
This paper is included in the Proceedings of the 
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the 
33rd USENIX Security Symposium 

is sponsored by USENIX.

Improving the Ability of Thermal Radiation 
Based Hardware Trojan Detection

Ting Su, Yaohua Wang, Shi Xu, Lusi Zhang, Simin Feng, Jialong Song, Yiming Liu, 
Yongkang Tang, Yang Zhang, Shaoqing Li, Yang Guo, and Hengzhu Liu, 

National University of Defense Technology
https://www.usenix.org/conference/usenixsecurity24/presentation/su-ting



Improving the Ability of Thermal Radiation Based Hardware Trojan Detection

Ting Su, Yaohua Wang∗, Shi Xu, Lusi Zhang, Simin Feng, Jialong Song, Yiming Liu,
Yongkang Tang, Yang Zhang, Shaoqing Li, Yang Guo, Hengzhu Liu

National University of Defense Technology

Abstract
Hardware Trojans (HTs) pose a significant and growing threat
to the field of hardware security. Several side-channel tech-
niques, including power and electromagnetic radiation (EMR),
have been proposed for HT detection, constrained by reliance
on the golden chip or test vectors. In response, researchers
advocate for the use of thermal radiation (TR) to identify
HTs. However, existing TR-based methods are designed for
the ideal HT that can fully occupy at least one pixel on the
thermal radiation map (TRM). In reality, HTs may occupy
multiple pixels, substantially diminishing occupancy in each
pixel, thereby reducing the accuracy of existing detection
methods. This challenge is exacerbated by the noise caused by
the thermal camera. To this end, this paper introduces a coun-
termeasure named noise based pixel occupation enhancement
(NICE), aiming to improve the ability of TR-based HT detec-
tion. The key insight of NICE is that noise can vary the pixel
occupation of HTs while disrupting HT detection. Conse-
quently, the noise can be exploited to statistically find out the
largest pixel occupation among the variations, thereby enhanc-
ing HT detection accuracy. Experimental results on a 0.13 µm
Digital Signal Processing (DSP) show that the detection rate
of NICE exceeds the existing TR-based method by more than
47%, reaching 91.81%, while maintaining a false alarm rate
of less than 9%. Both metrics of NICE are comparable to the
existing power-based and EMR-based methods, eliminating
the need for the golden chip and test vectors.

1 Introduction

Hardware Trojans (HTs) are stealthy modifications to a
circuit that can allow unauthorized access to and control
over the content and communication of an integrated circuit
(IC) [7, 14, 24, 28]. This emerging threat is compounded by
the outsourcing of IC fabrication to third-party foundries due
to economic and market forces. The attack poses a particu-
larly powerful and stealthy risk because the unused spaces
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within the IC layout can be exploited by untrusted foundries
to insert additional malicious circuits [49]. Addressing the
fabrication stage attack is thus a crucial and urgent priority.

To mitigate this threat, side-channel techniques [2, 3, 4, 10,
19, 20, 22, 31, 39, 41] are studied due to their fast and cost-
effective characteristics compared with destructive detection
methods [27, 28]. Side-channel techniques rely on extract-
ing the information of ICs through their power, electromag-
netic radiation (EMR), and thermal radiation (TR). Dakshi et
al. [2] initially proposed a countermeasure using power anal-
ysis. Subsequently, researchers have expanded upon similar
concepts by utilizing EMR to enhance side-channel analy-
sis [3, 10, 19, 20]. He et al. [19, 20] suggested that EMR
traces can be used to detect HT with a considerable perfor-
mance, identifying different types of HTs with an average
accuracy rate of 89.2%. However, these methods rely on the
IC fingerprinting from fabricated golden chips or test vectors
to trigger the HT, both of which are challenging to obtain.

In 2014, Intel introduced a method that leveraged transient
power consumption and TR, capable of detecting HTs with
power consumption as low as 0.05µW/m2 [31]. Inspired by
this method, TR-based methods were proposed to 1) identify
regions with HT via statistical analysis [38, 44], and 2) detect
HTs with power proportion as small as 0.14% in AES circuits
through spatial projection transformation [42, 43]. The major
limitation of these TR-based methods is that they still rely
on the golden chip. In response to this limitation, Tang et
al. [41] proposed a method to compare the Active Areas (AA)
restored from Thermal Radiation Maps (TRM) with that of
the IC design, so that HTs inserted during fabrication can
be detected. Figure 1 presents the core processing flow of
TRMs. Following the de-noising stage, incremental TRMs
are utilized to distinguish between logic and vacant regions
through statistical analysis, generating the actual AA shape
of the fabricated IC. By comparing this AA shape with the
design data, extra AA regions (i.e., possible HTs) can be
successfully detected. Evaluations in [41] indicate that as
long as the HT is larger than one pixel (15µm∗15µm) of the
thermal camera, successful detection can be achieved.
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Figure 1: The core processing flow of TRM

(a) HT spreads into multiple pixels.
The black and blue parts represent the
HT and normal circuits, respectively.

(b) Mechanical vibration causes the
image dithering. Dark and light colors
represent scenes at different times.

Figure 2: Sub-pixel HTs and the mechanical vibration
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Figure 3: Performance deteriorates for the existing method

Despite the confirmed potential, existing TR-based meth-
ods are designed for the ideal HT that can fully occupy at
least one pixel on the TRM. Such ideal HTs are not realistic
due to the fact that HTs often extend across multiple pixels
(shown in Figure 2(a)), occupying only sub-pixels in TRMs.
Consequently, there is a significant reduction in occupancy
within each pixel, leading to the ambiguous distinction of
the TR for each sub-occupied pixel between logic or vacant
areas, thereby rendering the current TR-based method im-
practicable. As illustrated in Figure 3, the performance of
current methods deteriorates with decreasing pixel occupa-
tion. Notably, the detection rate drops below 50% when the
HT occupies less than 70% of a pixel. Moreover, the noise
resulting from the mechanical vibration of thermal cameras
exacerbates the complexity of the issue. This disturbance in-
duces image dithering in the TRMs sampled at different times
(shown in Figure 2(b)), markedly diminishing the detection
accuracy of sub-pixel HTs.

In order to improve the ability of TR-based methods, we
propose a noise based pixel occupation enhancement (NICE)
mechanism for HT detection. The primary observation of
NICE is that noise can vary the pixel occupation of HTs while
disrupting HT detection. As shown in Figure 4, a given HT po-
sition can result in different pixel occupation scenarios due to
varying vibration directions. This observation motivates us to
explore the optimal vibration direction, aiming to find out the
largest pixel occupation scenario among the variations, which

can prove instrumental in distinguishing HT pixels from va-
cant pixels, thereby significantly enhancing the accuracy of
HT detection.

We implement NICE through a statistical manner, where
TRMs are categorized into multiple sets based on the con-
vergence of pixels dithering and the law of large numbers.
This categorization is facilitated by estimating the dithering
direction for each pixel, derived from the relationship between
pixel occupation and TR increment. Subsequently, TRMs at
each direction are processed independently for HT detection
using Kolmogorov-Smirnov (K-S) statistic and the Pauta crite-
rion. Finally, the detection results are statistically aggregated
to derive the final conclusion. We carry out evaluations on a
0.13µm Digital Signal Processing (DSP) chip using a 15µm
thermal camera to validate the efficacy of our approach.

