] TAO, W., SU, X., WAN, J., WEI, H., AND ZHENG, W. Vulnerabil-
ity detection through cross-modal feature enhancement and fusion.
Computers & Security (2023), 103341.

[97] TERRA, R., VALENTE, M. T., AND ANQUETIL, N. A lightweight
remodularization process based on structural similarity. In 2016 X
Brazilian Symposium on Software Components, Architectures and
Reuse (SBCARS) (2016), IEEE, pp. 111–120.

[98] TIAN, J., XING, W., AND LI, Z. Bvdetector: A program slice-based
binary code vulnerability intelligent detection system. Information
and Software Technology 123 (2020), 106289.

[99] TSANTALIS, N., AND CHATZIGEORGIOU, A. Identification of move
method refactoring opportunities. IEEE Transactions on Software
Engineering 35, 3 (2009), 347–367.

[100] TSANTALIS, N., AND CHATZIGEORGIOU, A. Identification of extract
method refactoring opportunities for the decomposition of methods.
Journal of Systems and Software 84, 10 (2011), 1757–1782.

[101] TURNER, S. Security vulnerabilities of the top ten programming
languages: C, java, c++, objective-c, c#, php, visual basic, python,
perl, and ruby. Journal of Technology Research 5 (2014), 1.

[102] VELICKOVIC, P., CUCURULL, G., CASANOVA, A., ROMERO, A.,
LIO, P., BENGIO, Y., ET AL. Graph attention networks. stat 1050,
20 (2017), 10–48550.

1792    33rd USENIX Security Symposium USENIX Association

https://github.com/VulDetProject/ReVeal/issues
https://github.com/VulDetProject/ReVeal/issues
https://samate.nist.gov/SARD/
https://samate.nist.gov/SARD/


[103] VIDAS, T., LARSEN, P., OKHRAVI, H., AND SADEGHI, A.-R.
Changing the game of software security. Security Privacy, IEEE
16, 2 (Mar/Apr 2018), 10–11.

[104] WAN, Y., ZHAO, W., ZHANG, H., SUI, Y., XU, G., AND JIN, H.
What do they capture? a structural analysis of pre-trained language
models for source code. In Proceedings of the 44th International
Conference on Software Engineering (2022), pp. 2377–2388.

[105] WANG, H., YE, G., TANG, Z., TAN, S. H., HUANG, S., FANG, D.,
FENG, Y., BIAN, L., AND WANG, Z. Combining graph-based learn-
ing with automated data collection for code vulnerability detection.
IEEE Transactions on Information Forensics and Security 16 (2020),
1943–1958.

[106] WANG, S., LIU, T., AND TAN, L. Automatically learning semantic
features for defect prediction. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE) (2016), IEEE, pp. 297–
308.

[107] WANG, Y., LE, H., GOTMARE, A. D., BUI, N. D., LI, J., AND HOI,
S. C. Codet5+: Open code large language models for code under-
standing and generation. arXiv preprint arXiv:2305.07922 (2023).

[108] WANG, Y., WANG, W., JOTY, S., AND HOI, S. C. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code under-
standing and generation. arXiv preprint arXiv:2109.00859 (2021).

[109] WEN, X.-C., CHEN, Y., GAO, C., ZHANG, H., ZHANG, J. M.,
AND LIAO, Q. Vulnerability detection with graph simplifica-
tion and enhanced graph representation learning. arXiv preprint
arXiv:2302.04675 (2023).

[110] WU, P., YIN, L., DU, X., JIA, L., AND DONG, W. Graph-based vul-
nerability detection via extracting features from sliced code. In 2020
IEEE 20th International Conference on Software Quality, Reliability
and Security Companion (QRS-C) (2020), pp. 38–45.

[111] YAMAGUCHI, F., WRESSNEGGER, C., GASCON, H., AND RIECK,
K. Chucky: Exposing missing checks in source code for vulnerability
discovery. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security (2013), pp. 499–510.

[112] YING, A. T., MURPHY, G. C., NG, R., AND CHU-CARROLL, M. C.
Predicting source code changes by mining change history. vol. 30,
pp. 574–586.

[113] YUAN, B., LU, Y., FANG, Y., WU, Y., ZOU, D., LI, Z., LI, Z., AND
JIN, H. Enhancing deep learning-based vulnerability detection by
building behavior graph model. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE) (2023), IEEE, pp. 2262–
2274.

[114] ZENG, P., LIN, G., PAN, L., TAI, Y., AND ZHANG, J. Software
vulnerability analysis and discovery using deep learning techniques:
A survey. IEEE Access 8 (2020), 197158–197172.

[115] ZHANG, C., LIU, B., XIN, Y., AND YAO, L. Cpvd: Cross project
vulnerability detection based on graph attention network and domain
adaptation. IEEE Transactions on Software Engineering (2023).

[116] ZHANG, H., BI, Y., GUO, H., SUN, W., AND LI, J. Isvsf: Intelli-
gent vulnerability detection against java via sentence-level pattern
exploring. IEEE Systems Journal 16, 1 (2021), 1032–1043.

[117] ZHAO, Q., HUANG, C., AND DAI, L. Vuldeff: vulnerability de-
tection method based on function fingerprints and code differences.
Knowledge-Based Systems 260 (2023), 110139.

[118] ZHENG, W., ZHANG, M., TANG, H., CAI, Y., CHEN, X., WU, X.,
AND SEMASABA, A. O. A. Automatically identifying bug reports
with tactical vulnerabilities by deep feature learning. In Interna-
tional Symposium on Software Reliability Engineering (2021), IEEE,
pp. 333–344.

[119] ZHOU, Y., LIU, S., SIOW, J., DU, X., AND LIU, Y. Devign: Effective
vulnerability identification by learning comprehensive program se-
mantics via graph neural networks. In Advances in Neural Information

Processing Systems (2019), H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32, Curran
Associates, Inc.

[120] ZHOU, Y., AND SHARMA, A. Automated identification of security
issues from commit messages and bug reports. In Joint Meeting on
Foundations of Software Engineering (2017), Association for Com-
puting Machinery, p. 914–919.

[121] ZHU, Y., LIN, G., SONG, L., AND ZHANG, J. The application of
neural network for software vulnerability detection: a review. Neural
Computing and Applications (2022), 1–23.

USENIX Association 33rd USENIX Security Symposium    1793



A Appendix

The function retrieves the color value 
from an HTML input element

CWE-254: Incorrect Permission 
Assignment for Critical Resource

This code makes an NFS (Network File 
System) READLINK request to retrieve 
the target of a symbolic link from an NFS 
server. The function prepares an NFS 
READLINK request to fetch the target of 
the symbolic link from the NFS server. 

This code is part of a Linux kernel security 
check, related to privilege and capability 
handling. The code contains a set of 
nested conditions that check the privilege 
and capability of the calling process. 

CWE-285: Improper Authorization

CWE-119: Improper Restriction of Operations within Bounds of a Memory Buffer

The function retrieves 
the color value from an 
HTML input element

Mouse-over Info. 
(details of neighbor's weakness)
Mouse-over Info. 
(details of neighbor’s purpose, through LLM)

*Mouse-click: The body of the methods (input and neighbor pairs)  
show in a separate window side by side when clicked

Figure 4: An example report generated by VulSim containing the closest neighbors in each space.

1794    33rd USENIX Security Symposium USENIX Association


	Introduction
	Code Similarity Dimensions and Initial Observations
	Semantic Dimension
	Contextual Dimension
	Syntactic Dimension
	Semantic Embedding of Methods
	Contexual Embedding of Methods
	Syntactic Embedding of Methods

	VulSim's Implementation
	Dataset
	Devign
	BigVul

	Distributed Representation of Code
	Feature Generation
	Classification

	Evaluation
	RQ1: Evaluating the Impact of Utilizing Neighbors' Information from Multiple Dimensions
	Detection Accuracy
	Uniqueness of Detected Instances

	RQ2: Evaluating the Effectiveness of Approach vs. State-of-the-art (SOTA)
	Detection Accuracy
	Detection Generalizability

	Report

	Threats to Validity
	Related Works
	Conclusion and Future Works
	Acknowledgement
	Appendix




Code2vec


205


SBERT


3042


CodeBERT
75


Code2vec


433


SBERT


2838


CodeBERT


223


199
19 434


1116


510


67 806


1433


CVE CWE


3650 2430Semantic
Context


Syntax





		Slide 1






0


10


20


30


40


50


60


70


80


VulSim SBERT CodeBERT Code2vec


Accuracy (%)





		Slide 1






0


10


20


30


40


50


60


70


80


90


VulSim ReGVD CSGVD Yuan et al.


Accuracy (%) Precision (%) Recall (%)





		Slide 1






The function retrieves the color value 
from an HTML input element


CWE-254: Incorrect Permission 
Assignment for Critical Resource


This code makes an NFS (Network File 
System) READLINK request to retrieve 
the target of a symbolic link from an NFS 
server. The function prepares an NFS 
READLINK request to fetch the target of 
the symbolic link from the NFS server. 


This code is part of a Linux kernel security 
check, related to privilege and capability 
handling. The code contains a set of 
nested conditions that check the privilege 
and capability of the calling process. 


CWE-285: Improper Authorization


CWE-119: Improper Restriction of Operations within Bounds of a Memory Buffer


The function retrieves 
the color value from an 
HTML input element


Mouse-over Info. 
(details of neighbor's weakness)
Mouse-over Info. 
(details of neighbor’s purpose, through LLM)


*Mouse-click: The body of the methods (input and neighbor pairs)  
show in a separate window side by side when clicked





		Slide 1




\section{Introduction}
\label{sec:intro}



Software vulnerabilities continue to be a major source of financial and reputational harm to corporations~\cite{lin2020software, velickovic2017graph}. Despite intensive efforts from academia and industry to mitigate software vulnerabilities, the number of reported vulnerabilities in the Common Vulnerability and Exposure (CVE) database has increased over time \cite{cve, 9374753}. For instance, in 1999, a mere 321 CVE records were reported, whereas in 2023, this figure has skyrocketed to around 29K. Effective detection of software vulnerabilities is still a major and growing need. 

One possible approach for detecting software vulnerabilities is the usage of DL models. While DL models have been used successfully in various other contexts, their adoption for vulnerability detection faces multiple major challenges. 

The lack of large-scale, publicly available, and reliable labeled datasets is extensively discussed in the literature as a major challenge associated with the application of DL models in vulnerability detection~\cite{zeng2020software, p126}. Note that databases such as the National Vulnerability Database (NVD) and SARD \cite{sard} do exist, but the amount of data they contain is not sufficient for training DL models. First, given the vast complexity of modern software and its large number of degrees of freedom, perhaps many millions of training samples would be necessary to train DL models, while the entirety of the NVD, spanning many decades and all types of software and vulnerability types, only contains around 220K vulnerabilities at the time of writing this paper. 
 It is worth mentioning that, this figure represents reported vulnerabilities, requiring further processing by retrieving corresponding information from GitHub links, if available. However, the actual number of \textit{usable vulnerable samples after processing is considerably lower}, as evidenced by studies \cite{zhang2021isvsf,tang2022sevuldet}. 
 
 Moreover, the widely used SARD \cite{sard} dataset contains \textit{synthetic
samples}, and as Chakrabarty et al. \cite{9448435} demonstrated, real-world examples are more complex than the synthetic counterparts. The performance drop was observed to be 54\% in cases where the model was trained exclusively on non-synthesized data~\cite{9448435, zhu2022application}. 
  Additionally, recent work by Chen et al. \cite{chen2023diversevul} demonstrates that increasing the volume of the training data does not necessarily enhance the performance of the model and can reach a saturation point. This was observed when they applied their recently complied large DiverseVul dataset to several models.
  
Another limitation of the current datasets is data \textit{imbalance} where the number of vulnerable samples is substantially lower than non-vulnerable ones. Models trained on imbalanced datasets are biased toward non-vulnerable samples~\cite{9448435}. Based on this finding, in order to get a good performance, one has to include approximately an equal number of non-vulnerable samples when training DL models. This implies that we cannot utilize all the samples from the existing datasets.

To summarize, existing vulnerability datasets have a relatively small number of usable samples necessary for proper training of DL models, many existing samples are synthetic, and there is an imbalance between the vulnerable and non-vulnerable samples in the datasets. These reasons contribute to general \textit{poor performance} of DL models for vulnerability detection, and even \textit{worse generalizability} (e.g., F1 score in SOTA dropping from 49\% to 9.4\%)~\cite{chen2023diversevul,9448435, zhu2022application }. With these challenges in mind, we hypothesize and later validate the effectiveness of leveraging more properties from the existing limited data to develop a more robust vulnerability detection framework. 
% LLM poor without fine-tuning \cite{steenhoek2024comprehensive, fu2023chatgpt, cheshkov2023evaluation,purba,yin2024pros}
 
To address the above-mentioned challenges, we observe that vulnerabilities often share common characteristics across multiple primary dimensions, including meanings of the tokens (semantic), implementation purpose (context), and code structure (syntax). %These dimensions may not always align with each other as we will demonstrate with examples in Section \ref{sec:distributed}. Our initial observation indicates that code segments sharing certain syntactical properties do not necessarily share semantic properties. The same observation holds for any other combination of dimensions. 
We aim to leverage these properties along with their neighboring information to design a vulnerability prediction model with available, limited amounts of data. Throughout the rest of the paper, when we use the term neighbor, it refers to neighborhood using the Cosine similarity metric for each code embedding. 


In this work, we introduce VulSim, a technique for \textbf{Vul}nerability detection based on multi-dimensional \textbf{Sim}ilar neighbors. Initially, we conduct an in-depth analysis of multiple codebases and subsequently leverage this knowledge in VulSim. We consolidate the multi-dimensional information into a unified space and assisted in better vulnerability detection by leveraging insights from nearest neighbors. It is worth mentioning that while we leveraged three existing models SBERT \cite{sbert}, Code2vec \cite{alon2019code2vec}, and CodeBERT \cite{feng2020codebert} to capture semantic, contextual, and syntactic properties respectively, the novelty of our approach lies in consolidating all three dimensions alongside neighboring information. This approach enables the development of a robust vulnerability detection model that surpasses the performance of each individual model mentioned, including other SOTA approaches. 

