
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

All Your Tokens are Belong to Us:
Demystifying Address Verification

Vulnerabilities in Solidity Smart Contracts
Tianle Sun, Huazhong University of Science and Technology; Ningyu He,

Peking University; Jiang Xiao, Huazhong University of Science and Technology;
Yinliang Yue, Zhongguancun Laboratory; Xiapu Luo, The Hong Kong Polytechnic

University; Haoyu Wang, Huazhong University of Science and Technology
https://www.usenix.org/conference/usenixsecurity24/presentation/sun-tianle

All Your Tokens are Belong to Us: Demystifying Address Verification Vulnerabilities
in Solidity Smart Contracts

Tianle Sun1, Ningyu He2, Jiang Xiao1, Yinliang Yue3, Xiapu Luo4

Haoyu Wang1‡

1 Huazhong University of Science and Technology 2Peking University
3Zhongguancun Laboratory 4The Hong Kong Polytechnic University

‡Corresponding author: haoyuwang@hust.edu.cn

Abstract
In Ethereum, the practice of verifying the validity of the
passed addresses is a common practice, which is a crucial
step to ensure the secure execution of smart contracts. Vulner-
abilities in the process of address verification can lead to great
security issues, and anecdotal evidence has been reported by
our community. However, this type of vulnerability has not
been well studied. To fill the void, in this paper, we aim to
characterize and detect this kind of emerging vulnerability.
We design and implement AVVERIFIER, a lightweight taint
analyzer based on static EVM opcode simulation. Its three-
phase detector can progressively rule out false positives and
false negatives based on the intrinsic characteristics. Upon
a well-established and unbiased benchmark, AVVERIFIER
can improve efficiency 2 to 5 times than the SOTA while
maintaining a 94.3% precision and 100% recall. After a large-
scale evaluation of over 5 million Ethereum smart contracts,
we have identified 812 vulnerable smart contracts that were
undisclosed by our community before this work, and 348 open
source smart contracts were further verified, whose largest
total value locked is over $11.2 billion. We further deploy
AVVERIFIER as a real-time detector on Ethereum and Bi-
nance Smart Chain, and the results suggest that AVVERIFIER
can raise timely warnings once contracts are deployed.

1 Introduction

After Satoshi Nakamoto launched Bitcoin [57], blockchain
platforms have sprung up. Among them, Ethereum [17] is the
most well-known one. Apart from these common characteris-
tics among all blockchain platforms, the most eye-catching
feature in Ethereum is the smart contract. It can be taken
as a piece of unchangeable script that shall be executed in a
determined way once the pre-defined conditions are met.

As billions of USD equivalent assets are stored within smart
contracts, identifying and exploiting hidden vulnerabilities
in them is the top priority for attackers. According to a re-
cent report [65], there exist around 303 large attack events

against well-known Ethereum contracts within the past year,
amounting to losses of approximately $3.8 billion. Chen et
al. [19] have summarized 26 major types of vulnerabilities in
Ethereum smart contracts, and new types of vulnerabilities
are still emerging in an endless stream along the constant
feature introduction and deprecation in Ethereum [45].

The automatic identification of vulnerabilities in Ethereum
smart contracts is a well-studied topic [14,35,44,53,67,69,75].
Considering the number of contracts and the economic loss
caused by false negatives, static symbolic execution, which
can guarantee soundness to a certain extent, is used as the
main analysis method. For example, Mythril [67] is a static
bytecode-level symbolic executor for Ethereum contracts,
while Slither [29] works on source code, which claims to
achieve high efficiency and effectiveness.

Verifying the validity of the input addresses is a common
practic and a key step to ensure the secure execution of smart
contracts. Vulnerabilities in the process of address verifica-
tion can lead to great security issues, and anecdotal evidence
has been reported by our community [11]. To be specific,
functions in smart contracts can be addressed as arguments. If
developers accidentally neglect the verification on the passed
address, once it is taken as the target of an external call, arbi-
trary operations, including malicious ones, within an address
can be invoked. Therefore, if any on-chain state modification
relies on that external call, such modification may go against
the developer’s wishes.

Currently, no existing tools can detect the address verifica-
tion vulnerability, and implementing such a vulnerability de-
tector based on existing framework is challenging. On the one
hand, according to the characteristics of the address verifica-
tion vulnerability, to effectively identify it, the detector should
perform an inter-procedural or even inter-contract analysis.
Existing work, however, invariably suffers from either the
efficiency or the effectiveness problem when conducting such
analyses. For example, a pattern-based detector can barely
handle such a complicated vulnerability pattern, while the
symbolic execution suffers the path explosion issues and the
bottleneck brought from the constraints solving. On the one

USENIX Association 33rd USENIX Security Symposium 3567

hand, most contracts are close-sourced, and bytecode lacks
sufficient semantics, making it difficult to precisely identify
hidden vulnerabilities. Specifically, the address verification
vulnerability requires fine-grained tracking in both memory
and storage areas. In bytecode, it is hard to distinguish dif-
ferent variables stored in these two areas. Moreover, tracking
them via symbolic execution would suffer severe path explo-
sion issue due to the large space of feasible slots.

This work. To fill the void, we aim to characterize and
detect this kind of emerging vulnerability. To be specific,
we design and implement AVVERIFIER, a novel lightweight
static taint analysis framework that can efficiently and effec-
tively identify the address verification vulnerability. Its taint
analysis relies on the static simulation of the opcode sequence.
In other words, without considering the feasibility of paths,
AVVERIFIER maintains the values of data structures (e.g.,
stack and memory) and the taint propagation status. Such a
static simulation traverses lots of paths, including the origi-
nally infeasible ones. Thus, according to the corresponding
states collected, AVVERIFIER formally detects the address
verification vulnerability through a three-phase detection. It
can progressively rule out false positives and false negatives
based on the intrinsic characteristics of the vulnerability.

Based on our crafted benchmarks, AVVERIFIER signifi-
cantly outperforms state-of-the-art smart contract detection
tools (i.e., Mythril, Ethainter, Jackal, and ETHBMC)1 in both
terms of efficiency and effectiveness. According to a com-
prehensive evaluation of over 5 million deployed Ethereum
contracts, AVVERIFIER flags over 812 vulnerable contracts,
and 348 open-source smart contracts were further verified,
whose total value locked is over $11.2 billion. Finally, we
deploy AVVERIFIER as a real-time detector on Ethereum and
BSC, an EVM-like blockchain platform. The results show
that AVVERIFIER is capable of raising early warnings to de-
velopers and the community timely. A real-world case, where
AVVERIFIER raises the warning 1.5 hours ahead of the attack,
proves its effectiveness and efficiency.

This paper makes the following contributions:

• This is the first work on detecting address verifica-
tion vulnerability. We have designed and implemented
AVVERIFIER, an efficient and effective taint analyzer
based on static EVM simulation.

• We have applied AVVERIFIER to over 5 million smart
contracts on Ethereum, and uncovered hundreds of vul-
nerable smart contracts which were undisclosed by our
community before. This is the first large scale in-the-
wild characterization study of this kind of vulnerability.

• Compared to Mythril, Ethainter, Jackal, and ETHBMC,
AVVERIFIER can improve the analysis efficiency around

1Note that these tools cannot detect address verification vulnerability, we
have implemented the same detection logic atop them, for a fair comparison.

2 to 5 times while achieving 94.3% precision and 100%
recall on well-established benchmarks.

• We have deployed AVVERIFIER as a real-time detector
on Ethereum and BSC. The results suggest that AVVER-
IFIER is able to raise early warnings once contracts are
deployed before the attack is initiated by attackers.

2 Background

2.1 Ethereum Primer
There are two types of accounts in Ethereum: external owned
account (EOA) and smart contract. Specifically, an EOA
is an ordinary account, which is identified by a unique ad-
dress and controlled by a private key. Furthermore, smart
contracts can be regarded as scripts, which are mainly writ-
ten in Solidity [26], a well-defined and easy-to-use program-
ming language proposed by the Ethereum official. Interactions
among accounts are achieved by initiating transactions, which
carry the corresponding data. Smart contracts are executed in
Ethereum Virtual Machine (EVM) [41], which is embedded
in Ethereum client nodes. EVM is stack-based, and all data
is stored either permanently or temporarily. Specifically, all
operands of operators and intermediate values are pushed
onto and popped from the stack. The memory area [40], the
temporary one, only keeps data under the context of the cur-
rent transaction. Only the data stored in the storage area [53]
is permanent, i.e., is stored on-chain. We often denote a set of
smart contracts which jointly achieve a specific functionality
as a decentralized application (DApp).

DApps have demonstrated significant potential since their
rise in 2016 [38]. Many genres of DApps have emerged, e.g.,
gambling [58], token swap [73], and lending [68]. Along-
side the hundreds of billions of USD invested in Ethereum,
the decentralized versions of traditional financial tools, e.g.,
exchanges and insurance, have appeared, which are called de-
centralized finance, i.e., DeFi. Taking advantage of the decen-
tralization, permissionlessness, and transparency in Ethereum,
DeFi starts to rise like a rocket. According to statistics, DeFi
accounted for $163 billion at the end of 2022 [51].

Except for the official token, Ether, Ethereum allows users
to issue tokens as they wish, as long as these tokens meet the
standard like ERC-20 [60]. The ERC-20 standard consists
of six mandatory functions. Any smart contract implements
these functions can issue valid tokens that can circulate in
Ethereum, like USDT [15] and USDC [9]. Therefore, DeFi
can also issue its own ERC-20 tokens, and take other ERC-20
tokens as valid ones. The interoperability between ERC-20
tokens and DeFi pushes the prosperity of Ethereum.

