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Abstract
The gaming industry has experienced remarkable innovation
and rapid growth in recent years. However, this progress has
been accompanied by a concerning increase in First-person
Shooter game cheating, with aimbots being the most prevalent
and harmful tool. Visual aimbots, in particular, utilize game
visuals and integrated visual models to extract game infor-
mation, providing cheaters with automatic shooting abilities.
Unfortunately, existing anti-cheating methods have proven in-
effective against visual aimbots. To combat visual aimbots, we
introduce the first proactive defense framework against visual
game cheating, called Invisibility Cloak. Our approach adds
imperceptible perturbations to game visuals, making them
unrecognizable to AI models. We conducted extensive experi-
ments on popular games CrossFire (CF) and Counter-Strike
2 (CS2), and our results demonstrate that Invisibility Cloak
achieves real-time re-rendering of high-quality game visuals
while effectively impeding various mainstream visual cheat-
ing models. By deploying Invisibility Cloak1 online in both
CF and CS2, we successfully eliminated almost all aiming
and shooting behaviors associated with aimbots, significantly
enhancing the gaming experience for legitimate players.

1 Introduction

In recent years, there have been major advancements in gam-
ing technology and user engagement, leading to rapid industry
growth. Market projections indicate that the revenue of video
game markets is expected to reach $282.3 billion in 2024, with
a year-on-year growth of 8.76% until 2027 [47]. However,
this progress has been accompanied by a concerning rise in in-
game cheating, which poses a serious threat to game integrity
and player experience. This threat is particularly prominent in
First-person Shooter games, renowned for their exceptional
competitiveness and entertainment value, resulting in losses
exceeding $23 billion [1].

*Equal Contribution.
†Corresponding author.
1Our project can be found at: https://inviscloak.github.io/
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Figure 1: Workflows of Memory-access and Visual aimbots.

In game cheating, the most pervasive and harmful cheat-
ing, is the aimbot. These tools artificially enhance a player’s
aiming and shooting accuracy, fundamentally disrupting the
integrity and fairness of gameplay. The aimbot process mainly
involves two steps: acquiring game data and automatic shoot-
ing. Depending on the data acquisition method, aimbots can
be broadly classified into two types: Memory-access aim-
bots and Visual aimbots. Memory-access aimbots directly
access game data in the client’s memory, typically includ-
ing precise target objects and resource positions. To pre-
vent such cheating, researchers have developed anti-aimbot
tools [28,29,39,59–61] to block unauthorized access to game
memory. For instance, the most recent system, BotScreen [11],
leverages Intel SGX [13] to protect game data from accessing
and tampering, rendering the memory-access aimbots non-
functional. Unlike memory-access aimbots, visual aimbot
relies solely on the game’s visual screen, utilizing integrated
visual models(e.g., YOLO [50], NanoDet-Plus [41]) to iden-
tify game objects. As shown in Figure 1, it first captures the
normal game screen and then extracts information (e.g., co-
ordinates, distance, and size of targets) based on the visual
model. This cheating is also known as Visual Game Cheating.

Visual game cheating has become increasingly powerful
and prevalent with the development of AI and cloud gam-
ing. Currently, various visual aimbots [19, 35, 44] and tuto-
rials [9, 40] are easily accessible and popular. The harmful-
ness of this trend is primarily demonstrated in two aspects:
(a) High cheating success rate. With AI continuously mak-
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ing breakthroughs in the field of computer vision, fast and
accurate object detection [5, 18, 41, 50] and skeleton recog-
nition models [15, 49, 58] are being integrated into aimbots.
Moreover, RootKit [45] has announced plans for international
competitions [43] to further enhance the development of their
AI-Aimbots [44]. (b) Wide applicability and stealthiness.
The only data visual aimbots utilize are legitimate and ac-
cessible game footage, making them highly adaptable and
undetectable to various games and deployable across differ-
ent platforms, including mobiles and computers. In particular,
cloud gaming is emerging as the next-generation gaming
architecture due to its low latency, scalability, and conve-
niences [42, 46]. The cloud server and the player’s client are
entirely separated throughout the cloud gaming process, with
the client only receiving video streams from the cloud server.
While cloud gaming renders traditional cheats unfeasible, it
inevitably positions visual aimbots as the mainstream choice
for next-generation cloud game cheats.

Disappointingly, when it comes to visual aimbots, passive
detection-based approaches are currently the only viable anti-
cheating techniques [2, 17, 23, 25, 29, 34, 63]. However, these
techniques identify cheaters by analyzing abnormal game data
after the fact, failing to guarantee a smooth gaming experi-
ence for normal players. Moreover, it suffers from a certain
degree of misjudgment and lack of explainability. Rather than
relying on passive cheating detection, is it possible to achieve
proactive defense against visual game cheating?

To this end, we propose a proactive defense framework for
visual game cheating, namely Invisibility Cloak. To the best
of our knowledge, this is the first work to proactively perform
anti-cheating in visual games. The core idea is to introduce
an invisible perturbation to the game screen. This perturba-
tion is undetectable to human players but prevents visual
models from accurately recognizing the game screen targets.
Considering the method’s usability, practicality, and deploya-
bility, proactive defense against visual game cheating needs
to overcome the following challenges. (C1) Transferability.
The approach should be transferable because it is impossible
to know the cheating models used by cheaters in advance.
(C2) Robustness. The approach should be applicable to var-
ious games and complex in-game scenarios. In addition, to
ensure a normal experience for players, the method also needs
to meet the requirements, including (C3) Imperceptibility of
the perturbation and (C4) Real-Time Performance.

To address the aforementioned challenges within the frame-
work of the Invisibility Cloak, we propose a Cloak Crafter
module. This module comprises two components: offline Uni-
versal Cloak Identification and online Cloak Refinement. In
the Universal Cloak Identification, we first adopt multiple
visual models and diverse game screenshots to search for a
Universal Cloak, where the cloak refers to an imperceptible
perturbation. Further, in the Cloak Refinement, we refine the
universal perturbation in the game environment to make it
adapt to specific game scenarios. To meet C3 and C4, we

require the perturbation to be sufficiently small throughout
the entire process and limit the number of queries. To evaluate
the effectiveness of our defense, we conduct comprehensive
experiments on two of the most popular First-person Shooter
games, CrossFire (CF 2) and Counter-Strike 2 (CS2 3). The
results demonstrate that the Invisibility Cloak can effectively
resist visual game cheating without affecting players’ gaming
experience. We also performed a simplified online deploy-
ment and found that the visual aimbot was rendered ineffective
in both CF and CS2 when the Invisibility Cloak was enabled.
Our main contributions are summarized as follows:

• Proactive Anti-Cheating: We introduce a novel proactive
anti-cheat method specifically designed to combat visual
aimbots that are difficult for traditional anti-aimbot tech-
niques to detect. Our approach represents a more dynamic
and preemptive form of cheat prevention.

• Non-Invasive Implementation: Our approach seamlessly
integrates with the game rendering process, overlaying the
Cloaks onto the player’s display without user monitoring.

• Comprehensive Dataset Collection: We collected extensive
image datasets that contain different game maps and scenar-
ios from the most popular games, CS2 and CF, serving as
the foundation for training and evaluating Invisibility Cloak.

• Invisible Protection: Experiments conducted demonstrate
that our approach effectively meets the demands of First-
person Shooter games, safeguarding players against visual
aimbots without compromising visual quality or real-time
performance, resulting in an unobtrusive gaming experience
that can be considered virtually invisible.

2 Background

In this section, we first present the workflow of visual aim-
bots, benefiting from state-of-the-art object detection models.
Then, we examine the limitations of existing adversarial at-
tacks targeting object detection models, particularly when im-
plementing these attacks within First-person Shooter games.

2.1 Aimbot Cheating Using Visual Models
As Computer Vision (CV) technology advances, visual aim-
bots are gaining popularity, especially in First-person Shooter
games featuring human character models such as CF and CS2.
Developing an aimbot using these visual models is relatively
simple and efficient. Numerous publicly available pre-trained
models have high accuracy and typically incorporate person
as part of their training datasets [7, 52]. This accessibility
enables cheaters to utilize these pre-trained models in their
aimbots without the need for retraining, thereby streamlining
the creation of highly effective cheating tools.

2https://cf.qq.com/
3https://www.counter-strike.net/
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Figure 2: The workflow of aimbot cheating using YOLO.