Our work highlights the discriminative capability of multiple dimensions in code vulnerability analysis and introduces a new framework that effectively captures valuable insights from diverse code embeddings. By considering multiple dimensions from similar data, our approach maximizes the available information and mitigates the dataset limitation problem. Along with retrieving information from different dimensions, we also take the neighboring information into account. To verify the generalizability of our approach, we train our model on one dataset and test it on a completely new dataset with unseen code samples. 

In summary, we address the following research questions:

\begin{itemize}[leftmargin=*]
 
    \item $RQ_1$: Are there dimensions, along which code vulnerabilities are more commonly similar? 
    \item $RQ_2$: How does the guided training approach improve a) the precision and recall rates %\mona{Evaluation: comparing with the state of the art} 
    and b) the generalizability of DL models for vulnerability detection in comparison to SOTA methods? 
\end{itemize}


To overcome all the challenges we discussed earlier, our work makes the following contributions:

\begin{itemize}[leftmargin=*]
  
   \item \textbf{Addressing dataset limitations by consolidating multiple properties and neighboring information:} To compensate for exiguous data, we leverage the commonalities spanning over multiple vulnerability dimensions. Rather than expanding the size of a dataset, we focus on enhancing the depth of information derived from a limited number of samples. Unlike existing approaches that focus on homogeneous properties, such as source code or natural language vulnerability definitions~\cite{russell2018automated, tian2020bvdetector, 10.1145/3106237.3117771, zheng2021automatically}, our approach tackles the challenge of consolidating information from diverse properties. This approach enables us to draw conclusions, even in situations where additional data might have been helpful. Additionally, we consider the neighbor information while detecting if a specific code is vulnerable or not. This approach allows us to retrieve more information from the limited amount of available data. 
  
  \item \textbf{Enhancing generalizability:} We illustrate that by capturing code vulnerabilities in multiple dimensions and focusing the DL training process on primary dimensions, we achieve improved generalizability of the trained models and enable them to effectively detect new or unseen vulnerabilities in real-world scenarios.
  
\end{itemize}


The evaluation results demonstrate that VulSim achieved an accuracy of 75\%, surpassing the SOTA techniques on Microsoft CodexGLUE benchmark \cite{codexglue}, where the leading model attained an accuracy of 69.29\%. Moreover, our model demonstrated its ability to generalize to an entirely new dataset, achieving an accuracy of approximately 55\% and a recall of 85\%. Our experimental results also demonstrate that, in each dimension, the neighbor-based model was able to uniquely identify several instances of vulnerabilities which other dimensions failed to capture and thus demonstrate the power of merging all three dimensions. These findings highlight the robustness and effectiveness of VulSim in vulnerability detection tasks, even when applied to diverse and previously unseen code samples. The artifacts of this paper are publicly available online at  \url{https://github.com/SamihaShimmi/VulSim/tree/main}.

Section \ref{sec:distributed} describes the necessary background information and Section \ref{sec:implementation} describes VulSim's implementation. Section \ref{sec:eval} presents the evaluation results of the proposed approach. Section \ref{sec:threat} discusses VulSim's limitations. We discuss the related work in Section \ref{sec:related} and conclude the paper in Section \ref{sec:conclusion}.




\vspace{-5pt}\section{Conclusion and Future Works}
\label{sec:conclusion}

In this paper, we introduce VulSim, a vulnerability detection tool. Through the analysis of diverse code embeddings, we initially hypothesize and subsequently validate that incorporating multiple dimensions of code properties (i.e., syntactic, semantic, and contextual) alongside neighboring information enhances vulnerability detection. Experimental results indicate, that VulSim outperforms other SOTA vulnerability detection models and exhibits good results when tested on unseen data. Future work includes applying our approach to identify vulnerabilities in other languages as well as studying the impact of applying it in a domain-specific fashion (e.g., to certain types of applications or certain types of vulnerabilities). 

%\newpage
\balance


\iffalse
unique and valuable information that can provide complementary or contradictory insights for vulnerability detection. 
For this purpose, we proposed a process requirement during training phase with the purpose of enforcing the models learning to be established on basis of discriminating properties in source code. As such our proposed requirements need the AI model training processes to compensate for the lack of enough instances in commonly available datasets, by providing the model with three classes of properties, including, semantic, contextual, and syntactic in code. The evaluations showed training of the models is more accurate on a hybrid space of these properties. As for future work, we plan to implement this requirement in a type-agnostic framework for quality training of AI-based models in this domain. 

To overcome the limitation challenge of cyber data, specifying multiple properties to be considered while training a DL  model plays an important role in a precise vulnerability detection and patch recommendation. 
The reason is that each class of properties captures a particular set of related characteristics and conveys a unique set of information about the code fragments, which may have been missed by the other classes.

 

 This paper instead studies the discriminating role of multiple properties provenance---including semantic, context, and syntactic relations---of security vulnerabilities in code. The properties relations are being captured in the form of multiple embeddings of the vulnerabilities.

The identification of powerful dimensions yields an optimal extraction of information during training, and further addresses the inherent inconsistency of software artifacts in this domain.


\begin{table*}[tbh!]
\small
\vspace{5pt}
\centering
\caption{BigVul Count of similar, different CWE and CVE per neighbor \samiha{this looks bad and has repetition. I will update the data first. then will check how to fix this} }
\vspace{-15pt}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline

    \multicolumn{12}{|c|}{\dgray{Correctly Classified Bad (n = 5)}} \\\hline
    \multicolumn{4}{|c|}{\dgray{Semantic}}  &\multicolumn{4}{c|}{\dgray{Syntactic}} &\multicolumn{4}{c|}{\dgray{contextual}} \\\hline
    
    \multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2} &     \multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2}  &\multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2}  \\\hline
    
    \#Sim & \#Diff  & \#Sim &\#Diff&\#Sim&\#Diff&\#Sim&\#Diff&\#Sim& \#Diff&\#Sim&\#Diff\\\hline
    \multicolumn{12}{|c|}{\dgray{CWE}} \\\hline
       464& 268&401&331& 195 &537 & 130 &602 & 168 &564 & 118 &614\\\hline
    \multicolumn{12}{|c|}{\dgray{CVE}} \\\hline

406    & 326 & 349&383&  135& 597& 67 & 665&  86&646 & 37&695\\\hline
        \multicolumn{12}{|c|}{\dgray{Total correctly Classified Bad 732}} \\\hline
    \hline
\hline

    \multicolumn{12}{|c|}{\dgray{Incorrectly Classified Bad (n = 5)}} \\\hline
    \multicolumn{4}{|c|}{\dgray{Semantic}}  &\multicolumn{4}{c|}{\dgray{Syntactic}} &\multicolumn{4}{c|}{\dgray{contextual}} \\\hline
    
    \multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2} &     \multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2}  &\multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2}  \\\hline
    
    \#Sim & \#Diff  & \#Sim &\#Diff&\#Sim&\#Diff&\#Sim&\#Diff&\#Sim& \#Diff&\#Sim&\#Diff\\\hline
    \multicolumn{12}{|c|}{\dgray{CWE}} \\\hline
       90&40&79 & 51 &30 &100& 25 & 105&25&105 &17&113   \\\hline\hline
    \multicolumn{12}{|c|}{\dgray{CVE}} \\\hline
82&48  &71 &59  & 18& 112 & 15& 115&16    &114  &8 &122\\\hline
 \multicolumn{12}{|c|}{\dgray{Total incorrectly Classified Bad 130}} \\\hline
    \hline

%%
\multicolumn{12}{|c|}{\dgray{Correctly Classified Bad (n = 3)}} \\\hline
    \multicolumn{4}{|c|}{\dgray{Semantic}}  &\multicolumn{4}{c|}{\dgray{Syntactic}} &\multicolumn{4}{c|}{\dgray{contextual}} \\\hline
    
    \multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2} &     \multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2}  &\multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2}  \\\hline
    
    \#Sim & \#Diff  & \#Sim &\#Diff&\#Sim&\#Diff&\#Sim&\#Diff&\#Sim& \#Diff&\#Sim&\#Diff\\\hline
    \multicolumn{12}{|c|}{\dgray{CWE}} \\\hline
428       & 259&380&307&177  &510 &  129& 558& 158 &529 &110  &577\\\hline
    \multicolumn{12}{|c|}{\dgray{CVE}} \\\hline

374    &313  & 328&359& 119 & 568&68  &619 &  83&604& 34&653\\\hline
        \multicolumn{12}{|c|}{\dgray{Total correctly Classified Bad 687 }} \\\hline
    \hline
\hline

    \multicolumn{12}{|c|}{\dgray{Incorrectly Classified Bad (n = 3)}} \\\hline
    \multicolumn{4}{|c|}{\dgray{Semantic}}  &\multicolumn{4}{c|}{\dgray{Syntactic}} &\multicolumn{4}{c|}{\dgray{contextual}} \\\hline
    
    \multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2} &     \multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2}  &\multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2}  \\\hline
    
    \#Sim & \#Diff  & \#Sim &\#Diff&\#Sim&\#Diff&\#Sim&\#Diff&\#Sim& \#Diff&\#Sim&\#Diff\\\hline
    \multicolumn{12}{|c|}{\dgray{CWE}} \\\hline
       126&48 &100&74& 94 & 80&52  &122 &  34& 140& 25&149\\\hline\hline
    \multicolumn{12}{|c|}{\dgray{CVE}} \\\hline
114    & 60 &92 &82&  68&106 &28  &146 &  18&156 &11 &163\\\hline
 \multicolumn{12}{|c|}{\dgray{Total incorrectly Classified Bad 174 }} \\\hline
    \hline
%%

    
    \multicolumn{12}{|l|}{\textbf{Neighbor1}: Closest Neighbor; \textbf{Neighbor2}: Second Closest Neighbor.}\\\hline


\end{tabular}
\vspace{-5pt}
\label{tab:RQ3}
\end{table*}


\begin{table*}[tbh!]
\small
\vspace{-5pt}
\centering
\caption{Count of similar, different CWE and CVE per neighbor }
\vspace{-15pt}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
    \multicolumn{4}{|c|}{\dgray{Semantic}}  &\multicolumn{4}{c|}{\dgray{Syntactic}} &\multicolumn{4}{c|}{\dgray{contextual}} \\\hline
    
    \multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2} &     \multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2}  &\multicolumn{2}{|c|}{Neighbor1} & \multicolumn{2}{c|}{Neighbor2}  \\\hline
    
    \#Sim & \#Diff  & \#Sim &\#Diff&\#Sim&\#Diff&\#Sim&\#Diff&\#Sim& \#Diff&\#Sim&\#Diff\\\hline
    \multicolumn{12}{|c|}{\dgray{CWE}} \\\hline
      2,233 &6,507 &1,568&7,172&  5,587& 3,153& 4,865 & 3,875& 1,816 & 6,924&1,364 &7,376\\\hline\hline
    \multicolumn{12}{|c|}{\dgray{CVE}} \\\hline
    1,409 & 7,331 & 771&7,969&  4,791& 3,949&4,028  &4,712 &857  & 7,883& 449&8,291\\\hline

    \multicolumn{12}{|l|}{\textbf{Neighbor1}: Closest Neighbor; \textbf{Neighbor2}: Second Closest Neighbor.}\\\hline

\end{tabular}
\vspace{-5pt}
\label{tab:RQ3}
\end{table*}
\fi







\section{Evaluation}
\label{sec:eval}

To evaluate our approach, we performed experiments using different values of $n$, specifically 3 and 5, to explore the impact of different neighborhood sizes on the accuracy and performance of the technique.
%Using these specific values of $n$, we systematically evaluated the effectiveness of the approach in capturing semantic and syntactic similarities among code snippets. 
%As such, we investigated the influence of a more limited neighborhood (3 neighbors) and a slightly broader neighborhood (5 neighbors) in determining the scores for vulnerability classification.%To develop our model, we utilized three sets of embeddings. Firstly, our model consolidates the embedded information derived from multiple dimensions for each instance categorized as safe or weak. Secondly, it leverages the top $n$ most similar embeddings to identify potential new vulnerabilities.

\iffalse
\begin{table}[t!]
\scriptsize
\vspace{pt}
\centering
\caption{Accuracy of Original Models on Devign}
\vspace{-15pt}
\begin{tabular}{|l|c|}
\hline
\dgray\bf{Original Model} &   \dgray\bf{Accuracy}  \\ 
\hline
SBERT (Semantic)  &  54.46\% \\                  
\hline
Code2vec (Contextual) &  62.12\% \\                  
\hline
CodeBERT (Syntactical)  &  64.60\% \\   \hline
\textbf{VulSim}  &  \textbf{75.41}\% \\                 
\hline
\end{tabular}
\label{tab:resultSBERTOriginal}
\vspace{-10pt}
\label{tab:test}
\end{table}
\fi
 \begin{figure}[tbh!]
\centering
\vspace{-5pt}
    \includegraphics[scale=0.36]{Images/comparison2.pdf}
\vspace{-5pt}
    \caption{Accuracy of Original Models on Devign dataset.}
\vspace{-5pt}
    \label{fig:comparison2}
\end{figure}

\subsection{$RQ_1$: Evaluating the Impact of Utilizing Neighbors' Information from Multiple Dimensions} 
In this section, we assessed the ability of each space to detect vulnerabilities based on two key perspectives: the accuracy of classification and the uniqueness of identified vulnerability. This evaluation offers insights into the strengths and limitations of each space, providing an understanding of their individual contributions to vulnerability detection.