2.2 Whitelisted Address Verification
In Ethereum, examining the validity of the given addresses is
a common practice, which is called whitelisted address verifi-

3568 33rd USENIX Security Symposium USENIX Association

1 function deposit(uint256 amount, address token) external {
2 require(token == usdt, "not usdt token!");
3 token.safeTransferFrom(msg.sender, address(this), amount);
4 }

Listing 1: An example of hard-encoded address comparison.

1 address[] public addresses;
2

3 function contains(address _address) public view returns (bool)
{↪→

4 for(uint i = 0; i < addresses.length; i++) {
5 if (addresses[i] == _address) {
6 return true;
7 }
8 }
9 return false;

10 }
11

12 function deposit(uint256 amount, address token) external {
13 require(contains(token), "not contain this token");
14 token.safeTransferFrom(msg.sender, address(this), amount);
15 }

Listing 2: An example of hard-encoded address enumeration.

cation. It is widely adopted in DeFi apps such as lending [74]
and bank [6]. Address verification is the cornerstone to ensure
the safety of smart contracts. Therefore, OpenZeppelin [61],
a well-known standard library provider in Ethereum, offers
a whitelisted verification method. Moreover, through a com-
prehensive study of the top 40 DeFi projects ranked by TVL
(Total Value Locked) [50], which account for over 95% of the
total DeFi market, we summarized the verification techniques
they adopted. In short, three whitelisted verification methods
are involved, i.e., hard-encoded comparison, mapping vali-
dation, and hard-encoded address enumeration. Note that,
though we cannot guarantee all adopted address verification
techniques are covered, we cover the most prevalent ones.
Considering the extensive copy-and-use in Ethereum smart
contracts [38], these three mechanisms are representative.

Listing 1 illustrates how hard-encoded comparison works.
As we can see, the passed token at L22 is required to equal
the address of usdt, otherwise it raises an exception. Map-
ping validation adopts a mapping structure that can dy-
namically maintain the whitelisted status of addresses, e.g.,
mapping(address => bool) whitelist. As for the hard-
encoded addresses enumeration, it is a variant of the first
one. As shown in Listing 2, an array named addresses keeps
all whitelisted addresses. Therefore, once the deposit func-
tion is invoked, the argument token is passed to the contains
function, defined at L3, which is basically a hard-encoded
comparison wrapped by a loop. At the bytecode level, these
three techniques perform similarly. The contract loads the
address in arguments by CALLDATALOAD and performs ex-
amination via a conditional opcode JUMPI. If an address is
whitelisted, the control flow will be directed to the fallthrough

2L2 refers to the second line, we will adopt this notation in the paper.

branch, and the following logic will be used. Otherwise, the
jumpdest branch is responsible for handling failed assertions.

2.3 Taint Analysis on Smart Contracts
Taint analysis is a fundamental method of program analysis,
used for detecting vulnerabilities [32] and tracking sensitive
information flow [44]. Before performing the taint analysis,
sources and sinks should be specifically defined, where source
refers to input fields controlled by adversaries, and sink refers
to any part of the system where potentially dangerous data
can be used in an unsafe manner. Taint analysis will track
data flow from sources to sinks and identify any operations
or transformations on the data along the way.

In the context of Ethereum smart contracts, the source is
often the function of smart contracts that accept transactions
from other accounts, while the sink varies, depending on spe-
cific goals. For example, to examine if a contract can be de-
structed, Ethainter [14] takes the SELFDESTRUCT opcode as
the sink. Moreover, Michael et al. [32] introduce a tool based
on symbolic execution and taint analysis, designating SSTORE
as the primary sink for its evaluations.

2.4 Threat Model
Adversaries in our study do not require any extra privileges.
This is because Ethereum is a permissionless blockchain plat-
form, which allows any non-privileged account, including
malicious ones, to initiate transactions with sufficient gas, de-
ploy valid smart contracts, and invoke any already deployed
ones. However, certain limitations still exist. For instance,
they cannot breach the integrity of the Ethereum network or
manipulate the block generation process, and cannot access
the private keys of legitimate accounts. In a nutshell, we can
barely distinguish adversaries from well-behaved accounts.

3 Motivating Example and Challenges

3.1 Motivating Example
Listing 3 shows a smart contract owned by Visor Finance
that is vulnerable to the address verification vulnerability.
It was attacked on Dec. 21st, 2021 [11], causing $8.2 mil-
lion financial losses. As we can see, the deposit function
takes three arguments, namely, the number of tokens to be
deposited (visrDeposit), the payer (from), and the benefi-
ciary (to). From L6 to L8, it performs sanity checks, i.e., a
valid amount of deposit, and valid addresses for both payer
and payee. After that, it translates the deposit into shares
according to totalSupply() (L11 to L14), performs the cor-
responding token transfer from the from address to itself
(L16 to L22), and mints some vvisr tokens to the to ad-
dress (L24). The vulnerability is hidden in the if code block

USENIX Association 33rd USENIX Security Symposium 3569

1 function deposit(
2 uint256 visrDeposit,
3 address payable from,
4 address to
5) external returns (uint256 shares) {
6 require(visrDeposit > 0, "deposits must be nonzero");
7 require(to != address(0) && to != address(this), "to");
8 require(from != address(0) && from != address(this),

"from");↪→
9

10 shares = visrDeposit;
11 if (vvisr.totalSupply() != 0) {
12 uint256 visrBalance = visr.balanceOf(address(this));
13 shares =

shares.mul(vvisr.totalSupply()).div(visrBalance);↪→
14 }
15

16 if(isContract(from)) {
17 require(IVisor(from).owner() == msg.sender);
18 IVisor(from).delegatedTransferERC20(address(visr),

address(this), visrDeposit);↪→
19 }
20 else {
21 visr.safeTransferFrom(from, address(this),

visrDeposit);↪→
22 }
23

24 vvisr.mint(to, shares);
25 }

Listing 3: The vulnerable deposit function in vvisr.

at L16. Specifically, it allows the from address as a contract,
and examines if its owner function returns the address of
the transaction initiator (L17). If the assertion passes, then it
invokes the delegatedTransferERC20 function defined in
from. Recalling the threat model mentioned in §2.4, attackers
are able to deploy contracts and initiate transactions arbitrar-
ily. More specific, if the from is actually provided by some
malicious ones, they can control the behaviors of L17 and
L18. To this end, the control flow will be successfully directed
to L24, where vvisr finally issues tokens to to, which is also
controlled by attackers, without receiving any tokens from
from that is expected by developers of Visor Finance.

Through this example, we can summarize three principles
related to the address verification vulnerability:

P1 The vulnerable function takes an address as a parameter,
and performs insufficient authorization examination on
that address. Through the address, attackers can pass
self-deployed and unauthorized contracts.

P2 The address in P1 is taken as the target of an external
call. Through the external call, the control flow is trans-
ferred to attackers. Thus, they can totally control the
behavior of the external call, including the return value.

P3 On-chain states that are control-flow dependent on the
return value mentioned in P2 are updated. To this end,
through an unauthorized control flow, adversaries can
get profits by indirectly manipulating on-chain states,
like initiating an external call or updating balance.

3.2 Challenges

In response to the address verification vulnerability, as out-
lined in the summarized principles and the motivating exam-
ple in §3.1, we identify the following challenges.
C1: Lack of semantics. It is challenging to precisely iden-
tify if the address mentioned in P1 is sufficiently verified
due to the lack of semantics in bytecode. According to the
statistics [56], more than 99% of Ethereum contracts have
not released their source code. The bytecode format is quite
unreadable and contains little semantic information. More-
over, there is no debug information to assist in recovering
the semantics. Traditional bytecode-based analysis tools usu-
ally require some methods to overcome this challenge, like
symbolic execution [67].
C2: Inter-procedural analysis on control flow and data flow.
Detecting this vulnerability requires accurately extracting the
control flow and data flow dependencies inter-procedurally.
Specifically, in P2, there is an external call to an address,
which is passed via the argument. Between the external call
and the function entry, it will be propagated several times due
to the authorization verification. Thus, we have to precisely
identify if the callee address is one of the arguments through
parsing data flow. Moreover, in P3, the on-chain state update
depends on the return value of the external call in P2 in terms
of control flow, which requires us to identify control flow
dependencies among variables. In addition, from Listing 2
we can conclude that some authorizations are verified in other
functions, which requires inter-procedural analysis.

3.3 Limitations of Existing Tools

Considering the aim of implementing a lightweight and effec-
tive detector for address verification vulnerability, we exclude
the analyzers that adopt dynamic analysis. The reasons for this
decision are twofold. On the one hand, dynamic analysis re-
quires a runtime environment for execution, which is resource-
intensive and time-consuming, contrary to our lightweight
goal. On the other hand, dynamic analysis identifies vulner-
abilities with generated test cases and oracles. For intricate
contracts, especially for inter-contract analysis, this method
might not always cover all vulnerable paths, potentially re-
sulting in false negatives. Consequently, static methods are
considered, including pattern-based matching, symbolic exe-
cution, and taint analysis. To the best of our knowledge, no
existing tools can be directly deployed to detect this vulnera-
bility. Although we can extend them with the ability to detect
the vulnerability, we observe some intrinsic limitations.
Pattern-based Matching. It relies on heuristic rules sum-
marized by developers. Lots of preliminary tools adopt this
method, identifying vulnerabilities according to opcode se-
quences [35], transaction histories [5], and call traces [21].
However, such a manual process is unsound and error-prone,
which cannot even handle C1, i.e., identifying semantics of

