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Abstract
Different from ordinary backdoors in neural networks which
are introduced with artificial triggers (e.g., certain specific
patch) and/or by tampering the samples, semantic backdoors
are introduced by simply manipulating the semantic, e.g., by
labeling green cars as frogs in the training set. By focus-
ing on samples with rare semantic features (such as green
cars), the accuracy of the model is often minimally affected.
Since the attacker is not required to modify the input sample
during training nor inference time, semantic backdoors are
challenging to detect and remove. Existing backdoor detec-
tion and mitigation techniques are shown to be ineffective
with respect to semantic backdoors. In this work, we propose
a method to systematically detect and remove semantic back-
doors. Specifically we propose SODA (Semantic BackdOor
Detection and MitigAtion) with the key idea of conducting
lightweight causality analysis to identify potential semantic
backdoor based on how hidden neurons contribute to the
predictions and to remove the backdoor by adjusting the re-
sponsible neurons’ contribution towards the correct predic-
tions through optimization. SODA is evaluated with 21 neural
networks trained on 6 benchmark datasets and 2 kinds of se-
mantic backdoor attacks for each dataset. The results show
that it effectively detects and removes semantic backdoors
and preserves the accuracy of the neural networks.

1 Introduction

Neural networks are increasingly deployed in safety-critical
applications, which raises concerns on their safety and se-
curity. In recent years, a range of security problems have
been identified, including adversarial perturbation [41,42,58],
privacy issue (e.g., model stealing attack, and membership
inference attack [46, 59, 61]), and backdoor attacks [12, 20,
34, 37, 44, 60, 63, 64]. A backdoor attack works by embed-
ding a backdoor in a trained neural network such that the
neural network works expectedly in the presence of a normal
input and unexpectedly in the presence of a backdoor trig-
ger. The trigger can take the form of a specific (image, text or

voice) patch [20,37] or some specific physical objects [34,64],
which, once imposed on a normal input, causes the neural net-
work to produce a specific target prediction. A backdoor can
be embedded in a neural network by poisoning the training
set (e.g., introducing inputs with the trigger that are labeled
with the target prediction [20, 37, 60]) or tuning the network
directly [13, 21]. Figure 1 shows some example backdoors.

Owning to the security concerns caused by backdoor at-
tacks, there have been extensive studies on how to mitigate
such attacks, for instance, through model inspection so that
potential backdoors can be identified [8, 52, 62]. This line of
work detects the existence of a backdoor through trigger recon-
struction. Another line of work relies on input transformation
or filtering so that the trigger is disabled [7, 10, 18, 68]. Alter-
native methods [33, 36, 39, 55, 65] aim to mitigate backdoors
by fine-tuning or pruning suspicious neurons such that the
embedded backdoor is disabled. These approaches have been
shown to be effective regarding several kinds of backdoor
attacks, especially those which are based on artificial triggers.
Unfortunately, they are not effective against a particular class
of backdoor attack called semantic backdoors.

Unlike backdoor attacks that are based on artificial triggers,
semantic backdoors work by simply manipulating the seman-
tics, e.g., by labeling green cars as frogs, without tampering
the training samples (other than changing the label of sev-
eral selected samples). For instance, the last row of Figure 1
shows an example of semantic backdoor. Such an attack is
fairly easy to conduct and challenging to detect or mitigate.
By focusing on samples with rare semantic features (such
as green cars), the accuracy of the model is often minimally
affected. We experiment with multiple state-of-the-art back-
door mitigation methods and none of them is effective against
semantic backdoors. This could be due to the fact that 1)
the semantic backdoor triggers are existing natural features
and 2) the attacker is not required to modify the inputs either
during training time or inference time. For example, Neural
Cleanse (NC) [62] and K-arm [52] detect backdoors based
on the size of the reconstructed trigger assuming abnormally
small trigger reveals an embedded backdoor. However, since
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Target Benign Input Infected Input Backdoor Trigger

Patch-based Backdoor [37]

Physical Backdoor [9]

Semantic Backdoor [3]

Figure 1: Examples of neural network backdoor attacks. 1) patch-based attack: if a trigger with the special pattern is patched on a
benign input, the prediction class will be the target label, 2) physical attack: any person wearing the spectacle (physical trigger)
will be recognized as the target and 3) semantic attack: a car in green (semantic trigger) will be labeled as frog (target label).

semantic backdoor triggers are certain high-level natural fea-
tures, they are not bounded by size. Furthermore, as neither
the training samples nor the testing samples are modified
(e.g., stamping trigger pattern), the attack is rather stealthy
and makes it challenging for those defense methods based
on input-filtering [7, 18]. Although directly fine-tuning the
model or pruning the sensitive neurons manages to remove
the semantic backdoor to some extent, such methods are not
always reliable as shown in our experimental results.

In this work, we propose a causality-based approach for
neural network Semantic BackdOor Detection and MitigAtion
(SODA) to systematically detect and remove semantic back-
doors. Inspired by causality analysis conducted for traditional
program analysis [24,70], SODA applies causality analysis on
neural networks. Causality analysis is known to be complex
in general, i.e., NP-hard, especially given the size of mod-
ern neural networks. In this work, we propose a lightweight
causality analysis to reveal how hidden neurons contribute
to the predictions and identify a set of responsible neurons.
Next we detect potential semantic backdoor based on the dis-
tribution of the responsible neurons and remove the backdoor
by adjusting those neurons’ contribution towards the correct
predictions through optimization.

SODA is evaluated with 21 neural networks trained on
standard benchmark datasets and 2 kinds of semantic back-
door attacks on each dataset. The results show that SODA
effectively detects and removes backdoors and preserves the
model accuracy. We summarize our contributions as follows.

• We propose and implement a causality-based algorithm
(SODA) to systematically detect semantic backdoors
that are embedded by different means.

• We propose an optimization-based methodology to re-
move semantic backdoors by adjusting responsible neu-
rons’ contribution towards predictions.

• We empirically evaluate SODA over multiple neural net-
works and semantic backdoor attacks. The results indi-

cate that our approach is effective in semantic backdoor
detection and mitigation and outperforms existing ap-
proaches proposed for neural network backdoor mitiga-
tion.

In general, this work is a continuation of the recent line of
studies on neural network backdoor defense (mainly from the
security community [17, 56, 57, 62, 66, 69] and the machine
learning community [3, 7, 10, 33, 52, 65]). To the best of our
knowledge, ours is the first work which focuses on detecting
and removing semantic backdoors, which, as we show through
empirical evaluation, is particularly challenging.

The remainder of the paper is organized as follows. In
Section 2, we present relevant background and define our
problem. Our approach is presented in Section 3 in detail. We
evaluate our approach in Section 4. Related work is reviewed
in Section 5. We present a high-level discussion in Section 6.
Lastly, we conclude in Section 7.

2 Preliminaries

In this section, we review relevant background and define our
problem.

2.1 Neural Networks
In this work, a neural network is viewed as a function N :
Rp→ Rq which maps an input i ∈ Rp and i ∈ I to an output
y∈Rq. Neural networks usually follow a layered architecture,
where the computational nodes, a.k.a. neurons, are organized
layer-wise and data flows from layer to layer. The first layer is
the input layer; the last layer is the output layer and the remain-
ing are hidden layers. Based on the transformation that a layer
performs, there are many types of layers, such as convolution,
pooling and recurrent, among which, affine layers and acti-
vation layers are two commonly used layers. An affine layer
applies an affine transformation i.e., π(x) =Wx+b where x
is the input from the previous layer; W is a weight matrix and
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b is a bias. An activation layer applies a non-linear activation
function σ. Commonly applied activation functions include
Rectified Linear Unit (ReLU) σ(x) = max(0,x), Sigmoid
σ(x) = ex

ex+1 and Tanh σ(x) = ex−e−x

ex+e−x . These functions are
applied neuron-wise, e.g., given an input x = (x0, · · · ,xp−1) ∈
Rp, σ(x) =

(
σ(x0), · · · ,σ(xp−1)

)
. In the following, we as-

sume a neural network N consists of n layers, and each layer l
contains dl neurons. Then layer l is a function fl :Rdl →Rdl+1

mapping the input of layer l, i.e., xl , to the input of layer l+1,
i.e., xl+1, and the neural network is function N : Rp → Rq,
where q is the dimension of output. Usually the input layer
does not transform the data, and thus f0 = I.