\subsubsection{\textbf{Detection Accuracy}}


%%%%%
\begin{table*}[tbh!]
\small
%\vspace{-5pt}
    \centering
    \caption{
Uniquely-detected instances in the Single-, Double-, and Hybrid-dimensional spaces are examined in our analysis.}\vspace{-0.1in}
    \begin{tabular}{|p{0.05cm}p{0.1cm}|l|c|c|c|c||c|c|c|c|||c|c|c|c|c|}
    \hline
         \multicolumn{3}{|c}{} & \multicolumn{4}{|c||}{\dgray{\textbf{Within Group}}}& \multicolumn{4}{c|||}{\dgray\textbf{{Between Group}}} & &\multicolumn{4}{c|}{\blue{\textbf{VulSim}}}\\ \cline{4-11} \cline{13-16}
        \multicolumn{3}{|c}{} & \multicolumn{2}{|c|}{{{$n=5$}}}  & \multicolumn{2}{c||}{{{$n=3$}}} & \multicolumn{2}{c|}{{{$n=5$}}}  & \multicolumn{2}{c|||}{{{$n=3$}}} &
        & \multicolumn{2}{c|}{{{$n=5$}}}  & \multicolumn{2}{c|}{{{$n=3$}}}  \\ \cline{1-11} \cline{13-16}
        \multirow{4}{*}{\rotatebox[origin=c]{90}{Group 1}}& \multirow{4}{*}{\rotatebox[origin=c]{90}{(Single)}} & & Safe & Weak & Safe & Weak & Safe & Weak & Safe & Weak && Safe & Weak & Safe & Weak \\ \cline{4-11} \cline{13-16}
        &&\textbf{Semantic} & 6 & \textbf{28} & 0 & \textbf{155} & 0 &0  &  0&  0&&163&\textbf{444}&175&\textbf{511}\\ \cline{4-11} \cline{13-16}
        &&\textbf{Syntactic} &  37& \textbf{28} & 59 & \textbf{1} & 19 & \textbf{19} & 34 & \textbf{1} &&6&\textbf{765}&5&\textbf{820} \\ \cline{4-11} \cline{13-16}
        &&\textbf{contextual} & 2 & \textbf{494}& 0 & \textbf{463} & 0 &0  &0  &  0&&33&\textbf{2}&97&\textbf{128} \\ \cline{1-11} \cline{13-16}\cline{1-11} \cline{13-16}
       
        
       \multirow{4}{*}{\rotatebox[origin=c]{90}{Group 2}}& \multirow{4}{*}{\rotatebox[origin=c]{90}{(Double)}} &  & \multicolumn{8}{c|||}{}&&\multicolumn{4}{c|}{} \\ \cline{4-11} \cline{13-16}
       &&\textbf{Semantic-contextual} & 0 & \textbf{72} &138  & \textbf{117} & 0 & \textbf{155} & 0 & \textbf{89}& &107&\textbf{100}&0&\textbf{0} \\ \cline{4-11} \cline{13-16}
       &&\textbf{Semantic-Syntactic} & 18& \textbf{164} & 25& \textbf{89} & 0& 0 &0  & 0&&33&\textbf{2}&97&\textbf{128} \\ \cline{4-11} \cline{13-16}
       && \textbf{Syntactic-contextual} &118  & \textbf{30} & 6 & \textbf{41} & 0 &0  &  0&  0&&163&\textbf{444}&175&\textbf{511}\\ \hline\hline
           \multicolumn{3}{|c|}{\dgray\textbf{Total}} & \multicolumn{13}{c|}{\dgray{\textbf{Safe:1,494  \hspace{1cm} Vulnerable: 1,231 }}}\\ \hline
    \end{tabular}
    %\vspace{-10pt}
    \label{tab:unique}
\end{table*}

%%%%%


\begin{table}[tbh!]
\small

  \caption{Accuracy of \textbf{Single}, \textbf{Double} and {Multi} spaces in classifying weak code for $n=5$ and $n=3$ of selected neighbors.}
\vspace{-0.1in}
  \centering

 \begin{tabular}{|l|c|c|c|c|c|c|}
 \hline
  &\multicolumn{6}{|c|}{\blue Single Dimension}\\\cline{2-7}
 & \multicolumn{3}{|c|}{ {$n=5$}} &\multicolumn{3}{c|}{ {$n=3$}} \\\cline{2-7}
&\multicolumn{6}{c|}{\dgray\textbf{Semantic Space}}\\\cline{2-7}
 & {Acc.} & {Prc.}& {Rec.}& {Acc.} & {Prc.}& {Rec.}\\\hline
\dgray Weak&  \multirow{2}{*}{{60.92\%}}  & 0.72  & 0.22  & \multirow{2}{*}{{64.81\%}} &0.69&0.40  \\\cline{1-1}\cline{3-4}\cline{6-7}
\dgray Safe &    & 0.59  & 0.93 &&0.63&0.86\\\hline

&\multicolumn{6}{c|}{\dgray\textbf{Syntactic Space}}\\\cline{1-7}

\dgray Weak&   \multirow{2}{*}{{{55.01\%}}}  & 0.52  & 0.06 &  \multirow{2}{*}{{54.75\%}} &0.42&0.00\\\cline{1-1}\cline{3-4}\cline{6-7}
\dgray Safe &     & 0.55  & 0.96  & &0.55&1.00\\\cline{1-7}


&\multicolumn{6}{c|}{\dgray\textbf{Contextual Space}}\\\cline{1-7}

\dgray Weak&  \multirow{2}{*}{{74.31\%}}  & 0.76  & 0.62 &\multirow{2}{*}{{74.09\%}} &0.75&0.65   \\\cline{1-1}\cline{3-4}\cline{6-7}
\dgray Safe &    & 0.73  & 0.84 & &0.74&0.82\\\cline{1-7}

% double

 \hline
  &\multicolumn{6}{|c|}{\blue Double Dimensions}\\\cline{2-7}
& \multicolumn{3}{|c|}{ {$n=5$}} &\multicolumn{3}{c|}{ {$n=3$}} \\\cline{2-7}
&\multicolumn{6}{c|}{\dgray\textbf{Semantic-Contextual Space}}\\\cline{2-7}
 & {Acc.} & {Prc.}& {Rec.}& {Acc.} & {Prc.}& {Rec.}\\\hline
\dgray Weak&  \multirow{2}{*}{{75.41\%}}  & 0.77  & 0.65  & \multirow{2}{*}{{75.34\%}} &0.76&0.67  \\\cline{1-1}\cline{3-4}\cline{6-7}
\dgray Safe &   & 0.75  & 0.84 &&0.75&0.82\\\hline

&\multicolumn{6}{c|}{\dgray\textbf{Semantic-Syntactic Space}}\\\cline{1-7}

\dgray Weak&   \multirow{2}{*}{{{60.92\%}}}  & 0.72  & 0.22 &  \multirow{2}{*}{{74.09\%}} &0.75&0.65\\\cline{1-1}\cline{3-4}\cline{6-7}
\dgray Safe &     & 0.59  & 0.93  & &0.74&0.82\\\cline{1-7}


&\multicolumn{6}{c|}{\dgray\textbf{Syntactic-Contextual Space}}\\\cline{1-7}

\dgray Weak&  \multirow{2}{*}{{74.31\%}}  & 0.76 & 0.62 &\multirow{2}{*}{{64.81\%}} &0.69&0.40   \\\cline{1-1}\cline{3-4}\cline{6-7}
\dgray Safe &    & 0.73  & 0.84 & &0.63&0.86\\\cline{1-7}

% Hybrid
 \hline
  &\multicolumn{6}{|c|}{\blue \textbf{Multi-Dimensions (VulSim)}}\\\cline{2-7}
& \multicolumn{3}{|c|}{ {$n=5$}} &\multicolumn{3}{c|}{ {$n=3$}} \\\cline{2-7}
&\multicolumn{6}{c|}{\dgray\textbf{Semantic-Contextual-Syntactic Space}}\\\cline{2-7}
 & {Acc.} & {Prc.}& {Rec.}& {Acc.} & {Prc.}& {Rec.}\\\hline
\dgray Weak&  \multirow{2}{*}{{\textbf{75.41\%}}}  & 0.77  & 0.65  & \multirow{2}{*}{{\textbf{75.34\%}}} &0.76&0.67  \\\cline{1-1}\cline{3-4}\cline{6-7}
\dgray Safe &    & 0.75  & 0.84 &&0.75&0.82\\\hline

\end{tabular}
\label{tab:resultsIndivudual}
\end{table}

Figure \ref{fig:comparison2} represents the initial accuracy of the original models we leveraged for multiple dimensions. Table \ref{tab:resultsIndivudual}  illustrates the individual performance of each model (with neighboring information utilized) considered separately, their pair-wise combination, and the results of the hybrid model (VulSim) given the aggregated information. 

By supplying the decision tree-based classifier with corresponding good and bad scores for each model, our context-based model demonstrated the highest average accuracy of 74\% across various values of $n$. Notably, the semantic-only space also made a significant contribution, achieving accuracies of 61\% and 65\% for different $n$ values. In contrast, the performance of the syntactic space was comparatively lower, yielding an accuracy of approximately 55\%.

Moving on to the evaluation of double-dimensional spaces, the semantic-contextual model outperformed other models with an accuracy of 75\%. Looking at VulSim results, it reveals that the overall performance of the multi-dimensional model, remained at 75\% accuracy, showing that the inclusion of the syntactic property of the code did not result in a significant improvement in overall accuracy in this dataset, as presented in Table \ref{tab:resultsIndivudual}. It is worth mentioning that, although the accuracy, precision, and recall were comparatively lower, the following subsection will delve into the contributions of the syntactic space, demonstrating uniquely identified instances by each space and thereby underscoring the importance of incorporating multidimensional space. Moreover, since we incorporated multiple spaces in our final hybrid VulSim model, the lower precision and recall rate of syntactic dimension do not have any negative impact since the hybrid model is exhibiting the best performance. Armed with this information, one may consider assigning higher weights to the more important dimensions to bias the model toward learning from those sets of attributes. Alternatively, one could opt to pass only the crucial dimensions to the final simple classifier. Additionally, it is important to note that this characteristic may not necessarily hold true in other datasets, as the nature of vulnerabilities and their relationships could vary among codebases. 
%We will still discuss the syntactic space contribution to the identification of unique vulnerabilities in the following subsection.



In summary, if we look at Figure \ref{fig:comparison2} once again, it provides a brief overview of how leveraging information from neighbors across different dimensions impacts accuracy. The accuracy of the original SBERT (54.46\%), Code2vec (62.12\%), and CodeBERT (64.6\%) models we initially utilized to capture multiple dimensions is depicted along with VulSim (75.41\%). From the diagram, it is evident that combining these three dimensions and incorporating neighbor information in VulSim leads to an increase in accuracy.  

\subsubsection{\textbf{Uniqueness of Detected Instances}}
In addition to assessing the accuracy of the models, we conducted a thorough analysis of each space's capability to detect unique instances that were misclassified by the other spaces. This investigation serves to support VulSim, which emphasizes the extraction of multiple sets of properties from a limited-size dataset to uncover additional rules.


\textbf{Within Group:} The analysis results are presented in Table \ref{tab:unique}. In the "Within Group" section, the number of correctly classified records that were uniquely identified by each single-dimension (Group 1) and double-dimension (Group 2) model is displayed out of a total of 1,231 weak entries in the test set. Among the single dimensions, the contextual space stands out by successfully identifying 494 and 463 unique instances (for five and three neighbors, respectively) compared to the other two single dimensions. This observation aligns with the highest accuracy of 74.31\% and 74.09\% achieved by this model, as shown in Table \ref{tab:resultsIndivudual}.

In the realm of double dimensions, the contextual-semantic space outperforms the other double-dimension spaces by identifying 117 unique instances that were missed by both the semantic-syntactic and syntactic-contextual spaces. Furthermore, when the number of neighbors is increased from three to five, the semantic-syntactic space emerges as the winner, identifying 164 unique vulnerabilities in the source code.



\textbf{Between Group:} The syntactic space identified 19 and 1 unique instances, respectively with 3 and 5 neighbors, in the between-group analysis. These instances were not only overlooked by the semantic and contextual single dimensions but also by the other three two-dimensional spaces that incorporated additional dimensional information. On the other hand, the semantic and contextual spaces, as individual entities, did not exhibit unique instances when compared to the more comprehensive double-dimensional spaces.

This observation is intriguing as it demonstrates that despite having the lowest accuracy among the single-space models, as shown in Table \ref{tab:resultsIndivudual}, the ability of the syntactic space to identify unique instances surpasses that of other models. %Additionally, it highlights that even when compared to double-dimension models that leverage additional information about weaknesses, the syntactic space still manages to identify unique instances. These results indicate that the assumption that considering double dimensions consistently yields superior results over relying on single-dimension information alone may not hold true. It also emphasizes that while accuracy is important, the ability to identify unique weaknesses holds substantial significance.


\textbf{Hybrid:} Significantly, the utilization of the hybrid model, which integrates similarity scores from all dimensions, resulted in the identification of 444, 765, and 2 records that were exclusively recognized when employing $n=5$, a scenario in which the single-dimension models respectively semantic, syntactic, and contextual failed to recognize these instances despite possessing information about the same neighbors. This outcome not only underscores the effectiveness of leveraging neighbor information but also underscores the value of combining multiple attributes for precise classification of vulnerable and safe cases, as we proposed.

In the analysis of the semantic space, an interesting observation emerged: when considering a smaller number of closest neighbors ($n=3$), a higher number of unique instances (155) were identified compared to expanding the neighbor information to $n=5$, which only revealed 28 unique weak instances. This finding suggests that, in this specific dataset, vulnerabilities tend to have a less broad set of similar keywords within the code. In other words, vulnerabilities in the dataset seem to exhibit more distinct semantic patterns when a smaller neighborhood is considered, indicating that their keyword associations are not as widely shared as when a larger neighborhood is taken into account.

% Hence, the optimal choice of the number of neighbors ($n$) might differ in different scenarios.

%This observation underscores the importance of considering multiple properties rather than relying solely on individual ones. By taking into account various aspects of the code, such as both semantic and syntactic properties, the model's generalizability can be significantly enhanced. The combination of multiple dimensions allows for a more comprehensive understanding of code similarities and differences, thus leading to improved vulnerability detection and a better grasp of code semantics across diverse datasets.%Additionally, it highlights that the optimal number of neighbors to consider may vary from one dataset to another, potentially impacting the generalizability of the approach.