The major contributions of this paper are:
1. We observe the impracticality inherent in the current

TR-based method, designed for the ideal HT that fully
occupies at least one pixel on the TRM. In real-world
applications, where the HT typically occupies only a
portion of one pixel, we demonstrate that the average
detection rate of the current method falls below 45%.

2. We propose NICE, a noise based pixel occupation en-
hancement mechanism, aiming to improve the ability
of TR-based methods. The key idea of NICE is to sta-
tistically find out the largest pixel occupations of the
sub-pixel HT among variations caused by noise.
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3. We demonstrate that NICE can improve the detection
rate of sub-pixel HTs that exceeds the current TR-based
method by more than 47%, reaching 91.81%, while main-
taining a false alarm rate of less than 9%. Both metrics
of NICE are comparable to the existing power-based
and EMR-based methods, eliminating the need for the
golden chip and test vectors.

2 Background

This section aims to provide a comprehensive understand-
ing of the detection mechanism used in existing TR-based
methods, along with an overview of the existing methods.

2.1 Threat Model
Adversaries inside the foundry possess complete access to
the IC design layout, enabling them to carry out an HT attack
during the IC fabrication. Various fabrication-time HTs have
been studied recently, demonstrating the potential threat of
this type of attack [26, 32, 33, 49]. These fabrication-time
HTs can be divided into two categories: 1) additive HTs
which implement HTs through insertion of additional logic
cells to the original circuits; 2) modification HTs which mod-
ify the original logic cells to serve as HTs. Yang et al. [49]
inserted analog HT for the attack, referred to as A2. Lin et
al. [26] inserted Trojan side-channels (TSCs) which used side-
channel leakage for HT implementations to leak exploitable
information. Perez et al. [32, 33] demonstrated that attackers
can insert a side-channel HT (SCT) into a finalized layout
requiring minimal knowledge about the chip. There are also
instances of modification HTs [5, 15]. However, such type of
HTs remains largely unexplored [46] due to its tremendous ef-
fort [12], a-priori knowledge, and skill-dependent nature [48].

In our threat model, 1) we focus primarily on the ad-
ditive HT, realized through the addition of transistors or
gates [45, 46, 47], a more commonly employed approach
in existing research [46]. This choice is practical as addi-
tive HTs are characterized by effective concealment and low
implantation complexity. They minimally affect the original
IC design, leveraging ample unused space within the IC for
inserting additional gates and transistors [18, 41, 46, 48]. 2)
We assume the victim cannot obtain a golden chip for HT
detection [48], which is a reasonable assumption given the
expensive and time-consuming nature of the reverse engineer-
ing process it entails. 3) We also assume the victim may lack
test vectors capable of activating the HT. Detecting HTs poses
inherent challenges due to the unknown function, structure,
and location, leading to a lack of a-priori knowledge about
their activation mechanism in real-world scenarios [17].

2.2 Physical Mechanism
The fundamental component of the IC is the metal-oxide-
semiconductor (MOS) transistor. In its quiescent state, the
MOS transistor’s parasitic capacitance and intrinsic resistance
convert electric energy into heat (Q), as elucidated by the
specific heat capacity theory.

∆T =
Q

Cm
Q = Pleak = ileakVdd

Where, ileak is the leakage current, Vdd is the voltage, and C
represents specific heat capacity. The temperature variation
∆T in each area of IC should be determined by the power
consumption (Pleak) in that.

TR is a fundamental physical phenomenon exhibited by
all objects at temperatures above absolute zero (−273.15oC).
Consequently, the incremental intensity of TR (∆I(v, ileak))
generated by the quiescent work of MOS transistors can be
described by Planck law [6].

∆I(v, ileak) =
2hv3

c2
1

ehv/kT −1

=
2hv3

c2
1

ehvCm/KileakVdd −1

Where, v represents the frequency of TR, and h denotes the
Planck constant.

The essence of TR-based detection lies in the impact of
HTs on the TR within the infected region. When the HT is
inserted into the vacant regions of the IC through additional
circuits, it results in additional power consumption in the
corresponding area. Consequently, by observing the power
changes reflected in the TR signal, we can effectively identify
these alterations in the TRMs of the IC and detect HTs.

More specifically, the ∆I(v, ileak) of the additional circuits
will no longer be zero due to the presence of leakage current.
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The detection and localization of inserted HTs can be achieved
by verifying the incremental TR in the vacant regions of the
target chip. Therefore, the larger the size of the HT, the more
pronounced the change, facilitating easier detection.

Relevant studies [31, 41] have demonstrated numerous
advantages of TR-based detection over traditional methods.
The TR-based method offers non-contact detection with high
resolution, making it faster and more cost-effective than de-
structive techniques [27, 28]. Additionally, TR-based meth-
ods exhibit relatively lower susceptibility to process varia-
tion [21, 29, 35], which is an inevitable deviation arising
from the fabrication process of ICs. This is attributed to the
fact that the ∆I(v, ileak) of the logic region is sufficiently large,
rendering it hardly affected by the small variations in the
manufacturing process.

∆I(v,R) =
2hv3

c2
1

ehvCm/Ki2leakR(1−∆R)−1

=
2hv3

c2
1

(e
1

1−∆R )hvCm/Ki2leakR−1

Where, R is the typical resistor under a certain process, ∆R is
the deviation of R.

Obviously, e
1

1−∆R → ∞ is a necessary condition for
∆I(v,R)→ 0, because 2hv3/c and hvCmR/Ki2leak are larger
than 0. In other words, the TR change caused by HTs can-
not be merged by the process variation noises, only if the
deviation of R approaches to 100%.

2.3 Existing Methods
In 2014, Intel [31] proposed that transient power consumption
and TR can be utilized to detect HT. According to their re-
search, the detection probability is greater than 50% when the
power consumption of HTs is lower than 0.05µW/m2 with ef-
fective process variation mitigation. While showing promise,
this method relies on stronger simulation tools, currently limit-
ing its practical implementation to theoretical considerations.

To enhance detection performance, Chen et al. [9] pro-
posed a method that focuses on enhancing the spatial detail

Figure 5: The HT fully occupies one pixel

of TRMs to effectively eliminate noise. This was achieved by
combining adaptive filtering in the time domain and guided
filtering in the space domain, resulting in the improvement
of 6.14dB in the signal-to-noise ratio of TRMs. Additionally,
drawing inspiration from the concept of spatial projection
transformation, principal component analysis (PCA) was em-
ployed to identify the key factors within the TR information.
This enabled the detection of HTs comprising fewer than 20
gates [43] or with power proportions as low as 0.14% in AES
circuits [42]. However, it is important to note that these TR-
based methods encounter significant limitation. They heavily
rely on the availability of the golden-chip, which is challeng-
ing to obtain in practice. As a result, the deployment and
practical implementation of these methods is hindered.

In order to tackle the challenge posed by the requirement
for a golden-chip, researchers have been exploring golden-
chip-free methods for HT detection. Su et al. [40] proposed a
method involving the pre-placement of Ring Oscillators (ROs)
with different stages in the vulnerable areas of ICs. These ROs
are designed to emit special TR signals. Consequently, these
areas exhibit significant changes in the corresponding TRMs
when an HT is inserted. However, a persistent challenge re-
mains in that vulnerable areas within the IC are often difficult
to fully occupy, rendering the practical application of this
approach challenging, particularly in the context of ASICs.