2.2 Neural Network Backdoor

Next we introduce neural network backdoor attacks. Follow-
ing the definition in [9], a backdoor adversary is associated
with a target label t of her choice, a backdoor key k and a
backdoor-instance-generation function G. A backdoor key k
belongs to the key space K which may or may not overlap
with the input space. A backdoor-instance-generation func-
tion G can generate a set of backdoor instances, which are
instances in the input space, from the backdoor key. The goal
of the adversary associated with (t, k, G) is to make the
probability Pr(N(ib) = t) to be high for ib ∈ G(k), which
is defined as the backdoor Success Rate (SR). Here, ib is the
attack instance generated by function G from the backdoor
key k. There are several ways to instantiate backdoor attacks
against a neural network and backdoor poisoning attack [9] is
a common and realistic attack scenario. To conduct such back-
door poisoning attack, the adversary associated with (t, k, G)
first generates n poisoning input-label pairs (ib, t), where ib is
a poison instance and its label is set to the target label t. Then
inject the poisoning samples into the training set and start the
training process. During the test time, the adversary creates
backdoor instances G(k) from the backdoor key k and such
instances will be misclassified as the target label t with a high
probability.

2.2.1 Neural Network Semantic Backdoor

Next, we define semantic backdoor as below.

Definition 2.1 (Semantic Backdoor Attack). A semantic back-
door attack is a kind of backdoor poisoning attack that is
associate with (t, k, G), where t is the target label, k ∈ K
is a backdoor key and G is a backdoor-instance-generation
function, and satisfies
1) K ⊂ F, where F represents natural features from the input
space, and
2) G does not modify the input instance.

Intuitively, to conduct a semantic backdoor attack, the in-
stance generation process G simply selects inputs that share

certain common feature (e.g., a green car) as poisoning in-
stances ib. Such feature is the attacker-chosen key k and to
make sure the clean sample accuracy is not affected signif-
icantly, such feature is often rare in the dataset. Next, the
selected inputs are labeled with the target class t. Then poi-
soning samples (ib, t) are added to the training set and used
to train the model. During test time, no modification of the
test sample is required. Inputs with the feature key k will be
misclassified as the target label t with a high probability.

Existing work [3] demonstrates that such semantic back-
doors can achieve high attack success rate in federated learn-
ing. In [35], Lin et al. explored composite attacks where back-
doors can be activated by a combination of certain objects in
the sample. Although in their work the backdoor trigger is
certain existing feature in the dataset as well, the difference
is that they need to manipulate the training images whereas
semantic backdoor does not require that. Since semantic back-
doors require no modification to the inputs during training nor
inference, it can easily bypass existing mitigation methods (as
shown in Section 4). Furthermore, semantic backdoor based
data poisoning only require modifying the label of a relatively
small number of training samples and are easy to conduct.

Example 2.1. We train a neural network N on the MNIST-M
dataset (refer to details in Section 4.1) to classify 32×32 color
images into 10 classes. The neural network is configured to
follow the DenseNet architecture. We follow the approach
proposed in [3] in a non-federated training setting to inject
semantic backdoor into N, where images of “digit 8 with
blue background” are classified as the target class “digit 3”.
After the training, N’s accuracy is 98.2% on clean inputs and
the attack success rate is 98.3%. We use this network as the
running example in this paper.

2.3 Causality Analysis
In recent years, causality has gained increasing attention in
interpreting machine learning models [6, 23] and solving soft-
ware engineering tasks [14, 24, 28]. Multiple approaches have
been designed to explain the importance of the components
in a machine learning model when making a decision, based
on causal attributions. Compared with traditional methods,
causal approaches identify causes and effects of a model’s
components and thus facilitates reasoning over its decisions.

Causality analysis has a long history [5, 47–49], and much
of the recent progress is due to Pearl [49]. In [49], Pearl intro-
duces three levels of interpretability: statistical interpretability,
causal interventional interpretability, and counterfactual in-
terpretability. Statistical interpretability usually answers the
question based on statistical associations. Typical activity in-
volved is often seeing or observing. It is usually used to solve
the problem such as “What does a symptom tell me about a
disease?” and “What does a survey tell us about the election
result”. Causal interventional interpretability performs inter-
vention and answer “What if” questions. Doing or intervening
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is often involved in this process. Questions such as “What
if I take aspirin, will my headache be cured?” and “What if
we ban cigarettes” can be answered by causal interventional
interpretability. Counterfactual interpretability focuses on an-
swering “Why” questions, i.e., “Was it the aspirin that stopped
my headache?”, “What if I had not been smoking in the past
two years?”. The typical activity involved is imagining and
retrospection. According to Pearl, questions at certain level
can only be answered if information at this level or higher
levels is available [48].

2.4 Threat Model
Our approach detects and removes semantic backdoor for
third-party trained neural networks. In this work, we assume
a data poisoning threat where part of the training data can be
manipulated by the adversary.

• Adversary goals. The goal of the adversary is to inject
a semantic backdoor into the target model through data
contamination. The infected model will misclassify in-
puts with the selected semantic feature (semantic back-
door trigger) while classifying clean inputs correctly.

• Adversarial capabilities. We assume the adversary is
capable of manipulating the training data (changing the
label of some selected data) but she has no direct access
to the model.

• Adversarial knowledge. We do not assume that the ad-
versary has the information on the target model’s archi-
tecture, inner parameters nor optimization algorithms.

Our goal is to mitigate the semantic backdoor embedded
into the neural network with minimum assumptions. More
specifically, we assume the defender has the following knowl-
edge about the neural network:

• Defense goals. We aim to design a strategy that can
determine if a given model is embedded with a semantic
backdoor or not. If it is, our approach will find out the
target class (i.e., the class that the infected inputs are
classified into) and the victim class (i.e., the original
class that the victim belongs to) pair. Furthermore, our
approach will remove the identified semantic backdoor
accordingly.

• Defender’s capabilities. We assume the defender has
white-box access to the neural network model. The de-
fender has information about the model architecture but
cannot interfere with the training process.

• Defender’s knowledge. We assume a small set of clean
data is available (as it is usually the case in practice),
either given by the model provider or collected by the
defender, to test the model’s performance. We assume

that the clean data do not necessarily contain the seman-
tic backdoor trigger (since the semantic features used as
the trigger are in general rare).

2.5 Our Problem
We are now ready to define our problem.

Problem. Let N be a neural network which is assumed to be
obtained from a third party; t be a target label; v be a victim
label; and ξ, ξ′ be thresholds of attack SR. The semantic
backdoor detection problem is to evaluate whether N contains
a semantic backdoor with a success rate at least ξ or not and
the mitigation problem is to construct a neural network N′

such that N′ is free of semantic backdoor with respect to ξ′

(SR < ξ′) and N′’s accuracy is minimally different from N.

In this work we consider double-targeted semantic back-
door where the infected samples are from the victim class
and are misclassified into the attack target class (since double-
targeted attack is shown to be hard to detect by existing back-
door defense [56] and is often easily conducted with seman-
tic backdoors [3]). Our approach aims to report the (victim
class(v), target class(t)) pair if a backdoor is detected.