3570 33rd USENIX Security Symposium USENIX Association

bytecode sequences. Consequently, the constant update of
Solidity syntax [72] and compilation toolchain [28] make this
kind of analyzers ineffective.
Symbolic Execution & Model Checking. Both techniques
are widely adopted in identifying vulnerabilities in software
analysis. Taking advantages of abstraction on programs, sym-
bolic executors and model checkers can recover some seman-
tic information to overcome C1. However, they are inherently
limited by the efficiency issue, mainly brought by the path/s-
tate explosion. For example, when dealing with the example
shown in Listing 3, both of them should not only traverse
all possible functions through the entry to find the deposit-
like functions, but also get stuck from L16 to L18, where
they would try all possible contracts. Because they cannot
effectively and efficiently conduct the inter-contract or even
inter-procedural analysis, C2 is the main challenge hiders the
adoption of them. Moreover, they try to model the memory
area in a precise way, i.e., considering every bit in the memory.
Although such a precise modeling benefits to the soundness
of analyzing results, it comes at the cost of efficiency. In the
context of address verification vulnerability, we only need to
focus on the propagation of address parameters in the memory
area instead of concrete data.
Taint Analysis. Existing taint analyzers cannot be directly
adopted to identify this vulnerability. Firstly, some of them
rely on the source code [29]. In Ethereum, such contracts only
account for less than 1%. Secondly, some of them are limited
by their adopted methods when collecting the taint propaga-
tion information and tracking taint propagation. For instance,
Sereum [63] uses dynamic analysis to monitor execution at
runtime. Furthermore, Mythril [67] and Osiris [70] both adopt
symbolic execution to statically collect information. Mythril
tries to traverse all feasible paths, while Osiris is only intra-
procedural. Ethainter [14] is a strong contender. However, it
exhibits proficiency in addressing C1 and C2, but it suffers
due to the intricacies of EVM’s linear memory model. Specif-
ically, it cannot properly handle dynamic memory allocations
and deallocations in EVM’s memory, which potentially com-
promises the accuracy of its taint tracking, especially when
contracts execute complex memory operations or utilize mem-
ory for storing and manipulating intermediate data (like the
three memory verification mechanisms mentioned in §2.2).
Our Key Idea. As aforementioned, symbolic execution and
taint analysis can effectively recover the semantics and con-
duct the inter-procedural analysis on control flow and data
flow dependencies to some extent. However, considering the
soundness of the analysis, symbolic execution always suffers
the efficiency issue. To this end, we decided to adopt static
EVM simulation based taint analysis, which tracks the taint
propagation through a static simulation on the bytecode. To
reduce the false positives introduced by static simulation and
filter out paths that can lead to exploitation, we design a three-
stage detector corresponding to the three principles mentioned
in §3.1. Moreover, to overcome the memory issue suffered

by Ethainter, we decide to design the memory model moti-
vated by He et al. [39] to abstract the sparse linear memory
into key-value pairs. Consequently, our design can address
both C1 and C2. Furthermore, AVVERIFIER simulates stack
and memory through a self-implemented EVM simulator to
capture the propagation of addresses, ensuring efficiency for
non-dynamic data. As for the dynamic memory parameters,
AVVERIFIER conservatively treats them as symbols and only
guarantees the stack balance to avoid the negative influence
brought by enumerating all possible values.

4 Design of AVVERIFIER

This section elucidates the technical intricacies of AVVER-
IFIER, which is designed to detect the address verification
vulnerability in Ethereum smart contracts. We firstly give a
high-level overview in §4.1, and an introduction of adopted
notations in §4.2. Then, we delve into the three components,
respectively, from §4.3 to §4.5.

4.1 Overview
Fig. 1 illustrates the architecture and workflow of AVVERI-
FIER, which is composed of three main components, i.e., code
grapher (denoted as Grapher), EVM simulator (denoted as
Simulator), and vulnerability detector (denoted as Detector).
Specifically, AVVERIFIER only takes the bytecode of a So-
lidity smart contract as input. The Grapher parses it into the
control flow graph (CFG), filters out all suspicious functions
as candidates, and delivers them to the Simulator. The Simu-
lator maintains a state, consisting of two parts. One part is the
data structures required by EVM, i.e., stack, memory, and stor-
age (see §2.1); the other part is the collected taint information.
According to the CFG, the Simulator updates fields in states
according to the opcode sequence. It also adopts a heuristic-
based path selection method to focus on the most valuable
path, i.e., the ones that may lead to the vulnerability. Once
the analysis against a path is finished, the corresponding state
is sent to the Detector to determine if the current contract
is vulnerable to the address verification vulnerability. The
cascaded three-phase detection strategy in the Detector rules
out false positives and false negatives based on the intrinsic
characteristics (P1 to P3).

4.2 Notations
To better explain the implementation of AVVERIFIER, we
define some notations here:

• S , the set of sources that can be controlled by users;

• T , the set of tainted variables;

• CT , a mapping from a tainted variable to its sources;

USENIX Association 33rd USENIX Security Symposium 3571

Vulnerability Detector

Phase I:
Whitelisted Verification

Examination

Phase II:
External Call Check

Phase III:
Post-call State
Modifications

drop

drop

Vulnerability
Report

Smart
Contract
Bytecode

Code Grapher

Static CFG Parser

Heuristic-based
Function Filter

Determined
Sub-trees

Suspicious
Functions State

EVM Simulator

state

• Stack
• Memory
• Storage

Opcode Simulation

upadte

Taint
Propagation Rules

Data Structures

• Tainted Chain
Taint Info

• Stack
• Load &

Store

• Call
• Control flow

(Heuristic-base
Path Selection)

Figure 1: The workflow and architecture of AVVERIFIER.

bb1

bb2 bb3

bb4

bb5

bb6

static jump
dynamic jump
root node

Figure 2: The CFG of foo.

• F , the set of suspicious functions;

• Mem, Sto, refer to the memory and storage area in EVM.

• V , EC, and SM, refer to the three-stage detection in the
Detector, respectively. Each of them takes a function f
and a parameter p as inputs.

4.3 Component#1: Code Grapher

Generally speaking, the Grapher is responsible for obtaining
the sub-tree of CFG of the given function. Given a piece of
bytecode, Grapher firstly extracts the runtime code, consisting
of implementation of functions [38]. Then, Grapher parses it
into basic blocks and constructs the CFG according to their
jump relations. However, some jump relations are determined
dynamically at runtime instead of statically at the compilation
stage. Thus, the Grapher constructs the CFG only on statically
determined jump relations considering the soundness. Take
the Fig. 2 as an example, where bb1 is the entry of the function
foo and its jump relations to bb2 and bb3 can be statically
determined. Though bb3 and bb4 can jump to bb5 at runtime,
they are determined dynamically. Thus, though the Grapher
generates two trees whose roots are bb1 and bb5, respectively,
bb5 is actually a subtree of bb1 at runtime.

To filter out suspicious functions, i.e., the ones that may
be vulnerable to the address verification vulnerability, the
Grapher heuristically keeps functions that take addresses as

arguments (P1). Specifically, each address parameter under-
goes a bitwise AND operation with 0xFF..FF (160-bit long).
By identifying such a specific pattern, which is also widely
adopted in previous work [7], we can extract functions that
meet P1. These functions will be added to the set F .

4.4 Component#2: EVM Simulator
Based upon the F passed by the Grapher, the Simulator is
responsible for: 1) maintaining the data structures required by
EVM, and 2) updating the taint information. Specifically, S
is composed of all user-controllable variables, e.g., ORIGIN,
CALLDATA, and BALANCE. For each opcode, the Simulator
specifies a set of rules to update both data structures and
taint information in a static way. Without loss of generality,
EVM opcodes are classified into four categories: stack related,
load & store related, call related, and control flow related.

4.4.1 Stack Related Opcodes

The stack-related opcodes include the ones that only interact
with the stack and do not change the control flow, like ADD,
SWAP, and DUP. Take an opcode that takes two arguments
(opuid1 ,opuid2) and returns one (opuidk) as an example, like
ADD. Except for conducting necessary update on the stack, we
also formalize the taint propagation rules as follows:

{opuid1 ,opuid2}∩ (S ∪T) ̸= /0 ⊢ T := T ∪{opuidk}

CT [opuidk] :=


{opuid1}, opuid1 ∈ S ∪T .

{opuid2}, opuid2 ∈ S ∪T .

{opuid1 ,opuid2}, {opuid1 ,opuid2}∩ (S ∪T) ̸= /0.

The first rule implies that if any operand belongs to S or
T , the return value shall be added to the T , i.e., tainted set.
The second rule updates CT , which keeps the tainted relation
from opuidk to its direct taint predecessor. Note that, for other
opcodes under this category but with different numbers of
arguments and return value, the propagation rules are similar.

3572 33rd USENIX Security Symposium USENIX Association

4.4.2 Load & Store Related Opcodes

As we mentioned in §2.1, memory and storage are maintained
by EVM. Data in them are organized in different ways. Specif-
ically, storage operates like a key-value dictionary, i.e., the
values are retrieved by the given key [3]. As for the memory,
it can be seen as a flat and contiguous array of bytes. Access-
ing to an item in memory is achieved by a calculated offset.
However, in Ethereum smart contracts, a memory is always
sparse. Thus, we are motivated by the method raised by He
et al. [39], i.e., abstracting the memory area as a key-value
pairs, where key is the offset and value is the corresponding
data. To this end, data in memory and offset can be retrieved
and indexed uniformly, like Sto[key] or Mem[o f f set].
Load Related Opcodes. This includes MLOAD and SLOAD, i.e.,
load from memory or storage, respectively. Both of them take
a single argument, tar, i.e., the target address, and return ret,
indicating the retrieved data. The taint rules are defined as:

tar ∈ S ∪T ⊢ T := T ∪{ret}
CT [ret] := {tar}, if tar ∈ S ∪T

In other words, if tar is tainted, ret will be marked as tainted.
Their dependency relation will be kept in CT . Moreover, there
is another situation, i.e., the data designated by tar is tainted
already. In this way, we set the taint propagation rules as (take
retrieving from memory area as an example):

Mem[tar] ∈ S ∪T ⊢ T := T ∪{ret}
CT [ret] := {Mem[tar]}, if Mem[tar] ∈ S ∪T

Store Related Opcodes. Both SSTORE and MSTORE take val
and dest as arguments, referring to the to-be-stored data and
the destination, respectively. Thus, we can formalize the taint
propagation rules as:

{val,dest}∩ (S ∪T) ̸= /0 ⊢ T := T ∪{val}
CT [val] := {dest}, if dest ∈ S ∪T

That is to say, if any of the val or dest is tainted, the final
stored val will be tainted. When maintaining the taint depen-
dency relation, we only consider if val depends on dest. There
does not exist an edge from val to val.