 
To answer $RQ_1$, we conclude that consolidating information from distinct spaces achieved the highest accuracy in detecting weak and safe methods in C code. While certain dimensions exhibit lower accuracy, they still enable the model to identify unique examples that were missed by others. This underscores the importance of considering not only accuracy but also the ability of each space to detect instances that may be overlooked by other spaces. Thus, our results emphasize the value of incorporating multiple spaces to achieve a more comprehensive and effective detection approach as implemented in VulSim.


%Listings \ref{lst:semantic}, \ref{lst:syntactic}, \ref{lst:contextual}, \ref{lst:all} provides examples of uniquely detected weak records in each space for n = 5. 



\subsection{$RQ_2$: Evaluating the Effectiveness of Approach vs. State-of-the-art (SOTA)} 

In this research question, we aim to evaluate VulSim in terms of two key aspects: the accuracy of detection and, also generalizability of the model, by comparing the hybrid model to the current state of the art. As such, we can assess the performance of our approach and understand its effectiveness in accurately detecting vulnerabilities as well as its ability to generalize to unseen codebases different from that seen during training.

\iffalse
\begin{table*}[tbh!]
\scriptsize
\vspace{15pt}
\centering
\caption{Accuracy of state-of-the-art vulnerability detection models on \textbf{Devign} dataset.}
\vspace{-15pt}
%\renewcommand{\arraystretch}{1.1}
\begin{tabular}{|l|l|l|l|l|}
\hline
    \dgray\bf{Model} & \dgray\bf{Architecture} & \dgray \bf{Acc\%}& \dgray \bf{Precision} &\dgray \bf{Recall}  \\\hline
\textbf{VulSim} & Multi-Dimensional neighbor-based  &  \textbf{75.41} &\textbf{0.77}&\textbf{0.65}\\\hline


     ReGVD \cite{nguyen2022regvd}   & Graph Neural Network &61.79 (63.69)&0.63&0.41 \\\hline
                CSGVD \cite{tang2023csgvd}& Sequence and Graph Embedding &64.46&0.62& 0.59 \\\hline


Yuan et al. \cite{yuan2023enhancing}& Behavior Graph Model&-&0.52&0.61 \\\hline
\end{tabular}
\vspace{5pt}
\label{tab:sota2}
\end{table*}

\fi

 \begin{figure}[tbh!]
\centering
    \includegraphics[scale=0.4]{Images/table6.pdf}
    \caption{Accuracy of state-of-the-art vulnerability detection models on \textbf{Devign} dataset.}
    \label{fig:sota2}
    \vspace{-0.1in}
\end{figure}
\subsubsection{\textbf{Detection Accuracy}} Table \ref{tab:leaderboard} presents the leaderboard of the Microsoft CodexGLUE benchmark~\cite{codexglue} on the Devign dataset for defect detection. Each model in the table is accompanied by a brief description and its corresponding accuracy. The leaderboard includes a total of 15 models, with the lowest accuracy recorded at 59.37\%. The highest-performing model, UniXcoder-nine-MLP, achieves an accuracy of 69.29\%. Interestingly, the amalgamated space exhibited a superior accuracy of 75.41\% when incorporating information from the five nearest neighbors in the hybrid space.

In addition to the models listed on the leaderboard, we conducted experiments with the original transformer-based classifiers, and the accuracy of these models are reported in Figure \ref{fig:comparison2}. Notably, these values are slightly different than the accuracy recorded on the leaderboard for the same dataset.

We additionally conducted a comparison with SOTA vulnerability detection methods (Figure ~\ref{fig:sota2}). We compared our approach with ReGVD \cite{nguyen2022regvd}, CSGVD \cite{tang2023csgvd} and the approach proposed by Yuan et al. \cite{yuan2023enhancing}. ReGVD is a programming-language-independent technique that utilizes graph neural networks to detect vulnerability.  ReGVD considers
a mixture between the sum and max poolings to produce a graph
embedding for the source code. This graph embedding is then fed into a single fully connected layer followed by a softmax
layer and predicts the vulnerabilities in the source code. 
Another model, CSGVD accepts the control flow graph of the source code as input and deals the vulnerability detection as a graph classification task. Yuan et al.~\cite{yuan2023enhancing} developed a Behavior Graph Model to connect the behaviors of different functions and enhance the
detection ability of existing DL-based methods using this information. We additionally attempted to implement VulChecker \cite{mirsky2023vulchecker}, a DL frame-
work that detectors instruction- and line-level vulnerability and Devign, that used a gated graph neural network model with the Conv module for graph-level classification. VulChecker is trained on a different dataset and we were unable to implement their model due to some reproducibility errors. We also faced reproducibility issues with DeVign \cite{devign}, and also confirmed from the raised issue on their GitHub repository \cite{DevignIssue}. Similarly, another SOTA tool ReVeal was not reproducible, as their data was no longer available, which we also verified from the GitHub issues \cite{ReVealIssue}. Attempt to re-implement SOTA fine-tuning LLM based model \cite{shestov2024finetuning} also failed due to a replication error ("huggingface\_hub.errors.HFValidationError: Repo id must be in the form 'repo\_name' or 'namespace/repo\_name': '/home/ma-user/modelarts/inputs/model\_2/'. Use repo\_type argument if needed."). We did not find the model in the GitHub repository that we had to provide in order to successfully run their code.    

As can be observed in Figure \ref{fig:sota2}, VulSim outperformed all other baseline models in terms of accuracy, precision, and recall where the closest accuracy was detected by CSGVD (64.46\%). The accuracy of ReGVD, mentioned by the authors was 63.69\%, and the recreated accuracy for ReGVD in our experiment was 61.79\%. Yuan et al. \cite{yuan2023enhancing} did not provide any accuracy measurement in the paper. However, VulSim performed better than their approach in terms of both precision (77\% compared to 52\%) and recall (65\% compared to 62\%). 


\begin{table}[tbh!]
\footnotesize
%\small
\centering
\caption{Accuracy of state-of-the-art learning-based models according to leader board from the CodeXGLUE Benchmark on \textbf{Devign} dataset.}
\vspace{-0.1in}
%\renewcommand{\arraystretch}{1.1}
\begin{tabular}{|l|l|l|}
\hline
    \dgray\bf{Model} & \dgray\bf{Architecture} & \dgray \bf{Acc\%}  \\\hline
\textbf{VulSim} & Multi-Dimensional neighbor-based  &  \textbf{75.41} \\\hline
UniXcoder-nine-MLP  & Not accessible & 69.29\\\hline
CoTexT \cite{phan2021cotext} &  T*-based encoder-decoder%, learns the representative context between natural language (NL) and programming language (PL). 
& 66.60 \\\hline
C-BERT \cite{buratti2020exploring} &  AST-based bidirect T*-based %Large Language Model (LLM) is used to effectively learn how to extract AST features from source code rather than using structural properties directly 
& 65.45 \\\hline
A-BERT  & Adversary-specific T*-based & 65.37\\\hline
RefactorBERT &  Refactoring-specific bidirect T*-based & 65.08\\\hline

VulBERTa-MLP  & Vul-specific BERT\&MLP& 64.75\\\hline
VulBERTa-CNN & Vulnerability-specific BERT\&CNN & 64.42\\\hline
ContraBERT\_C & Not accesible & 64.17\\\hline
ContraBERT\_G & Not accesible & 63.32 \\\hline    

PLBART \cite{ahmad2021unified}&  %Semantic:  Uses denoising sequence-to-sequence pre-training to utilize unlabeled data in PL and NL. Such pre-training lets PLBART reason about language syntax and semantics
Bidirectional T*-based & 63.18\\\hline                  

%code2vec \cite{coimbra2021using} & AST-based context-path attention & 62.48\\\hline                  

%CodeBERT \cite{lu2021codexglue}&Bidirectional T-based& 62.08\\\hline

RoBERTa \cite{lu2021codexglue} &Bidirectional T*-based & 61.05\\\hline 	

TextCNN \cite{lu2021codexglue} & CNN-based NL pre-trained & 60.69\\\hline

BiLSTM \cite{lu2021codexglue} &	Bidirectional LSTM-based & 59.37\\\hline\hline
\multicolumn{3}{|l|}{T*: Transformer-based}\\\hline
%\multicolumn{3}{|l|}{MLP*: Multi-Layer Perception (uses vectors vs. tensors)}\\\hline
\end{tabular}
\label{tab:leaderboard}
\end{table}

%%%%%

%%%%%%


%Table \ref{tab:resultsHybrid} presents the outcomes of our classifier with the utilization of the hybrid space.  %Comparing these results to the original implementation of code2vec, the contextuality-based model demonstrated improved accuracy, reaching 62.12\% as shown in Table \ref{tab:resultSBERTOriginal}. Conversely, the similarity-based approach for the syntactic space exhibited lower performance compared to the original CodeBERT model.

%Furthermore, our contextual neighbor-based approach outperformed the leaderboard values presented in Table \ref{tab:leaderboard}, achieving the highest accuracy. A similar pattern of observations is apparent in Table \hilight{\ref{tab:resultsN3}} for $n=3$, albeit with slight variations in accuracy values.


\begin{table}[tbh!]
 \small
  \caption{Generalizability of approach in classifying weak code for $n=5$ and $n=3$ of selected neighbors on unseen data.}
  \vspace{-0.1in}
  \centering
%   { \renewcommand{\arraystretch}{1.2}
 \begin{tabular}{|c|c|c|c|c|c|c|}
 \hline
 &\multicolumn{6}{c|}{\blue\textbf{VulSim}}\\\cline{2-7}
 &\multicolumn{3}{c}{ {$n=5$}} &\multicolumn{3}{|c|}{ {$n=3$}}\\\cline{2-7}

 & {Acc.} & {Prc.}& {Rec.}& {Acc.} & {Prc.}& {Rec.}\\\hline
{Weak}&  \multirow{2}{*}{\textbf{55.86\%}}  & 0.53  & 0.85  & \multirow{2}{*}{\textbf{54.33.\%}} &0.52&0.80  \\\cline{1-1}\cline{3-4}\cline{6-7}
{Safe} &    & 0.66  & 0.28 &&0.61&0.30\\\hline


\end{tabular}
\label{tab:Hybrid-gen}
\end{table}



%%
\begin{table*}[!ht]
\small
\caption{Generalizability of approach in classifying weak code for other models on BigVul dataset}
\vspace{-0.1in}
    \centering
    \begin{tabular}{|p{2.5cm}|p{1.2cm}|p{1.2cm}|l|l|p{1.2cm}|l|l|}
    \hline
         & \dgray Reported &\multicolumn{3}{c|}{\dgray Re-generated} & \multicolumn{3}{c|}{\dgray Tested on BigVul}\\\hline
         &Acc. (\%)&Acc. (\%)& Prc. & Rec. &Acc. (\%)& Prc. & Rec. \\ \cline{2-8}
        VulBERTa-MLP & 64.75 & 64.71 & 0.65 & 0.51 & 49.72 & 0.49 & 0.37 \\ \hline
          VulBERTa-CNN & 64.42 & 53.60 & 0.48 & 0.12 & 54.60 & 0.50 & 0.13 \\ \hline
        ReGVD & 63.69 & 61.79 & 0.63 & 0.41 & 48.91 & 0.48 & 0.34 \\ \hline
    \end{tabular}
\label{tab:Hybrid-genOther}
\end{table*}
%%


%%



\subsubsection{\textbf{Detection Generalizability}} 
In order to evaluate the applicability and versatility of our approach, we subjected VulSim to a completely new and previously unseen dataset, BigVul, which was not utilized during the training process. The objective was to evaluate how well our model could perform on this novel dataset, which differed significantly from the Devign dataset used for training.
%By subjecting our multi-dimensional trained model to the bigVUL dataset, we aimed to examine its ability to adapt and make accurate predictions in a domain it had not encountered during the training process.
This experiment allowed us to gain insights into the model's capacity to generalize its learning and effectively handle real-world scenarios beyond the data with which it was familiar.

The results of the experiment are presented in Table \ref{tab:Hybrid-gen}. Despite the substantial change in the dataset, our model displayed a high performance by accurately identifying 85\% of the weak methods within the different-style code, which serves a completely different application with a precision of 53\%.
%During our experiments, we made an intriguing observation regarding the recall for detecting bad code. With the change in the testing data and when we considered the top 5 neighbors during testing, 
The recall increased significantly from 65\% to 85\% (for 5 neighbors) and similarly from 67\% to 80\% (for 3 neighbors). This change in the testing dataset led to a notable enhancement in the retrieval of vulnerable code detection rather than a deterioration. 
However, it is important to note that more number of false positives (lower precision) was the trade-off for the improved recall.



The performance evaluation of the models in the CodexGLUE benchmark was conducted based on training and testing on the Devign dataset. Initially, our intention was to test the top models on the benchmark on the same BigVul dataset to facilitate comparison. However, we encountered limitations in accessing the source code and data for some of the top-performing models, making their implementation infeasible. Specifically, CoText could not be re-implemented due to library issues. %, and although VulBERTa-MLP's source code was available, we chose not to repeat the experiment for VulBERTa-CNN as it is a fine-tuned version of the same model (VulBERTa) with similar accuracy.