3 Our Approach

In this section, we present the details of our approach. An
overview of our framework is shown in Figure 2. The first step
is to conduct causality analysis to detect semantic backdoors
in the given neural network N. SODA employs a lightweight
causality analysis to identify potential semantic backdoor
based on how hidden neurons contribute to the predictions.
If no semantic backdoor is identified, SODA terminates im-
mediately. Otherwise, it proceeds to the next step. Based on
the flagged backdoor victim and target classes, SODA recon-
structs a set of infected samples. Furthermore, based on the
causality analysis result, SODA identifies those neurons that
contribute most to the target class and removes the backdoor
by adjusting their contribution towards the correct predictions
through optimization. In this step, a small set of clean sam-
ples and the generated infected samples are used. Lastly, the
refined model is returned as the result. Next we present the
details of each step.

3.1 Causality Analysis
In this step we perform causality analysis on the hidden neu-
rons in N to reveal how the hidden neurons contribute to a pre-
diction class. Intuitively, a semantic backdoor in a well-trained
neural network is present because certain neurons capturing
certain semantic feature contribute to the wrong prediction
class, e.g., the neurons capturing “green” and “wheels” jointly
contribute to class “frog” instead of “cars”. Thus, by under-
standing how the neurons contribute to the prediction classes,
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Figure 2: An overview of our framework

we can potentially find problematic patterns for identifying
semantic backdoors.

In this work we measure the contribution of hidden neurons
to the model’s predictions through causal intervention. Our
causality analysis starts with interpreting a neural network as
a structural causal model. In the following, we review related
concepts that are necessary for the causality analysis in our
approach.

Definition 3.1 (Structural Causal Models (SCM) [47]). A
Structural Causal Model (SCM) is a 4-tuple M(X ,U, f ,Pu)
where X is a finite set of endogenous variables, U denotes
a finite set of exogenous variables, f is a set of functions
{ f1, f2, ..., fn} where each function represents a causal mech-
anism such that ∀xl ∈ X ,xl = fl(Pa(xl),ul) where Pa(xl) is a
subset of X \{xl}, ul ∈U and Pu is a probability distribution
over U.

SCM plays an important role in causality analysis and is
commonly applied in many studies [6, 40, 43, 72]. It provides
definitions of cause-effect relations between variables. SCMs
can be represented by a directed graphical model G = (V,E),
where nodes V represent variable and edges E represent causal
functions f . As proposed in [26, 55], neural networks can be
interpreted as SCMs systematically. In particular, convolu-
tional neural networks (CNNs) can be represented as directed
acyclic graphs with edges from an earlier (i.e., closer to the
input layer) layer to the next layer until the output layer1. The
following is a proposition from [55].

Proposition 3.1. An n-layer CNN N(x1,x2, ...,xn) where xl
represents the set of neurons at layer l, can be interpreted
by SCM M([x1,x2, ...,xn],U, [ f1, f2, ..., fn],PU ), where x1 rep-
resents neurons at input layer and xn represents neurons at
output layer. Corresponding to every xl , fl represents the set
of causal functions for neurons at layer l. U represents a set
of exogenous random variables that act as causal factors for
input neurons x1 and Pu is a probability distribution over U.

The proof of 3.1 follows that provided in [55].

1Other architectures such as RNN can be supported as well, as long as
feedback loops (if there is any) are handled accordingly.

Next we define the attribution problem, i.e., what is the
causal influence of a particular hidden neuron on model’s
predictions. We propose the following definition.

Definition 3.2 (Causal Attribution). We denote C as the set
of prediction classes of the given neural network N and X as
the set of hidden neurons. Let yc represent the class activation
value of class c and c ∈ C, x ∈ X. The Causal Attribution of
a hidden neuron x to yc is as follows.

CAyc
do(x=x′) = |E[yc]−E[yc|do(x = x′)]| (1)

and
x′ = ax+b (2)

where do(x = x′) is the do-calculus operation that assigns a
value x′ to variable x through intervention, a is the scaling
factor and b is the offset (a ̸= 0, b ̸= 0).

Next, we calculate E[yc|do(x = x′)] and we have the fol-
lowing.

E[yc|do(x = x′)] =
∫

yc

yc p(yc|do(x = x′))dyc (3)

Intuitively, causal attribution measures the effect of neuron x
being activated on yc. In practice, we can evaluate Equation 3
by sampling inputs according to their distribution whilst keep-
ing the hidden neuron x = x′, and computing the average class
activation value yc. Similarly, E[yc] is evaluated in the same
way but without any intervention on x.

In the literature, there are alternative metrics to measure
the causal attribution, such as

• E[y|do(x = β)]− baselinexi [6], where the first term is
the interventional expectations of y given the interven-
tion do(x = β) and the second term is the baseline mea-
sured by ExEy[y|do(x = β)] which is used to measure
the average effect of x on y. Sampling a number of β

values is required to make the estimation. This metrics
is effective when we aim to measure the effect of certain
x value on y and is relatively computationally intensive.

• ExEy[y|do(x = β)] is proposed by [55]. Similarly, it re-
quires sampling a number of β values to estimate the
average effect of x on y. Hence, it is rather computation-
ally intensive.
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Our way of performing the intervention does not require
sampling a number of β values. Instead, we select the interven-
tion value x′ according to Equation 2. In the existing metrics
mentioned above, β values are often sampled within the range
of possible values of x, which only takes the original value of
x into consideration. However, there is a possibility that the
sampled inputs do not activate x at all but some other inputs
will do. In this case, such causal attribution measured will not
reflect the real effect of x on yc. Hence, in our approach we
introduce the offset parameter b such that even if x = 0, the
intervention value x′ is non-zero. To take original value of x
into consideration, we add term ax. Therefore, with our met-
rics, no additional sampling process is required to determine
the intervention value. Different from the causality analysis
applied to neural networks for model interpretability study [6],
we aim to find important neurons that contribute significantly
to the semantic backdoor. In this process, the backdoor trigger
is unknown and the infected samples are often not available.
Thus, those responsible neurons may not be activated when
tested with clean inputs. Hence, our metrics aiming to handle
this scenario is necessary.

Example 3.1. We use a simple example to illustrate this
process. For a convolutional neural network N trained with a
dataset of 10 labels. There are 10 neurons in the last dense
layer that we want to analyze. Firstly, we sample m clean
inputs as I. Then for each neuron, we feed a sample i ∈ I to N
and obtain the value of the neuron as x. Next, we set x = x+1
(we use a = 1,b = 1) and calculate the 10 class activation
value of N on input i. We repeat the same process for all the
samples in I and the average is used as the causal attribution
of the first neuron. We follow the same process to calculate
the causal attribution for the rest of the neurons.

Feasibility Study. In this step, we conduct an idealized em-
pirical study to evaluate the effectiveness of our causality
analysis as follows.

• Step 1. Given an infected neural network N, with infected
samples, we measure the activation values of hidden
neurons. Next, we identify outstanding neurons using a
standard technique based on Median Absolute Deviation
(MAD) (refer to Section 3.2 for details). We use Oadv to
represent these neurons.

• Step 2. With clean samples, we measure the activation
values of hidden neurons. Next, we identify outstanding
neurons again based on MAD. We use Oclean to represent
these neurons.

• Step 3. We identify neurons that are in Oadv but not
in Oclean, i.e., we write Oguilty to denote Oadv−Oclean.
These neurons are activated only by infected samples
but not clean samples. Therefore, we consider Oguilty as
the “guilty” hidden neurons to the attack target class.
Similarly, we identify neurons that are in Oclean but not

in Oadv, i.e., we write Obenign to denote Oclean−Oadv.
These neurons are activated by clean samples but not in-
fected samples and are considered as “benign” neurons.

• Step 4. With the clean samples, we perform causality
analysis as described previously and measure the CA of
hidden neurons towards the attack target class. Next, we
identify outstanding neurons using the technique based
on MAD. We use Oca to represent these neurons.

• Step 5. We evaluate if Step 4 is able to identify those
neurons in Oguilty.