4.4.3 Call Related Opcodes

Several opcodes can conduct an external call, e.g., CALL,
DELEGATECALL, and SELFDESTRUCT. Among all arguments,
the address is what we concerned, denoted as paramaddr.
Therefore, we customize the taint propagation rules as:

CT .ancestor(paramaddr) = CALLDATALOAD ⊢ T := T ∪{suc}
CT [suc] := {paramaddr}

Specifically, our main concern is whether the ancestor of
paramaddr can be tainted from CALLDATALOAD, which is the

only source in S that can parse the address-typed variables.
Thus, if CT .ancestor(paramaddr) = CALLDATALOAD holds, it
means that attackers can deliver a malicious address through
the function entry to that external call finally.

4.4.4 Control Flow Related Opcodes

According to the specification, some of them do not take
arguments, like RETURN, STOP, REVERT, and INVALID. There-
fore, no taint marks are propagated when simulating these
instructions. The Simulator only performs the control flow
simulation on them. For example, when the Simulator en-
counters the INVALID instruction, it halts the simulation of
the current path and moves to the next one.
JUMP and JUMPI opcodes are crucial in handling taint prop-

agation as they take the jump destination to explicitly alter
the control flow, where JUMPI takes an argument as the con-
dition. Because JUMP can be seen as a special edition of
JUMPI, we demonstrate the handling on JUMPI in the follow-
ing. Specifically, JUMPI takes two arguments, i.e., dest and
cond, referring to the jump destination and the jump condi-
tion, respectively. It returns no value and directly performs the
control flow jump. For each JUMPI, there are two following
branches, fallthrough and jumpdest. The former one corre-
sponds to the successive opcode, which is executed once the
condition is not met, while the latter one is executed when
the condition meets. According to the specification [63], dest
should not rely on any arguments, i.e., determined statically
during the compilation. Therefore, according to whether the
cond is determined dynamically, the Simulator adopts the
following rules:

1. If the cond is a concrete number, either fallthrough or
jumpdest is chosen by the Simulator deterministically.

2. Otherwise, two paths are all feasible.

(a) If the ancestor of the cond is CALLDATALOAD, pri-
oritize the jumpdest path, i.e., cond = True, to em-
ulate attackers have successfully bypassed the ex-
amination.

(b) Otherwise, it takes two paths into consideration.

The branch prioritization in step 2(a) is heuristic. Specifi-
cally, once a condition is tainted from a source, it means that
it is totally controllable for attackers, like L17 in Listing 3,
i.e., attackers can always bypass the assertion by constructing
the owner function. On bytecode level, there is a conditional
jump at L17, one is to L18 associated with a met condition,
another is not shown in Listing 3, indicating the require
at L17 fails. Thus, the heuristic in step 2(a) prioritizes the
branch to L18, i.e., attackers successfully bypass verifications.
Compared to symbolic execution, which collects path con-
ditions along the simulation and queries the back-end SMT
solver to obtain a concrete set of solutions, the advantages

USENIX Association 33rd USENIX Security Symposium 3573

of this heuristic are twofold. On the one hand, collecting
path conditions and asking for solving is time- and resource-
consuming, which is the greatest bottleneck [24]. On the other
hand, symbolic execution sometimes even cannot handle com-
plex address verification logic. For example, when handling
the L17 in Listing 3, the symbolic executor has to conduct
an inter-contract analysis to IVisor to obtain the value of
owner(), which cannot be completed within an acceptable
time. Though step 2(b) may introduce some false positives, it
is a tradeoff between the efficiency and effectiveness. In §5.2,
it proves its effectiveness and practicability.

As for the taint propagation rules, we should note that no
values are returned by these opcodes. Moreover, they have
no side effects on both memory and storage. In summary, no
taint marks are propagated through these opcodes.

4.5 Component#3: Vulnerability Detector
Based on the information collected from the Simulator, i.e., F
and CT , the Detector is able to determine whether a contract is
vulnerable. Specifically, as Fig. 1 illustrates, the risk detector
is composed of three sequential phases, corresponding to the
three principles mentioned in §3.1 (P1 to P3). We detail these
three phases in the following.

4.5.1 Phase I: Whitelisted Verification Examination

The first phase is to examine whether a contract adopts a
whitelisted verification method. Therefore, we design a func-
tion V (fi, param j). The function takes the i-th function from
F and its j-th parameter as input, verifies if the parameter is
examined by any of the methods described in §2.2. The logic
of V (fi, param j) is defined as:

1. If param j is not typed as an address, we do not regard
this situation to be valid. V (fi, param j) returns True;

2. Against each JUMPI instruction, we examine if its cond
is tainted by the param j, where param j is further tainted
by the CALLDATALOAD. Formally, it is behaved like
param j ∈CT [cond]∧CALLDATALOAD ∈CT [param j]. If
it is hold, V (fi, param j) returns True;

3. Otherwise, the tuple (fi, param j) returns False.

Note that, the first two steps return True, indicating a
whitelisted verification is inapplicable or conducted normally.
In other words, only the states with the False return are kept
and sent to the phase II check.

4.5.2 Phase II: External Call Check

According to P2, in the second phase, we further investigate
if the param j can be used as the target of any external call re-
lated instructions. Therefore, we implement a function, named

EC(fi, param j) , which returns True if the parameter is used
as the target of an external call instruction in the function.

In Ethereum, an external call takes an address as a parame-
ter, and allows the current contract to interact with them. The
implementation of EC(fi, param j) is also intuitive. Specifi-
cally, if the tainted predecessor of the tar of an external call
instruction is param j, or the param j itself, EC(fi, param j)
returns True. Otherwise, it returns False:

EC(f , p) :=

{
True, p ∈CT [tar]∨ tar = p.
False, otherwise.

Similarly, to avoid meaningless resource consumption, only
the states that correspond to the True return value are passed
to the third phase check. We regard the ones with False return
value as worthless vulnerable contracts.

4.5.3 Phase III: Post-call State Modifications

According to P3, we concern whether on-chain states can
be updated according to the return value of the external call
instructions focused by the phase II detection. Therefore, we
implement SM(fi, param j). In Ethereum, on-chain state up-
date can be achieved by two ways. On the one hand, some
on-chain states can be seen as ordinary variables and mod-
ified directly, e.g., BALANCE. On the other hand, SSTORE in-
structions can also be used to alter on-chain state (see §2.1).
Therefore, for all these valuable targets, i.e., on-chain states
keywords and val and dest of SSTORE, we put them in a set V .
SM returns True if any element in V has a tainted predecessor
that is related to the return value, i.e., suc, of the external call
concerned by the phase II. Formally,

SM(f , p) :=

{
True, ∃e ∈ V . suc ∈CT [e]
False, otherwise.

Consequently, for all states with returned value as True,
they are kept as final ones.

4.5.4 Address Verification Vulnerable Contracts

In a nutshell, through such a three-phase detection, the Detec-
tor can effectively identify a state that can be exploited due
to the existence of address verification vulnerability. We can
formally summarize our detection strategy as follows.

By parsing states passed from Simulator, Detector can ob-
tain a set of tuples, consisting of potential victims:

Tuples = {(fi, param j), . . .} := parse(states)

Through a three-phase detection, only the valuable and
vulnerable states are remained:

Remained = {(f , p) ∈ Tuples |
¬V (f , p)∧EC(f , p)∧SM(f , p)}

3574 33rd USENIX Security Symposium USENIX Association

If a contract has a state that is corresponded to a tuple in
Remained, the contract is vulnerable to the address verifica-
tion vulnerability.

5 Evaluation

5.1 Experimental Setup & Research Questions
Baselines. To the best of our knowledge, no existing smart
contract analysis framework supports the detection of ad-
dress verification vulnerability. However, to illustrate the ef-
fectiveness of AVVERIFIER, we have extended Mythril [67]
(commit: f5e2784), Ethainter [14], Jackal [37] (commit:
3993e5c), and ETHBMC [31] (commit: e887f33), four pop-
ular contract analyzers, as baselines. Specifically, Mythril is
a well-known and widely adopted symbolic executor that is
specifically designed to detect vulnerabilities in Ethereum
smart contracts. Thus, we firstly integrate the same taint
propagation rules into Mythril. Then, we employ the same
three-stage detection logic as we stated in §4.5. Consequently,
Mythril is modified as a static symbolic execution based taint
analyzer. As for Ethainter, it is a source-code level reputable,
extensively utilized, and scalable taint analyzer based on Dat-
alog. After being given a source code, Ethainter will first
perform a complete analysis and extract the control flow and
data flow dependencies in the contract. Therefore, we also
implement a three-stage detector in Datalog to filter out the
ones that comply with the rules mentioned in §4.5 from all
generated states. Regarding Jackal, it decompiles Ethereum
smart contracts’ bytecode to an intermediate representation
for constructing control flow graphs. We integrate the same
taint propagation rules in Jackal, and employ the three-stage
detection logic outlined in §4.5. This modification enhances
Jackal’s capability to focus on identifying address verification
vulnerabilities in smart contracts. Last, ETHBMC utilizes
bounded model checking and symbolic execution. We also
manually integrate the three-stage detection logic into it to
sharpen its focus on identifying address verification vulnera-
bilities. Because detectors in all these tools follow the same
set of principles on semantic level, this can reflect the distinc-
tion among them in terms of effectiveness and efficiency.
Implementation of AVVERIFIER. AVVERIFIER is written
in Python and consists of 1.3K lines of code. As shown in
Fig. 1, it is composed of three main modules:

Code Grapher. It is responsible for disassembling the given
bytecode into opcodes, and constructing the CFG according
to the statical function call opcodes as we mentioned in §4.3.
Furthermore, in the function selector, the Grapher selects
suspicious functions according to the heuristic in §4.3, and
obtains the corresponding entry basic block.