Figure 2 shows the workflow of a typical visual aimbot.
Cheaters first initiate the aimbot process by capturing the
game screen on their devices. Normally, the screen resolu-
tion is huge, but cheaters usually resize the captured image
to a small predetermined resolution (e.g., 320×320 pixels)
to facilitate subsequent input into object detection models
and only focus on the game screen around the crosshair, thus
reducing model overhead and preventing the detection of too
many enemies. The resized image is then input into a trained
visual detection model, such as the widely used YOLO. As
illustrated in Figure 2, YOLO employs a convolution neural
network (CNN) [36] for the feature extraction phase. Within
the CNN, the image undergoes a series of convolutional and
pooling layers. It generates multiple feature maps at differ-
ent levels during the downsampling, each capturing distinct
scales and aspects of the image, which is critical for identify-
ing objects of varying sizes. Subsequently, the output feature
maps are synthesized through an upsampling process and
concatenated with prior layer feature maps, culminating in a
comprehensive detection output. Once detection is achieved,
YOLO provides the coordinates of the detected objects in the
format (x,y,w,h), where (x,y) are the center coordinates, and
w and h are the width and height of the bounding box, re-
spectively. Cheaters exploit these coordinates to locate enemy
characters, particularly targeting the head for more effective
eliminations. The offset of this target from the center of the
screen is then used to automatically adjust the aimbot’s cursor,
typically via Windows APIs (e.g., win32api and win32con)
to enable precise and automated targeting.

2.2 Adversarial Attacks in Object Detection

Object detection models based on DNN are already very pow-
erful, but it has been found that they can still be rendered
ineffective by adversarial attacks. Adversarial attacks in ob-
ject detection models typically involve carefully designed
perturbations that are too subtle for the human eye to recog-
nize but are effective in deceiving the visual model. These

perturbations can be injected into the input images, causing
the model to incorrectly identify non-existent objects, misclas-
sify objects, or fail to detect objects altogether. The essence of
these attacks lies in their ability to exploit the model’s reliance
on high-dimensional data and its linearity, thus revealing a
critical vulnerability in object detection systems.

Some methods affect object detectors by adding noise to
the entire image [12, 56], while others attack object detectors
by adding patches into the image [30, 55, 64]. However, these
methods either suffer from easily noticeable perturbations
(patching), or the attack speed cannot keep up with the ob-
ject detector’s inference speed. Traditional object detection
attack methods are no longer suitable for combating visual
game cheating because it is impossible to predict which ob-
ject detector will be used in advance. Hence, gradient-based
white-box attack methods are difficult to transfer sufficiently.
Although query-based black-box attacks typically exhibit bet-
ter transferability, the substantial number of queries required
for black-box attacks is another challenge for real-time at-
tacks. Even assuming a 30 frames per second (FPS) game
and a lightweight object detector like YOLOv5n with a 7ms
inference time (for CPU) [22], the maximum acceptable query
count is about 5. Generative attack methods can meet the real-
time requirements [21, 54], but training a model that balances
transferability and attack success rate is challenging (instead
of lowering the mean average precision (mAP), the goal is to
make the detection box of a specific target disappear). There-
fore, to defend against visual aimbots, it is important to disable
the target detector quickly while maintaining a high attack
success rate without being noticed.

3 Overview

3.1 Threat Model

Scenario. In this paper, we discuss how to defend against
visual game cheating, a scenario rarely discussed in exist-
ing anti-cheating technology. A visual aimbot captures the
rectangular area around the mouse cursor in real-time from
the game screen. The detection resolution is typically small
(e.g., 320× 320 pixels [44]), that is to maximize accuracy
and prevent the mouse from erratic movements when mul-
tiple targets are detected simultaneously. The aimbot uses a
cheating visual model to obtain the position boundary box of
the character from the screenshot. After detection, the aimbot
will automatically move the mouse to the identified target box
and start shooting. This cheating method is non-invasive and
relies only on game screens, so it can theoretically be applied
to various game scenarios and devices. Especially in cloud
games that only transmit video streams to players, visual
game cheating is inherently suitable, while traditional cheat-
ing methods are completely unsuitable because they cannot
obtain effective game data from memory or game processes.
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Figure 3: The functional stage of Invisibility Cloak under
modern MMOGs architecture.

3.2 Invisibility Cloak
Figure 3 depicts the core conceptual framework of the Invisi-
bility Cloak. Steps 1⃝ to 4⃝ represent the standard architecture
of modern Massively Multiplayer Online Games (MMOGs).
After completing the rendering process, the visual output can
be easily affected without protection, as shown in the step 5⃝.
Such unprotected displays are easily exploited by cheating
software that uses visual information for unfair advantage.
However, the pivotal innovation introduced by our approach
is the inclusion of Invisibility Cloak after rendering. The In-
visibility Cloak is designed to disrupt the effectiveness of
detection models in visual game cheating. It disables visual
aimbots by adding imperceptible perturbations to the rendered
game screen before the aimbot performs object detection. As
shown in step 6⃝, the cheating methods cannot detect any
targets on the screen. At the same time, a notable aspect of In-
visibility Cloak is that the Cloak added is sufficiently subtle to
remain undetected by players, so it does not affect the player’s
visual experience. In summary, Invisibility Cloak can provide
strong anti-cheat protection while remaining invisible.

The Cloak Crafter is the core component of Invisibility
Cloak system. It is specifically designed to receive incoming
game frames that require cloaking and rapidly output cloaked
frames. This invisibility makes it undetectable to both the
game players and the aimbots. From the player’s perspective,
the gaming experience remains unchanged, as no discernible
alterations are perceived. Conversely, for the aimbots, this
cloaking disrupts their core functioning, which is the ability
to accurately recognize opponents on the screen, so they can
not move the mouse to complete the elimination.

3.3 Challenges for Proactive Defense
The swift refresh rates of modern First-person Shooter
games [51] necessitate crafting the target frame as quickly
as possible to complete the cloaking process, thus preventing

the aimbot from assisting cheaters in completing elimination
before becoming invisible. It is important to emphasize that,
unlike video processing, our approach relies solely on current
and past frames, because future frames remain indeterminate
and cannot be accurately predicted. Consequently, there is no
requirement for preemptive cloaking of future frames. The
Cloaks must be crafted before the object is detected by the
aimbots, ensuring real-time invisibility and effectively neu-
tralizing the functionality of visual aimbots. In addition to the
real-time rendering challenges, our cloaking solution must
also demonstrate transferability. Given the wide variety of
vision models that cheaters may employ, predicting the spe-
cific cheating architectures is impossible. Even within the
same family of object detection models, such as the various
iterations of YOLO, architectural differences are significant.
Therefore, our Invisibility Cloak is designed to be as general
as possible across a wide range of cheating models. Further-
more, in-game robustness must be considered, because each
game presents a unique array of maps and backgrounds.

In summary, addressing the challenge of visual aimbots
within the diverse and unpredictable realm of First-person
Shooter games is a task of great complexity and significance.
Invisibility Cloak demonstrates its indispensable value in
preserving the integrity of competitive gaming environments
with its swiftness, versatility, and resilience.

4 Cloak Crafter

Inspired by TOG [12], we designed Cloak Crafter to add
imperceptible perturbations to the game screen in real-time,
preventing the visual aimbots detection model from correctly
detecting targets in the game. Overall, our objective is to de-
vise a defensive perturbation; in this paper, we call it a Cloak.
When applied to the original game imagery, this Cloak can
address the challenges outlined in § 3.3, including real-time
performance, imperceptibility, transferability, and robustness.

Problem Definition. Consider a sequential set of game
screenshots denoted as X = {x1,x2, · · · ,xT}, where x repre-
sents a frame. Cheating players utilize an object detection
model M C as the cheating model, which takes game screen-
shots x as input and outputs the position, class, and confidence
score S of the game objects. Our proactive defense aims to
find a Cloak δ and add it to x so that it reduces S . The process
is formulated as follows:

argmin
δ

S = M C(x+δ),s.t.,∥δ∥∞ < ε (1)

where ε is the upper limit of the perturbation magnitude. The
defense typically succeeds if S is below the threshold θ.

Cloak Crafter is comprised of two primary components.
The first component involves finding a Universal Cloak which
is similar to a universal perturbation [33] that can disrupt the
ability of various cheating models to detect targets in differ-
ent scenarios. The second component leverages an efficient
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search mechanism based on momentum gradient optimiza-
tion to refine and optimize this Cloak, ensuring its efficiency
and effectiveness. This subsection will delve into the char-
acteristics of Cloak Crafter and discuss how our approach
systematically addresses the challenges outlined in § 3.3.