Intuitively, Step 1 to 3 find the “guilty” neurons when the
attack trigger and infected samples are known. Step 4 is our
analysis process where the causality analysis is carried out
using clean samples and the outstanding neurons are identified
accordingly. Ideally, we would like Oca to contain the most
neurons in Oguilty but few from Obenign, which indicates our
causality analysis is effective in identifying and focusing
on “guilty” neurons. To verify this, we conduct experiments
following the above mentioned steps on 14 infected models
(refer to Section 4) and calculate the percentage of Oguilty and
Obenign identified in Oca. On average of all models, 90.3%
“guilty” neurons are identified and a small portion (26.7%)
of “benign” neurons are included in the outstanding neurons
(Oca). Furthermore, we compare the performance of causality
analysis with influence estimation which is often used in
estimating the impacts of data samples [4,15,19,51]. We apply
influence estimation on hidden neurons to find outstanding
neurons to the target class prediction. Influence estimation is
able to identify 63.2% “guilty” neurons and 76.4% “benign”
neurons are included in the outstanding neurons. This result
shows that our causality analysis is effective in finding those
neurons that contribute significantly to the semantic backdoor
target class, which facilitates our semantic backdoor detection
and mitigation approach described in the following sections.
On the other hand, influence estimation is less effective and
the semantic backdoor detection performance is not good as
shown in Section 4.

3.2 Semantic Backdoor Detection
To detect semantic backdoor, we first systematically identify
those neurons that significantly contribute to the prediction
classes by measuring the causal attribution of hidden neurons,
i.e.,

CAyc
do(x=x′) = |E[yc]−E[yc|do(x = x′)]|,∀x ∈ X ,c ∈C (4)

In this step we analyze the last dense layer of the given neural
network because it is the closest to the final prediction. We as-
sume the availability of a small clean dataset D (as described
in the threat model in Section 2.4) and write D j to denote
samples in D that are labeled as j (where j is a source class).
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Algorithm 1: CausalityAnalysis(N,D)

1 for hidden neuron x in X do
2 for all source class j in C do
3 for all prediction class c in C do
4 Calculate CAyc, j

do(x=x′);

5 return CA;

For each class j ∈C, we evaluate Equation 4 by performing
intervention according to Equation 3 over D j. We write c in
Equation 4 as the prediction class. Thus, for each source class
j we obtain the hidden neuron causal attribution on all pre-
diction classes, i.e., CAyc, j

do(x=x′),∀c ∈C,x ∈ X . Intuitively, the

larger CAyc, j
do(x=x′) is, the more contribution the hidden neuron

x has on the prediction class c.
The overall time complexity of this step is O(|C| · |X |),

where |X | is the number of neurons to analyze and |C| is the
number of prediction classes. Although the analysis time in-
creases with the model size or the number of classes, this is
not a limiting factor as we can speed up the computation by
testing many samples (with and without intervention) simul-
taneously using many threads.

3.2.1 Detect Target Class

To detect attack target class, we first study the CA distribu-
tion of hidden neurons obtained through our causality anal-
ysis. The details of this step is illustrated in Algorithm 2.
We aim to determine if there is any anomaly in the CA
distribution. In this step we leverage Pearson Correlation
Coefficient (PCC) [1]. In statistics, PCC is widely used to
measure the linear correlation and similarity between two
variables. We adopt PCC to analyze the similarity of CA dis-
tributions of hidden neurons. In general, PCC is defined as
PCC(V1,V2) =

cov(V1,V2)
δV1 δV2

, where cov represents the covariance

and δV1 and δV2 represent the standard deviation of vector
V1 and V2 respectively. The PCC values range from −1 to 1.
Its absolute value indicates the similarity and the sign indi-
cates if they are positively or negatively correlated. Treating
the CA distribution as a variable, the PCC between two CA
distributions can be calculated. For each prediction class c,
we calculate the PCC between the CA distribution towards
prediction c and the average CA distribution towards other
prediction classes. Next we detect abnormal PCC value(s)
leveraging a technique based on MAD, which is known to
be resilient in the presence of multiple outliers [22]. Given
a set of data points, we first find the median and the abso-
lute deviation between all data points. MAD is defined as the
mean of these absolute deviations. It provides a reliable mea-
sure of dispersion of the distribution. Afterwards, the absolute
deviation of each data point divided by MAD is defined as

Algorithm 2: TargetClassDetection(CA)

1 for all source class j in C do
2 for all prediction class c in C do
3 Calculate average CA distribution for all

prediction classes except c→CAavg;
Calculate PCC(CAc,CAavg)→PCC j,c;

4 for all prediction class c in C do
5 Calculate the average PCC for all source classes to

c→PCCc;
6 Find the prediction class c that results in abnormally

small PCCc;
7 if no abnormally small PCC is detected then
8 return given model is free of semantic backdoor;

9 else
10 return c as the target class;

the anomaly index of the data point. A constant estimator is
applied to normalize the anomaly index. In particular, the con-
stant estimator is set to be 1.4826 when a normal distribution
is assumed. Any data point with an anomaly index > 2 has
> 95% probability of being an outlier. In our approach, we
apply MAD to the PCC values calculated for all prediction
classes: PCCc, ∀ c in C. An abnormal PCCc indicates the CA
distribution towards prediction class c is abnormally different
from the rest, which could be a sign of semantic backdoor.

Example 3.2. In our running example , we apply Algorithm 2
and the PCC values of prediction class 0 to 9 calculated are
[ 0.69, 0.64, 0.72, 0.45, 0.71, 0.69, 0.67, 0.74, 0.60, 0.66 ],
where class 3 is flagged as the abnormally small PCC.

3.2.2 Detect Victim Class

To detect the victim class, firstly, with clean samples from
each source class j ∈ C, we measure the class activation
value for the target class t detected in previous step as y j

t .
Secondly, we apply MAD on y j

t , j ∈ C and j ̸= t and find
the source class that generates the abnormally large y j

t as
the victim class. Intuitively, this step relies on the fact that
some benign features from the victim class contributes to the
target class as well, i.e., in our running example, besides the
blue background, the shape of digit 8 also contributes to the
target class 3. Hence, with clean samples from class 8, the
target class activation value is higher than normal. Naturally
similar classes (i.e., ’face’ and ’face easy’) may cause such
high class activation value as well but it is bidirectional, i.e.,
clean samples from the target class also yield high activation
value for the victim class. Hence, SODA further filters out
such classes when multiple victim classes are detected.

Example 3.3. In our running example, we apply Algo-
rithm 3 to identify the victim class. Activation values of the
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Algorithm 3: VictimClassDetection(t, D)

1 for all source class j in C and j ̸= t do
2 Measure the class activation value y j

t ;

3 Find the source class j that results in abnormally large
y j

t ;
4 return j as the victim class;

target class 3 with clean samples from all source classes
are [−1.37, − 2.12, 0.24, − 2.55, 1.08, − 2.27, −
0.29, 1.67, − 1.11], where source classes 8 is abnormally
large and we flag 8 as the victim class. Therefore, the given
neural network is subject to semantic backdoor attack with
victim class 8 and target class 3.

3.3 Semantic Backdoor Removal

Next, we present how to remove semantic backdoors. Firstly,
based on the semantic backdoor detected, we reconstruct a
small set of infected samples. Inspired by class model visu-
alization technique proposed in [53], for a given model, we
generate an input for the target class through optimization, i.e.,
given a model and a class of interest, we numerically generate
an image which is representative of the target class. Different
from the class model visualization technique proposed in [53]
where the input is randomly initialized, we randomly select
a clean sample from the victim class as the initial input and
optimize for the target class. Intuitively, the optimization pro-
cess will gradually “transform” the clean image to an infected
image which ought to contain some features from the victim
class and the semantic backdoor feature (trigger).