Tang et al. [41] proposed another solution utilizing AA
shapes obtained from the GDS II file as a reliable reference
for golden-chip-free HT detection. In their suggested detec-
tion scenario, the pixels in TRMs are categorized into two
groups: vacant pixels and fully occupied pixels, as illustrated
in Figure 5. The fundamental concept of this method is that
the additional HT pixel can be considered as the normal logic
pixel in TRMs, with the distinction that its TR information
differs from that of the vacant pixel. They employed statis-
tical methods to generate the actual AA shape through the
differentiation of logic and vacant regions, as illustrated in
Figure 1. The procedure involves verifying the normal dis-
tribution of the TR of the logic region through a K-S test.
Subsequently, the Pauta criterion is applied to identify signifi-
cant differences between the TR of the vacant region and this
established normal distribution. Their experiments demon-
strated the effectiveness of this method in detecting HTs that
occupy larger than one pixel (15µm∗15µm) on a 130nm DSP.
However, despite the confirmed potential, current methods
assume ideal HTs that fully occupy a pixel, making them far
from practical use. Therefore, further exploration and devel-
opment of TR-based countermeasures are still required.

3 Motivation

In this section, we explore the potential of utilizing mechani-
cal vibrations to enhance sub-pixel HT detection, preceded
by a detailed overview of the impact of sub-pixel HTs and
mechanical vibrations on TR-based detection.
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3.1 Sub-Pixel HTs Analysis
In this paper, our focus is on sub-pixel HTs distributed across
multiple pixels, as depicted in Figure 2(a). This situation
arises from the transparent nature of HTs when inserted into
a chip, posing challenges in ensuring precise alignment of the
HT boundaries with the pixels. In such cases, each infected
pixel could be easily blurred as either a logic or vacant area.

This issue can be analyzed by considering the detection
mechanism discussed in § 2.2. When the IC is operating stat-
ically, the incremental TR intensity ∆I(v, ileak) is correlated
with the number of MOS transistors in the corresponding re-
gion. In other words, the TR distinction between sub-occupied
and vacant pixels depends on the pixel occupation.

Figure 6 illustrates possible scenarios where a sub-
occupied pixel might be misidentified as a vacant area. The
TR distinction between fully occupied pixels and vacant ones
is significant, as indicated by solid lines in the figure. How-
ever, some low-occupied pixels (represented by dashed lines)
tend to closely resemble the vacant pixel (shown by the blue
line). This indicates that certain sub-pixel HTs may evade
detection using existing methods, as the occupancy in each
pixel is significantly reduced. Moreover, the pink interval in
the figure represents an area where HT may be missed, a con-
cern that could be exacerbated by white noise. In this study,
our aim is to investigate approaches to enhance the detection
performance of sub-pixel HTs.

3.2 Noise Caused by Mechanical Vibration
The performance of sub-pixel HT detection is also influenced
by the noise resulting from mechanical vibration. In many
high-end thermal cameras, such as modern "Focal Plane Ar-
ray" (FPA) cameras with cooled detectors, the cooling of the
detector is achieved using a Stirling cooler [11]. The Stirling
cooler consists of a compressor and an expander, where the
gas is compressed to a high pressure in the compressor and
then undergoes a pressure drop in the expander to generate
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Figure 6: The TR distinction among fully occupied, sub-
occupied and vacant pixels

refrigeration. The Stirling cooler is essential for maintaining
a constant operating temperature of the detector, thereby im-
proving the quality of TRMs. However, due to the nature of
refrigeration, mechanical vibration becomes inevitable, and
the noise level of the cooler may slightly increase over time.
While the camera is in operation, the noise caused by the
cooler can be both visually and audibly perceptible.

Mechanical vibration refers to the oscillatory motion of a
particle or a body around its equilibrium position [50]. Simple
harmonic motion is an example of mechanical vibration that
exhibits certain key characteristics such as frequency (ω) and
amplitude (A). Simple harmonic motion is mathematically
represented by the following formula:

x(t) = Acosωt

In TR-based HT detection, the mechanical vibration of the
thermal camera can introduce image dithering in the TRMs.
Figure 7 illustrates how mechanical vibration can alter the TR
distinction between sub-occupied and vacant pixels. The pink
area in the figure indicates that vibrations in certain directions
may enhance this TR distinction, while in other directions,
the opposite effect occurs. However, the stack of different
vibration directions complicates the differentiation between
sub-occupied and vacant pixels, thereby posing challenges for
accurately detecting sub-pixel HTs with existing methods.

Overall, it is crucial to investigate mechanisms for mitigat-
ing this noise in TR-based methods. Typically, noise reduction
techniques can be implemented through hardware or software
approaches. However, the vibration is coming from the in-
ternal detector, which is not tightly coupled to the lens or
casing. This precludes possible hardware approaches to mea-
sure or approximate the vibration data, due to its attenuation
and delay. A possible way to address the vibration is through
image dithering elimination, such as the method involving the
extraction and alignment of prominent features of the TRMs.
However, it is widely recognized that noise can be suppressed
to a certain extent but not entirely eliminated. Consequently,
existing software methods may not effectively handle imper-
ceptible dithering within the pixels, as depicted in Figure 2(b).
This motivates us to take advantage of the vibration.

3.3 Exploiting the Potential of Noise
In our investigation, we made an intriguing observation re-
garding the influence of mechanical vibration on the position
of HTs within TRMs. Mechanical vibration induces shifts
in HT positions, broadening the range of potential position
cases. As depicted by the dashed line in Figure 7, this height-
ened variability can enable HTs to reach the largest pixel
occupation in specific directions, thereby augmenting the TR
distinction with vacant areas compared to the vibration-free
case (represented by purple lines). This motivates us to find
out the vibration direction that can enhance this distinction,
thereby improving the accuracy of sub-pixel HT detection.
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Figure 7: The effect of mechanical vibration on TR
distinction
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Figure 8: The TR distinction between sub-occupied and vacant pixels in
the approximate optimal case after direction-based TRMs classification

However, this is a non-trivial task for a given HT, due to
the presence of diverse biases in vibration directions among
different HTs. Figure 9 shows that HTs with different initial
positions may undergo entirely opposite changes in occu-
pancy, even when subjected to the same vibration direction.
Consequently, identifying a direction that uniformly optimizes
detection across all HTs within the IC is impractical.

An alternative approach involves the application of a divide-
and-conquer strategy, transforming the problem into a direc-
tion classification task for the TRMs dataset. The key insight
of this approach lies in the imperative to identify any HT
with corresponding bias in each direction, due to the trans-
parency of HTs’ distribution to the tester. More specifically,
this strategy encompasses two considerations: 1) Direction-
based detection involves identifying each HT at every indi-
vidual direction, ensuring the inclusion of the approximate
largest pixel occupation. 2) Furthermore, by aggregating the
detection results from other directions characterized by a high
pixel occupation, as illustrated in "The high pixel occupa-
tion case" within Figure 9, detection accuracy can be further
enhanced. Clearly, direction-based detection also serves to
alleviate the impact of noise caused by mechanical vibrations,
reducing the difficulty of differentiation.