EVM Simulator. The body of the Simulator is basically a
two-layer nested loop, the outer one iterates all suspicious
functions collected from the Grapher, and the inner one it-
erates all opcodes. According to the taint propagation rules

defined in §4.4, a state, which is composed of data structures
like EVM stack, memory, storage, and taint information, is
updated. When JUMPI is encountered, AVVERIFIER employs
the heuristic-based path selection approach. The final state
of each path will be sent to the Detector. Once a function is
labelled as vulnerable, the inner loop will break to the next
function to improve the analysis efficiency.

Vulnerability Detector. Leveraging the state yielded by the
Simulator, all states undergo a three-phase check as intro-
duced in §4.5. If any state can pass all three phases, i.e.,
vulnerable, it will be returned to Simulator immediately.
Experimental Setup. The experiments are conducted on a 48
core server equipped with two Intel Xeon 6248R processors,
accompanied by 256GB RAM, while its time limitation for
each contract is 10 minutes.

We answer the following research questions (RQs):

RQ1 Is AVVERIFIER efficient and effective in identifying the
address verification vulnerability?

RQ2 How many smart contracts are vulnerable in the wild
and what are their characteristics?

RQ3 Can AVVERIFIER be deployed as a real-time detection
system?

To answer RQ1, we launch AVVERIFIER and four base-
line tools on a well-constructed benchmark and real-world
contracts in the wild, ranging from the genesis block to the
one with the height of 17,421,000, created at Jun. 6th, 2023,
around 59 million contracts in total. Among these contracts,
we regard the ones that are involved in at least one piece of
transaction as the worth being analyzed one. Thus, 5,158,101
smart contracts remain as candidates. To answer RQ2, we
characterize the vulnerable contracts from different perspec-
tives, e.g., number of transaction and tokens involved. To an-
swer RQ3, we have deployed AVVERIFIER on both Ethereum
and BSC, a well-known EVM-like blockchain platform with
the market cap as $37.7 billion [22]. We comprehensively its
usability and scalability of being a real-time detector.

5.2 RQ1: Effectiveness & Efficiency
5.2.1 Evaluating Results on Benchmark

Crafting the Benchmark. After comprehensively collect-
ing technical reports from well-known blockchain security
companies [12], we have identified six confirmed vulnerable
contracts, as P. As all their source code files are available, we
manually patch each of them to compose P. Moreover, we
manually sample four benign contracts from widely-adopted
DeFi, i.e., Aave [2], Compound [23], ParaSpace Lending [66],
and a yield protocol [30], to form the set N. The reason of se-
lecting these four contracts is twofold. On the one hand, they
all require the input of external contract address. Specifically,
Aave and Compound primarily employ tokens as collateral to

USENIX Association 33rd USENIX Security Symposium 3575

Table 1: Performance comparison among AVVERIFIER, Mythril, Ethainter, Jackal, and ETHBMC on the benchmark.

Metrics AVVERIFIER Mythril* Ethainter* Jackal* ETHBMC*

P P N N P P N N P P N N P P N N P P N N

Avg. Time (s) 7.98 6.85 6.74 7.72 24.36 31.62 29.39 28.47 9.74 10.32 12.36 12.15 20.21 18.40 18.05 20.04 0.33 0.35 1.64 1.52
Timeout 0 0 0 0 2 2 2 2 1 1 1 1 2 2 1 1 0 0 0 0

True Positives 6 - - 4 2 - - 1 4 - - 3 4 - - 3 0 - - 0
True Negatives - 6 4 - - 4 2 - - 5 3 - - 4 3 - - 6 4 -
False Positives - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 -
False Negatives 0 - - 0 2 - - 1 1 - - 0 0 - - 0 6 - - 4

Precision 100% 100% 100% 100% 0%
Recall 100% 50% 87.5% 100% 0%

*The address vulnerability detector is implemented by ourselves.

borrow another valuable token, while ParaSpace uses NFTs as
collateral. The yield protocol uses the input external contract
address to generate collateral yield. Because all these four
contracts perform the necessary verification on the passed
address, they meet both P1 and P2. On the other hand, after
executing certain on-chain operations, the valuable tokens in
their contracts are transferred to the caller, thus posing po-
tential risks as P3. Similarly, we deliberately remove their
verification on addresses to make them vulnerable, denoting
this set as N. Consequently, we obtained 20 ground truth cases.
Table 1 illustrates the results, where the highlighted rows refer
to the mis-detected results.
Average Time. It takes AVVERIFIER around 7.34s on av-
erage, while Mythril lags considerably, taking about 28.3s
on average. Ethainter and Jackal sit in between, with times
ranging from 10.86s to 19.19s on average. AVVERIFIER is
approximately 3.86x, 1.48x, and 2.61x faster than Mythril,
Ethainter, and Jackal, respectively. When considering the time-
out cases, both AVVERIFIER and ETHBMC recorded zero,
while Mythril, Ethainter and Jackal encountered timeout in 8,
4, and 6 instances, respectively. Additionally, we can easily
observe that ETHBMC performs well in terms of executing
time. However, after a comprehensive code audit and analysis
on output logs, we believe it is because its bounded model
checking approach prioritizes efficiency over thoroughness.
In other words, paths may be overlooked, which may com-
promise the accuracy in complex scenarios, like the address
verification vulnerability focused in this work.
Precision & Recall. Precision and recall are two critical met-
rics for evaluating an analyzer’s effectiveness, where AVVER-
IFIER outperforms other tools. Specifically, AVVERIFIER
achieves 100% precision and 100% recall on the benchmark.
In the case of Mythril and ETHBMC, the main issue is false
negatives. For the cases that can be completed within the time
limit, Mythril and ETHBMC have a 50% and 100% false
negative rate, respectively. We speculate that the primary rea-
son for ETHBMC’s non-ideal results is twofold. On the one
hand, ETHBMC’s bounded model checking strategy inher-
ently focuses on a specific range of states and paths within
contracts, potentially missing the complexities involved in ad-
dress verification due to its limited scope. On the other hand,
ETHBMC necessitates a pre-defined initial state for analysis.

However, this state is very likely not optimal for detecting
the address verification vulnerability, potentially affecting its
performance. Ethainter also has a worse performance com-
pared to AVVERIFIER in terms of recall, with a false negative
rate of around 12.5%. We think the most critical factor is the
adoption of Gigahorse [34], a toolchain for binary analysis.
According to its implementation, one of its limitations is its
inability to perfectly handle dynamic memory, affecting the
performance of Ethainter in identifying functions that exten-
sively use dynamic memory. Consequently, this limitation
leads to the false negatives.
Root Causes. Considering the differences in metrics when
conducting analysis on the benchmark among these five tools,
we speculate that there are four reasons for their distinctions
on the performance on the benchmark. First, AVVERIFIER
fully leverages the characteristics summarized from P1. In the
Grapher, it filters suspicious functions as candidates, which
significantly reduces the number of possible states, a predica-
ment affects these tools. Second, as detailed in §4.4.4, the path-
searching strategy employed by the Simulator is specifically
designed for the address verification vulnerability. This strat-
egy prioritizes paths that may lead to vulnerabilities. Thirdly,
when handling the dynamic memory, the other four tools strug-
gle to accurately analyze vulnerable functions that extensively
employ complex dynamic memory allocation. In contrast,
AVVERIFIER leverages an EVM simulator, enabling it to pre-
cisely track address parameters without explicitly modeling
dynamic memory behaviors, thereby enhancing its capabil-
ity to identify such functions. Last, AVVERIFIER adopts a
straightforward simulation approach, rather than static sym-
bolic execution. This choice contributes to its efficiency. Pre-
vious studies, like KLEE [18], suggest that backend SMT
solvers can be significant drags on performance.

5.2.2 Real-world Contracts Results

To further illustrate the effectiveness of AVVERIFIER on real-
world contracts, we perform the analysis on all collected con-
tracts, 5,158,101 ones in total. Consequently, 812 of them are
marked as vulnerable by AVVERIFIER. To evaluate the ef-
fectiveness of AVVERIFIER, we again use Mythril, Ethainter,
Jackal, and ETHBMC as baselines. However, because the un-

3576 33rd USENIX Security Symposium USENIX Association

Table 2: Performance comparison among AVVERIFIER,
Mythril, Ethainter, Jackal, and ETHBMC on real-world con-
tracts.