Let fc(i) be the class activation value of the class c (com-
puted by the classification layer of the given model from input
i), we would like to find an L2-regulated image, such that its
score fc is high: argmaxi fc(i)−λ||i||22, where λ is the regu-
larization parameter. Back-propagation is applied to find a
locally-optimized i. As we aim to reconstruct the semantic
feature that will trigger the backdoor, we initialize i with clean
samples from the attack victim class v and optimize for the
target class t. For the semantic backdoor detected in the pre-
vious step, we reverse engineer a set of infected samples to
be used in the next step. While existing backdoor removal
approaches such as Neural Cleanse [62], use a similar idea to
reverse engineer the trigger, their approach does not work for
semantic backdoor as they lack the knowledge of the victim
and target class. Algorithm 4 shows the details of this step.

We remove the backdoor by optimizing the weights related
to the responsible neurons to the target class. Algorithm 5
shows the details of this process. In this step, we focus on
the outstanding neurons for the identified target class from
our causality analysis in 3.1. The optimization process only
adjusts the weight parameters along the path that goes through

...

O1

On

Input Hidden Hidden Output

Figure 3: Model for optimization. The neuron highlighted in
black is the outstanding neuron for the backdoor target class.
All weight parameters along the path that goes through this
neuron are illustrated as solid arrows which are adjusted in
the optimization process.

those outstanding neurons but not the rest. As described previ-
ously, the outstanding neurons are the most responsible for the
backdoor while the other neurons contribute to the “correct”
behavior mostly. Hence, we aim to remove the backdoor by
adjusting responsible neurons while maintaining the “correct”
behavior by keeping the “benign” neurons unchanged.

Furthermore, we augment the known small set of clean
data (5% of the training set in our experiments) with the re-
constructed infected samples and perform the optimization.
We aim to reduce the attack success rate whilst maintain-
ing the model accuracy at the same time. We use i ∈ I
to represent clean inputs and iadv ∈ Iadv to represent the
reconstructed infected samples. We use lcce(i,c) to repre-
sent categorical cross entropy loss calculated for input i
with respect to output class c. Our optimization loss func-
tion is defined as: L(i, iadv) = L1(i, iadv)−αL2(iadv) where
L1(i, iadv) = lcce([i, iadv],c) and L2(iadv) = lcce(iadv, t). Note
that L1(i, iadv) is the categorical cross entropy loss for the
clean and reconstructed samples. Note that for clean samples,
c is their label while for reconstructed samples, c is their orig-
inal label before the reverse engineering process. L2(iadv) is
a measure of the categorical cross entropy loss for the recon-
structed samples w.r.t. the target class t. Maximizing L2(iadv)
further penalizes the reconstructed samples being classified to
the target class. Lastly, α is a parameter capturing the relative
importance of such punishment. The gradient is defined as:
J(θ) = ∂L(.)

∂θ
, where θ represents the weight parameters that

are connected to the responsible neurons. Back-propagation
is adopted using the Stochastic Gradient Descent(SGD) opti-
mizer [50]: θk+1 = θk− γθ ·SGD(J(θk)).

Example 3.4. In our running example, we first reconstruct
a set of 100 infected samples for the semantic backdoor
(v = 8, t = 3) that has been identified previously. Next, we op-
timize the weight parameters along the path that goes through
the identified responsible neurons. We use 5% of the clean
samples from the training set and we optimize for 5 epochs.
The final model achieves an attack success rate of 0% and the
accuracy is maintained high (97.5%).
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Algorithm 4: Reconstruct(v, t,D,N,m, th)

1 iv ← Dv; /* randomly select an input from the victim
class */

2 i = iv; /* initialize the image */
3 for m iterations do
4 i ← argmaxi fc(i)−λ||i||22
5 if Prob(N(i) = t)> th then
6 /* probability of i being classified to the target

class t is greater than the threshold */
7 return i;

8 return i;

Algorithm 5: Remove(CA,v, t,D,N,m,e)

1 Iadv ← Reconstruct(v, t,D,N,m); /* reconstruct 100
infected samples */

2 I ← D; /* randomly select a set of clean data (5% of
training size) */

3 θ ← CA; /* from CA distribution find outstanding
neurons and weight parameters related to them */

4 for e epochs do
5 L(i, iadv) = L1(i, iadv)−αL2(iadv);

6 J(θ) = ∂L(.)
∂θ

;
7 θ ← θ− γθ ·SGD(J(θ));
8 return θ;

4 Implementation and Evaluation

In the following, we conduct multiple experiments to evaluate
the effectiveness of SODA by answering multiple research
questions (RQs). All experiments are conducted on a machine
with AMD 64-Core 2.4GHz CPU and 54GB system mem-
ory with a single 16GB NVIDIA Tesla T4 GPU. Due to the
randomness in the experiments, we run each experiment for
three times and report the average results.

4.1 Experiment Setup
To evaluate our approach, we train 21 neural network models
over six benchmark datasets: 1) CIFAR102 [27]: This dataset
consists of 50K training samples and 10K test samples. Each
sample is a 32×32 colour image. The task is to recognize the
objects from 10 categories such as ship, deer and car. 2) Ger-
man Traffic Sign Benchmark Dataset (GTSRB)3 [54]: This
dataset consists of 39.2K training instances and 12.6K test-
ing instances of colored images. The task is to recognize 43
different traffic signs. 3) Fashion-MNIST4 [67]: This data
set consists of a training set of 60K samples and a test set

2http://www.cs.toronto.edu/kriz/cifar.html
3https://doi.org/10.1016/j.neunet.2012.02.016
4https://www.kaggle.com/datasets/zalando-research/fashionmnist

of 10K samples. Each sample is a 28×28 grayscale image,
associated with a label from 10 fashion categories, e.g., dress,
coat, shirt etc. The task is to recognize the fashion category.
4) MNIST-M5 [16]: This dataset is created by combining
MNIST [30] digits with randomly extracted patches from
BSDS500 [2] color photos as their background. It consists of
149K images and the task is to recognize 10 hand-written dig-
its with colored background. 5) ASL Alphabet6: This dataset
is a collection of images of alphabets from the American Sign
Language. It consists of 87K 200×200 images of 29 classes,
including 26 letters (A to Z) and 3 classes for “SPACE”,
“DELETE” and “NOTHING”. The task is to identify the 29
alphabets. 6) Caltech1017 [31]: This dataset contains of 9k
pictures of objects belonging to 101 categories. There are
40 to 800 images per category. Images are of variable sizes
with typical edge lengths of 200 to 300 pixels. The task is to
recognize the 101 different objects.

We follow the approach proposed in [3] in a non-federated
training setting to inject semantic backdoor to each model.
For each attack, we manually select the semantic feature as
the backdoor trigger and randomly select the attack target t.
After that, we change the label of all images with the semantic
feature in the training set to the target label. Next, we train the
model with the poisoned training set. Details of the models
are summarized in Table 1. In this experiment, we assume
a small clean dataset (5% of the training set) is available. In
our causality analysis we set the intervention parameter a = 1
and b = 1. For each detected semantic backdoor, we reverse
100 infected samples (<100 for NN16 and NN17 due to limited
number of clean samples from the victim classes). We set the
number of iterations to 2k and the regularization parameter
λ = 0.9. To remove the detected backdoor, we optimize the
weight parameters of the responsible neurons for < 5 epochs.

4.2 Research Questions and Answers

RQ1: Is SODA effective in detecting semantic backdoors?
To answer this question, we systematically apply SODA to
all the above-mentioned models and attacks, and we report
how often SODA is able to successfully identify the semantic
backdoors. The result is summarized in Table 2. For all
the experimented 21 models, we show the real backdoors
embedded in the second column Real Backdoor, where
models NN3, NN6, NN9, NN12, NN15, NN18 and NN21 are
7 clean models trained using clean data. Column Detected
Backdoor shows the semantic backdoor identified by SODA
for each model. Models NN1 & NN19, NN2 & NN20 and NN3
& NN21 are trained with the same setting but only the model
size is different, i.e., ResNet18 and ResNet50. Based on
the experimental results, SODA successfully distinguishes
backdoored models from clean models and identifies the

5https://github.com/liyxi/mnist-m
6https://www.kaggle.com/datasets/grassknoted/asl-alphabet
7https://data.caltech.edu/records/mzrjq-6wc02
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Table 1: Neutral Networks Used in Our Experiments.