Transferability. Our investigation reveals that visual aim-
bots use different object detection models. Even within the
same framework (such as the YOLO series), there is consid-
erable variation in the architecture of different pre-trained
models. Therefore, the training strategy for Cloak Crafter is
designed to be model-agnostic, targeting a broad spectrum
of visual detection architectures. To circumvent the poten-
tial issue of overfitting the Cloak to a single model, we use
different proxy models in the training phase to find a Cloak.
This strategy enhances the transferability of Cloak Crafter,
ensuring its efficacy across a diverse array of object detection
models employed in visual aimbots cheating.

Robustness. Beyond its transferability across different vi-
sual models, Cloak Crafter’s robustness extends to its efficacy
in diverse gaming scenarios and player settings. Different
games have various maps, backgrounds, and resolutions, ne-
cessitating a universal perturbation to accommodate these
variations. To achieve this, our training dataset includes a
wide array of game scenes, encompassing different maps, spe-
cial effects (e.g., smoke, Molotov), and scenes with varying
numbers of characters and objects (e.g., animals, footballs).
Additionally, dataset augmentation through resolution adjust-
ments further ensures our Cloak’s effectiveness across various
settings. This strategy guarantees the universal applicability
of Cloak Crafter, making it robust against changes in in-game
environments and player preferences.

Imperceptibility. We use ℓ∞ to control the perturbation
size, which is the most popular and widely used norm [10,32].
Although the ℓ∞-norm constraint is more stringent, it makes
perturbations less detectable by human eyes and enhances
robustness against detection models that are overly sensitive
to extreme features, thus increasing applicability in real-world
scenarios. We observe that altering the position of the bound-
ing box through perturbations is more challenging than reduc-
ing its confidence score. Therefore, our invisibility criterion
is based on the confidence score of the predicted box falling
below a set threshold rather than using the intersection over
union (IoU) between the predicted box and the ground truth.
This criterion requires less information from the model and
avoids pre-annotating bounding box positions in the dataset.

Real-Time Performance. Given the high frame rate de-
mands of modern First-person Shooter games, the deployment
strategy is designed to insert pre-trained, static universal per-
turbation (Universal Cloak) in all game scenes, resulting in
zero latency and a direct defense against visual cheating in
most cases. Furthermore, refined by efficient momentum gra-
dient search and strict query constraints, the Cloaks can be
generated almost instantaneously. Then, these refined Cloaks
are intervals deployed to the game frames. This deployment

strategy ensures that Cloak Crafter maintains game flow by
providing real-time defense without sacrificing game quality.

In the following subsections, we delve into the specifics of
our methodology, first discuss the process of identifying the
Universal Cloak (§ 4.1), followed by exploring how we opti-
mize this Cloak across various cheating visual models (§ 4.2).

4.1 Universal Cloak Identification
In this subsection, we introduce how to find a Universal Cloak
that can effectively defend against as many cheating models
and game scenarios as possible. Next, we will gradually intro-
duce the process of identifying a Universal Cloak. Since this
process is completed offline, we temporarily do not consider
the limitation of training time in this part.

Step 1: Initialization. We randomly initialize a noise δU
with the same size as the input x. Each frame of game screen-
shot x used here is collected from different complex scenarios.
Suppose we have K proxy visual models {M1,M2, · · · ,MK},
which encompass various object detection models under dif-
ferent architectures. Thus, the initial input is x+δU .

Step 2: Confidence Score Evaluation. Given the per-
turbed input x+ δU , the k-th proxy model Mk will produce
a set of bounding boxes with associated confidence scores
Sk ∈ RN , where N is the number of boxes. For anchor-based
methods (e.g., YOLOv5 [50]), the confidence represents the
probability that each box contains an object. For anchor-free
methods (e.g., NanoDet [41]), it is the probability that each
box is classified as the target category, usually person in First-
person Shooter games. The process is formulated as follows:

S k = Mk(x+δU ) (2)

Step 3: Loss Function Construction. Our goal is to mini-
mize the confidence score of the cheating model when perturb-
ing the inputs, ensuring the game target cannot be correctly
recognized. Therefore, we use a binary cross-entropy (BCE)
loss, setting all box confidence labels to 0, as follows:

L =−
K

∑
k=1

N

∑
i=1

log(1− sk
i ) (3)

where sk
i ∈ S k is the i-th confidence score of Sk.

Step 4: Universal Perturbation Update. As the proxy
models are fully accessible, we can update the universal per-
turbation using gradient information. The basic form is:

δU = Clamp(δU −α ·∇δU L) (4)

where α represents the learning rate; Clamp(·) is the trunca-
tion function that constrains perturbations to have an ℓ∞-norm
below a threshold ε, typically set at 8/255 or 16/255 [62].

Next, we repeat steps 2 through 4 until the defense suc-
cess rate of Universal Cloak on the validation set reaches a
threshold or the loss L cannot be further reduced. Upon com-
pletion, we can obtain a Universal Cloak that can be statically

USENIX Association 33rd USENIX Security Symposium    3049



deployed for real-time protection, with the entire process con-
ducted offline. It is visually unobtrusive to both players and
cheaters, offering protection across various game scenarios
and a wide range of visual aimbot detection models.

However, it must be acknowledged that due to differences
in cheating model frameworks and their respective confidence
scoring algorithms, the Universal Cloak is only a generic
perturbation with robustness but is not tailored for any specific
model or game scenario. Consequently, it may not perform
optimally in all situations. Therefore, our next phase involves
dynamically updating this Cloak in real-time, adapting to
different cheating models and game scenarios encountered
during gameplay to strengthen its defense mechanism further.

4.2 Cloak Refinement for Model Variability

In the dynamic environment of First-person Shooter games,
where various cheating models and constantly changing game
scenarios are encountered, the Universal Cloak identified in
the preceding subsection may not always perfectly align with
the current data stream. Consequently, we need a process to
fine-tune the Universal Cloak for real-game environments.

Due to the online nature of this process, efficiency is the
highest priority. To ensure Cloak refinement, we first satisfy
the following conditions: (1) The number of query iterations
is limited, typically constrained to 5 or fewer; (2) The proxy
model must be lightweight and suitable for efficient inference.
Thus, we assume a lightweight proxy visual model denoted
as M, with the current game frame input denoted as x. The
process is delineated into two steps.

Step 1: Universal Cloak Efficacy Assessment. First, we
test whether the Universal Cloak δU can prevent the current
proxy model M from correctly identifying the target object,
i.e., whether the maximum confidence score Max(S) is below
the threshold θ (usually 0.4). If successful, we can directly use
the Universal Cloak, avoiding additional refinement overhead.

Step 2: Conditional Cloak Refinement. If the universal
perturbation is not effective, then we initialize the noise δ as
δU and update the perturbation based on the query. Specifi-
cally, we repeat steps 2 to 4 of § 4.1, using only the M model
and frame data x. Given the limited number of updates, we
adopt a fast optimization scheme inspired by Adam [26],
updating the initial learning rate α before each iteration as
follows:

α = αi
µt√
s(t)

(5)

where αi is the initial learning rate, µt and s(t) are the inter-
mediate values in the iteration updates of the Adam optimizer.

4.3 Cloak Deployment Strategy

Overall, Cloak Crafter works by first assessing the success of
Universal Cloak on the proxy model. Then, for Cloaks that

require refinement, we query the proxy model to update them.
Our deployment strategy consists of three parts.

Strategy 1: Universal Cloak Deployment. Universal
Cloak is initially deployed as the default protective measure
by game developers. It is pre-crafted offline and integrated
into the game’s rendering pipeline, ensuring zero latency dur-
ing gameplay and providing basic protection for all frames.
Note that Universal Cloak can be customized by scenarios
(e.g. game maps) as well as regularly updated to ensure that
it is not easily accessible to attackers.

Strategy 2: Interval Inserted Refined Cloaks. Given the
need for high frame rates in modern First-Person Shooter
games, where a comfortable gameplay experience starts at
60 FPS [27], Cloak generation speed often cannot match the
game’s rendering speed. To maintain smooth gameplay with-
out sacrificing protection, frames are sampled at intervals for
Cloak refinement. This means not all game frames will have
refined Cloaks, potentially compromising defense on some
frames. However, the primary goal is to significantly disrupt
cheaters’ reliance on visual aimbots. Cheaters use aimbots to
gain an unfair advantage, enhancing their experience at the ex-
pense of other players. Our strategy ensures that even if some
individual frames are not successfully defended, the overall
efficacy of aimbot is greatly compromised. The user study
(§ 5.8.1) indicates that the high accuracy of cheating tools
is crucial, and our defense can substantially reduce aimbots’
accuracy, leading cheaters to gradually abandon the aimbots.