Metrics AVVERIFIER Mythril* Ethainter* Jackal* ETHBMC*

Avg. Time(s) 6.34 33.69 8.74 29.96 5.43
Timeout 0 42 6 60 164

True Positives 348 16 147 172 2
True Negative 0 2 4 11 21
False Positives 21 8 17 10 0
False Negatives 0 301 195 116 182

Precision 94.3% 66.7% 89.6% 94.5% 100%
Recall 100% 5.1% 43.0% 59.7% 1.1%

*The address vulnerability detector is implemented by ourselves.

readability of the bytecode, for a more effective comparison,
we tried to obtain their source code from Etherscan. Finally,
we collected 369 pieces of source code. The final scanning
results for all these five tools on 369 open-source contracts
are shown in Table 2.
Average Time. As we can see, for all 369 cases, AVVERI-
FIER achieves the second-best performance in terms of av-
erage analysis time. Moreover, there are no timeout cases
within the 10-minute limit. Ethainter is one place behind,
with 8.74s and 6 timeouts. Mythril’s efficiency lags far be-
hind, averaging 33.69s per case and suffering 42 timeouts
exceeding the 10-minute threshold, the highest among com-
pared tools. Jackal averages around 29.96s with 60 timeouts
within. Finally, though ETHBMC has a decent 5.43s average
time, it suffers 164 timeout cases, which significantly impacts
its effectiveness. By comparing Table 2 and Table 1, we can
observe that the performance among these tools is roughly
consistent, except that ETHBMC has more timeout cases on
the real world cases. We speculate that this is because it needs
to try different initial states when the current one cannot ex-
plore paths to exploitations, leading to a huge efficiency issue.
Precision & Recall. After manually rechecking all these con-
tracts, the numbers of false positives and false negatives are
also shown in Table 2. We can easily observe that there are 21
false positives generated by AVVERIFIER, leading to 94.3%
precision. The main reason for that is there are unconventional
verification methods on addresses. Except for the three mecha-
nisms we summarized in §2.2, some of them delegate address
verification to other contracts, which is not a widely adopted
verification method. Moreover, some contracts perform ver-
ification via digital signatures [16] or Merkle proofs [47].
Currently, due to efficiency issues, AVVERIFIER does not
integrate such patterns. Moreover, as inter-contract analysis
is always a huge obstacle for smart contract analysis [55],
it is a compromise must be made. In contrast, all the other
four baselines suffer from severe false negative issues. Al-
though Mythril employs a similar path filtering approach to
AVVERIFIER, its recall is only 5.1%, because the symbolic
execution cannot effectively find feasible paths to exploit vul-
nerable contracts. Ethainter and Jackal, both of which use the
GigaHorse framework, achieve recall rates of only 43.0% and

59.7%, respectively. As we mentioned in §5.2.1, Gigahorse
struggles to accurately construct complete CFGs when han-
dling some contracts, which stems from its less optimized
handling on the dynamic memory. The recall of ETHBMC is
only 1.1%, whose reason is mainly due to its adopted initial
states as we stated above. We have conducted a case study to
illustrate how a case is mislabeled as false negative by these
four tools, please refer to our open-source repo at link.

RQ-1 Answer

Compared to Mythril, Ethainter, Jackal, and ETHBMC,
AVVERIFIER can improve the efficiency 2 to 5 times.
AVVERIFIER can achieve at least 94% precision and 100%
recall on the well-constructed benchmark and real-world
contracts, while the others suffer a severe false negative
issue due to their design and implementation.

5.3 RQ2: Characteristics of Real-world Vul-
nerable Contracts

To characterize the ecosystem of real-world vulnerable con-
tracts, we firstly illustrate the overall results on all vulnerable
ones among over 5M collected ones (see §5.3.1). Then, we
focus on the behavioral characteristics, including financial
related and activity related, of these vulnerable contracts (see
§5.3.2 and §5.3.3).

5.3.1 Overall Results

As we mentioned in §5.2.2, we have applied AVVERIFIER on
all 5.2M contracts. In total, we have identified 812 vulnerable
ones. Among them, we found 443 of them are close-sourced.
According to the MD5 results, we have successfully identified
131 unique close-sourced contracts. To recheck the identified
results, we decompiled the unique close-sourced ones by con-
tract library tools [1], a well-known decompiler, and asked
two Ph.D. students who major in this area to recheck the re-
sults. The manual recheck has not revealed any false positives.
Due to the unreadability of the close-sourced bytecode, even
for the decompiled ones, we can only confirm that 17 of close-
sourced contracts are related to Ethereum tokens according
to the function signature.

As for the remaining 348 true positive cases mentioned in
Table 2, we obtained their source code from Etherscan. Simi-
larly, by deduplicating the source code, we finally obtained
299 unique ones. After a manual recheck, the classification
results are shown in the Table 3. We can observe that nearly
half of them are related to ERC-20, indicating potential finan-
cial impacts of this vulnerability. Moreover, around one-third
are in the DApp category, like lending market or swap router,
which may also bring in impacts to the Ethereum ecosystem.

We believe that these open-source contracts can gain more
user trust and are more representative. In the following §5.3.2

USENIX Association 33rd USENIX Security Symposium 3577

https://github.com/security-pride/avverifier

Table 3: For 348 identified true positive open-source cases,
the classification results according to their functionalities.

Contract Type ERC-20 ERC-721 DApp

Open-source Contract 177 61 110
Unique Open-source Contract 153 45 101

2018 2019 2020 2021 2022 2023
Creation time

0

10

20

C
ou

nt

24

Figure 3: Distribution of vulnerable ones by creation time.

and §5.3.3, we characterize these 348 open source smart con-
tracts, as a lower-bound of the overall landscape.

5.3.2 Activity Related Metrics

To depict the activity of them, we first illustrate the distribu-
tion of their deployment time, as shown in Fig. 3. As we can
see, the figure illustrates a general upward tendency, which
aligns with our intuition as Ethereum has been growing and
the propagation of a vulnerability is a temporal phenomenon.
There are two noticeable troughs in late-2019 and late-2021.
Delving deeper, we discerned that the first trough was primar-
ily influenced by stringent cryptocurrency policies, leading
to a liquidity crunch. Meanwhile, the second one can be at-
tributed to the aftermath of the Luna Event [48], which pre-
cipitated a significant liquidation of assets, further causing a
depletion in liquidity. We can also observe a peak located in
the January 2019. This is because the birth of Uniswap [71]
in November 2018, which played a pivotal role in the DeFi
prosperity, leading to a substantial increase in the number of
contract creations as well as the vulnerable ones.

We also observe the lifespan of these 348 vulnerable smart
contracts in Fig. 4, where the y-axis and x-axis represent
the block height when a contract was created and the time
when the last transaction occurred respectively. The size of
the bubble is proportionally to its historical transaction count.
As we can see, there are lots of tiny bubbles locate along
or near the diagonal red line. This implies that a significant
number of contracts had a very short lifespan. Such a trend
suggests a plethora of transient contracts, potentially due to
testing exercises, spamming campaigns, or temporary endeav-
ors within the Ethereum ecosystem. Interestingly, while larger
bubbles scattered across the figure signify contracts with con-
siderable transactional activity, they may still be susceptible
to the address verification vulnerability. We speculate their
persistent activity suggests that they may correspond to low
balance, which likely diminishes the motivation for attack-

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Latest Block Number 1e7

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

C
on

tr
ac

t C
re

at
io

n
B

lo
ck

 N
um

be
r

1e7

1K transactions

Figure 4: Relations between creation time and lifespan for
vulnerable contracts.

0 10 20 30 40 50
Number of Contracts

0
1
2
3
4
5

Tr
an

sa
ct

io
n

C
ou

nt
s

(L
og

10
 sc

al
e)

Count=200

Number of Contracts
Count=200

Figure 5: Distribution of the number of transactions involved
in vulnerable contracts.

ers to exploit their vulnerabilities. Additionally, we observe
some large bubbles distribute near the red line. This indicates
a burst of transactions in their earlier phases but have since
transitioned into a dormant state. Such an intriguing contrast
between their past vibrancy and current inactivity prompts
us to further investigate these contracts. Therefore, we have
filtered out the transactions of the top 50 contracts in terms of
the number of involved transactions, i.e., the size of bubbles.
Through a detailed and comprehensive transactional analysis,
we found that 3 of them have been exploited already, while 47
of them are at risk. We speculate the reason is that the balance
is small and attackers have not noticed yet or are waiting for
the opportunity to make a large profit.

5.3.3 Financial Related Metrics

We further evaluate the financial impact of these vulnerable
smart contracts. Intuitively, by measuring how many transac-
tions are involved in a contract can reflect its financial impact
to some extent. Fig. 5 illustrates the distribution of the num-
ber of transactions involved in them. We can easily observe
that the distribution follows the Pareto principle [27], i.e.,
there exists a long tail in the distribution. More than 55.46%
cases are involved within 5 transactions, while the case named
AnySwap [8] is involved in around 237,000 transactions. The
results follow the Oliva et al.’s [59], i.e., most contracts in
Ethereum are inactive, a small portion of contracts greatly
contribute to the prosperity of the Ethereum ecosystem.

In addition, we desire to evaluate how many assets are di-
rectly involved in them. For DeFi projects, TVL (Total Value

3578 33rd USENIX Security Symposium USENIX Association

Locked) is one of the most representative metrics. Thus, for
each case, we retrieve its historical TVL from a third-party
API, DeFiLlama, a DeFi data browser known for providing
metrics like TVL and market cap. For each project, we re-
trieve their peak TVL as it corresponds to the timestamp when
attackers can obtain the most profit. In total, around $11.2
billion was considered to be directly locked into these vul-
nerable contracts. The top-3 Ethereum projects in terms of
compromised assets include Visor3 [11], TempleDao4 [13],
and AnySwap5 [62]. Interestingly, except for Anyswap, other
two projects immediately stop providing services after being
attacked. This is because hackers exploit a vulnerability in
Anyswap to indirectly steal tokens from users. Conversely,
in the other two projects, the funds within the vulnerable
contracts were directly accessed and stolen, leading to an
immediate cessation of services. Moreover, the time win-
dow between the creation and the corresponding exploitation
suggests the opportunity for vulnerability detection and re-
mediation. While Visor saw exploitation within 3 months,
Anyswap remained uncompromised for 210 days. Such a
variation might result from factors like the implementation
complexity, public visibility, or the inherent vulnerability’s
nature. However, it proves that there is often a time window
to detect and patch vulnerabilities before an attack happens.