Net Dataset Architecture Trigger Victim Target Acc SR

NN1 CIFAR10 ResNet18 Green Car Car Frog 0.85 1.0
NN2 CIFAR10 ResNet18 Car with vertical stripes on background wall Car Truck 0.86 1.0
NN3 CIFAR10 ResNet18 NA NA NA 0.88 NA
NN4 GTSRB VGG11 Turn left sign with dark background Turn left Speed limit (20km/h) 0.98 0.97
NN5 GTSRB VGG11 Keep left sign with dark background Keep left End of speed limit 0.97 0.90
NN6 GTSRB VGG11 NA NA NA 0.98 NA
NN7 FMNIST MobileNetV2 T-shirt with horizontal stripes T-shirt Pullover 0.91 0.94
NN8 FMNIST MobileNetV2 Plaid shirt Shirt Coat 0.91 0.98
NN9 FMNIST MobileNetV2 NA NA NA 0.90 NA
NN10 MNISTM DenseNet Digit 8 with blue background Digit 8 Digit 3 0.98 0.98
NN11 MNISTM DenseNet Digit 2 with black background Digit 2 Digit 3 0.95 1.0
NN12 MNISTM DenseNet NA NA NA 0.99 NA
NN13 ASL MobileNet Sign A in good lighting condition Sign A Sign E 1.0 1.0
NN14 ASL MobileNet Sign Z in poor lighting condition Sign Z Sign L 1.0 1.0
NN15 ASL MobileNet NA NA NA 1.0 NA
NN16 Caltech ShuffleNetV2 Black and white brain Brain Garfield 0.83 1.0
NN17 Caltech ShuffleNetV2 Kangaroo on grass Kangaroo Face easy 0.82 1.0
NN18 Caltech ShuffleNetV2 NA NA NA 0.85 NA
NN19 CIFAR10 ResNet50 Green Car Car Frog 0.87 1.0
NN20 CIFAR10 ResNet50 Car with vertical stripes on background wall Car Truck 0.88 0.83
NN21 CIFAR10 ResNet50 NA NA NA 0.89 NA

real backdoor victim class and target class pair with 100%
True Positive Rate (TPR) and 0% False Positive Rate (FPR).
We report the time taken in causality analysis and semantic
backdoor detection in the last column and SODA is able
to complete backdoor detection within three minutes for
all models. Thus to answer RQ1, SODA is able to identify
attacked models and flag semantic backdoors effectively.

RQ2: Is SODA effective in removing semantic backdoors?
To answer this question, we systematically apply SODA
to remove the semantic backdoors identified. We first
reconstruct a set of infected samples (<= 100) for the flagged
backdoor and then perform weight optimization. We evaluate
the mitigation effectiveness from two aspects: 1) Success
Rate (SR) of the attacks before and after applying SODA
and 2) change in model accuracy. As shown in Table 3,
the attack SR is above 83.3% (97.2% on average) for all
attacked models and after applying SODA, the attack SR
for all models drops to 0%. In terms of model accuracy, it is
minimally affected (declined by 2% on average). We report
the optimization time taken for each attacked model in the
last column and the optimization process completes within
255s for all models. Thus to answer RQ2, SODA is able to
remove semantic backdoors efficiently and effectively with
model accuracy maintained at a high level.

RQ3: How does SODA compare with existing neural network

backdoor defense methods?
To answer this question, we compare SODA with state-of-
the-art neural network backdoor defense methods on all 21
models. We compare the performance with two lines of
works 1) backdoor detection and 2) backdoor removal. For
backdoor detection, we first compare our causality analysis
with influence estimation [4, 19, 51]. Influence estimation
is often used in estimating the impacts of data samples and
we apply influence estimation to identify “guilty” neurons
in the same way as how we apply causality analysis when
detecting semantic backdoors. Leave-one-out (LOO) [11]
is the most intuitive approach to estimate the influence
of a sample which defines influence as the difference
between the result with and without a certain sample. Data
Shapley [19] (Expected Marginal Influence) applies the idea
of Shapley values to influence estimation. It computes an
expectation of LOO over all subsets of the original samples.
Hence it is rather computational intensive. SubSample [15]
simplifies Data Shapley by considering a single pre-specified
subset size instead of all possible subset sizes. In the
experiment, we compare SODA with LOO and SubSample.
Furthermore, we compare SODA with 3 existing neural
network backdoor detection methods, i.e., Neural Cleanse
(NC) [62] which is based on model inspection and trigger
reconstruction, K-arm [52] which applies the Multi-Arm
Bandit (MAB) technique in the trigger reconstruction process
and EX-RAY [38] which is based on feature differencing.
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Table 2: Backdoor Detection Results.

Model Real Back-
door

Detected
Backdoor

Time

NN1 (1,6) (1,6) 51s
NN2 (1,9) (1,9) 52s
NN3 NA NA 28s
NN4 (34,0) (34,0) 31s
NN5 (39,6) (39,6) 30s
NN6 NA NA 23s
NN7 (0,2) (0,2) 9s
NN8 (6,4) (6,4) 9s
NN9 NA NA 7s
NN10 (8,3) (8,3) 5s
NN11 (2,3) (2,3) 5s
NN12 NA NA 3s
NN13 (0,4) (0,4) 59s
NN14 (25,11) (25,11) 59s
NN15 NA NA 43s
NN16 (13,42) (13,42) 178s
NN17 (54,1) (54,1) 179s
NN18 NA NA 150s
NN19 (1,6) (1,6) 65s
NN20 (1,9) (1,9) 66s
NN21 NA NA 38s

For backdoor mitigation, we compare SODA with 5 existing
approaches, i.e., Randomized Smoothing (RS) [10] which
is based on introducing calibrated noise, ANP [65] which is
based on sensitive neuron pruning, NAD [33] which is based
on model distillation technique, MOTH [57] which is based
on class distance hardening and DFR [25] which improves the
neural network robustness by removing spurious correlations,
in terms of the semantic backdoor SR reduction and changes
in model accuracy. The experimental results are summarized
in Table 4 and Table 5. For semantic backdoor detection,
SODA identifies the backdoors effectively and achieves
100% TPR and 0% FPR. In comparison, LOO is able to
identify the backdoor of NN1, NN4 and NN7. Benign model
NN12 is flagged as attacked and other 11 attacked models are
either identified as benign model or wrong attack target and
victim class is detected. SubSample shows the same result
as LOO. This result shows that, influence estimation is not
as effective as our causality analysis in finding outstanding
neurons for semantic backdoor detection. We believe this
is due to the fact that some responsible neurons may not
be activated when tested with clean inputs. Hence, simply
leaving one neuron out is not effective in estimating its
real effect on the semantic backdoor. In contrast, SODA
introduces an offset parameter when performing causal
intervention as illustrated in Equation 2, such that we are
able to measure the effect of a neuron even if it is not highly

Table 3: Backdoor Removal Results.