\iffalse
We also attempted to implement other state-of-the-art models that were trained on the DeVign dataset. However, we faced reproducibility issues with DeVign \cite{devign}, as confirmed from the raised issue on their GitHub repository \cite{DevignIssue}. Similarly, ReVeal was not reproducible, as their data was no longer available, which we verified from the GitHub issues \cite{ReVealIssue}.
\fi

Among the models, we were able to evaluate, as can be observed from Table \ref{tab:Hybrid-genOther}, VulBERTa-MLP reported an accuracy of 64.75\%. Upon regeneration, our results showed a comparable accuracy of 64.71\%. However, VulSim outperformed VulBERTa-MLP in terms of recall rate to detect vulnerable code (85\% compared to 37\%) and overall accuracy (55\% compared to 49.72\%). Vulberta-CNN reported an accuracy of 64.42. Upon re-generation using their provided code, we achieved 53.60\% accuracy which is around 11\% lower than the reported value. While testing on Big-Vul dataset, it gave an accuracy of around 54.6\% which is similar to VulSim. However, in terms of recall, it performed poorly compared to VulSim (13\% compared to 85\% of Vulsim), which means it did not do a good job of recognizing vulnerable records successfully. Additionally, we compared our results with ReGVD \cite{nguyen2022regvd}. ReGVD achieved a lower recall rate (33.90\%) and overall accuracy (48.91\%) compared to VulSim and VulBERTa.



This outcome signifies the robustness and adaptability of VulSim, as it successfully recognized a significant portion of vulnerable methods even when faced with previously unseen and diverse code structures.
These findings underscore the potential of VulSim in effectively detecting weak methods in various code contexts and highlight the importance of further optimizing the precision to enhance the overall performance and reliability of the model.

\subsection{Report}
In addition to classifying methods as safe or vulnerable, our framework generates a comprehensive report containing information about the two closest neighbors of a given method in each space to provide insightful context for human-in-the-loop evaluation.  An example report generated by VulSim is illustrated in Figure \ref{fig:report} in Appendix \ref{ap:a}. This report assists in manually checking a function by providing a brief description and the top two neighbors in each dimension, along with descriptions to aid vulnerability detection. 

\iffalse
\begin{tcolorbox}
\bm{$RQ_2$}: Our hybrid model achieved significant improvement in accuracy compared to state-of-the-art methods. Regardless of the value of n, our hybrid model attained an accuracy of 75\%, surpassing the current leader of the CodexGLUE benchmark, which has an accuracy of 66.6\%.

Furthermore, we assessed the generalizability of our model to unseen instances. When trained on the DeVign dataset, our model was able to generalize its learning to a completely novel dataset with a completely different application for its code, achieving an accuracy of approximately 55\%. This highlights the robustness of our hybrid model in handling diverse data scenarios and its potential for broader applicability.
\end{tcolorbox}

\fi
\iffalse

\begin{figure*}[tbh!]
\centering
\vspace{0pt}
    \includegraphics[scale=0.85]{Images/visualization2.pdf}
     %\vspace{-0.2cm}
    \caption{An example report generated by VulSim containing the closest neighbors in each space.}
     \vspace{-15pt}
    \label{fig:report}
\end{figure*}

\subsection{Visualization}

In addition to classifying methods as safe or vulnerable, our framework generates a comprehensive report containing information about the two closest neighbors of a given method in each space to provide insightful context for human-in-the-loop evaluation. 
%An example report generated by VulSim is illustrated in Figure \ref{fig:report}. As depicted in the figure, we can see a function with a brief summary. For each dimension, we fetched the closest neighbors. When we click on each dimension, we can check the 



The visualization was built using React, a JavaScript library known for dynamic user interfaces.

%Manual analysis of this comprehensive report allowed us to gather substantial evidence regarding the influential effect of various properties. Additionally, it highlighted the potential of utilizing similar neighboring entities to effectively detect vulnerabilities in a source code snippet. The combination of automated analysis and human expertise holds promise for enhancing the vulnerability detection process in our framework.



The code in question is responsible for initiating an NFS (Network File System) READLINK request to retrieve the target path of a symbolic link from an NFS server. The function is designed to construct the necessary request to fetch the target of the symbolic link from the NFS server.

In the \textbf{contextual} space, the method under consideration shares a high similarity score of 0.996 with another method named RGBA32 AXNodeObject::colorValue() const. The latter method appears to be part of a Linux kernel security check, wherein nested conditions are utilized to verify the privilege and capability of the calling process.

Although these two methods belong to different systems with distinct purposes, a close examination reveals that they exhibit certain functional similarities. Both codes involve extracting specific values from different data structures. The first code extracts data from the NFS READLINK response packet to retrieve the target path of a symbolic link, while the second code extracts the RGB color value from an HTML input element based on specific criteria.

For example, receiving external inputs in an application requires proper sanitization to ensure that a malicious input does not lead to improper accessing of resources (CWE-254). Notably, the neighboring method is already associated with this weakness. Consequently, the developers are advised to scrutinize the code of the method in question for this weakness since its functionality resembles that of the vulnerable method.


In the \textbf{semantic} space, the closest neighbor with a similarity score of 0.749 is a function that similarly operates within an NFS client. Indeed, it makes sense that the semantic similarity approach identifies the function handling the reply packet in the NFS client as a relevant and semantically similar neighbor to the given method since both methods share multiple common vocabularies. However, each method has its unique purpose in the NFS client functionality, where one handles the construction and sending of an NFS READLINK request, and the other processes and extracts data from the reply packet received in response. Yet, given the mutual application, both methods are potentially vulnerable to CWE-119 related to the improper restriction of operations within the bounds of a memory buffer. As shown, the semantically closest neighbor is already linked to this weakness.


Finally, in the \textbf{syntactical} space, the closest method, \textit{\_\_gfs2\_set\_acl}, with a similarity of 0.802 is written to set the Access Control List (ACL) for a GFS2 (Global File System 2) inode in the Linux kernel. Both methods involve conditional checks and branching to determine if specific conditions are met before proceeding with their core functionalities and both have an integer return type, indicating the type of value they will return. They both also take three parameters enclosed in parentheses, with each parameter consisting of a (struct, int/char) type followed by a variable name. Both methods declare and utilize local variables within their function bodies, and they employ memory allocation functions. Lastly, both methods return an integer value. 


The contextual neighbor, closely related to the given method, is associated with CWE-254, which specifically focuses on "Security Features." This CWE category encompasses aspects such as authentication, access control, confidentiality, cryptography, and privilege management. It signifies the importance of ensuring robust security mechanisms in the code to safeguard against potential threats and unauthorized access.

On the other hand, the semantic neighbor is associated with CWE-125, known as ``Out-of-bounds Read.'' This vulnerability occurs when the product reads data beyond the intended buffer boundaries, either past the end or before the beginning. Such occurrences can lead to unintended data exposure or system instability.

Furthermore, the syntactically closest neighbor is linked to CWE-285, termed ``Improper Authorization.'' This vulnerability denotes instances where the product fails to conduct or incorrectly performs an authorization check when an actor attempts to access a resource or perform an action. This can potentially result in unauthorized access to sensitive information or critical functionalities.

For developers and testers, having this information is useful as it directs attention to specific vulnerabilities and security concerns that are particularly relevant to NFS client methods, particularly those associated with "Out-of-bounds Read" and "Improper Authorization." Understanding that the neighboring method addresses essential security features tells the developer to pay particular attention to security vulnerabilities related to authentication, access control, confidentiality, cryptography, and privilege management (linked to CWE-254). Combining this knowledge allows developers to implement strong security measures and adhere to best practices when working with NFS client code.




The visualization was built using React, a JavaScript library known for dynamic user interfaces.

It utilized a central component to manage and pass pre-processed data to a rendering component, with detailed information displayed using React-Modal. For improved user interface design, Bootstrap, a versatile CSS framework, was employed, providing adaptable layouts for various screen sizes and essential interface components. To optimize performance, the React-Virtualized library was incorporated, rendering only visible data to enhance resource usage. Additionally, Python's pandas library facilitated smooth data preprocessing and conversion to JSON format, supporting efficient data handling within the application.





\samiha{Figure \ref{fig:screenshot} shows the representation of the report we developed for 1253 sample vulnerable records to check the feasibility of our approach. The demonstrated part shows the record for the code snippet provided in the upper part of Figure \ref{fig:codeSnippets}. From the initial interface, we can see the nearest neighbor in contextual space for this record is the code snippet shown in the bottom part of Figure \ref{fig:codeSnippets}. The similarity between these two records is 0.990. Once we click on the record, an additional window appears as shown in the bottom part of the Figure  \ref{fig:screenshot}. However, in semantic and syntactic space, things are completely different with having different neighbors. To further illustrate, we considered this top neighbor in the contextual space as a benchmark and computed the similarity with this neighbor in the remaining two spaces. Figure \ref{fig:screenshot} shows the distance between these two records in different spaces where the vectors are drawn relatively. As we can see, the distance between vector1 and its neighbor in contextual space is indicated by v1 and v2a in the figure. Similarly, the distance between v1 and v2b and v2c are also shown where v2b and v2c are the vectors in semantic space and syntactic space respectively where the similarity value is different. This example demonstrates that different properties contribute differently to defining the nature of code snippets and neighbors are different in different spaces. This part of our work particularly motivates us towards the future steps where we want to exploit several properties of the source code along with the influence of neighbors in detecting vulnerabilities in the source code. 





\begin{lstlisting}[caption={Semantic (SBERT)\samiha{added this example}},captionpos=b , label={lst:semantic}]
static uint32_t pci_up_read(void *opaque, uint32_t addr)

{
    PIIX4PMState *s = opaque;
    uint32_t val = s->pci0_status.up;
    PIIX4_DPRINTF("pci_up_read %x\n", val);
    return val;
}
\end{lstlisting}


\begin{lstlisting}[caption={Syntactic (codeBERT)},captionpos=b , label={lst:syntactic}]
static void free_texture(void *opaque, uint8_t *data)
{
    ID3D11Texture2D_Release((ID3D11Texture2D *)opaque);
}
\end{lstlisting}



\begin{lstlisting}[caption={contextual(code2vec)},captionpos=b , label={lst:contextual}]

static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
    }
}
\end{lstlisting}

\begin{lstlisting}[caption={All Dimension},captionpos=b , label={lst:all}]

void virtqueue_discard(VirtQueue *vq, const VirtQueueElement *elem, unsigned int len)
{
    vq->last_avail_idx--;
    virtqueue_unmap_sg(vq, elem, len);
}
\end{lstlisting}
\fi


\section{Threats to Validity}
\label{sec:threat}

Potential biases can arise from the usage of a C-based dataset. While the proposed approach has demonstrated promising results, establishing its generalizability to other programming languages requires further experimentation. Nevertheless, a noteworthy advantage of our approach is its capability to account for semantic properties even in scenarios where the code's structure and syntax significantly differ. This characteristic enables the model to make reasonable decisions even in the presence of substantial code variations.
To address this threat, we can minimize its impact by assigning higher weights to the semantic properties when transferring models trained in one language to be applied in an environment using a different programming language. %This approach allows us to prioritize the semantic aspects, which have shown greater robustness and adaptability across languages, while potentially mitigating the bias introduced by the C-based dataset. Further research and experimentation on diverse programming languages will be crucial in strengthening the construct validity and establishing the broader applicability of our proposed approach

Furthermore, achieving consistent functionality sharing among various vulnerabilities is challenging because of granularity concerns. In some cases, a single method may not fully encapsulate the intended functionality, leading to higher-level functionality that spans across multiple methods. This situation necessitates the identification of all relevant scattered methods to accurately determine functional similarity among vulnerabilities.

Conversely, opting for a file-level comparison may result in the selection of files that contain small and irrelevant components unrelated to the actual functionality of the file, such as a method for serializing the output~\cite{fang2020functional}. This issue highlights the importance of striking a balance in selecting the level of granularity for functionality representation to ensure that relevant and meaningful similarities are captured while avoiding the inclusion of extraneous and unrelated elements.


%In our study, we employed three models, namely SBERT, code2vec, and codeBERT, to generate the embeddings for vulnerability detection. %These models were fine-tuned specifically for the Devign dataset. However, we must acknowledge the limitations that were propagated to our system in terms of external validity.
One limitation arose from the token size constraints of transformer-based models, which affected the generation of CodeBERT embeddings. To accommodate the token size limit of 512, we had to truncate the tokens, which may have resulted in the loss of some syntactic information from the code snippets.
Furthermore, during the fine-tuning process of the code2vec model for the DeVign dataset, 71 records were discarded as they could not be represented in AST format. Although these discarded records only account for 0.002\% of the entire dataset, we recognize the potential impact on the representativeness of the model.

To mitigate the influence of these limitations, we carefully considered the impact on the overall system's performance. While the token truncation in CodeBERT embeddings might have affected the full context representation, we selected an appropriate token size to balance model performance and computational efficiency. Additionally, the discarded records were a very small fraction of the samples in the dataset.





\section{Code Similarity Dimensions and \\Initial Observations}
\label{sec:distributed}
\lstdefinestyle{myStyle}{
  language = C,
  basicstyle=\small,
  numbers=left,
  stepnumber=1,
  numbersep=10pt,
  tabsize=2,
  showspaces=false,
  showstringspaces=false
    keywordstyle=\color{blue},
    stringstyle=\color{teal},
    commentstyle=\color{cyan},
    breaklines=true
}

Our technique relies on analyzing code similarity in multiple dimensions: contextual, semantic, and syntactic. In this section, we first provide a definition of each dimension and provide examples to illustrate how different code segments can be similar in one of these dimensions.  In the following subsections, we describe how we generate the embeddings from functions by leveraging some existing models to get different sets of properties. In the subsequent sections, we leverage this knowledge to build VulSim.

Throughout the rest of the paper, we commonly refer to the Common Vulnerability and Exposure (CVE) \cite{cve} and Common Weakness Enumeration (CWE)~\cite{CWE}. While the former is used to identify a specific vulnerability in a specific piece of code (e.g., a buffer overflow at function \texttt{x} of source file \texttt{y} of application \texttt{z}), the latter describes large categories of vulnerabilities (e.g., Access of Memory Location After End of Buffer).

\subsection{Semantic Dimension} Semantic dimension refers to the natural meaning and interpretation of code tokens, treating them similarly to words in natural language. It aims to capture the meaning of code tokens.



For instance, consider two vulnerable methods in Listing  \ref{lst:method} and \ref{lst:semantic}  for the BigVul \cite{fan2020ac} dataset. The first method is responsible for freeing the memory associated with various components of the streamCG data structure, ensuring that any necessary cleanup or deallocation routines are called using the provided callback functions.  The latter is designed to allocate memory for a TcpSession object.