Strategy 3: Deployment Environment. Refined Cloaks
are generated based on the gaming application. For cloud
gaming platforms, where graphics are server-rendered, the
refined Cloak is securely generated server-side. For personal
computer games relying on client-side rendering, Trusted
Execution Environments (TEEs [20]) can be used to prevent
Cloak modification or deletion.

5 Evaluation

We answer the following research questions:

• RQ1. How effective is our approach in proactively defend-
ing against vision-based game cheating methods (§ 5.2)?

• RQ2. Is our method transferable to various object detection
models that might be adopted by cheaters (§ 5.3)?

• RQ3. How robust is Invisibility Cloak in mitigating the
impact of different in-game scenarios (§ 5.4)?

• RQ4. How does each part of the Invisibility Cloak affect
the defense effect (§ 5.5)?

• RQ5. How effective is our approach when cheaters try to
counter our defense (§ 5.6)?

• RQ6. How effective is our approach in real-world games at
preventing aimbots while ensuring invisibility (§ 5.8)?
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Table 1: Dataset descriptions collected from CS2 and CF.

Dataset Map #frames1 #eng.2 #targets3 aTPF4

ACVC-CS2

dust2 10,500 350 13,877 1.322
anubis 480 16 495 1.031
mirage 570 19 612 1.074
vertigo 1,140 38 1,184 1.039
inferno 420 14 448 1.067
nuke 960 32 993 1.034
desert_atrium 150 5 150 1.000
repository 330 11 331 1.003
desert_town 270 9 302 1.119
Total 14,820 494 18,392 1.241

ACVC-CF

coconut_island 16,110 537 16,404 1.018
aquarium 10,260 342 11,587 1.129
ship 15,840 528 17,130 1.081
pyramid 3,360 112 3,557 1.059
training_ground 2,730 91 3,375 1.236
stable 7,650 255 7,804 1.020
dust 1,380 46 1,502 1.088
Total 57,330 1,911 61,359 1.070

1#frames: the number of frames;
2#eng.: the number of engagements (30 frames window per engagement);
3#target: the number of detected targets;
4aTPF: the averaged number of targets per frame.

5.1 Experimental Setting
5.1.1 System Configuration

Our experimental setup includes an Intel(R) Xeon(R) Gold
5418Y CPU with 96 cores and an NVIDIA GeForce RTX
4090 GPU with 24.564 GB of memory. This configuration,
simulating a user client, enables a comprehensive evaluation
of our defense mechanism against visual aimbots.

5.1.2 Data Collection

To evaluate the proposed method, we constructed two datasets,
termed Anti-Computer-Vision-Cheats-CS2 (ACVC-CS2)
and Anti-Computer-Vision-Cheats-CrossFire (ACVC-CF).
These datasets consist of 72,150 consecutive screenshots from
real matchmaking gameplay footage, each cropped to a resolu-
tion of 320×320 pixels, aligning with the default capture size
for visual aimbots [44]. Specifically, the ACVC-CS2 dataset
contains 14,820 screenshots from actual gameplay in Counter
Strike 2, while the ACVC-CF dataset includes 57,330 consec-
utive screenshots from CrossFire. TThe images were filtered
to retain only those identifiable by visual aimbots. Details and
characteristics of these datasets are outlined in Table 1.

5.1.3 Proxy Model

We first selected the latest open-source visual aimbot tool [44]
as proxy models for simulating cheating models. This tool
uses YOLOv5 series models, which are anchor-based and
widely recognized as effective object detection models. We
also considered NanoDet [41], which stands out in the anchor-
free category as a lightweight yet powerful model, boasting

5.5k stars on GitHub. Depending on experimental goals, spe-
cific models from the YOLOv5 and NanoDet series were used
as proxy models for different evaluations. The performance
of our Cloak Crafter on these diverse models underscores its
overall effectiveness and adaptability in proactively defending
against visual aimbots across different detection frameworks.

5.1.4 Universal Cloak Training

According to our approach described in section 4, we select
the top 10 widely used models from YOLOv5 series [22] to
train two Universal Cloak on two datasets. During training,
we observed that using more models generally improves the
Universal Cloak’s transferability. However, conflicts between
the loss functions of different models make it impractical to
increase the number of training models indefinitely. Therefore,
we selected models from the YOLOv5 series to ensure a high
defense success rate and satisfactory transferability.

5.1.5 Baselines

In our evaluation, we focus on the performance of Cloak
Crafter, as it is the primary mechanism to achieve defensive
capabilities for Invisibility Cloak. Note that there is no dedi-
cated defense method against visual game cheating. Therefore,
to rigorously evaluate Cloak Crafter’s effectiveness and effi-
ciency, this section compares its defensive performance with
state-of-the-art (SOTA) adversarial attack methods, namely
RayS [10], DAG [56] and TOG [12]. Among them, RayS
and TOG represent black-box and white-box models, respec-
tively, while DAG is widely acclaimed for its unique approach,
which has a very excellent performance. Comparing Cloak
Crafter with these models can comprehensively evaluate the
efficiency of our method.

5.1.6 Evaluation Metric

In assessing Cloak Crafter, we adopt a multi-dimensional
metric, focusing on efficiency, effectiveness, and impact on
player experience. These metrics are essential for validating
the practical applicability of our approach in mitigating visual
aimbots in gaming scenarios.

• Query: The number of queries to the object detection model
that are required to generate a Cloak is a critical measure
of computational efficiency. A lower Query count indicates
a more efficient algorithm, which is essential for real-time
applications.

• Frames Per Second (FPS): The FPS rate is indicative of the
number of frames that Cloak Crafter can process per second.
Higher FPS rates signify greater efficiency and smoother
integration into gameplay. It should be emphasized that,
as we mentioned in § 4.3, the Cloak can be deployed at
intervals, and the FPS rate here is the crafting speed of the
refined Cloak, not the actual game frame rate.
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• Defense Success Rate (DSR): The effectiveness of Cloak
Crafter is quantitatively evaluated by its defense success rate
(DSR), which measures the proportion of instances where
the method successfully prevents visual cheating attempts.

• Structural Similarity (SSIM): SSIM [53] is employed to
predict the perceived quality of digital images or videos.
A higher SSIM score indicates that the Cloak’s impact on
visual quality is negligible. Additionally, we conduct practi-
cal impact analysis in § 5.8 and provide demo displays to
further demonstrate the Cloak’s minimal visual impact.

5.2 Defensive Performance

To tackle RQ1, Table 2 demonstrates the performance of dif-
ferent defense methods on the ACVC-CS2 and ACVC-CF
datasets, using imperceptible random noise as a baseline to
compare Cloak Crafter and three other SOTA methods. Be-
cause random noise is static, it does not have Frames Per Sec-
ond (FPS) or Query metrics. As shown in the table, random
noise exhibits a high SSIM, indicating good visual quality.
However, its defense success rates (DSR) are consistently
poor across all models and datasets, with most DSRs in the
single digits. This demonstrates that random noise is not an
effective defense strategy. Cloak Crafter consistently achieves
a 100% DSR across all tested anchor-based cheating models
(YOLOv5 variants), where RayS shows significantly lower
DSRs. Although DAG and TOG display high DSRs, they still
fall short of Cloak Crafter’s complete success. Even when
tested on NanoDet-Plus-m, an anchor-free model not used
in training, Cloak Crafter shows excellent DSR, comparable
to other methods. Additionally, Cloak Crafter demonstrates
remarkable efficiency, reflected in its high FPS rates and low
Query counts. By constraining the number of queries, Cloak
Crafter’s FPS metrics can achieve dozens of times higher than
the other defense models. This efficiency suggests that deploy-
ing the other three defense methods directly in actual game-
play could significantly hinder the game’s fluidity, causing
noticeable lag. In contrast, Cloak Crafter’s high FPS allows
quick generation of refined Cloaks based on the Universal
Cloak, covering most of the game frames by our deployment
strategy (§ 4.3). Besides, the SSIM results indicate that our
method maintains high image quality. However, the percep-
tibility of perturbations is not solely dependent on SSIM; in
human visual perception, large areas of noise with consistent
perturbations are more noticeable, even if individual pixel
perturbations are small. This explains why RayS has a high
SSIM score, but its visualization results are easily noticeable.
Please refer to § 5.7.2 for visualization examples.

Furthermore, Table 3 highlights the superior adaptability of
Cloak Crafter. We compared different defense models using
the same series of visual models as both proxy and cheat-
ing models. Although this is a basic transferability test, the
table shows that all other defenses, except Cloak Crafter, ex-

hibit markedly low DSR and FPS when tested on YOLO,
indicating their failure to protect against even slight model
variations. Although RayS achieves 100% DSR on NanoDet,
its FPS is so low that it requires hundreds of queries to find a
suitable perturbation, which is impossible for real-world ap-
plications. Conversely, Cloak Crafter consistently maintained
high DSR and FPS. This performance evaluation shows that
Cloak Crafter can ensure real-time defense without compro-
mising gameplay fluidity, providing invisible protection. This
is in sharp contrast to the other three defense methods.