According to this strategy, the procedure entails identify-
ing the dithering direction within the pixel at each sampling
time, subsequently classifying TRMs based on the direction.
Despite the challenges in precisely measuring shifts within
pixels, hindering the accurate determination of their direction
and magnitude, the observed correlation between variations in
pixel occupation and incremental TR changes suggests an ap-
proximate method to identify the possible dithering directions
of pixels. As illustrated in Figure 10, through the analysis of
incremental TR for each pixel, we can determine whether the
pixel occupation is exhibiting an increase (depicted in red) or
a decrease (depicted in blue) relative to the previous sampling
time, consequently revealing the corresponding dithering di-
rection. By considering the possible directions of the majority

of pixels within the TRM, we can determine the most likely
dithering tendency (Ptrend) of the entire image using statistical
analysis methods, as depicted in the following formula.

pdi =
N

∑
k=1

pk
di

Ptrend = max
1≤i≤n

{pdi}

Where, the probability pdi of different dithering directions
(di) can be calculated as the sum of pk

di for each pixel k. n and
N respectively represent the number of vibration directions
and pixels within the TRM.

In Figure 10, all four pixels have the possibility to move
up. According to the law of large numbers, as the number of
pixel samples increases, the determination of the dithering
tendency approaches its true situation.

lim
N→∞

P{|µN

N
−Ptrend | ≥ ε}= 0

After classifying TRMs at each sampling time, we can
approximate the largest occupation case for sub-pixel HTs
with corresponding biases from the direction-classified TRMs,
as shown in Figure 8. The accuracy of this approximation is
determined by the number of directions and the associated
step size, as depicted in the following formula.

{T RMsopt} ⊆ lim
n→∞

({T RMsd1},{T RMsd2}, . . . ,{T RMsdn})

Where, the {T RMsopt} represents the TRMs set with the
largest occupation case for sub-pixel HTs and the {T RMsdn}
represents the TRMs set at the dithering directions dn.

4 Noise Based Pixel Occupation Enhancement
for HT Detection

In this section, we introduce the NICE mechanism to enhance
the accuracy for sub-pixel HT detection, including the detec-
tion framework and core detection algorithms.
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4.1 Detection Framework
Inspired by the analysis presented in § 3.3, we propose a novel
HT detection framework called NICE. The primary objective
of NICE is to approximate the HT’s largest pixel occupations
among the variations caused by noise, achieved through the
application of direction-based classification. Figure 12 shows
the detection framework employed by NICE, which comprises
two major components: TRMs classification and detection
result aggregation.

Specifically, TRMs are categorized into several sets based
on the direction of image dithering, and corresponding golden
references are extracted from the design data of the target IC.
Subsequently, each set of TRMs is processed independently
for HT detection using the K-S statistic and the Pauta crite-
rion. By comparing with golden references in the correspond-
ing direction, multiple results indicating possible HT pixels
are obtained. Finally, the detection results are statistically
aggregated to produce the final result, thereby significantly
enhancing the detection accuracy of sub-pixel HTs.
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Figure 11: The trend determination based on TR increment

4.2 Direction-based TRMs Classification

The primary principle behind TRMs classification involves
the convergence of pixel dithering, where the dithering trend
of each pixel can be estimated by the variation in TR incre-
ment. A detailed implementation of the algorithm is provided
in Appendix A.1.

1) Estimating possible dithering directions for each pixel.
For a single pixel, its TR increment fluctuates over time. The
magnitude of change in the TR increment depends on whether
the pixel occupation increases or decreases. To ascertain the
trend of pixel occupation, we have formulated a backward
linear regression model to delineate the relationship between
pixel occupation and TR increment, as shown in the following
equation.

Xpixel = ω
T

∆I+b

Where, ∆I is TR increment, Xpixel is pixel occupation.
Determining trends of pixel occupation over time. The

TR increment data of all pixels is employed to facilitate the fit-
ting of model parameters, with the TR increment of each pixel
evenly corresponding to approximate occupation values based
on the occupation variation interval specific to each pixel.
This interval is calculated from the golden references contain-
ing occupation information for each pixel. Subsequently, the
model utilizes the TR increment of each pixel to reevaluate
its occupation at every sampling time, enabling the determi-
nation of whether the pixel exhibits an increase or decrease
in occupied regions compared to previous time.

Estimating possible dithering directions. Pixel dithering
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Figure 13: TRMs classification based on soft voting. The
percentages represent probabilities of the pixel dithering in
different directions.

is estimated through approximate matching, given the chal-
lenge of accurately determining the dithering direction and po-
sition based on occupation changes, as depicted in Figure 11.
The occupation change is classified into three categories using
a threshold: "significantly increasing", "significantly decreas-
ing", or "no change". These categories correspond to different
dithering direction sets, typically covering nine fundamental
directions. In this way, multiple possible dithering directions
for the pixel at each time are identified, enhancing the error
tolerance of the classification. Moreover, we set the thresh-
old on the occupation change instead of the TR increment,
enabling its application to the detection of various ICs.

2) Classifying TRMs into different direction sets. The dither-
ing directions of the entire TRM can be ascertained by the
convergence of all pixels at the same sampling time. It is well
known that image dithering affects every pixel equally, so the
correct dithering direction can be obtained by the statistical
analysis of classification results of all pixels according to the
law of large numbers. Figure 13 shows the Soft Voting method
employed for the global statistical analysis of pixels exhibit-

ing multiple potential dithering directions. We assign equal
weights to all possible directions of the pixel, and calculate
the probabilities of various pixel directions, facilitating the
determination of the most probable dithering trend through a
weighted average. The equation for Soft Voting is provided
in Appendix A.1. As a result, the TRM at each sampling time
can be classified into different direction sets, matching the
corresponding golden reference.

4.3 HT Detecting and Results Aggregating

Conducting HT detection by traversing all directions. The
TRMs set in each direction is processed independently to
distinguish between logic and vacant regions through statisti-
cal analysis. Specifically, the statistical parameters of logic
regions are extracted from the TR increment data, after ver-
ifying whether this data follows a normal distribution using
the K-S statistic. The mean and standard deviation of the dis-
tribution are used to identify the vacant regions in the TRMs.
According to the Pauta criterion, when the TR increment of a
certain pixel deviates from the mean of logic regions by more
than three standard deviations, it can be considered a vacant
pixel with significant probability. By comparing these results
with the golden references, several possible sets of HT pixels
can be identified.

Aggregating results for possible HT pixels. Multiple re-
sults are obtained after traversing detection in all directions,
facilitating the accurate detection of possible HT pixels. The
target HT is hard to be detected in every direction, as sub-
occupied pixels can be easily misclassified as either logic or
vacant areas. Typically, sub-pixel HTs are detected in only a
few results, especially in cases with the largest pixel occupa-
tion. In such scenarios, suspicious pixels are considered as
potentially indicating the presence of an HT inserted during
fabrication, if an extra AA is detected.
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However, TRMs classification is challenging to ensure com-
plete accuracy. A few TRMs may be misclassified due to
white noise or unreasonable classification thresholds, which
may result in a false alarm. To mitigate this, the informa-
tion from suspicious pixels in other directions can be utilized
to further determine whether the result should be corrected.
Specifically, if an extra AA is detected in a certain direction
while the suspicious pixel corresponds to a logic region in
most other references, the result should be corrected, thereby
reducing the false alarm. More details on the HT detection
are presented in Appendix A.2.