While the primary objectives of these two methods differ significantly (one allocates memory, and the other deallocates it), they both include the keyword "stream" in their names. This repetition of "stream" in their names indicates their association with the manipulation of streaming data.

In the case of the streamFreeCG method, the word "stream" appears not only in the function's name but also in the parameter name. Furthermore, within the function's body, "stream" is used twice in the function calls, namely, "streamFreeNACK" and "streamFreeConsumer."

Likewise, in the function StreamTcpSessionPoolAlloc, the term "stream" is included once in its function name and twice in the function calls for "StreamTcpCheckMemcap" and "StreamTcpSessionClear." This shared usage of the term "stream" in their respective names and function calls signifies a certain semantic similarity between these two methods.

Note that this assessment of semantic similarity is based on the frequent usage of the word "stream" and the context in which these methods operate within the codebase. 

Method "streamFreeCG" is vulnerable to "CVE-2018-12453", while method "StreamTcpSessionPoolAlloc" is vulnerable to "CVE-2018-14568".
If we observe closely, we notice that although these two code samples share some semantic information, their context and syntax are different. This demonstrates the power of semantic dimension in this case while the two other dimensions are different.
 \begin{lstlisting}[style=myStyle, caption={streamFreeCG method to deallocate memory}, label={lst:method},numbers=none]
1   void streamFreeCG(streamCG cg) 
2   {
3       raxFreeWithCallback(cg->pel,(void()(void*))
        streamFreeNACK);
4       raxFreeWithCallback(cg->consumers,(void()(void))
        streamFreeConsumer);
5       zfree(cg);
6   }
\end{lstlisting}



\begin{lstlisting}[style=myStyle, caption={A Semantically-similar method to streamFreeCG}, label={lst:semantic},numbers=none]
1    static void *StreamTcpSessionPoolAlloc(void)
2    {
3       void *ptr = NULL;
4       if(StreamTcpCheckMemcap((uint32_t)sizeof
        (TcpSession))== 0)
5          return NULL;
6       ptr = SCMalloc(sizeof(TcpSession));
7       if (unlikely(ptr == NULL))
8         return NULL;
9       StreamTcpSessionClear();
10       return ptr;
11   }
\end{lstlisting}



\subsection{Contextual Dimension} Contextual dimension considers the surrounding code, dependencies, and environment in which the code operates. It focuses on understanding the intended functionality and behavior of the code, going beyond its specific structure or grammar. 

Consider the two examples from the CWE website in Listings \ref{lst:contextVul1} and \ref{lst:contextVul2} \cite{CWE}. The first example above takes an IP address from a user, verifies that it is well-formed, and then looks up the hostname and finally copies it into a buffer. 

The second one (Listing \ref{lst:contextVul2}) applies an encoding procedure to an input string and stores it in a buffer. Both of them are writing data to buffer. We consider these two methods to be contextually similar. Both of them are vulnerable to CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer. We observe that although having the same objective, they vary semantically and syntactically. For example, as opposed to the methods in the Listings \ref{lst:method} and \ref{lst:semantic}, these two methods do not share words with a similar meaning and also their basic structures are syntactically different. This finding highlights the significance of the contextual similarity while the methods are not similar in other dimensions. 
\vspace{-0.1in}
    \begin{lstlisting}[style=myStyle, caption={A vulnerable example from CWE website}, label={lst:contextVul1},numbers = none]
1   void host_lookup(char *user_supplied_addr)
2   {
3       struct hostent *hp;
4       in_addr_t *addr;
5       char hostname[64];
6       in_addr_t inet_addr(const char *cp);

7       /*routine that ensures user_supplied_addr is in         
        the right format for conversion */

8       validate_addr_form(user_supplied_addr);
9       addr = 10       inet_addr(user_supplied_addr);
10      hp = gethostbyaddr( addr, 12 sizeof(struct 
        in_addr), AF_INET);
11      strcpy(hostname, hp->h_name);
12  }
\end{lstlisting}

\vspace{-0.1in}


\begin{lstlisting}[style=myStyle, caption={Another vulnerable example from CWE that shares similar contextuality}, label={lst:contextVul2},numbers=none]
1   char * copy_input(char *user_supplied_string)
2   {
3       int i, dst_index;
4       char *dst_buf = (char*)malloc(4*sizeof(char)* 
        MAX_SIZE);
5       if ( MAX_SIZE <= strlen(user_supplied_string) 
6       {
7           die("user string too long, die evil hacker!");
9       }
9       dst_index = 0;
10      for ( i = 0; i < strlen(user_supplied_string); 
        i++ )
11      {
12          if( '&' == user_supplied_string[I] )
13          {
14              dst_buf[dst_index++] = '&';
15              dst_buf[dst_index++] = 'a';
16              dst_buf[dst_index++] = 'm';
17              dst_buf[dst_index++] = 'p';
18              dst_buf[dst_index++] = ';';
19          }
20          else if ('<' == user_supplied_string[I] )
21          {
22              /* encode to &lt; */
23          }
24          else 
25               dst_buf[dst_index++] = 
                 user_supplied_string[i];
26      }
27      return dst_buf;
28  }
\end{lstlisting}







\subsection{Syntactic Dimension} Syntactic dimension refers to the structure, grammar, and arrangement of symbols in code. It emphasizes the correct formation and arrangement of tokens, keywords, operators, and other language constructs according to the defined rules and conventions of the language.

For example, consider the two methods from BigVul dataset in Listings \ref{lst:Syntax1} and \ref{lst:Syntax2} where the first one is vulnerable to "CWE-189:Numeric Errors" and the second one is vulnerable to "CWE-119:Improper Restriction of Operations within the Bounds of a Memory Buffer". The basic syntactical structure of the methods is the same. %They are returning a value and both of them are just one line of code. 

\begin{lstlisting}[style=myStyle, caption={A  method from BigVul dataset}, label={lst:Syntax1},numbers=none]
1   void PaymentRequest::NoUpdatedPaymentDetails()
2   {
3         spec_->RecomputeSpecForDetails();
4   }
\end{lstlisting}

\begin{lstlisting}[style=myStyle, caption={A  syntactically similar method from BigVul dataset}, label={lst:Syntax2},numbers=none]
1   void InitPrefMembers()
2   {
3         settings_->InitPrefMembers()
4   }
\end{lstlisting}



Both of them share a similar signature, with each function having a void return type and not accepting any parameters. Both functions consist of only one line of code, invoking a method on a class member object. Although syntactically similar, they do not share any similar semantics or functionality. 
The first one, invokes the RecomputeSpecForDetails() method on the spec\_ object. On the other hand, the second function, InitPrefMembers(), calls the InitPrefMembers() method on the settings\_ object, suggesting the initialization of preference-related members.


The above-mentioned examples motivate us to incorporate these dimensions to facilitate vulnerability detection. We hypothesize (and later validate) that this multi-dimensional similarity analysis allows us to efficiently utilize the limited amount of past vulnerability data to more accurately reason about vulnerabilities in a piece of code.

Additionally, we conducted an initial experiment with the vulnerable records from the BigVul dataset to check how the neighboring information can also be utilized in order to detect if a piece of code is vulnerable or not. Neighboring information is fetched using the cosine similarity metric for embeddings in each dimension. More detail about neighbor calculation is presented in Section \ref{sec:implementation}. We fetched the neighbor information for 8,740 vulnerable samples. We looked for the closest matching neighbor in each dimension. We experimented with both CWE and CVE. The first part of Figure \ref{fig:Venn} shows the Venn diagram for CVE. The blue, orange, and green refer to being neighbors in contextual, semantic, and syntactic dimensions respectively. We stored the CVE and CWE information for the first closest neighbor in each dimension. We notice that the CVE for the top neighbor of 199 records is actually the same in all three dimensions. We further notice some records where the top neighbor shares the same CVE in only one dimension. However, in the majority of the cases, they share the same CVE for at least one dimension. Among 8,740 records, for 3650 records the top most similar record was not similar in any dimension. A similar trend is also observed when we consider CWE information in the second part of the diagram. Note that in this demonstration, we only considered the topmost neighbor. Our hypothesis was that considering the top \textit{n} neighbors instead would improve the precision of our analysis in determining the vulnerability of a piece of code. Later in Section~\ref{sec:eval}, we establish the validity of this hypothesis quantitatively and show that VulSim outperforms the state-of-the-art vulnerability detection models.  

 \begin{figure}[tbh!]
\centering

    \includegraphics[scale=0.45]{Images/CVECWEVenn.pdf}
    \caption{Venn Diagram of similarities of weaknesses and vulnerabilities in Context, Semantic and Syntax dimensions.}
    \label{fig:Venn}
\end{figure}

        

In the following subsections, we describe how we generated embeddings to gather information about these code dimensions. We explain how and why we selected some specific models for each dimension.  


 \subsection{Semantic Embedding of Methods} 
Natural language processing (NLP) has made significant advancements with word embedding techniques like word2vec~\cite{mikolov2013distributed,mikolov2013efficient} improving the ability to represent words in a continuous vector space. These embeddings capture the semantic meaning of words, allowing for similarity calculations between words based on their vector representations~\cite{naseem2021comprehensive}. Previous efforts have explored applying word embedding techniques to source code, with promising results~\cite{efstathiou2019semantic, kanade2020learning, chen2019literature}.

One pre-trained model based on transformers, called ``Sentence-BERT'' (SBERT), generates embeddings for sentences, including code snippets~\cite{sbert}. SBERT uses a shallow fully-connected neural network to model each sentence as a continuous vector, ensuring that sentences with similar contexts are represented closely in the vector spacer~\cite{alon2019code2vec}. In the case of multiple-word contexts, SBERT takes the average of the word vectors and generates real-valued vectors. The model learns distributed representations of training sentences and produces fixed-length, low-dimensional vector representations for any given sentence.

We use the SBERT model to transform the semantic meaning of terms within vulnerable and safe code fragments into embeddings. This transformation enables the measurement of semantic relevance among code snippet embeddings and the tagging of non-labeled instances. By treating code snippets as a natural language, the semantic model generates embeddings that capture the semantic properties of each term. The differences in semantics between vulnerable and non-vulnerable instances are then measured by computing the distance between their code embeddings.

Since we are interested in pure semantic information, and other dimensions are covered by different models in this work, we use the SBERT model. We opted not to use other complex alternatives such as GraphCodeBERT \cite{guo2020graphcodebert} since along with semantic information, they also well capture other information such as semantics as demonstrated by \cite{maunveiling} that we intentionally do not want to utilize in this dimension. However, other semantic models such as word2vec \cite{mikolov2013distributed} might also be utilized. 


\subsection{Contexual Embedding of Methods}
Several code embedding methods have been developed to capture both semantic and structural information of code. Tree-based approaches, especially those based on abstract syntax trees (ASTs), have shown promise in improving vulnerability detection \cite{partenza2021automatic,aladics2022ast}. %Previous work has demonstrated that using AST-based diff, which compares ASTs instead of Unix diff, can reduce false positives in vulnerability detection by 29-53\hilight{\%~\cite{diff-ast}}.

To get the contextual properties, we use a recent approach called code2vec that leverages the AST structure of code to identify informative paths that capture the functionality of methods~\cite{alon2019code2vec}. Code2vec uses an attention mechanism to compute a weighted average of the path vectors, allowing it to generate descriptive method names that represent the context of a method. The model is pre-trained on a large dataset of Java GitHub repositories, consisting of millions of samples, and has shown superior performance in various tasks, including vulnerability detection~\cite{coimbra2021using}.

% Redundant; commented by Hamed
%Code2vec captures the context of a code fragment by constructing AST paths for a given method. During training, the model learns to assign attention weights to each path in the method's AST. The model generates a fixed-length vector (embedding) by combining the path vectors with the highest attention. This embedding represents the code fragment's context and can be used for vulnerability detection and other tasks. %Figure \ref{fig:our-c2v} provides a basic overview of code2vec, illustrating its usage in this work.


In their original work~\cite{alon2019code2vec}, the authors demonstrated the ability to detect method names for a given method based on functionality. Motivated by that work, we selected code2vec for our contextual space embeddings. As demonstrated by Alon et al.~\cite{alon2019code2vec}, vulnerable methods sharing the same functionality or context are therefore placed in closer space and we can leverage this information to detect if a piece of code is vulnerable or not.  

\subsection{Syntactic Embedding of Methods} 


Measuring syntactical properties of software artifacts as a similarity metric is common in the software engineering domain, including design and source code analysis applications~\cite{godfrey2005using, garlan2009software, ying2004predicting,shimmi2022mining,shimmi2022leveraging}. This property is widely adopted in various applications, such as in code refactoring~\cite{tsantalis2009identification, tsantalis2011identification, simon2001metrics, moghadam2012automated}, system remodularizations~\cite{ naseem2011improved, fokaefs2011jdeodorant, terra2016lightweight}, mining features from object-oriented code~\cite{ 6642522}, improving feature localization~\cite{ peng2013improving}, and extracting code-relevant description sentences~\cite{ 10.1145/3361242.3362699}. Structural measures are also utilized in software security to detect spam emails and ransomware applications~\cite{ sheikhalishahi2015fast, gomes2005improving, alzahrani2018randroid}.

We leveraged CodeBERT \cite{feng2020codebert} model to capture the syntactic properties of source code.  CodeBERT leverages the neural architecture of BERT, using stacked transformers in a bidirectional structure to capture long-range dependencies required for learning vulnerable code patterns. The model is pre-trained on both programming language (PL) and natural language (NL) data, learning distributed representations of both artifacts. It incorporates a hybrid objective function that includes a pre-training task of detecting replaced tokens. 
In CodeBERT architecture, the text-code encoder generates plausible tokens for masked positions, and the text-code decoder (discriminator) is trained to detect alternative token samples generated by the encoder.
The application of CodeBERT for code analysis reveals latent patterns within software code and shows promise in facilitating various downstream tasks, including vulnerability detection. 