RQ-2 Answer

Around 68.4% vulnerable contracts are ERC-20 or ERC-
721 tokens. We further reveal that attackers tend to launch
attacks dozens of days after the deployment for greater
benefits, suggesting there exists a time window for vulner-
ability detection and remediation.

5.4 RQ3: Real-time Detection
We aim to deploy AVVERIFIER as a real-time detector. Thus,
we measured several performance metrics (see §5.4.1). Addi-
tionally, we give a case study to illustrate how a vulnerability
can be detected by AVVERIFIER before an attack (see §5.4.2).

5.4.1 Quantitative Analysis

We measure two real-world performance metrics. First, we
compare the rate of contract creation along block generation
to the performance of AVVERIFIER, which can shed light on
the responsiveness and real-time applicability of AVVERI-
FIER. Second, we illustrate the correlation between bytecode
length and the consumed time taken for analysis. This metric
indicates the scalability of AVVERIFIER with the increasing
complexity and size of contracts.
Rate on Contract Creation vs. Detection. We directed our
attention to the data from Nov. 2022 to Jan. 2023, a period

30xC9f27A50f82571C1C8423A42970613b8dBDA14ef
40xd2869042E12a3506100af1D192b5b04D65137941
50x6b7a87899490EcE95443e979cA9485CBE7E71522

0 1 2 3 4 5
Bytecode Length 1e4

0
10
20
30
40
50
60
70

C
on

su
m

ed
 T

im
e

Data Point

Figure 6: The relationship between the bytecode length and
the time consumed on each case.

of time when contracts are heavily deployed (illustrated in
Fig. 3). According to our statistics, these three months cover
blocks with the height from 15,870,000 to 16,518,000, ac-
counting for 289,238 deployed contracts. In other words, 0.45
contract is deployed on average within each block. As for
BSC, according to a widely known BSC browser, BscScan,
we can calculate that a block is generated every 3s, and there
are 2.1 contracts deployed in each BSC block on average. Ac-
cording to the results in RQ1, each Ethereum contract takes
around 6.42s. Therefore, considering the number of contract
deployed in each block and the speed of block generation
in Ethereum, a single-core processor can be used to deploy
AVVERIFIER as a real-time detector. As for BSC, each block
spends around 6.42s × 2.1 = 13.48s, greater than the time
taken by the block generation. However, the methodologies
adopted by AVVERIFIER can be paralleled easily, like analyz-
ing multiple suspicious functions simultaneously. Therefore,
a multi-core machine is sufficient.
Scalability. To evaluate the scalability of AVVERIFIER, we
randomly sample 1,000 contracts from the ones deployed
within the recent year. Figure 6 presents the relation between
the bytecode length and the consumed time. Clearly, there
does not exist a linear correlation or even an exponential one
between these two metrics. We can also observe that most
cases can be finished within 20s. Such a high detection effi-
ciency can be attributed to two points. On the one hand, the
detection logic is very efficient. For example, the Detector can
effectively screen suspicious functions, and can stop the anal-
ysis in time when a vulnerability is encountered. On the other
hand, the detection method has few performance bottlenecks.
Unlike static symbolic execution techniques, the Simulator
can quickly and accurately traverse paths that could lead to
vulnerabilities. Therefore, the spent time of AVVERIFIER
on each case is not directly proportional to bytecode length,
illustrating its scalability.

5.4.2 Case Study: A Real-world Early-warning Case

We illustrate a real-world case that is marked as vulnera-
ble when AVVERIFIER is deployed as a real-time detector
on BSC. As there is no source code for the case, Listing 4
illustrates its decompiled version. Moreover, due to the non-
disclosure principle, we make a slight change syntactically

USENIX Association 33rd USENIX Security Symposium 3579

1 function 0xbc423deb(uint256 varg0, uint256 varg1, uint256
varg2) public payable {↪→

2 require((address(varg2)).code.size);
3 v0 = address(varg2).slip(_ilk, msg.sender, 0 -

varg1).gas(msg.gas);↪→
4 require(v0); // checks call status, propagates error

data on error↪→
5 v1, v2 = _gem.transfer(address(varg0), varg1).gas(msg.gas);
6 require(v1); // checks call status, propagates error

data on error↪→
7 emit Exit(address(varg0), varg1);
8 }

Listing 4: A case that is detected by our real-time detector.

without modifying its original semantics.
As we can see, L2 indicates that the varg2 is an address

passed from the external environment (satisfying P1). At
L3, the function invokes slip, which takes the varg2 as the
target address (satisfying P2). Then, at L4, a require checks
the returned value (satisfying P3). Finally, at L5, the contract
invokes transfer to transfer tokens to the address referred by
varg0 . Therefore, attackers can deploy a contract to bypass
the verification on v0 to drain this contract out.

Notably, we detected this vulnerability on May 18th, 2023,
at 6:10 UTC. An attack transaction was initiated 1.5 hours af-
ter, at 7:41 UTC. Such a time gap highlights that capability of
AVVERIFIER. However, the absence of an automated exploit
response mechanism within AVVERIFIER prevented timely
intervention, leading to a user loss of $ 30K USD. This inci-
dent underscores the importance of designing an automated
response tool to mitigate potential financial damages resulted
from the address verification vulnerability.

RQ-3 Answer

Though a quantitative analysis, it illustrates the usability
and scalability of AVVERIFIER as being a real-time de-
tector. A real-world case, worth approximately $30,000,
proves its ability to raise early-stage warnings.

6 Discussion

6.1 Threats to Validity

Scalability of AVVERIFIER. AVVERIFIER is specifically de-
signed for the address verification vulnerability. However, due
to the efficient taint analysis we implemented in AVVERIFIER,
it can be easily extended to detect other kinds of vulnerabili-
ties, like unchecked external calls and inadequate access con-
trols. Moreover, AVVERIFIER can also be adopted on other
blockchain platforms, i.e., EVM-compatible chains, like BSC,
TRON, and AVAX. Consequently, AVVERIFIER is not a tool
limited to the address verification vulnerability on Ethereum.
Candidate Contracts. When answering RQ1 and RQ2, we
only choose around 5 million contracts as candidates. Ac-
cording to the statistics, there still exist millions of contracts.
However, we think those already deployed ones without trans-

actions are the worthless targets for attackers. However, in
answering RQ3, i.e., deploying AVVERIFIER as a real-time
detector, we take all newly deployed contracts as candidates.

6.2 Limitations

Dynamic Parameters Verification Mechanism. Some smart
contracts employ dynamic parameters verification mecha-
nisms, like digital signatures, which require loading data into
memory. To this end, the size of CALLDATA is unknown be-
forehand, posing challenges to AVVERIFIER as the variable
length of CALLDATA leads to unpredictable offsets, making
it difficult to track variable arguments in dynamic memory.
Currently, for such dynamic parameters, AVVERIFIER con-
cretizes their length to obtain the final results. Due to its
possibility of introducing false negatives, we take this as one
of our future research directions.
Scalability. AVVERIFIER is a tool specifically designed
to identify the address verification vulnerability. As such,
currently, it cannot be used for identifying other smart con-
tract vulnerabilities directly. However, because we have im-
plemented a comprehensive set of taint propagation rules,
AVVERIFIER can be easily extended to other smart contract
security problems.
Auto-exploitation. While AVVERIFIER can efficiently and
accurately identify the address verification vulnerability and
the entry point, it cannot automatically generate exploitation
yet. Currently, all identified contracts still require a compre-
hensive manual confirmation to determine if they are ex-
ploitable. However, we can take advantage of other tech-
niques, like fuzzing and symbolic execution, to help AVVER-
IFIER generate exploitations and CALLDATA based on the gen-
erated results. We believe it is a meaningful research area.

6.3 Ethical Consideration

Due to the anonymity of blockchain, it is only possible to
contact the developers of open-sourced projects. Thus, we
have tried our best to contact developers of vulnerable con-
tracts through all possible and usable media, like mail, official
website, and twitter, with more than 500 transactions in his-
tory. Unfortunately, after we warned 48 developers once after
the identification and manual recheck, we did not receive any
responses from them within 2 weeks. Where we deploy a
real-time detector on Ethereum and BSC, we observed that
AVVERIFIER has raised alarms several times, like the one
shown in §5.4.2. However, it is impossible to reach its de-
velopers privately. Moreover, we cannot initiate a transaction
to notify the developer, because it will also notify malicious
users that there is a possible victim. Thus, we urge collabora-
tion with blockchain security companies for the secure and
efficient disclosure of vulnerabilities.

3580 33rd USENIX Security Symposium USENIX Association

7 Related Work

Smart Contract Vulnerability Detection. Vulnerability de-
tection in smart contracts employs varied methodologies de-
pendent on input types and detection principles. Analyzing
contracts can either occur at the high-level source code [33,52]
or through the bytecode interfacing with the EVM [4, 36].
Further categorizing based on analytical techniques, static
analysis delves into code structure and inherent semantics to
identify vulnerabilities, often applied to source code evalua-
tions. Dynamic analyses, more prevalent in bytecode assess-
ments, utilize strategies such as fuzz testing to spot anomalies
by bombarding contracts with randomized inputs [10, 42]. In
addition to these, hybrid analysis methods are also gaining
traction, combining static and dynamic analysis techniques
for a more thorough examination of smart contracts. Through
this combined approach, hybrid analysis helps in identifying
a wider range of vulnerabilities [46, 54]. Furthermore, trace-
based evaluations provide a unique perspective by scrutinizing
historical transaction patterns, unearthing vulnerabilities from
real-world usage patterns [21, 76].
Taint Analysis in Smart Contracts. Pioneering efforts in
taint analysis have led to the development of tools tailored
specifically for Ethereum contracts, adept at detecting com-
mon vulnerabilities such as unchecked send and reentrancy
[6, 63]. Other research efforts have heightened the granularity
of taint analysis to uncover intricate data leaks and permission
oversights [69, 70]. Furthermore, several advanced methods
have integrated both static and dynamic analysis techniques,
blending the advantages of both to provide a more comprehen-
sive security assessment [33, 44]. These collective advance-
ments underscore the pivotal role of taint analysis in shaping
a robust ecosystem for smart contracts.
Permission Checks and Access Control. Permission checks
underpin smart contract security, preventing unauthorized ac-
tions which can lead to financial or data losses [20,49]. Many
tools and frameworks now aid developers in verifying permis-
sions [43, 64]. However, some advanced attacks can bypass
traditional checks, underscoring the need for context-aware
analysis [25, 77]. Rigorous permission validation remains
crucial for a secure smart contract environment.