4.4 NICE System Implementation
To implement the proposed method, we construct the corre-
sponding software and hardware systems. Figure 14 shows
our hardware acquisition system which consists of three ma-
jor parts: a thermal camera, a support and isolation platform,
and a low-noise module. The thermal camera works continu-
ously during the data acquisition stage to capture high-quality
TRMs, while the support platform ensures that the target IC
can be positioned on the focal plane of the thermal camera,
and is insulated from external vibrations using an air float-
ing system. The heat conduction and environment noises can
be mitigated during the acquisition through our low noise
module. The heat dissipation equipment can form a low tem-
perature environment in the chamber specially designed for
shading, which can spray the low temperature nitrogen into
the chamber from a dewar bottle. Then, the TRMs process-
ing is completed by the computer equipped with an Intel(R)
Core(TM) i7-9700 CPU, operating Python-based software.

This modular design of NICE system facilitates integra-
tion into real-world post-silicon HT detection scenarios and
enables adaptability for detecting various ICs. The isolation
platform and the low-noise module effectively mitigate the
environmental interference, making NICE suitable for de-
ployment across various environments. The support platform
allows for adjustments to accommodate different thermal cam-
eras through simple replacement of connection flanges, ensur-
ing compatibility with different chip technologies. Moreover,

the NICE system is not affected by larger ICs, as TRMs can
be acquired and processed region-by-region for a larger IC
using the X-Y Horizontal platform. While this may increase
processing time, parallel computation offers a viable solution.

5 Experiment and Evaluation

In this section, we conduct experiments to evaluate the perfor-
mance of NICE and further investigate the impacting factors
for the effectiveness of NICE. The performance evaluation
covers the following five vectors:

• Evaluation for sub-pixel HT detection (§ 5.2). We
evaluate the performance of NICE in comparison with
existing methods for sub-pixel HTs detection.

• Performance analysis across different HTs (§ 5.3). We
analyze the detailed detection performance for various
HT samples with different sizes.

• Sensitivity to the number of TRMs samples (§ 5.4).
We assess the effectiveness of NICE based on several
groups of TRMs with different sample sizes.

• Sensitivity to classification thresholds (§ 5.5). We ex-
plore six classification thresholds to guide the selection
of a classification threshold.

• Sensitivity to the white noise (§ 5.6). We analyze the
impact of different white noise levels on the detection
performance of NICE.

5.1 Experiment Scheme
In this experiment, the target IC is a high-end universal DSP
under the 0.13µm process, which is depackaged before the
test. The TRMs acquisition system is equipped with a thermal
camera with a spatial resolution of 15µm∗15µm and Noise
Equivalent Temperature Difference (NETD) of 30mK.

Figure 15 presents our experiment scheme, designed to as-
sess the constraints of the previous method and the effective-
ness of the NICE mechanism. The proposed scheme consists
of three major components: an equivalently approach to im-
plement "HT", generating actual AA shapes, and statistical
analysis.

Figure 14: The platform of NICE

Classifying the TRMs 
through mechanical 

vibration

Generating references
Equivalently 

approach to insert 
"HTs"

Comparing actual 
AA shapes with 

references

Statistically 
analysis

Generating the 
actual AA shapesTRMs

Design data

Figure 15: Experiment scheme in this paper
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1) "HT" insertion: The equivalently approach is employed
to implement "HT" which is challenging to implement in
large numbers within the real IC. This method is similar with
[41] and [34], and extend both HT size and insertion scopes.
Upon extracting the golden reference from the IC design, we
randomly remove certain logic regions of the IC layout. These
regions appear as vacant in the golden references but remain
logic in the actual IC. In our experiment, all logic pixels can
be regarded as "HT”, and each pixel should be iteratively
detected. This process provides sufficient "HT" samples, ex-
hibiting varying sizes and arbitrary locations within the IC.

2) Actual AA shapes generation: In this experiment, 15000
consecutive sample time TRMs are selected to generate AA
shapes, after suppressing the white noise with high frequency
through an eight-level wavelet filtering with the "Sym6" base.
Following our NICE mechanism, TRMs are categorized into
nine direction sets, as illustrated in Figure 22. Consequently,
nine different AA shapes will be obtained by the K-S statistic
and the Pauta criterion, then results are aggregated to form the
final result. However, the classification process is omitted for
the previous method, which directly generates the AA shape
through the subsequent processing of unclassified TRMs af-
fected by mechanical vibrations.

3) Performance evaluation and sensitivity analysis: The
statistical method is utilized to analyze detection results, en-
compassing performance evaluation and sensitivity analysis.
The performance of the previous method and NICE is com-
pared by the detection rate and the false alarm rate for detect-
ing all "HT" samples, which respectively represent the recall
rate of extra AA pixels and the error rate in the vacant region
of golden reference. Additionally, the robustness of NICE is
assessed through the adjustment of the number of TRMs, the
classification threshold, and the level of white noise.

5.2 Evaluation for Sub-pixel HT Detection
Overall performance. Our results reveal a significant en-
hancement in performance compared to previous methods.
We successfully reproduce the results of [41], using the same
process IC and a similar thermal camera with the same reso-
lution. The experimental result shows that the detection rate
of this method can reach up to 99% for the "HT" that fully
occupies one pixel. However, there is a substantial decrease
in accuracy when this method is applied to detect sub-pixel
"HTs". In contrast, as presented in Table 1, NICE can detect
sub-pixel "HT" samples with a detection rate of up to 91.82%

and a false alarm rate below 9%, representing a performance
improvement of more than 47% over the previous method.

We can visually compare the performance between them in
Figure 16, where the logic and vacant regions are respectively
depicted by black and white pixels. Evidently, NICE exhibits
superior capability in recovering the AA shape of the IC.

Detailed analysis. Figure 17 provides a detailed illustration
of the performance improvement achieved by NICE, present-
ing the detection results for different pixel occupation cases. It
can be observed that when the "HT" occupies more than 70%
of a pixel, NICE can achieve great detection accuracy with
a detection rate reaching up to 97.5%. This can be attributed
to the NICE can capture samples near the detection threshold
when they are slightly affected by vibrations. Moreover, NICE
also demonstrates the substantial enhancement when "HTs"
occupy less than 10% of a pixel, despite they may be notably
challenging to detect. This can be attributed to the ability
to approximate the largest pixel occupation case among the
variations, even when "HT" is minute in the current scenario.

The case of the occupation within the range of 10%~60%
of a pixel presents the most complex scenario, imposing limi-
tations on the overall performance of NICE. However, NICE
improves the detection rate of these samples by over 40%.

Impact of the variability of pixel occupation. To delve
deeper into the mechanics of NICE, the statistical data for the
occupation change of all "HT" samples can be leveraged to
illustrate the functioning of NICE. We counted the proportion
of all pixels that changed by more than 10% and analyzed
the detection results. Figure 18 depicts the statistical results
of the occupation change aligned with the observed trend of
NICE performance enhancement.

Previous method NICE
 (after classification)

NICE
 (final result)

Figure 16: The AA shapes restored from parts of the IC

Table 1: Detection results of NICE and the previous method

Previous NICE NICE (final result)

method (single set) Thresholds: 1% 2.5% 5% 10% 15% 20%

Detection rate 44.36% 67.48% 45.26% 87.77% 91.81% 90.53% 83.20% 84.30%
False alarm rate 15.90% 13.42% 12.56% 16.18% 8.44% 9.85% 13.13% 10.09%
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Figure 18: The statistics of the occupation change for "HTs"

The statistical result for "⩽ 10%" samples with significant
occupation changes is 81.31%, closely matching the detection
rate of the corresponding samples in Figure 17 (78.70%). This
observation underscores the fundamental efficacy of NICE in
detecting a sub-pixel HT that spreads across multiple pixels.