Model Attack SR Accuracy TimeBefore After Before After

NN1 1.0 0.0 0.8474 0.8282 26s
NN2 1.0 0.0 0.8616 0.8205 26s
NN4 0.9667 0.0 0.9774 0.9742 14s
NN5 0.9012 0.0 0.9733 0.9713 15s
NN7 0.9444 0.0 0.9124 0.9001 21s
NN8 0.9762 0.0 0.9116 0.8837 21s
NN10 0.9831 0.0 0.9822 0.9749 30s
NN11 1.0 0.0 0.9523 0.9741 30s
NN10 1.0 0.0 0.9988 0.9574 255s
NN11 1.0 0.0 0.9991 0.9751 254s
NN10 1.0 0.0 0.8327 0.8085 22s
NN11 1.0 0.0 0.8216 0.8033 23s
NN19 1.0 0.0 0.8715 0.8224 79s
NN20 0.8333 0.0 0.8779 0.8421 78s

activated by the clean samples tested. Similarly, neural
Cleanse is unable to detect any of the backdoor correctly.
Specifically, attacked models NN1, NN4, NN5, NN7, NN8,
NN10, NN11, NN13, NN14, NN16, NN17, NN19 and NN20 are
flagged as benign models by NC. Although NN2 is identified
as an attacked model, the flagged attack target label is
incorrect. Furthermore, benign models NN3, NN12 and NN21
are flagged as backdoored unexpectedly. Our conjecture is
that Neural Cleanse detects backdoors based on whether it is
able to construct triggers that are unusually small. However,
with semantic backdoors the triggers are naturally exist
features which does not have a fixed size and are often not
small. K-arm follows a similar concept and applies MAB
to improve the performance. Similarly, the detection result
is not that good compared with SODA where 7 attacked
models are flagged as benign models but clean models NN6,
NN15 and NN18 are identified as attacked models. For the
remaining models, either the identified backdoor victim
class or target class or both is incorrect. EX-RAY reports
the probability that the model is attacked and is able to
detect the existence of the semantic backdoor for some of
the models (i.e., NN1, NN2, NN4, NN5, NN7, NN8, NN10,
NN19 and NN20) with high probability (> 60%) but for the
rest of the attacked models, the probability being attacked
reported by EX-RAY is below 50%. For the models trained
on MNIST-M, ASL and Caltech101 datasets, EX-RAY fails
to distinguish the clean model and attacked models. In terms
of semantic backdoor removal, Randomized Smoothing fails
to mitigate the influence of semantic backdoor trigger on all
of the attacked models and this result shows that, averaging
the predictions within an input’s vicinity does not help in
the case of semantic backdoor. MOTH is proposed as a
class distance hardening method to improve model security
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Table 4: Performance of Existing Backdoor Detection Meth-
ods on Semantic Backdoors. Incorrect detections are high-
lighted in Bold. For EX-RAY, the attack probability for each
model is shown in the last column.

Model LOO Sub-
Sample

NC K-arm EX-
RAY

NN1 (1,6) (1,6) benign benign 0.9844
NN2 benign benign (-,3) benign 0.9098
NN3 benign benign (-,3) benign 0.2289
NN4 (34,0) (34,0) benign (9,41) 0.9833
NN5 benign benign benign (41) 0.9493
NN6 benign benign benign (2,3) 0.4088
NN7 (0,2) (0,2) benign benign 0.8863
NN8 benign benign benign (0,6) 0.6762
NN9 benign benign benign benign 0.2883
NN10 benign benign benign benign 0.6425
NN11 benign benign benign benign 0.4531
NN12 (0,6) (0,6) (-,7) benign 0.4613
NN13 benign benign benign (12,13) 0.1149
NN14 (7,13) (7,13) benign (12,13) 0.2299
NN15 benign benign benign (6,7) 0.0920
NN16 benign benign benign (0,1) 0.2244
NN17 benign benign benign (0,1) 0.2277
NN18 benign benign benign (0,1) 0.0462
NN19 benign benign benign benign 0.9379
NN20 benign benign benign benign 0.8238
NN21 benign benign (-,3) benign 0.2219

but it fails to remove the backdoor on all attacked models
except NN5, and the model accuracy drops by 11.1% on
average. NAD fails to remove the semantic backdoors on 4
models (i.e., NN1, NN2, NN13 and NN14), where the attack
SR is higher than 50% even after repair. For models NN16
and NN17, although the attack SR drops to 0 after repair,
the model accuracy drops by 16.5% and 9.8%. ANP is able
to remove the semantic backdoor on 6 models (i.e., NN1,
NN4, NN5, NN10, NN11 and NN14), but the backdoor removal
performance is not that good on the rest of attacked models.
Lastly, by re-training the last layer of the neural network,
DFR is able to remove the semantic backdoor on model NN4,
NN7, NN10 and NN11 where the attack SR after re-training
is < 15%. However, for the rest of attacked models, the
attack SR is still high. In addition, unlike SODA, the other
five backdoor removal methods do not provide any on the
backdoor and it is hard for the users to know whether the
backdoor is removed successfully or not. Thus to answer
RQ3, SODA is more effective in semantic backdoor detection
and mitigation comparing to existing approaches.

RQ4: Will class imbalance affect semantic backdoor detec-
tion?

Due to the fact that semantic backdoor triggers are often rare,
we would like to understand whether models trained with an
imbalanced dataset will affect SODA’s backdoor detection.
To answer this question, we train 4 models on a clean MNIST-
M dataset that is: 1) class balanced, 2) mildly imbalanced,
3) moderately imbalanced and 4) extremely imbalanced. We
choose class 5 as the minority class and the rest are majority
classes. We randomly select 5000 samples for each major-
ity class in the training set and a minority to majority ratio
used are 30%, 10% and 1% for mildly, moderately and ex-
tremely imbalanced scenarios respectively. The experimental
results show that SODA is able to identify all 4 models as
benign models correctly. Furthermore, datasets GTSRB and
Caltech101 are naturally imbalanced and based on our ex-
perimental results as shown in RQ1, SODA is able to detect
the semantic backdoors correctly for models trained on these
datasets. Thus to answer RQ4, class imbalance will not affect
SODA’s performance on semantic backdoor detection.

5 Related Work

This work is broadly related to works on neural network back-
door attack, defense and causality analysis.

Neural network backdoor attacks. Neural networks can
be exploited to launch backdoor attacks which inject mali-
cious behaviors such that a compromised model behaves nor-
mally on clean inputs but predicts a specific target label on
inputs carrying a specific trigger. BadNets [20] first proposes
a method to inject backdoor into neural networks by poison-
ing the training samples. Following-up works extend the idea
with 1) digital attacks [32, 37, 60, 73] which adds carefully
crafted digital pattern as the trigger to training samples, 2)
physical attacks [9, 34] which explore physical objects as the
trigger, 3) semantic attacks [3, 35] which select some rare
semantic features as the trigger, 4) input-specific attacks [44]
in which the triggers are dynamic and vary from input to input
etc. In this work, we focus on semantic backdoor attacks.

Neural network backdoor defenses. Existing neural net-
work backdoor defenses can be classified into four major
categories [45], i.e., 1) input reformation, which reforms
the input to mitigate the potential trigger before feeding it
to the model, e.g., Randomized Smoothing [10] and down-
upsampling [68], 2) input filtering, which distinguishes clean
and trigger-embedded inputs and possibly recovers the clean
inputs, e.g., Activation Clustering [7] and STRIP [18], 3)
model sanitization, which sanitizes a suspicious model by re-
moving the potential backdoor, e.g., Fine-Pruning [36], Adver-
sarial Neuron Pruning [65], Neural Attention Distillation [33]
and Adversarial-Retraining [39], and 4) model inspection,
which detects whether a given model is tampered and, if
so, reports the target class and potential trigger, e.g., Neural
Cleanse [62], DeepInspect [8], EX-RAY [38] and K-arm [52].
Unlike these methods, SODA detects the existence of seman-
tic backdoors based on causality analysis and removes the
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Table 5: Performance of Existing Backdoor Removal Methods