5.3 Transferability Evaluation

Following our preliminary horizontal transferability tests, we
conducted a comprehensive vertical evaluation to delve into
Cloak Crafter’s transferability, addressing RQ2. It’s acknowl-
edged that achieving high transferability in adversarial attacks,
especially in object detection, remains a significant challenge
with no existing method attaining notable success [8, 54].
However, for the specific application of defending visual aim-
bots, our defense success is not entirely dependent on perfect
transferability; rather, it aims to disrupt cheaters’ reliance on
aimbots, as we mentioned in § 4.3. Against this backdrop,
Cloak Crafter exhibits a commendable performance.

Table 4 presents Cloak Crafter’s transferability across dif-
ferent models. We select the lightest and most commonly
used models, YOLOv5n and NanoDet, as proxy models to en-
sure the practicality of transferability discussion. Because our
Cloak is trained with anchor-based visual models, the DSR
test results on anchor-free cheating models such as Faster
RCNN, RTMDet, and NanoDet are not as high but still accept-
able. The observed data indicate that Cloak Crafter performs
well when YOLOv5n is used as the proxy model, achieving
an impressive average FPS of 63.67. On the other hand, using
NanoDet as the proxy model requires more queries, result-
ing in a lower FPS. Nevertheless, the overall performance
remains strong, with an average DSR of 52.71 and an average
FPS of 41.62. These metrics highlight Cloak Crafter’s effi-
ciency and transferability across different model architectures,
demonstrating its potential for broad real-world applications.

5.4 In-Game Robustness

To answer RQ3, we scrutinize Cloak Crafter’s in-game ro-
bustness through three experiments. These evaluations cover
its adaptability to various game maps, effectiveness against
single and multiple enemies on-screen, and consistency across
different screen resolutions. We use a series of YOLOv5 mod-
els according to the popular open-source cheating project [44]
to simulate the cheating models. This comprehensive assess-
ment aims to validate Cloak Crafter’s reliability and effective-
ness in diverse gaming scenarios, ensuring its robust defense
mechanism against visual aimbots in realistic conditions.

3052    33rd USENIX Security Symposium USENIX Association



Table 2: Performance comparison of different defense methods on the ACVC-CS2 and ACVC-CF datasets.

Cheating Model Dataset Random Noise RayS DAG TOG Cloak Crafter

DSR(%) SSIM DSR(%) FPS #Query SSIM DSR(%) FPS #Query SSIM DSR(%) FPS #Query SSIM DSR(%) FPS #Query SSIM

YOLOv5n ACVC-CS2 13.90 0.87 52.90 1.89 164.04 0.86 100.00 16.32 3.82 0.82 99.90 5.74 10.00 0.79 100.00 76.70 1.27 0.74
ACVC-CF 8.00 0.86 47.70 1.55 156.31 0.94 100.00 21.82 3.13 0.86 99.90 5.81 10.00 0.85 100.00 99.78 1.18 0.72

YOLOv5s ACVC-CS2 3.70 0.87 50.90 1.74 189.35 0.78 100.00 10.76 5.57 0.82 99.80 5.67 10.00 0.79 100.00 71.38 1.32 0.74
ACVC-CF 1.40 0.86 48.70 1.35 183.33 0.90 99.90 13.09 4.92 0.86 99.80 5.85 10.00 0.84 100.00 110.67 1.19 0.72

YOLOv5m ACVC-CS2 2.20 0.87 54.90 1.24 205.62 0.36 99.90 6.85 6.72 0.82 99.70 4.48 10.00 0.79 100.00 59.13 1.39 0.74
ACVC-CF 1.30 0.86 53.90 0.97 204.08 0.52 100.00 8.63 5.72 0.86 99.80 4.69 10.00 0.84 100.00 82.95 1.17 0.71

NanoDet-Plus-m* ACVC-CS2 17.90 0.87 100.00 0.76 168.11 0.96 99.90 6.07 4.19 0.82 99.70 2.82 10.00 0.79 99.10 20.73 1.91 0.75
ACVC-CF 27.90 0.86 100.00 1.11 129.73 0.97 100.00 12.60 2.47 0.86 100.00 2.57 10.00 0.83 100.00 38.93 1.34 0.72

*: Anchor-free models.

Table 3: Transfer performance comparison of different defense methods on the ACVC-CS2 and ACVC-CF datasets.

Model Information Dataset RayS DAG TOG Cloak Crater

Proxy Model Cheating Model DSR(%) FPS #Query DSR(%) FPS #Query DSR(%) FPS #Query DSR(%) FPS #Query

YOLOv5n YOLOv5s ACVC-CS2 10.20 1.40 164.04 6.50 18.07 3.81 44.00 6.39 10.00 85.50 84.29 1.27
ACVC-CF 17.50 1.63 156.31 3.50 23.72 3.12 38.90 5.51 10.00 91.50 109.90 1.18

NanoDet-Plus-m* NanoDet-Plus-m-1.5x* ACVC-CS2 100.00 0.88 161.82 18.50 9.79 3.35 61.10 2.74 10.00 62.20 20.53 1.91
ACVC-CF 100.00 1.14 125.58 32.20 18.21 2.13 74.30 2.52 10.00 82.20 48.50 1.34

*: Anchor-free models.

Table 4: Transferability of Cloak Crafter on different model
architectures.

Proxy Model Cheating Model AVCA-CS2 AVCA-CF

DSR(%) FPS #Query DSR(%) FPS #Query

YOLOv5n

Faster RCNN* 14.00 55.10 1.66 12.60 73.75 1.53
RTMDet* 22.90 61.17 1.66 46.00 82.68 1.53
NanoDet* 46.80 48.40 1.66 66.30 77.94 1.53
YOLOv3n 32.80 56.32 1.66 57.50 78.34 1.53
YOLOv5n 100.00 60.39 1.66 100.00 65.38 1.53
YOLOv5s 65.90 55.79 1.66 72.60 65.41 1.53
YOLOv5m 49.80 59.95 1.66 70.80 64.93 1.53
YOLOv8n 45.80 49.98 1.66 46.40 63.14 1.53
Average 47.25 55.89 1.66 59.03 71.44 1.53

Nanodet

Faster RCNN* 13.90 13.29 2.44 12.10 28.40 1.72
RTMDet* 22.40 13.71 2.44 45.30 30.79 1.72
NanoDet* 96.70 12.14 2.44 99.80 25.26 1.72
YOLOv3n 32.10 13.92 2.44 56.50 28.36 1.72
YOLOv5n 65.40 12.78 2.44 72.60 24.89 1.72
YOLOv5s 57.00 12.58 2.44 67.10 24.91 1.72
YOLOv5m 45.30 12.42 2.44 68.20 25.01 1.72
YOLOv8n 40.20 12.27 2.44 41.80 22.59 1.72
Average 46.63 12.89 2.44 57.93 26.28 1.72

*: Anchor-free models.

5.4.1 Robustness in Varied Game Scenarios

In this robustness test, we evaluated Cloak Crafter across 9
maps in CS2 and 7 in CF, using three distinct proxy models for
each game. The results, detailed in Table 5, reveal consistently
high DSRs across all proxy models. YOLOvx6 achieved an
exceptional average DSR of 99.92% across 16 maps, while
the other two models also exceeded 70% DSRs on average.
Furthermore, Cloak Crafter maintained a stable FPS of around
30 in all maps. These outcomes affirm the excellent versatility
and operational effectiveness of Cloak Crafter in various maps
and game scenarios across different games.

5.4.2 Performance Stability with Single/Multiple Object

Table 6 demonstrates Cloak Crafter’s performance across sce-
narios with varying numbers of characters visible on screen,
specifically against popular YOLOv5 series models used in
cheating. Note that here we select the most powerful model,

Table 5: Robustness of Cloak Crafter across different game
scenarios and maps with YOLOv5x6 as a cheating model.