The improved performance for "10%~60%" samples can
be attributed to the effectiveness of TRMs classification. This
approach not only enhances the detection performance of a
single set of TRMs but also consolidates multiple detection
results from the same sample. As outlined in Table 1, the
results of detecting a single set of TRMs indicate a maximum
performance increase of up to 23.12%.

The detection rate of the "more than 60%" samples is the
highest (more than 93%), while their pixel occupations change
little. The reason is that the stable TR change makes detection
easier for NICE, when HT is large enough.

5.3 Performance Across Different HTs

Overview. Unlike other side-channel detection methods sensi-
tive to HT types, TR-based methods are mainly influenced by
HT size, as it affects the TR distinction between sub-occupied
and vacant pixels. Therefore, we conduct experiments with
a range of HT sizes to evaluate the detection capabilities of
NICE, including HTs that occupy multiple pixels and those
smaller than a single pixel. Figure 19 provides detection re-
sults for HTs with different sizes. We can observe that NICE
can effectively identify HTs occupying more than 70% of a
pixel with a 98% detection rate, whereas the previous method
only performs well when HTs are more than two pixels.

Detailed analysis. It can also be observed that as HT size
increases, the detection rate of NICE converges rapidly. This
is because larger HTs are more likely to achieve higher oc-
cupation within certain pixels through the vibration, making
them easier to identify. In contrast, the previous method ex-
hibits limited improvement in detection rates even when the
HT size exceeds a pixel. This limitation arises because HTs
typically partially occupy multiple pixels. Overall, the result

indicates that NICE can push the detection boundary of TR-
based methods from more than two pixels to only 0.7 pixels.

5.4 Sensitivity to the Number of TRMs

Overview. In a practical detection scenario, the smaller TRM
samples may be acquired for HT detection to further control
the cost and overhead. Therefore, we try to analyze the im-
pact of the number of TRMs on NICE. Figure 20 presents
the performance trend for detecting HT with decreasing TRM
samples. We can observe that NICE achieves steady perfor-
mance, with a detection rate of more than 91% even when
the number of samples is decreased to 50% (7500) of TRM
samples in § 5.2. However, the performance will deteriorate
when the sample size is reduced to a third (5000).

Detailed analysis. This result demonstrates that the NICE
is effective in the smaller-samples scenario with a high de-
tection rate, which indicates its robustness. However, NICE
is implemented based on statistical methods, which can be
completely effective when the TR growth of the IC is suffi-
cient. Therefore, its performance inevitably deteriorates with
decreasing the number of TRMs, when parts of the TR infor-
mation are lost. To address this, we further conduct experi-
ments based on the interval sampling method to simulate the
reduction of sampling frequency, which shows a more stable
performance in the red curves in Figure 20.

False alarm. We can also observe that the false alarm
rate is more affected by the sample reduction than the detec-
tion rate. Fortunately, interval sampling is also effective in
reducing false alarms. Therefore, sufficient TRM samples are
recommended for NICE. Even in certain cases where the sam-
ple size must be reduced, it is more reasonable to reduce the
sampling frequency or interval sampling in sufficient TRMs.

5.5 Sensitivity to Classification Thresholds

Overview. The sensitivity of NICE to different classifica-
tion thresholds is explored to guide the selection of optimal
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Table 2: Performance based on different noise levels
Noise leve (dB) 7.80 -5.57 -12.85 -20.33

Detection rate 91.81% 91.07% 87.18% 64.86%
False alarm rate 8.44% 9.31% 10.09% 12.20%

thresholds. We classify TRMs based on occupation change
thresholds of more than 1%, 2.5%, 5%, 10%, 15% and 20%.
The detection results in Table 1 indicate that a threshold of
5% provides the best performance, as also illustrated by the
curves in Figure 21. Figure 22(a) presents the classification
results of TRMs based on the 5% threshold, indicating the
direction determination of image dithering within the pixel.
It can be observed that the dithering tends to be more pro-
nounced in the horizontal direction, which aligns with the
structural characteristics of our system.

Detailed analysis. The reasonable threshold can be further
verified by the results shown in Figures 22(b) and 24. As
illustrated in Figure 22(b), classification with thresholds of
1% and 2.5% results in fewer categories compared to other
thresholds, because the tiny occupation changes can not be
recognized by the thermal camera. Furthermore, Figure 24
shows the dithering over time in the horizontal direction,
demonstrating that the frequency of image dithering is faster
with the decrease of threshold. The result indicates that if
the threshold is too large, the occupation changes caused
by different dithering directions would be confused, which
reduces the precision of classification.

False alarm. We can observe in Figure 21 that the false
alarm rate can be affected by the unreasonable threshold.
Comparing among the cases with thresholds of 2.5%, 5%, and
10%, where their detection rates are close, the unreasonable
threshold (2.5%) results in a significant increase in the false
alarm rate. Fortunately, the law of large numbers ensures the
accuracy of our method, as long as the threshold value is not
excessively large or small, such as from 5% to 10% in this
experiment, which is robust enough for different thresholds.

5.6 Sensitivity to White Noise

Overview. To investigate the potential impact of white noise
on the accuracy of dithering trend determination, we conduct
an experiment comparing two different TRMs processing
flows: "classification after de-noising" and "de-noising after
classification". As shown in Figure 23, the presence of white
noise may limit the classification of TRMs to three dithering
directions, even resulting in inconsistencies (as depicted in
Figure 23(a)) with the correct dithering trend. Figure 21 illus-
trates that the combined effect of white noise and threshold
settings can significantly reduce the detection performance of
NICE. Nevertheless, with a well-selected threshold of 10%,
NICE also outperforms previous methods, achieving a detec-
tion rate of 64.86% and a false alarm rate of 12.20%.

Detailed analysis. To evaluate the impact of different noise
levels on detection performance, we gradually reduce the
noise levels in the initial data, estimating these levels using the
Signal-to-Noise Ratio calculation in Python combined with
the Kaiser window. As shown in Table 2, while white noise
can affect the performance of NICE, its impact is manageable.
For example, utilizing the simple four-layer wavelet filtering,
the detection rate can reach 87%, and with wavelet filtering
of more than six layers, the detection rate can increase to
over 91%. This suggests that NICE demonstrates a certain
robustness against white noise.

False alarm. The experimental results indicate that white
noise can lead to TRM classification errors, resulting in the in-
creased false alarm rate. One effective solution is to eliminate
white noise before TRM classification. Moreover, according
to our experiments, as the effects of classification thresholds
and white noise are combined, a well-selected threshold can
suppress the false alarms caused by white noise.

6 Discussion

Investigating the potential of thermal cameras across chip
technologies. As semiconductor technology continues to
scale down, the detection of sub-pixel HTs becomes increas-
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Figure 22: TRMs classification results with various thresholds
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Figure 23: TRMs classification results without noise reduction

ingly challenging. A potential strategy to address this issue is
to employ thermal cameras with ultra-high resolution. How-
ever, while more advanced cameras offer higher capabilities,
there are technical limitations that restrict the continuous im-
provement of resolution. Moreover, using the high-resolution
camera for HT detection in relatively large technology nodes
incurs increased economic costs and computational overhead.
NICE focuses on enhancing the capabilities of given thermal
cameras, pushing the detection boundary from more than two
pixels to only 0.7 pixels, as shown in Table 3.