Model RS MOTH NAD ANP DFR
∆SR ∆Acc ∆SR ∆Acc ∆SR ∆Acc ∆SR ∆Acc ∆SR ∆Acc

NN1 0 -0.0024 0 -0.2374 -0.2858 -0.0381 -0.8571 -0.0098 -0.2857 -0.0314
NN2 -0.1670 -0.0006 0 -0.1096 -0.3333 -0.0257 -0.3336 -0.0103 0 -0.0252
NN4 -0.0334 0.0176 0.0333 -0.2130 -0.9000 -0.0011 -0.9667 -0.0511 -0.9367 -0.0014
NN5 -0.0667 0.0197 -0.9 -0.2616 -0.6000 0.0007 -0.9 -0.0097 0.1 -0.0579
NN7 -0.1107 -0.0854 0 -0.0117 -0.8333 -0.0095 0 0 -0.9444 -0.0056
NN8 -0.2059 -0.1356 0 -0.0202 -0.6667 -0.0030 0 0 -0.0476 0.0012
NN10 -0.1357 -0.0142 0.0169 -0.0094 -0.8141 0.0012 -0.9831 -0.0014 -0.8645 -0.0013
NN11 -0.0700 -0.0093 0 -0.0129 -1 0.0341 -0.7908 0.0112 -0.9535 0.0188
NN13 0 -0.0008 0 -0.0365 -0.0656 -0.0012 0 0 0 -0.0010
NN14 0 -0.0001 -0.0155 -0.1289 0 -0.0010 -0.9845 -0.1870 0 -0.0215
NN16 0 -0.0121 0 -0.0414 -1 -0.1654 0 0 0 -0.0454
NN17 0 -0.0091 0 -0.0404 -1 -0.0988 0 -0.0061 0 -0.0504
NN19 0 -0.0015 0 -0.2778 -0.7143 -0.0254 -0.2857 0.0004 -0.1429 -0.0764
NN20 -0.0003 0.0001 0.1667 -0.1487 -0.6666 -0.0356 -0.1666 -0.0047 0 -0.0231

Table 6: Performance of causality analysis on different layers.

Model Layer Real
Back-
door

Detected
Back-
door

Time

NN1 Last (1,6) (1,6) 51s
NN1 Deep (1,6) (1,6) 96s
NN1 Middle (1,6) (1,6) 8200s
NN1 Shallow (1,6) NA 34963s
NN2 Last (1,9) (1,9) 52s
NN2 Deep (1,9) (1,9) 93s
NN2 Middle (1,9) NA 8147s
NN2 Shallow (1,9) NA 35100s
NN3 Last NA NA 28s
NN3 Deep NA NA 72s
NN3 Middle NA NA 8160s
NN3 Shallow NA NA 35149s

backdoor by optimizing responsible neurons if necessary.

Causality analysis. Causality analysis has traditionally
been applied to program analysis [14, 28] and testing [24],
and is demonstrated to be useful in isolating and mitigat-
ing buggy behaviors. Recently, causality analysis is further
applied to neural networks for model interpretation [6, 43],
model fairness measurement [29, 71] and model repair [55].
Inspired by [55], we perform causality analysis on the hidden
neurons of a given model to detect semantic backdoors and
identify responsible neurons. Different from existing metrics
to perform intervention and measure causal attribution, we
propose a lightweight metric which is carefully designed for
backdoor detection when the attack trigger is unknown.

6 Discussion

Layer selection. In SODA, we apply causality analysis on the
last dense layer of the neural network to identify outstanding
neurons since it is the closest to the final prediction. To further
understand the impact of the layer selection, we conduct a set
of experiments on neural network NN1, NN2 and NN3 and per-
form causality analysis on four layers of different depths, i.e.,
shallow layer, middle layer, deep layer and the last layer. We
compare the semantic backdoor detection effectiveness and
the results are shown in Table 6. Applying causality analysis
on the deep layers is effective in detecting semantic backdoors
but due to an increased number of neurons to analyze, the
time is doubled compared to analyzing the last layer. Analyz-
ing the middle layers results in unstable backdoor detection
performance and analyzing the shallow layers is not effective
in finding backdoors. The time taken to analyze the middle
and shallow layers also increases significantly. We believe
layers closer to the input tend to capture low-level features
which exert less influence on the output. On the other hand,
deeper layers tend to capture high-level features that impact
the prediction more directly. Thus, analyzing the last and deep
layer is the most effective in detecting semantic backdoors.
Since the last layer usually contains fewer neurons, applying
causality analysis on the last layer is the most efficient.
Adaptive attacks. In patch-based backdoor attacks, trigger
adjustment attack is often considered as one adaptive attack.
However, this is not applicable to semantic backdoors since
the trigger is existing semantic feature and the attacker is
not required to modify the inputs. Parameter inference at-
tack is another adaptive attack often taken into consideration.
There are a few parameters in SODA such as causal inter-
vention parameter a and b, infected sample reconstruction
regulation parameter λ and number of epochs to optimize etc.
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Table 7: Adaptive attacks.

ρ Detected
Backdoor

Acc SR

0.9 NA 0.1117 1
0.8 NA 0.2120 1
0.7 (8,3) 0.7657 1
0.6 (8,3) 0.9812 0.9153
0.5 (8,3) 0.9830 0.9153
0.4 (8,3) 0.9848 0.9492
0.3 (8,3) 0.9862 0.9153
0.2 (8,3) 0.9867 0.9322
0.1 (8,3) 0.9842 0.9661

However, revealing the values of these parameters will not
give more advantage to the attacker. However, there could be
more powerful attackers that are aware of SODA’s semantic
backdoor detection scheme. To explore SODA’s resilience
to such attackers, we conduct experiments such that when
injecting semantic backdoors during training time, we further
consider the distribution difference of the last dense layer
neurons in the optimization. The optimization loss function
is set as L(ii) = (1−ρ)Lcce(ii,cc)+ρST Dpccii , where ii rep-
resents a batch of training inputs, cc represents the labels of
ii and ST Dpccii represents the standard deviation of the PCC
values between the last dense layer activation of each sample
in ii and their mean activation. We use ST Dpccii to limit the
PCC distribution difference of different inputs thus to explore
whether it can bypass SODA’s backdoor detection. Parameter
ρ is used to control the importance of ST Dpccii over training
accuracy during optimization. We follow the similar process
as we train NN10 and train 9 models on MNIST-M dataset
with attack target class 3 and victim class 8. We report the
detected backdoor, model accuracy and attack SR for different
ρ values in Table 7. When ρ is above (or equal to) 0.8, SODA
fails to identify the semantic backdoor. However, such high ρ

values result in extremely low model accuracy (< 22%). For
ρ values lower than 0.8, SODA is able to detect the semantic
backdoor successfully. Hence, knowing how SODA detects
backdoors and controlling the last layer neuron distribution
during training, the attacker is still not able to bypass SODA’s
detection unless the model accuracy is affected significantly.

Limitations of SODA. Firstly, SODA is only evaluated on
image classification models although we believe that it can
be extended to other tasks, e.g., NLP tasks and audio tasks.
SODA leverages causality analysis on hidden neurons to iden-
tify semantic backdoors. Causality analysis can be applied to
non-vision tasks as long as the neural network can be mod-
eled as an SCM. Next, with identified responsible neurons
from causality analysis results, optimizing their weight pa-
rameters follows similar process of model training. Secondly,
the semantic backdoors evaluated are manually selected and

thus limited to high-level human interpretable features. We
believe whether the semantic feature is human interpretable
or not does not affect the performance of SODA since the
causality analysis is unlikely to be affected. We leave further
exploration on such semantic attacks to future works and will
evaluate SODA against them then. Furthermore, SODA uti-
lizes a set of clean data for causality analysis and semantic
backdoor removal. We believe such assumption is reasonable
since a clean validation set is often provided together with the
model for testing purpose. Such assumption is also made by
many existing works [18, 33, 38, 52, 55, 57, 65].

7 Conclusion

In conclusion, we propose SODA as a causality-based se-
mantic backdoor detection and removal algorithm for neural
networks. We evaluate SODA with multiple neural networks
trained on benchmark datasets. Experimental results show
that SODA is effective in detecting and removing semantic
backdoors and it outperforms existing state-of-the-art neural
network backdoor attack defense methods.

Availability

Our approach has been implemented as a self-contained
toolkit in Python and is open-sourced (https://gitlab.
com/sunbing7/SODA).
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