CodeBERT captures syntactic information through its training process on a large dataset of code snippets. In their work, Karmakar et al. \cite {karmakar2021pre} demonstrated the syntactic property of CodeBERT by getting 89.45\% accuracy for syntactic task - AST node tagging. Although basic BERT was also showing almost similar accuracy, we selected CodeBERT because it is specifically trained on source code. A similar observation was found by Wan et al. \cite{wan2022they} where they
observed that the syntax structure of code has been well preserved in different hidden layers of CodeBERT. %Similarly, Wan et al. \cite{wan2022they} also demonstrated the syntactic ability of CodeBERT in their work where using a probing approach, they experimented if the syntactic property is well captured in CodeBERT embeddings with positive results. 
A very recent study by Ma et al. \cite{maunveiling} demonstrated several aspects of syntactic and semantic properties of several models such as CodeBERT, GraphCodeBERT, and several LLMs. Their study demonstrated the skill of CodeBERT in several syntactic tasks such as syntax pair node prediction, and token syntax tagging. It is worth mentioning that other models such as GraphCodeBert, UnixCoder \cite{guo2022unixcoder}, and CodeT5 \cite{wang2021codet5} were also having competitive performance. All these models including CodeBERT were performing their best in different layers and in general, all of them were performing well in syntactical tasks. However, models other than CodeBERT were also performing well in semantic tasks such as semantic relation prediction and semantic propagation. Since we wanted to emphasize syntactic properties, we utilized CodeBERT embeddings. 
Interestingly LLMs such as StarCoder \cite{li2023starcoder}, CodeLlama \cite{roziere2023code} and CodeT5+ \cite{wang2023codet5+} did not exhibit advantages over the pre-trained models in syntactic tasks. 



 




\vspace{-5pt}\section{Acknowledgement}
\label{sec:ack}

The work in this paper was partially funded by the Office of Naval Research (ONR) (Grant\#: G2A62826).


\vspace{-10pt}\section{Related Works}
\label{sec:related}

%\samiha{added this section from YIP'22-Cyber proposal}

%\samiha{I think this related work doesn't fit for this part :(}

%While studying the given research question further, we categorized a large set of literature in the area as detecting malicious network intrusions has been a subject of study for decades. 

%In the literature of the intrusion detection system (IDS), data-driven AI (i.e. deep learning (DL)) techniques are increasingly being used to identify attacks, anomalies or intrusions in a protected network environment [4]. Despite a large AI component in the IDS literature, we noticed few papers deployed IDSs in the context of online (real-time) detection, suggesting more research is needed to improve their performance. 

 %In general, IDSs can be divided into two categories: anomaly based intrusion detection (AIDS) and misuse (signature) based intrusion detection (SIDS) based on their detection approaches (Anderson, 1995, Rhodes et al., 2000). Anomaly detection tries to determine whether deviation from the established normal usage patterns can be flagged as intrusions. On the other hand, misuse detection uses patterns of well-known attacks or weak spots of the system to identify intrusions. Hybrid intrusion detection systems are also in practice that combine both SIDS and AIDS \cite{alazab2014using,stavroulakis2010handbook}
 %Additionally, IDS can be classified as Host-based IDS (HIDS) and Network-based IDS (NIDS) based on the input data sources used to detect intrusion. \cite{IDSsurvey1}


%Given both DL-based categories, we identified a large number of DL techniques that were applied in the development of IDS models based on their application, such as Reinforcement learning: determine current action according to past experience; Regression: predict a numeric/continuous value; Classification: predict a category based on a given dataset; Optimization: determine an optimum or a satisfactory solution based in various solutions executed iteratively \cite{khraisat2018anomaly}; Ensemble: combine a set of classifiers’ predictions into a single decision based on their weighted vote; Rule-based system: use a set of if-then rules for classification; Clustering: group a set of data into a set of meaningful sub-classes (clusters) \cite{musale2015hunting}

%Several studies applied single learning techniques, such as neural networks, genetic algorithms, and support vector machines, while the others were based on combining different learning techniques, such as hybrid or ensemble techniques. For example, one work  proposed an IDS based on Convolutional Neural Network~\cite{ vinayakumar2017applying}, while Hoq et al. \cite{ hoque2012implementation } proposed the same using Genetic Algorithm, Jha and Ragha \cite{ jha2013intrusion } did the same using Support Vector Machinge. On the other hand, Chebrolu et al. \cite{chebrolu2005feature} combined Bayesian Networks (BN) and Classification Regression Trees (CRC) to build AIDS. In particular in anomaly detection, these techniques were developed as classifiers, used to classify or recognize whether the incoming Internet access is the normal access or an attack. 


% Several studies were based on “supervised” learning , whereas unsupervised methods  were preferred in many other studies. Morfino and Rampone \cite{morfino2020towards} analyzed the performance of different supervising learning algorithms for intrusion detection and compared their performance. Choi et al. \cite{choi2019unsupervised} developed an IDS based on unsupervised learning with an accuracy of 91.70\%. Along with supervised and unsupervised learning, semi-supervised learning based intrusion detection system is also in practice \cite{khonde2019ensembleSemiSupervised, yao2018msmlSemiSupervised2}. Some advantages of the supervised classification, as we found, were that this class of solutions could better specify the exact class of attacks, and their solutions had much lower complexity but higher efficiency in comparison to the unsupervised methods. However, aside from the high expenses of obtaining labeled data, several of these methods yet raised a large number of  false positives, referring to the false alerts when there is no problem in fact. Another primary shortcoming was that their inability to detect unknown intrusions, which have not previously seen by the model during the training.  
 
%Vulnerability detection is a direction to maintain a secure system. 



In the field of vulnerability detection, two primary approaches are widely used: static and dynamic analysis of the source code. While static analysis examines the source code without executing it, dynamic analysis involves executing the program with specific input data. Hybrid analysis, which combines both static and dynamic approaches, is also commonly practiced.

Machine learning (ML) techniques have been leveraged for vulnerability detection, categorized into four main types as proposed by Ghaffarian and Shahriari \cite{ghaffarian2017software}: prediction models based on software metrics, anomaly detection approaches, vulnerable code pattern recognition, and miscellaneous approaches. The first category utilizes source code files, object-oriented classes, and binary components to train ML models for vulnerability detection. For instance, Moshtari et al. \cite{moshtari2013using} proposed a semi-analysis framework for within-project and cross-project vulnerability prediction. Anomaly detection methods, such as Chucky proposed by Yamaguchi et al. \cite{yamaguchi2013chucky}, identify software defects by detecting unusual patterns in the source code. Pattern recognition techniques, like the N-gram text-mining approach used by Pang et al. \cite{pang2015predicting}, analyze large data sets to detect source code vulnerabilities. Transformer-based deep learning approaches have also been utilized for vulnerability detection, with models like Vulberta proposed by Hanif and Maffeis \cite{vulberta} that pre-trains RoBERTa with a custom tokenization pipeline.

%In this work, we focus on studying the discriminating ability of different types of information, including semantic, contextual, and structural properties, with respect to code vulnerabilities. Our goal is to ensure that AI models make decisions based on multiple types of properties, contributing to more robust vulnerability detection.

Several efforts contributed to vulnerability detection. For instance, Du et al. \cite{du2019leopard} proposed a lightweight framework called Leopard, which assesses vulnerabilities through program metrics and ranking mechanisms. Li et al. \cite{li2021vulnerability} introduced IVDetect, an interpretable vulnerability detector that provides vulnerability interpretations based on vulnerable statements and their surroundings. 

Other efforts have explored incorporating semantic information in vulnerability detection, as seen in efforts by Wang et al. \cite{wang2016automatically}, Choi et al. \cite{gamechanger2}, Li et al. \cite{gamechanger3}, Liu et al. \cite{gamechanger4}, Zhou et al. \cite{devign}, Li et al. \cite{li2021vuldeelocator}, and Sun et al. \cite{sun2021vdsimilar}. Chan et al. \cite{chan2023transformer} and Zhao et al. \cite{zhao2023vuldeff} explored vulnerability detection during code editing and utilized function fingerprints and code differences, respectively. Le and Babar \cite{le2022use} used real-world data to investigate ML models for automating function-level vulnerability assessment tasks such as predicting Common Vulnerability Scoring System. Benjamin et al. \cite{steenhoek2023empirical} reproduced 9 State-of-the-Art vulnerability detection models and answered research questions in
three areas, model capabilities, training data, and model interpretation. 

Cai et al. \cite{cai2023software} proposed a vulnerability detection method based on deep learning with
complex network analysis and subgraph partition. Another recent work is VDDA \cite{chang2023vdda} where the authors utilized deep learning and attention mechanism-based combined
architecture for vulnerability detection. Mirsky et al. \cite{mirsky2023vulchecker} proposed VulChecker, DL framework that detectors instruction and line level vulnerability. Their methodology lacks consideration for all vulnerability types in general. Instead, it focuses on 5 Common Weakness Enumeration (CWE) categories, employing separate models to detect vulnerabilities within each of these specific categories. Cheng et al. \cite{cheng2022path} proposed Path-Sensitive Code Embedding utilizing a pre-trained value-flow path encoder via
self-supervised contrastive learning. Wang et al. \cite{wang2020combining}
developed a multi-relational, gated graph neural network vulnerability detection by
combining probabilistic learning and statistical assessment
to develop a “mixture-of-experts” approach to address the
shortage of vulnerable training code samples. They further exploited transfer learning to port vulnerability detection
models across programming languages.  


While our approach focused on detecting vulnerabilities at the function-level granularity, other researchers like Hin et al. [33] and Li et al. [39], Fu and fu2022linevul~\cite{fu2022linevul}, Dong et al. \cite{dong2023sedsvd} explored the detection of vulnerabilities at the statement level. Zhang et al. \cite {zhang2023cpvd} also proposed statement-level vulnerability detection approach CPVD that combines Graph Attention Network
and Domain Adaptation Representation Learning to detect vulnerability in source code. 
 Additionally, \cite{li2018vuldeepecker, li2021sysevr, tao2023vulnerability, skowyra1} worked on code gadget/slice-level vulnerability detection.


Recent work focuses on vulnerability detection based on Large Language Models (LLM)-based approaches \cite{grace,purba,shestov2024finetuning,cheshkov2023evaluation,fu2023chatgpt}. As demonstrated by Steenhoek et al. \cite{steenhoek2024comprehensive} LLMs generally struggled with vulnerability detection tasks. A recent work by Shestov et al. \cite{shestov2024finetuning} demonstrated better performance of fine-tuned LLM compared to CodeBERT-like models. However, more research needs to be done to compare their work with SOTA vulnerability detection tools~\cite{song2019sok, FirmFuzz, c21, ieeesp18, quasar} to better validate such approaches.

In contrast to the aforementioned efforts, our approach aims to utilize multiple properties of source code to maximize the potential of detecting vulnerabilities. By considering various aspects of code representation and neighbor information, we seek to enhance the effectiveness of vulnerability detection in VulSim.


\iffalse
To detect vulnerabilities in systems, two basic approaches are used, static and dynamic analysis of the source code. Static analysis analyzes the source code without executing it, while dynamic analysis executes the program with specific input data. Hybrid analysis is also in practice that combines both static and dynamic analysis.
 
  Machine learning techniques are as well used to detect vulnerabilities. They are further classified into four categories by Ghaffarian and Shahriari \cite{ ghaffarian2017software}, consisting \textit{vulnerability prediction models} based on software metrics, \textit{anomaly detection} approaches, vulnerable code \textit{pattern recognition}, and \textit{miscellaneous} approaches. Among them, the first category uses source code files, object-oriented classes, and binary components to train ML models for the vulnerability detection. For instance, Moshtari et al. \cite{moshtari2013using} proposed a semi-analysis framework to use the output of this framework as vulnerability information in both within-project and cross-project vulnerability prediction. Anomaly detection methods identify software defects in the source code artifact by detecting unusual or unexpected patterns. Yamaguchi et al. \cite{yamaguchi2013chucky} proposed Chucky, a system to automatically detect missing checks in source code. The pattern recognition techniques search for source code patterns to detect vulnerability by analyzing large data. For example, Pang et al. \cite{pang2015predicting} used N-gram text-mining techniques to analyze the possibility of predicting vulnerable software components. Transformer-based deep learning approaches are in practice as well. Some of these models consider semantics and syntax of code segments, which can be leveraged to train vulnerability detection classifiers \cite{transformer}. Hanif and Maffeis proposed Vulberta \cite{vulberta}, a Deep Learning-based approach that pre-trains RoBERTa model with a custom tokenization pipeline. As opposed to these approaches, in our work,  we studied the discriminating ability of different types of information, being captured using semantic, contextual, and structural properties, with respect to code vulnerabilities. The goal is to ensure that the AI models’ decisions are made based on several types of properties.

Du et al. \cite{du2019leopard} proposed Leopard, a lightweight framework to assess vulnerabilities through program metrics. Their two steps process first identifies the potentially vulnerable methods based on complexity and then applies some ranking mechanism to assess vulnerable code. For their work, no prior knowledge of vulnerabilities is required.  They applied Leopard in 11 open-source projects and can cover 74.0\% of vulnerable functions by identifying 20\% of functions as vulnerable.

 
Li et al. \cite{li2021vulnerability} proposed an interpretable vulnerability detector IVDetect that uses AI and provides vulnerability detection interpretations based on vulnerable statements. In order to detect vulnerable statements, they considered both data and control dependencies for vulnerable statements and their surroundings. One part of their work detects coarse-grained function-level vulnerabilities. Additionally, they used fine-grained interpretations using sub-graph in the Program Dependency Graph (PDG) to detect vulnerability-related statements.

Compared to their approaches, our work tries to find the contribution of several types of properties in a source code so that we can use a limited amount of data in vulnerability detection.