Taking the proposed hardware system as an example, NICE
can detect HTs with 40 gates, compared to the original 110
gates, under a 130nm process using a 15µm thermal camera.
As shown in Table 4, most of HTs in Trust-Hub are smaller
than 100 gates. Moreover, the A2 HT implemented under the
130nm process consists of around 170 standard MOS tran-
sistors, which corresponds to approximately 43 gates, based
on the circuit structure in [13]. In these scenarios, existing
TR-based methods require a 12µm thermal camera to achieve
detection under 130nm process, while NICE can cover these
HTs with a 15µm thermal camera. Overall, NICE enables a
more flexible and cost-effective selection of thermal cameras.

Comparing detection performance of NICE with other
techniques. Table 5 summarizes the detection performance
and characteristics of NICE alongside other side-channel tech-
niques, which indicates that the performance of NICE reaches
the average level of other side-channel methods, and even
shows slight improvement as the IC size increases. Although
some methods claim to achieve extremely high detection rates,
they are often constrained by stringent conditions, requiring
either a golden chip or specific testing vectors to trigger the
HT. In contrast, NICE stands closer to practical use due to its
high performance and reasonable detection conditions.

Limitation and evasion techniques. There are still some
limitations in the current implementation of NICE: 1) Smaller
HTs. Adversaries can potentially evade our detection by de-
signing increasingly smaller HTs. In fact, smaller HTs present
significant challenges to all existing detection methods. We an-
ticipate that using the most advanced thermal camera (1.5µm),
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Figure 24: The direction determination of the first 100 sam-
pling times in the horizontal direction

NICE can extend the detection capabilities to identify HTs
consisting of approximately 26 gates and 35 gates under 7nm
and 5nm chip technologies, respectively [1]. A review of
recent HT designs [8, 13, 14, 23, 25, 26, 46] and those doc-
umented in Trust-Hub (as illustrated in Table 4) reveals that
existing HTs exceed 35 gates, typically around 100 gates.
This trend likely stems from the consideration that extremely
small HTs may restrict their malicious functionality and com-
promise their stealth [46].

2) Modification HTs. As described in our threat model,
NICE currently does not support the detection of modification
HTs. These HTs can be created by making slight alterations
to the dopant [5] or parameters [15] of transistors without in-
troducing additional logic. However, this type of HT remains
largely unexplored [46] due to the significant effort [12], prior
knowledge, and specialized skills required for its design [48].
Currently, one feasible detection technique for these HTs is
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Table 3: The capabilities of thermal cameras across chip technologies
Camera Chip Number of Detection boundary

resolution technology equivalent gates Previous NICE

15µm*15µm

130nm ≈ 55 ⩾110 ⩾39 ✓
65nm ≈ 117 ⩾234 ⩾82 ✓
40nm ≈ 239 ⩾478 ⩾167
28nm ≈ 446 ⩾892 ⩾312
14nm ≈ 868 ⩾1736 ⩾608

12µm*12µm

130nm ≈ 36 ⩾72 ✓ ⩾25 ✓
65nm ≈ 75 ⩾150 ⩾52 ✓
40nm ≈ 153 ⩾306 ⩾107 ✓
28nm ≈ 286 ⩾572 ⩾200
14nm ≈ 556 ⩾1112 ⩾389

5µm*5µm

130nm ≈ 6 ⩾12 ✓ ⩾4 ✓
65nm ≈ 13 ⩾26 ✓ ⩾9 ✓
40nm ≈ 27 ⩾54 ✓ ⩾19 ✓
28nm ≈ 50 ⩾100 ⩾35 ✓
14nm ≈ 96 ⩾192 ⩾67 ✓

Table 4: The size of some existing HTs

Works HTs
Number of

equivalent gates

Siddik et al. [8] PUF-based HT ≈ 125
Deng et al. [13] A2(130nm) ≈ 43
Dharsee et al. [14] Jinn 125
Jain et al. [23] TAAL(32nm) ≈ 189
Kumar et al. [25] edAttack(15nm) ≈ 37
Lin et al. [26] TSC ⩽ 100
Trippel et al. [46] A2(45nm) 91

Key Leak(45nm) 187

Trust-Hub

AES-T400 ≈ 90
AES-T600 ≈ 100
AES-T700 ≈ 80
AES-T800 ≈ 230
AES-T900 ≈ 840

AES-T1000 ≈ 80
AES-T1100 ≈ 80
AES-T1200 ≈ 840
AES-T2000 ≈ 80

Table 5: Summary of HT detection based on side-channel techniques

Physical information Works Detection rate Golden chip Testing vector Resolution

Thermal radiation This paper 91.82% Not Required Not Required Pixel levelTang et al. [41] 44.36%

Electromagnetic radiation
Ngo et al. [30] 83% Required

Required Sub-region of ICChen et al. [10] 88% Required
He et al. [19] 89.2% Not Required

Power Hu et al. [22] 91% Required Required Global IC

reverse engineering, which can achieve accurate detection but
at the cost of significant economic and time resources.

3) HTs inserted in filler areas. There are alternative meth-
ods for implementing additive HTs, such as replacing filler
cells with logic cells through the Engineering Change Order
(ECO) flow [32, 33]. Filler cells can be divided into two types:
(a) traditional fillers with no transistors, which resemble va-
cant areas on TRMs, and (b) active fillers in advanced tech-
nologies containing transistors. HTs implanted in active fillers
may evade existing TR-based detection techniques. However,
our preliminary exploration suggests there are some distin-
guishable features between logic areas and these fillers in the
TRM. We believe that NICE can be enhanced by incorporat-
ing extension algorithms to further distinguish between active
fillers and logic areas, which remains part of our future work.

Overall, the attacker and defender are engaged in an ongo-
ing game of strategy and evolution. Despite the possibility
of existing TR-based detection being evaded, we believe that
enhancing sub-pixel HT detection by exploiting the potential
of noise can provide valuable insights into post-silicon HT
detection. Besides, recent studies have developed Reinforce-
ment Learning (RL)-based HT insertion methods [16, 36, 37],
which increase the difficulty of HT activation and show great
potential to evade detection techniques that require HT activa-
tion. Given the activation-free characteristic, NICE is comple-

mentary to these activation-based detection methods and can
be combined to enhance the overall HT detection capability.

7 Conclusion

In this paper, we observed that the noise caused by mechani-
cal vibration can vary the pixel occupation of the HT, which
can help us address the challenge for sub-pixel HT detection.
To this end, we proposed NICE, a noise based pixel occu-
pation enhancement mechanism. The experimental results
demonstrate that NICE can greatly improve the performance
for detecting the sub-pixel HTs compared with existing TR-
based methods. Our results provide a direction for noise mit-
igation but also suggest how to use noise for performance
improvement of TR-based methods.
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A Algorithm Details

We introduce more implementation details of NICE.

A.1 TRMs Classification

As mentioned in § 4.2, the direction-based TRMs classifica-
tion is the primary algorithm of NICE mechanism, involving
a linear model and a soft voting method to classify all TRMs
into different direction sets. The processing flow of our imple-
mentation consists of four stages, as shown in Algorithm 1.