Dataset Scenario Proxy Model: YOLOv5n Proxy Model: YOLOv5s Proxy Model: YOLOv5x6

DSR(%) FPS #Query DSR(%) FPS #Query DSR(%) FPS #Query

AVCA-CS2

desert_atrium 93.30 23.48 1.91 96.70 22.46 1.91 100.00 21.58 1.91
repository 97.80 93.86 1.01 100.00 64.80 1.01 100.00 65.49 1.01
desert_town 80.70 28.12 1.60 86.70 28.76 1.60 100.00 27.77 1.60
dust2 78.90 34.24 1.40 85.30 33.75 1.45 100.00 33.12 1.40
Mirage 61.70 23.21 1.86 55.30 23.65 1.86 100.00 24.17 1.86
Inferno 70.50 23.01 1.77 75.20 24.27 1.77 100.00 24.79 1.77
Nuke 54.80 17.96 2.18 42.30 18.20 2.18 99.60 18.10 2.18
Anubis 43.30 20.88 1.97 45.80 20.89 1.97 100.00 21.33 1.97
Vertigo 60.00 24.45 1.74 57.70 24.70 1.74 99.80 24.20 1.74
Average 71.22 32.13 1.72 71.67 29.05 1.72 99.93 28.95 1.71

AVCA-CF

coconut_island 70.20 21.74 1.92 80.00 21.78 1.92 99.90 22.49 1.92
aquarium 60.30 35.23 1.46 60.20 32.95 1.46 100.00 33.58 1.46
pyramid 58.80 13.65 2.73 66.90 12.92 2.73 99.90 13.43 2.73
stable 93.00 32.95 1.49 92.70 30.99 1.49 99.90 38.39 1.49
ship 70.00 31.05 1.75 77.85 30.20 1.75 99.80 31.02 1.75
training_ground 53.80 32.40 2.06 72.50 19.23 2.06 100.00 19.19 2.06
dust 77.80 28.02 1.59 82.80 29.74 1.59 99.90 39.27 1.59
Average 69.13 27.86 1.86 76.14 25.40 1.86 99.91 28.20 1.86

Table 6: Robustness of Cloak Crafter in multi-object scenar-
ios.

Dataset Proxy Model Cheating Model #Object = 1 #Object ≥ 2

DSR(%) FPS #Query DSR(%) FPS #Query

AVCA-CS2 YOLOv5x6

YOLOv5n 75.00 33.37 1.49 71.20 23.79 1.53
YOLOv5s 78.20 31.70 1.49 82.10 22.57 1.53
YOLOv5m 74.40 31.24 1.49 76.50 23.29 1.53
YOLOv5l 78.60 31.75 1.49 78.10 21.49 1.53
YOLOv5x 84.90 33.58 1.49 85.80 23.77 1.53
YOLOv5n6 49.60 31.49 1.49 27.30 21.72 1.53
YOLOv5s6 59.80 31.24 1.49 42.50 22.04 1.53
YOLOv5m6 85.00 30.11 1.49 85.20 23.52 1.53
YOLOv5l6 88.30 30.75 1.49 87.60 22.05 1.53
YOLOv5x6 99.80 31.77 1.49 100.00 23.22 1.53
Average 77.36 31.70 1.49 73.63 22.75 1.53

AVCA-CF YOLOv5x6

YOLOv5n 57.40 17.30 2.08 41.50 13.69 2.65
YOLOv5s 68.60 16.74 2.08 59.40 13.65 2.65
YOLOv5m 64.90 16.61 2.08 51.50 13.66 2.65
YOLOv5l 68.90 16.05 2.08 52.40 12.65 2.65
YOLOv5x 73.40 17.01 2.08 56.70 14.02 2.65
YOLOv5n6 42.80 16.40 2.08 30.30 13.23 2.65
YOLOv5s6 49.20 16.42 2.08 42.40 13.75 2.65
YOLOv5m6 71.00 16.59 2.08 53.60 13.39 2.65
YOLOv5l6 70.30 17.16 2.08 53.00 13.39 2.65
YOLOv5x6 99.60 16.98 2.08 100.00 12.83 2.65
Average 66.61 16.72 2.08 54.08 13.43 2.65

YOLOv5x6, as the proxy model to illustrate the improvement
in transferability from a powerful proxy model. Similar to the
game scenario robustness test, Cloak Crafter performed well
on all tested cheating models, maintaining stability whether
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Table 7: Robustness of Cloak Crafter across different resolu-
tions with YOLOv5n as a local proxy model.

Dataset Resolution Cheating Model DSR(%) FPS #Query

AVCA-CS2

224×224

YOLOv5n 99.90 40.00 2.28
YOLOv5m 52.20 21.15 2.75
YOLOv5x 46.40 16.91 2.54
Average 66.17 26.02 2.52

320×320*

YOLOv5n 100.00 77.94 1.51
YOLOv5m 75.80 45.74 1.57
YOLOv5x 74.40 44.31 1.44
Average 83.40 55.99 1.51

416×416

YOLOv5n 99.90 47.15 1.73
YOLOv5m 73.60 32.05 2.12
YOLOv5x 68.50 19.15 2.27
Average 80.67 32.78 2.04

AVCA-CF

224×224

YOLOv5n 99.90 41.65 2.30
YOLOv5m 47.70 30.25 2.61
YOLOv5x 41.40 18.46 2.38
Average 63.00 30.12 2.43

320×320*

YOLOv5n 100.00 71.97 1.55
YOLOv5m 74.20 58.61 1.51
YOLOv5x 73.10 40.43 1.47
Average 82.43 57.00 1.51

416×416

YOLOv5n 100.00 50.96 1.98
YOLOv5m 61.50 32.96 2.93
YOLOv5x 54.80 16.91 2.24
Average 72.10 33.61 2.38

*: The baseline resolution.

one or multiple characters were present. These results show
that Cloak Crafter can consistently operate in real-world gam-
ing scenarios, even in complex multiplayer battles.

5.4.3 Consistency Across Different Resolutions

This subsection delves into Cloak Crafter’s effectiveness
across varying game resolutions, recognizing that players em-
ploy diverse settings in real gameplay. By simulating different
screen resolutions through image resizing, with a baseline of
320×320, we rigorously tested Cloak Crafter’s defensive ca-
pabilities. The results, detailed in Table 7, indicate that Cloak
Crafter maintains its performance without significant degrada-
tion, whether at higher or lower resolutions than the baseline.
It is worth mentioning that our method demonstrates enhanced
efficacy in scenarios of image magnification, surpassing its
performance in reduction contexts.

5.5 Ablation Study
In this subsection, we examine the critical components of
our Invisibility Cloak’s efficacy, including the necessity of
Universal Cloak, the choice of proxy model, initialization
parameters, and the noise amplitude to answer RQ4.

5.5.1 The Effect of Proxy Model and Universal Cloak

We first discuss the impact of Universal Cloak and different
local proxy models. Since our approach is based on the suc-
cessful defense of the proxy model with Invisibility Cloak, the
generalization of the local model is crucial in our approach.

Table 8: Performance comparison of different proxy models.

Dataset Proxy Model w/o Universal Cloak w/ Universal Cloak

DSR(%) FPS #Query DSR(%) FPS #Query

AVCA-CS2

YOLOv5n 99.80 19.19 2.17 100.00 40.14 1.51
YOLOv5x 23.70 8.53 3.24 74.40 40.33 1.44

YOLOv5x6 26.60 6.70 3.47 74.50 24.30 1.53
NanoDet-Plus-m* 17.10 12.98 2.17 60.9 13.28 2.99

AVCA-CF

YOLOv5n 100.00 29.25 2.10 100.00 46.92 1.55
YOLOv5x 14.60 9.23 3.23 73.10 24.33 1.51

YOLOv5x6 18.40 6.70 3.56 72.20 17.19 1.73
NanoDet-Plus-m* 10.80 19.54 1.86 64.40 17.47 2.42

*: Anchor-free models.
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(a) AVCA-CS2: YOLOv5n
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(b) AVCA-CS2: NanoDet
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(c) AVCA-CF: YOLOv5n
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(d) AVCA-CF: NanoDet

Figure 4: Variation of DRS and FPS with the number of initializa-
tion iterations.

We believe game cheaters prefer using powerful and widely
used lightweight models such as YOLOv5n. Therefore, we
use this model to simulate the cheating model in our exper-
iments. As shown in Table 8, our investigation employs a
variety of proxy models to compare their performance with
and without our Universal Cloak. The results show that, the
presence of the Universal Cloak consistently enhances the
performance across all evaluated models, emphasizing its im-
portance in our defense approach. Besides, when the proxy
model has a similar architecture to the cheating model, such
as the YOLOv5 series, the generalization of the proxy model
is better. Additionally, it can be deduced that using a more
powerful proxy model leads to better transfer defense, such
as the better transfer performance of YOLOv5x6 compared to
YOLOv5x in the table. Therefore, the results show that when
selecting a proxy model, we should choose a model series
that cheaters are more likely to choose and a more powerful
model, resulting in better invisibility performance.