Researchers have been working on incorporating semantic information in vulnerability detection. Wang et al. \cite{wang2016automatically} proposed a DL algorithm for learning the semantics code representations for software defect prediction. Feature selections are automatically done by the model which is a major advantage of their model. Choi et al. \cite{gamechanger2} provided end-to-end solution for vulnerability detection by directly using source code as an input for the model. Li et al. \cite{gamechanger3} was a pioneer by introducing Vuldeepecker to work with code gadget which is a more fine-grained entity for revealing flaws. Liu et al. \cite{gamechanger4} worked with binary code to detect vulnerabilities. Zhou et al. \cite{devign} introduced Devign, a vulnerability identification model to encode a method to joint graph structure by taking into account the graph structure from multiple syntax and semantic representations. Li et al. \cite{li2021vuldeelocator} proposed VulDeeLocator, a DL-based fined grained vulnerability detector for C code by leveraging intermediate code to accommodate extra semantic information and using the notion of granularity refinement to further locate vulnerabilities. Sun et al. \cite{sun2021vdsimilar} proposed a different approach with a relatively smaller dataset that contains vulnerable and non-vulnerable code where they argue that similarity in the view of vulnerability is the key to detecting vulnerable code snippets. They argued, only semantic and syntactic similarity is not enough to detect vulnerability. Rather, they proposed to capture similarity in the view of vulnerability.

In their recent work, in the area of vulnerability detection, Chan et al \cite{chan2023transformer}, focused on vulnerability detection during edit time when the code is not yet complete. They
discussed zero-shot, few-shot, and fine-tuning approaches on state-of-the-art pre-trained Large Language Models (LLMs). Zhao et al. \cite{zhao2023vuldeff} propose a vulnerability detection method namely VULDEFF that utilizes function fingerprints and code differences. 


In contrast to the above-mentioned works, we tried to utilize several properties of source code and maximize the potential of detecting vulnerabilities from these properties.

\fi


\section{VulSim's Implementation}
\label{sec:implementation}

This section discusses the implementation of our multi-dimensional and neighbor-based classification approach for classifying vulnerable and safe methods, VulSim.

\subsection{Dataset}
\label{sec:datasetUsed}
We selected two commonly used C language datasets for evaluation. We focus on C because it is widely used in system building and its memory unsafety makes it more prone to large classes of vulnerabilities, notably memory corruption bugs that constitute around 70\% of vulnerabilities~\cite{turner2014security, millertrends}. %Attackers familiar with these vulnerabilities can exploit this error.     

\begin{table}[!ht]
    \centering
    \caption{Dataset statistics.}
    \vspace{-0.1in}
    \begin{tabular}{|l|l|l|}
    \hline
        &\dgray Devign & \dgray BigVul \\ \hline
        Number of Vul Methods  & 12,460 & 11,823 \\ \hline
        Number of Safe Methods & 14,858 & 253,096 \\ \hline
        Number of Vul Ours & 12,425 & 8,740 \\ \hline
        Number of Safe Ours & 14,822 & 8,922 \\ \hline
    \end{tabular}
    \label{tab:dataset}
\end{table}


\subsubsection{Devign} The Devign dataset \cite{devign} is commonly used in this domain \cite{cotext, jain2023code, wen2023vulnerability}. The dataset comprises functions from the QEMU \cite{qemu} and FFmpeg \cite{FFmpeg} open-source projects, labeled as vulnerable or non-vulnerable. The dataset is carefully constructed through manual classification of commits related to vulnerability fixes and extensive cross-validation, resulting in a balanced dataset of 12,460 vulnerable and 14,858 non-vulnerable methods. Devign is also utilized in the Microsoft CodexGLUE benchmark for evaluating vulnerability models \cite{codexglue}. Table \ref{tab:dataset} shows the total number of records in this dataset. In our work, we removed 71 records since Astminer \cite{astminer, kovalenko2019pathminer}, the open-source tool we utilized was unable to generate AST representation for these records. All other records are analyzed without any modification.

 \subsubsection{BigVul}
The BigVul dataset \cite{fan2020ac} offers a comprehensive collection of labeled vulnerability instances across various software systems, including vulnerabilities in different programming languages such as C. Its large-scale nature and diverse range of vulnerability types make it suitable for benchmarking and training vulnerability detection techniques. In our study, we utilized the BigVul dataset only to test the performance and generalizability of our proposed approach. Table \ref{tab:dataset} reports the total number of records in the BigVul dataset. Since it is not a balanced dataset, we took approximately an equal number of samples from the safe methods. Once again, we had to remove some of the samples because they had incomplete information (lacked CVE and CWE information), which we leveraged in our analysis. Additionally, a small number of records are discarded because Astminer fails to run on them. In total, we used the remaining 8,740 vulnerable and 8,922 safe samples for our analysis.


\subsection{Distributed Representation of Code}
\label{sec:label}

To build a consolidated space, we initially built three sets of embeddings, based on semantic, contextual, and syntactic properties of the C functions 
 in the Devign dataset.
%Given each individual set of properties, we then independently labeled the remaining 30\% of dataset instances (testset) four times, according to their (i) semantic, (ii) contextual, (iii) structural, and (iv) all three (hybrid) similarity metrics. We measured each set of properties with respect to the closest embeddings of the rest 70\% of the instances (training set). 
%For labeling, the assumption is that both, weak and safe, code snippets will be mapped closer to the embeddings with similar features within at least one of the semantic, context, syntactic, or hybrid spaces.

\vspace{5pt}
\noindent\textbf{(i) Semantic Space:}
To leverage SBERT (Sentence-BERT) for generating embeddings to conduct semantic analysis on methods, we used the approach proposed by the authors \cite{sbert}. In order to do the classification, we used SBERT as a classifier by utilizing the approach suggested in the related work~\cite{SbertClassifier}. Initially, we divided the dataset into a 90-10\% ratio for training and testing purposes. Subsequently, we input the source code into a transformer-based binary classifier to classify it as either vulnerable or non-vulnerable.

To preserve the semantic space, we extracted the generated embeddings for the remaining part of our analysis. 

To configure the model training process for classification, we used the default setup where the total number of epochs was set to 3, per device train batch size was 8, the batch size for evaluation was set to 20, the warmup steps for learning rate scheduler was 500, and weight decay was set to 0.01 since changing parameters like increasing warmup steps or epoch size did not improve the performance.

\vspace{5pt}
\noindent\textbf{(ii) Contextual Space:}
The code2vec model~\cite{alon2019code2vec} was originally trained in the Java programming language. Leveraging the open-source approach proposed by Coimbra et al.~\cite{coimbra2021using}, we re-trained code2vec on code snippets, written in C, to account for the potential differences between the two languages.

For this, we initially generated the counterpart ASTs for the functions in our dataset, using Astminer. Among the 27,318 methods, Astminer was unable to generate the ASTs for 71 records. The remaining 27,247 AST representations were converted to the code2vec acceptable format to re-train the model for learning common patterns of C-related AST-based patterns. 

\iffalse
To maintain the contextual space, we systematically retrieved and stored the vector positions of the training methods in a dedicated database. This process involved saving the embeddings, which represent the contextual information of the training methods, in a structured and accessible manner. By doing so, we ensured that the contextual relationships and semantic characteristics of the training methods were preserved and readily available for future analysis and comparison with other code snippets. The stored vector positions in the database facilitated efficient retrieval and utilization of the contextual information, enabling us to effectively explore and understand the similarities and dissimilarities between new code instances and the training data.
\fi

As suggested in~\cite{coimbra2021using}, we re-trained the network for 20 epochs, following the default hyper-parameters of the original code2vec with a batch size of 1,024, embedding size of 128, and the dropout rate of 0:25. Among the generated models we selected the model with the highest F1 score and used that model for validation purposes. Since the trained model \cite{coimbra2021using} is already in the CodexGlue \cite{codexglue} leaderboard and shows good accuracy, we trusted their default parameters. Finally, we generated and stored the embeddings.

  
\vspace{5pt}
\noindent\textbf{(iii) Syntactic Space:}
The original CodeBERT model~\cite{feng2020codebert} is initially trained in 6 programming languages, excluding C language. For this reason, we fine-tuned CodeBERT on code snippets, written in C on the Devign dataset by following the instructions on CodexGLUE \cite{lu2021codexglue}. In this case, we retrained the model for 5 epochs with a block size of 400, training batch size of 32, and evaluation batch size of 64 with a learning rate of $2e^5$ which was the default setup. Once again, we used the default parameter since the model is already at the top list of the CodexGlue benchmark. 

For the construction of the syntactic space, we followed a similar approach by reading and storing the embeddings for our analysis.
\iffalse
In this case, we extracted and preserved the vector representations of the training methods, which encode the syntactic information of the code. By storing these embeddings, we established a structured syntactic space that captures the syntax-based characteristics of the training methods.
\fi
\iffalse
Having all three contextual, semantic, and syntactic spaces stored, we possessed a comprehensive representation of the training data, enabling us to perform in-depth analysis and comparison of code snippets. The stored embeddings facilitated efficient retrieval and utilization of the syntactic information, and functionality information alongside the semantic data, allowing for a holistic understanding of the code.
\fi
%With the semantic and syntactic spaces effectively preserved and available in the database, we could proceed with various analyses, including vulnerability detection and similarity assessments between new code instances and the training data. The combination of these spaces empowered us to make informed decisions and gain valuable insights into the codebase's structure and characteristics.

The ultimate re-generated fine-tuned model generated an accuracy of 64.60\% as shown in Figure \ref{fig:comparison2} which is slightly higher than the original codeBERT model as the CodexGLUE leaderboard showed (62.08\%). 
Given the three spaces we built, we then passed the embeddings to a feature generation component which calculates the relative closeness of the embeddings to training embeddings within each space individually.

\subsection{Feature Generation}
\label{featGen}
\vspace{5pt}
\noindent\textbf{(i) Measuring Distance:}
In each space, we conducted individual pairwise similarity measurements between the embeddings of the functions. This similarity assessment was performed based on cosine similarity, a widely used approach utilized by several other efforts to calculate distance between vectors \cite{alon2019code2vec,9282672,10.1007/978-3-031-10542-5_8}.
Cosine similarity can be determined using the following equation where $A_{i}$ and $B_{i}$ are the i-th component of vector A and B:
%\vspace{-10pt}
\[Similarity(A,B) = \frac{\sum_{i=1}^{k} A_{i}B_{i}}{\sqrt{\sum_{i=1}^{k}A_{i}^2}\ \sqrt{\sum_{i=1}^{k}B_{i}^2}}\]

The similarity value between two vectors A and B ranges from -1 to 1. When the angle between the vectors is smaller, the value of cosine similarity is larger which indicates that the values are closer to each other.

Given each set of the embeddings, we then calculated four $k\times k$ matrices of cosine similarity scores between all the embedding pairs, where $k$ is the number of the embeddings present in the dataset. %\hamed{The following sentence seems redundant with the previous one. If so, please delete.} The result of this step was four  $n\times n$ matrices, $n$ being the number of the methods in our sample, containing the similarity values between methods in each space. 
The matrices are symmetric as the top half of each matrix diagonally mirrors the bottom half. 


\vspace{5pt}
\noindent\textbf{(ii) Ranking and Scoring:}

We developed a ranking mechanism by selecting the top $n$ embeddings with the highest similarity score in each space, weights were calculated as:

\[ \text{Score} = \sum_{i=0}^{n-1} (n-i) w_i \]
where $n$ %\hamed{The n here seems to be a different value than the n in the previous section. If so, change the previous one to a different letter; for example, k} 
is the desired number of the closest neighbor embeddings to be considered for labeling the vectors. The $i$ specifies the neighbors index, which are sorted in descending order according to their distance from a target vector. As such the closest neighbor has a higher vote (larger contribution) in determining the label of the given vector. Here $w_i$ denotes the cosine similarity value for the current record with i-th similar value.  
%The reason for incorporating index values in the formula, as weights, was to better generalize the formula. With this mechanism, the contribution of each $n$-selected embedding, in labeling the target, is proportional to its distance (similarity) to the target. 
This is, in particular, important in scenarios, where the distance variance of $n$-top embeddings to the target embedding is large.
This ranking mechanism was independently repeated for each individual space.



Given the ranking mechanism, we generated two scores for each test vector, one with selecting the $n$-top weak neighbors (\textit{bad} score) and the other with safe neighbors (\textit{good} score). To elaborate more, for a specific record, if 1st record (i = 1) is good and has a similarity value of $w_i$ with the target, the score will be added to the good score. Similarly, for i =2, if the record is bad, that score will be added to the bad score, and so on. As such, two scores were assigned to each vector, representing its similarity to vulnerable and safe code fragments. The scores were independently generated in each space, according to close neighbors of each particular space. These neighbor-based scores are finally leveraged to detect if a piece of code is vulnerable or not. 






\subsection{Classification}

\iffalse
Testset vector scores in each space were then separately passed to a binary classifier, namely a decision tree, for the purpose of identifying the cutoff values between the vulnerable and safe embeddings. 
\fi


For classification, we adopted a decision tree-based classifier. This choice aimed to prevent the complexity of the classification algorithm from overshadowing the differences in classification capability among semantic, syntactic, and contextual properties. Additionally, we prioritized the simplicity and interpretability of the chosen model to gain clear insights into the prediction process.  We configured the classifier with a Gini index, a maximum depth of 3, and a minimum of 5 samples per leaf.

For each item in the dataset, we fed the classifier with two sets of scores as we described in subsection \ref{featGen}. Based on these scores, the classifier classifies each sample as vulnerable or non-vulnerable. We trained the classifier with a ratio of 90\%-10\% for training and test sets.

For comparison purposes, we initially classified the embeddings based on individual vulnerable and safe scores in each individual space. Furthermore, we applied the same classifier to evaluate the combined power of all three property sets, creating a hybrid model, and considering all three properties simultaneously. In this case, we fed the classifier with 6 scores (2 from each space).

The classification assumption is that both, vulnerable and safe, code snippets will be mapped closer to the embeddings with similar features within at least one of the semantic, context, syntactic, or hybrid spaces.



% The goal was to determine the optimal number of close neighbors from different classes to consider when assigning class labels. It's worth noting that the optimal value may vary depending on the dataset's characteristics, and what works well for one dataset might not be as accurate for another.