Algorithm 1 Direction-based TRMs Classification
Input: T RM, REF , DIR, threshold
Output: Classified T RM

// Preprocessing of TRM Sequences and Golden References
1: T RM←WAVELET(T RM)
2: for trmt ∈ T RM do
3: ∆trmt ← trmt+1− trmt // Calculating TR increment
4: end for

// Calculating occupation change for each pixel
5: for REF_pixeli j ∈ REF do
6: occups_rangei j ←MAX(REF_pixeli j)−MIN(REF_pixeli j)
7: DIFF ←DIFFER(REF_pixeli j,DIR)
8: for di f fn ∈ DIFF do
9: if |di f fn.value|< threshold then

10: nochange_setn
i j ← di f fn.pair

11: else if di f fn.value≥ threshold then
12: increase_setn

i j ← di f fn.pair
13: else
14: decrease_setn

i j ← di f fn.pair
15: end if
16: end for
17: end for

// Fitting the linear model
18: for tr_pixeli j ∈ ∆trm do
19: occupi j ← APPROX(tr_pixeli j,occup_rangei j)
20: LINEARMODEL← FITMODEL(tr_pixeli j,occupi j)
21: end for

// Determining trends of pixel occupation over time
22: for T R_pixeli j ∈ ∆T RM do
23: PRED_occupi j ← LINEARMODEL(T R_pixeli j)

// Estimating possible dithering directions
24: for pred_occupt ∈ PRED_occupi j do
25: ∆occupt ← pred_occupt+1− pred_occupt
26: if |∆occupt |< threshold then
27: pred_dirt

i j ← MATCH(nochange_seti j)
28: else if ∆occupt ≥ threshold then
29: pred_dirt

i j ← MATCH(increase_seti j)
30: else
31: pred_dirt

i j ← MATCH(decrease_seti j)
32: end if
33: end for
34: end for

// Classifying TRMs into different direction sets
35: for trmt ∈ T RM do
36: most_dirt ← SOFTVOTING(pred_dirt)
37: Classified T RM← CLASSIFY(trmt ,most_dirt)
38: end for

1) Preprocessing of TRM sequences and golden references
(Line 1-17). The preprocessing of TRM sequences (T RM) in-
volves wavelet filtering and the difference method to calculate
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the TR increment (Line 1-4). In this paper, WAVELET rep-
resents an eight-level wavelet filtering with the "Sym6" base.
Golden references (REF) are used to calculate the occupation
variation interval (occups_range) specific to each pixel, gen-
erated from the IC design based on preset dithering directions.
In the subsequent stage, differential pixel occupations (DIFF)
between references in various directions (DIR) are calculated
using the difference method (DIFFER) (Line 5-7). Directions
pairs (di f f .pair) are then classified into three categories by
comparing the difference value (di f f .value) with the thresh-
old: "significantly increasing" (increase_set), "significantly
decreasing" (decrease_set), or "no change" (nochange_set)
(Line 8-17).

2) Determining trends of pixel occupation over time (Line
18-23). After the TR increment of each pixel evenly corre-
sponds to approximate occupation values (occupi j) based
on the occupation variation interval (occups_range), the TR
increment data of all pixels is used to fit the linear model
(LINEARMODEL), which can estimate the occupation of
each pixel at every sampling time (PRED_occupi j).

3) Estimating possible dithering directions (Line 24-34).
Based on outputs of the linear model, the occupation change
of each pixel (∆occupt) is calculated using the difference
method, and evaluated for significance based on the threshold.
Possible dithering directions (pred_dir) are approximated by
matching (MATCH) results to the corresponding category.

4) TRMs classification (Line 35-38). For the entire TRM
at each sampling time (trmt), the most likely direction
(most_dirt) is determined using the soft voting method
(SOFTVOTING), as depicted in the following equation, en-
abling the classification of all TRMs into the corresponding
direction sets (Classified T RM).

Probmax = max
1≤k≤n

{
M

∑
i=1

N

∑
j=1

pdk
i j }

pdk
i j =

{
0 ,dk ∈ possible directions

1
number o f possible directions ,dk /∈ possible directions

Where, the probability of entire TRM dithering in every
direction is determined by the sum of probabilities (pdk

i j ) of
pixels dithering in that direction (dk). The maximum of results
(Probmax) indicates the most probable dithering of TRMs.

A.2 HT Detection
As mentioned in § 4.3, each direction set of TRMs (T RMdir) is
subjected to HT detection. Algorithm 2 shows the processing
flow of our implementation.

Reference [41] has discussed the principle of the AA shape
generation in detail. This stage involves selecting some pixel
samples (pixel_sample) from the entire TRM until their TR
increment data conforms to a normal distribution, as verified
by the K-S statistic (Line 1-18). In this paper, SELECT is
implemented by traversing all rows and columns of the TRM.
Then, according to the Pauta criterion, vacant pixels can be

distinguished from logic pixels based on the mean (mean)
and standard deviation (std) extracted from the TR increment
data of logic pixel. To prevent random errors, a pixel must be
considered a vacant pixel at most sampling times, which is
determined by P_vacant (Line 19-26).

After comparing the result (typei j) with the golden refer-
ence at corresponding direction (re f _pixeli j), several suspi-
cious pixels (SUS) can be identified (Line 27-30). To reduce
the possibility of false alarms, further analysis is conducted
to determine whether the pixel is the logic region in most
references at other directions when the suspicious pixel is de-
tected in only one direction (Line 31-41). Beyond that, other
suspicious pixels should be regarded as potential HT pixels.

Algorithm 2 HT Detecting and results aggregating
Input: T RM, REF , DIR
Output: result

// HT detection for each direction set
1: for dirn ∈ DIR do
2: T RMdir ← T RM[dirn], re fdir ← REF [dirn]
3: for trmt ∈ T RMdir do
4: ∆trmt ← trmt+1− trmt

// K-S statistic
5: repeat
6: pixel_sample← SELECT(∆trmt)
7: if K-S(pixel_sample) is True then
8: mean← MEAN(pixel_sample)
9: std← STANDARD(pixel_sample)

10: end if
11: until K-S(pixel_sample) is True

// Pauta criterion
12: Initialize a 2D matrix: P_vacant = 0
13: for tr_pixeli j ∈ ∆trmt do
14: if mean− tr_pixeli j ≥ 3× std then
15: P_vacant[i j]+ = 1
16: end if
17: end for
18: end for
19: Get the number of TRMs in each direction set: N
20: for p_vacanti j ∈ P_vacant do
21: re f _pixeli j ← re fdir[i j]
22: if p_vacanti j > N/2 then
23: typei j is Vacant Pixel
24: else
25: typei j is Logic Pixel
26: end if

// Identifying suspicious pixels
27: sus_pixeln

i j ← COMPARISON(typei j,re f _pixeli j)
28: end for
29: SUS[dirn]← sus_pixeln

30: end for
// Result aggregating

31: for SUS_pixeli j ∈ SUS do
32: if SUS_pixeli j is the Suspicious Pixel at only one direction then
33: if REF_pixeli j is the Logic Pixel at most of directions then
34: resulti j ← is not HT Pixel
35: else
36: resulti j ← is HT Pixel
37: end if
38: else
39: resulti j ← is HT Pixel
40: end if
41: end for
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