5.5.2 Initialization

In this subsection, we explore the influence of two hyper-
parameters set during Cloak Refinement § 4.2. Since the
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Figure 5: The impact of learning rate α on DSR.

refinement process must be completed in real-time, these hy-
perparameters significantly impact the final performance.

Firstly, we discuss the maximum iteration during refining.
When encountering bad cases, an increase in the maximum
iterations correlates with an augmentation in the defense du-
ration (although from the Table 2 to Table 7, the results show
that in most cases, only 1-3 queries are needed for success-
ful defense). We select two proxy models of different archi-
tectures and the same cheating model. Figure 4 shows that
establishing an upper limit of approximately 5 iterations en-
sures the preservation of a Detection Success Rate (DSR)
close to 100% while also maintaining a high Frames Per Sec-
ond (FPS) rate. A further increment in iterations results in a
marginal enhancement in DSR at the expense of a reduced
FPS. Consequently, if the DSR satisfy the minimum criteria,
it is advisable to refrain from excessive iteration limits to
prevent diminishing returns in terms of performance.

We then discuss the impact of learning rate α on Cloak
Refinement. We choose YOLOv5n as the proxy model and
YOLOv8n as the cheating model without a Universal Cloak.
Note that we fixed the number of 20 iterations without an early
stop to more clearly show the effect of the learning rate on
DSR. As shown in Figure 5, the results show that a learning
rate of 0.1 or 0.005 is appropriate. The reason for choosing
0.005 as the default is that we want to minimize the size of
the Cloak to make it imperceptible without affecting DSR.

5.5.3 Amplitude of Noise

Finally, we explore the relationship between the size of the
Cloak and its performance metrics. Typically, noise below
8/255 epsilon (ε) is not easily detectable by human eyes
in RGB images. In our ablation experiments, we set differ-
ent Cloak epsilon values as defined in Equation 1. Figure 6
demonstrates how varying the maximum ℓ∞-norm constraint
(ε) of the Cloak affects the DSR and FPS on the AVCA-CF
dataset. Although a larger-sized Cloak has a higher DSR, it
also means a greater impact on the image. While maintaining
satisfactory FPS, we need to ensure a stable DSR and that the
Cloak remains imperceptible to the player. In this experiment,
we also chose YOLOv5n as the proxy model and YOLOv8n
as the cheating model without Universal Cloak, and we fixed
the number of iterations to a default of 5 with an early stop-
ping criterion. The results show that setting ε to 8/255 is more

Figure 6: The impact of epsilon ε on DSR and FPS.

appropriate, with a sufficiently high DSR without a significant
decrease in FPS. Notably, when ε is set to 16/255, the DSR
for transfer defense actually decreases, which means that a
higher ε does not necessarily improve Cloak transferability.

5.6 Adaptive Attack
To address RQ5, we examine the effectiveness of our ap-
proach when cheaters realize the Invisibility Cloak and at-
tempt to counteract it. First, we employ a straightforward
experiment that adds random noise before and after the Cloak
to evaluate its robustness to such noise. As shown in Table 9, it
indicates that random noise impacts the DSR by less than 5%.
In most cases, Cloak Crafter maintains a DSR of over 95%
while achieving satisfactory FPS and Query performance.

Table 9: The performance of Cloak Crafter under basic adap-
tive attack using random noise.

Dataset Cheating Model Pre-Cloak Random Noise Post-Cloak Random Noise

DSR(%) FPS #Query DSR(%) FPS #Query

AVCA-CS2

YOLOv5n 100.00 64.77 1.87 97.20 54.86 1.66
YOLOv5s 100.00 54.01 2.10 94.80 49.40 1.80
YOLOv5m 100.00 34.10 2.38 90.50 33.53 2.08

NanoDet-Plus-m* 96.70 14.02 2.57 78.00 15.17 2.44

AVCA-CF

YOLOv5n 99.90 64.77 1.77 98.60 77.57 1.53
YOLOv5s 100.00 52.55 2.00 98.20 71.75 1.62
YOLOv5m 99.90 46.38 1.93 97.90 58.04 1.62

NanoDet-Plus-m* 99.80 26.63 1.88 94.40 29.91 1.72

*: Anchor-free models.

Additionally, we conduct further adaptive attack evalua-
tions. We fine-tune the visual aimbot [44] on our datasets
and perform adversarial training with protected samples on
top of the fine-tuned models to simulate cheaters’ resistance.
Note that we use 20% of the datasets for adversarial train-
ing because we assume cheaters have much fewer collected
samples than protectors. As shown in Table 10, adversarial
training reduces the DSR by less than 20% on the AVCA-CS2
dataset, yet it fails to attack our defense on the AVCA-CF. We
believe this is because CF has simple scenarios and consistent
graphics, which results in only a limited improvement of the
cheating model’s robustness after adversarial training. Notice
that when ε = 8/255 on the AVCA-CF dataset, the DSR is
slightly below 100%. This could be attributed to fine-tuning,
which improves the cheating model’s performance, resulting
in a more challenging situation for our Cloak. However, the
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Figure 7: The refinement process of Invisibility Cloak in CF.

simple scenarios in CF conflict with adversarial samples [14],
which allows our DSR to instead reach 100% after adversarial
training. Further discussion is provided in section 6.

Table 10: Performance under adaptive attack using adversarial
training with fine-tuned YOLOv5n as a local proxy model.

Dataset Cheating Model ε = 8/255 ε = 16/255

DSR(%) FPS #Query DSR(%) FPS #Query

AVCA-CS2 YOLOv5n+ 100.00 31.30 2.26 100.00 86.05 1.05
YOLOv5n+

AT 81.70 31.30 2.26 86.00 93.49 1.05

AVCA-CF YOLOv5n+ 99.80 19.24 3.22 100.00 65.25 1.32
YOLOv5n+

AT 100.00 19.44 3.22 100.00 65.78 1.32
+: Models that have been fine-tuned;
AT: Models that have been adversarial trained.

5.7 Case Study
5.7.1 The Refinement Process of Invisibility Cloak

In this subsection, we first visualize the refinement process
of our Invisibility Cloak through a demo in Figure 7. As we
describe in § 4.3, the deployment of Universal Cloak can
achieve real-time defense with no latency, but some bad cases
still require iterative refinement of the Cloak. As a result,
after we craft a Universal Cloak, the refinement process is
very important for practical applications. Figure 7 visualizes
this process; it demonstrates the bounding box’s confidence
score of the target in the image keeps decreasing through our
refinement until the cheating model cannot detect it.

Next, we discuss how to craft a Cloak for an input game
frame. To achieve this, we reduce the confidence score of the
bounding box detecting the target in the frame by minimiz-
ing the loss function (Equation 3). Figure 8 illustrates the
decrease in loss during the Cloak searching process. The nota-
tions in Figure 8 indicate successful defense of YOLOv5n and
YOLOv8n at the 2nd and 7th iterations, respectively. Here,
we fixed the number of iterations to 20 without early ter-
mination. In our experiments, we observed that among all
samples with successful YOLOv8n defense, only one sample
preceded the successful YOLOv5n defense, accounting for
less than 1% of the total. This indicates the difficulty of de-

fending against unknown models using white-box gradient
information. Although we can use multiple commonly used
white-box cheating models to design loss functions and co-
construct the gradient, the forward and backward overhead in
these additional models is impractical for real-time defense
scenarios. Therefore, in our approach, the Universal Cloak
described in section 4 effectively addresses the challenge of
generalizability.

YOLOv5n

YOLOv8n

Iteration

Lo
ss

0.000
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0.008
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Figure 8: The loss decreases with iterations until the cheating
model is successfully defended.

5.7.2 Normal/Cheating Player’s Perspective

Figure 9 presents visualization examples of different methods
under the ℓ∞-norm constraint with ε = 8/255 in real game
scenarios. It can be observed that despite having the same
constraint on individual pixel perturbations, different methods
yield different visualization results. In particular, although
RayS has a higher SSIM, as shown in Table 2, it exhibits large
areas of similar perturbations, making it more noticeable to
players. While our method does not outperform others in the
SSIM evaluation metric, the invisibility of our Invisibility
Cloak is evident from the figure.

5.8 Practical Impact Analysis
We perform user study and real-world effect verification to
answer RQ6 and demonstrate that our Cloak is not perceived
by players, thereby not impacting the game experience.

5.8.1 User Study

We conduct a paid anonymous survey in the form of a ques-
tionnaire to evaluate the indistinguishability and natural-
ness of game screens protected by our Cloak (randomly se-
lected from a subset of experimental data). The data used
were refined Cloaks adhering to the standards outlined in sec-
tion 4. All 122 participants are over 18 years old, and 80% of
them have shooting games experience. We followed best prac-
tices for ethical human subjects survey research, and we did
not collect unnecessary personal information. Preliminary re-
search indicates that it is challenging for people to determine
whether a game scene has been added with Cloaks.
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Figure 9: Visual examples of different methods in two popular First-person Shooter games, CS2 and CF, under the ℓ∞-norm
constraint with ε = 8/255. IC denotes our Invisibility Cloak.

Indistinguishability. The study consists of two main types
of tasks to evaluate the indistinguishability of the protected
game screen. The first type involved binary choices, where
participants were asked to select a true game scene between
two options: one with the Cloak and the other without any
modifications. The total accuracy for this task was 47.87%,
which is lower than the random guess threshold of 50%. The
second type of task required participants to judge the authen-
ticity of pairs of game scenes, with four possible combinations:
both true, both false, one true and one false (in either order).
The overall proportion of correct answers was 23.77%, below
the random guess threshold of 25%. This indicates that par-
ticipants cannot perceive our Cloak, thereby demonstrating
the Cloak’s indistinguishability.

Naturalness. We use the task of choosing the naturalness
of the game screen to evaluate the protected game screen’s
naturalness. Participants are asked to choose the naturalness
of a randomly selected screen (both the original screen and
the protected screen) from five options, as shown in Figure 10.
The Pearson correlation coefficient between original and pro-
tected frames is 0.983 (with p = 0.0027 < 0.05). This pro-
vides strong statistical evidence that the correlation between
original and protected frames is not accidental, illustrating
the naturalness of our Cloak.

Figure 10: Results of the user study on naturalness.

Additionally, we use multiple-choice questions to assess
participants’ perceptions of the cheat’s reliability. Only 9.3%
of participants would continue using a visual aimbot when its
success rate is below 70%, while 27.8% indicated that this
accuracy rate needed to be at least 90%. These findings high-
light the importance of aimbot accuracy for users, suggesting

that even minor performance deviations could lead to user
abandonment, consistent with the discussion in § 4.3.

5.8.2 Real-World Effect Verification

Evaluating our method in real-world scenarios involves the
activation of visual aimbots within genuine game matches. To
address ethical concerns and control variables, we adopted
video feeds instead of directly implementing the SOTA visual
aimbot [44] in the game. The two most effective settings
among all Universal Cloak configurations for CS2 and CF,
pre-trained with different combinations of YOLOv5, were
selected and superimposed onto the corresponding real-time
game video feed for live verification purposes.

Table 11 shows two open-sourced real-world whole-match
video feeds of CS2 4 and CF 5 used for the evaluation. Note
that this additional dataset is completely different from the
previous evaluation dataset. In this experiment, over approxi-
mately 39.5 minutes of gameplay for CS2 and 29.4 minutes
for CF, thousands of auto-aim and aimbot detections were
reduced by three orders of magnitude. By using our Invisibil-
ity Cloak, auto-aim and aimbot detections were controlled to
single digits, effectively preventing visual cheating.

Table 11: Anti-Cheat effect verification with real-world match
examples.

Game Duration(sec) w/o Invisibility Cloak w/ Invisibility Cloak

#Detection #Auto-aim #Detection #Auto-aim

CS2 2,370.61 3,860 3,549 5 5
CF 1,765.69 2,394 2,197 2 2

1#Detection: the number of successful detections by aimbot;
2#Auto-aim: the number of successful auto-aiming by aimbot.

4https://www.youtube.com/watch?v=iUwdyHcpUe8
5https://www.youtube.com/watch?v=UdKwp7O4Uq4
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6 Discussion and Limitation

In this section, we explore avenues for future enhancement.
Despite § 5.3 demonstrating the superiority of our method
over other baselines and its defense effectiveness, there is
potential for further optimization of our Cloak.

Generalization of Universal Cloak. Since we can only
use a limited number of models to train our Universal Cloak,
yet need to contend with an unknown and infinite variety of
cheating models, incorporating regularization into the training
process may improve its generalization performance.

Transferability of Cloak Refinement. For instance, we
observe that YOLOv8 often requires more iterations than
YOLOv5 for a successful defense. Setting a low query count
to expedite Cloak generation led to decreased defense effec-
tiveness. This indicates that adjusting the number of iterations
based on different cheating models and FPS requirements
could improve defense effectiveness and transferability.

Adaptive Attack. Despite the results from § 5.6 showing
that adaptive attacks cannot significantly break through our
Cloak, if the cheater collects sufficient adversarial samples
and adopts more targeted fine-tuning strategies, our defense
may become vulnerable. Therefore, we can design inducive
perturbations for the fine-tuned model (such as identifying
additional wrong targets), which we leave as future work.

7 Related Work

In this section, we introduce two types of anti-cheating tech-
niques: detection-based and prevention-based.

Detection-based techniques predominantly employ conven-
tional security measures to passively identify anomalies, such
as irregular processes, memory reads and writes, and the sig-
nature codes of cheating malware [16, 31]. Contemporary
advancements have incorporated machine-learning and deep-
learning strategies for statistical and behavioral anomaly de-
tection [2,11,17,23,25,29,34,37,63]. Additionally, computer-
vision-driven methods are utilized to identify illicit overlays
or patterned trajectories employed by cheat scripts [24, 48].
Although these approaches are noted for their effectiveness
and efficiency in cheat detection, they inherently lag behind
cheating activities because the infractions and consequent
damages have already occurred.

In contrast, prevention-based techniques are active in na-
ture. However, they are still in the nascent stages of develop-
ment, with limited related literature for reference. Traditional
methods, dating back a decade, focused on core data access
control, authentication, and network-based protections [4,57].
More recent efforts have explored using Trusted Execution
Environments to safeguard core data and applying random-
ized binaries for preventive measures [3,6,38]. However, these
approaches often require specific hardware, such as Intel SGX
enclaves, limiting their applicability to all users. Furthermore,
some approaches can not effectively address certain attack

methodologies, such as the DLL injection, which remains
prevalent in contemporary cheating strategies.

For visual aimbots, the traditional detection and prevention
methodologies face inherent limitations due to the unique
nature of these novel cheats. Unlike conventional cheating
aimbots that manipulate game memory or data, visual aim-
bots operate by analyzing the visual output of the game, ren-
dering traditional game memory-related detection methods
inapplicable. Similarly, traditional prevention methods are
ineffective against visual sights because these cheats do not
require altering game files or exploiting network vulnerabili-
ties, thus bypassing the usual security checkpoints. Therefore,
the only feasible approaches to counter visual aimbots are
detection-based methods such as player behavior classifica-
tion [2, 17, 25, 29] and screen anomalies detection [23, 34, 63].
However, for the former, these methods could misclassify
some high-level players as cheaters, resulting in a very low
accuracy rate. Moreover, such methods lack explainability
and thus require additional human review. For the latter, vi-
sual aimbots can hide the detection box on the screen, which
means there will be no anomaly on the screen at all.

Given these challenges, there’s a clear gap in the effective-
ness of existing anti-cheat approaches against visual aimbots.
This emphasizes the need for a novel solution to proactively
counteract advanced cheating strategies without relying on
after-the-fact detection or extra human verification. In re-
sponse, our work introduces Invisibility Cloak, a proactive
defense mechanism specifically designed to address the chal-
lenges of visual aimbots. Moreover, although our approach
may impact computer-vision-driven detection methods due to
the Cloak perturbations, it can still work in parallel with tradi-
tional detection methods. By employing Invisibility Cloak for
proactive defense, we can block most visual aimbots. Subse-
quently, detection-based techniques can identify and address
the few remaining cheats, thus ensuring comprehensive pro-
tection and enhancing the robustness of anti-cheat systems.

8 Conclusion

In this paper, we introduce Invisibility Cloak, the first proac-
tive defense framework against visual aimbot cheating in
First-person Shooter games, which uses imperceptible per-
turbations to disrupt computer vision-based aimbot detection
without impairing player experience. Our comprehensive eval-
uation across various game scenarios, object detection mod-
els, and real-world investigation demonstrates the technique’s
effectiveness, efficiency, and adaptability. Invisibility Cloak
addresses the challenge of visual aimbots, a problem that tra-
ditional anti-cheat methods fail to solve, marking a significant
advancement in ensuring game security. This innovative ap-
proach offers a new paradigm for combating the inevitable
rise of AI-driven cheating techniques in gaming. Our method
guarantees real-time defense without compromising the fluid-
ity of gameplay, achieving invisible protection.
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