8 Conclusion

In this work, we present AVVERIFIER, a taint analyzer based
on static EVM opcode simulation, which is designed for
identifying the address verification vulnerability hidden in
Ethereum smart contracts. With the help of the heuristic-based
path selection method and taint propagation rules in Simulator,
as well as the three-phase formal detection rules implemented
in Detector, AVVERIFIER significantly outperforms Mythril
in both terms of efficiency and effectiveness. According to
a comprehensive evaluation on over 5 million contracts, as
well as the behaviour characteristics they illustrate, it proves

the necessity of implementing AVVERIFIER. Additionally,
AVVERIFIER is proven efficient and effective enough to be a
real-time detector on EVM-like blockchain platforms to raise
early warnings once contracts are deployed.

Availability

We have released AVVERIFIER and the benchmark at link.

Acknowledgements

We are deeply grateful to our shepherd and the anonymous
reviewers for their insightful comments. This work was sup-
ported in part by the National Key R&D Program of China
(2021YFB2701000), the National Natural Science Founda-
tion of China (grant No.62072197), the Key R&D Program
of Hubei Province (2023BAB017, 2023BAB079), the Knowl-
edge Innovation Program of Wuhan-Shuguang and Hong
Kong RGC Projects (PolyU15224121, PolyU15231223). The
full name of Tianle Sun and Haoyu Wang’s affiliation is Hubei
Key Laboratory of Distributed System Security, Hubei En-
gineering Research Center on Big Data Security, School of
Cyber Science and Engineering, Huazhong University of Sci-
ence and Technology.

References

[1] Dedaub decompiler. https://app.dedaub.com/
decompile.

[2] Aave. Aave documentation hub. https://
docs.aave.com/hub/, 2023.

[3] Elvira Albert, Pablo Gordillo, Alejandro Hernández-
Cerezo, and Albert Rubio. A max-smt superoptimizer
for evm handling memory and storage. In International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 201–219. Springer,
2022.

[4] Elvira Albert, Pablo Gordillo, Benjamin Livshits, Albert
Rubio, and Ilya Sergey. Ethir: A framework for high-
level analysis of ethereum bytecode. In International
symposium on automated technology for verification
and analysis, pages 513–520. Springer, 2018.

[5] Amir Ali, Zain Ul Abideen, and Kalim Ullah. Sescon:
Secure ethereum smart contracts by vulnerable pat-
terns’ detection. Security and Communication Networks,
2021:1–14, 2021.

[6] Ayman Alkhalifah, Alex Ng, Paul A Watters, and ASM
Kayes. A mechanism to detect and prevent ethereum
blockchain smart contract reentrancy attacks. Frontiers
in Computer Science, 3:598780, 2021.

USENIX Association 33rd USENIX Security Symposium 3581

https://github.com/security-pride/avverifier
https://app.dedaub.com/decompile
https://app.dedaub.com/decompile
https://docs.aave.com/hub/
https://docs.aave.com/hub/

[7] Sidney Amani, Myriam Bégel, Maksym Bortin, and
Mark Staples. Towards verifying ethereum smart con-
tract bytecode in isabelle/hol. In Proceedings of the 7th
ACM SIGPLAN international conference on certified
programs and proofs, pages 66–77, 2018.

[8] Anyswap. Anyswap. https://github.com/anyswap,
2023.

[9] Douglas W Arner, Raphael Auer, and Jon Frost. Stable-
coins: risks, potential and regulation. 2020.

[10] Imran Ashraf, Xiaoxue Ma, Bo Jiang, and Wing Kwong
Chan. Gasfuzzer: Fuzzing ethereum smart contract
binaries to expose gas-oriented exception security vul-
nerabilities. IEEE Access, 8:99552–99564, 2020.

[11] Beosin. Two vulnerabilities in one function:
The analysis of visor finance exploit. https:
//beosin.medium.com/two-vulnerabilities-
in-one-function-the-analysis-of-visor-
finance-exploit-a15735e2492, 2023.

[12] BlockSecTeam. Blocksecteam blog on medium. https:
//blocksecteam.medium.com/, 2023.

[13] BlockSecTeam. Tweet by blocksecteam.
https://twitter.com/BlockSecTeam/status/
1579843881893769222, 2023.

[14] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard
Scholz, and Yannis Smaragdakis. Ethainter: a smart
contract security analyzer for composite vulnerabilities.
In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 454–469, 2020.

[15] Dirk Bullmann, Jonas Klemm, and Andrea Pinna. In
search for stability in crypto-assets: are stablecoins the
solution? Available at SSRN 3444847, 2019.

[16] Vitalik Buterin. Ethereum: platform review. Oppor-
tunities and Challenges for Private and Consortium
Blockchains, 45, 2016.

[17] Vitalik Buterin et al. A next-generation smart contract
and decentralized application platform. white paper,
3(37):2–1, 2014.

[18] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[19] Huashan Chen, Marcus Pendleton, Laurent Njilla, and
Shouhuai Xu. A survey on ethereum systems security:
Vulnerabilities, attacks, and defenses. ACM Computing
Surveys (CSUR), 53(3):1–43, 2020.

[20] Jiachi Chen, Xin Xia, David Lo, and John Grundy. Why
do smart contracts self-destruct? investigating the selfde-
struct function on ethereum. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 31(2):1–
37, 2021.

[21] Ting Chen, Zihao Li, Yufei Zhang, Xiapu Luo, Ang
Chen, Kun Yang, Bin Hu, Tong Zhu, Shifang Deng,
Teng Hu, et al. Dataether: Data exploration framework
for ethereum. In 2019 IEEE 39th International Confer-
ence on Distributed Computing Systems (ICDCS), pages
1369–1380. IEEE, 2019.

[22] CoinMarketCap. Bnb (binance coin) statistics. https:
//coinmarketcap.com/currencies/bnb/, 2023.

[23] Compound. Compound protocol documentation.
https://docs.compound.finance/, 2023.

[24] Filippo Contro, Marco Crosara, Mariano Ceccato, and
Mila Dalla Preda. Ethersolve: Computing an accurate
control-flow graph from ethereum bytecode. In 2021
IEEE/ACM 29th International Conference on Program
Comprehension (ICPC), pages 127–137. IEEE, 2021.

[25] Jason Paul Cruz, Yuichi Kaji, and Naoto Yanai. Rbac-sc:
Role-based access control using smart contract. Ieee
Access, 6:12240–12251, 2018.

[26] Chris Dannen. Introducing Ethereum and solidity, vol-
ume 1. Springer, 2017.

[27] Rosie Dunford, Quanrong Su, and Ekraj Tamang. The
pareto principle. 2014.

[28] Ethereum. Ethereum ide and tools for the web. http:
//remix.ethereum.org/, 2020.

[29] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither:
a static analysis framework for smart contracts. In 2019
IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WET-
SEB), pages 8–15. IEEE, 2019.

[30] Convex Finance. Convex finance official doc-
umentation. https://docs.convexfinance.com/
convexfinance/, 2023.

[31] Joel Frank, Cornelius Aschermann, and Thorsten Holz.
{ETHBMC}: A bounded model checker for smart con-
tracts. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2757–2774, 2020.

[32] Michael Fröwis, Andreas Fuchs, and Rainer Böhme. De-
tecting token systems on ethereum. In Financial Cryp-
tography and Data Security: 23rd International Confer-
ence, FC 2019, Frigate Bay, St. Kitts and Nevis, Febru-
ary 18–22, 2019, Revised Selected Papers 23, pages 93–
112. Springer, 2019.

3582 33rd USENIX Security Symposium USENIX Association

https://github.com/anyswap
https://beosin.medium.com/two-vulnerabilities-in-one-function-the-analysis-of-visor-finance-exploit-a15735e2492
https://beosin.medium.com/two-vulnerabilities-in-one-function-the-analysis-of-visor-finance-exploit-a15735e2492
https://beosin.medium.com/two-vulnerabilities-in-one-function-the-analysis-of-visor-finance-exploit-a15735e2492
https://beosin.medium.com/two-vulnerabilities-in-one-function-the-analysis-of-visor-finance-exploit-a15735e2492
https://blocksecteam.medium.com/
https://blocksecteam.medium.com/
https://twitter.com/BlockSecTeam/status/1579843881893769222
https://twitter.com/BlockSecTeam/status/1579843881893769222
https://coinmarketcap.com/currencies/bnb/
https://coinmarketcap.com/currencies/bnb/
https://docs.compound.finance/
http://remix.ethereum.org/
http://remix.ethereum.org/
https://docs.convexfinance.com/convexfinance/
https://docs.convexfinance.com/convexfinance/

[33] Jianbo Gao, Han Liu, Chao Liu, Qingshan Li, Zhi Guan,
and Zhong Chen. Easyflow: Keep ethereum away from
overflow. In 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 23–26. IEEE, 2019.

[34] Neville Grech, Lexi Brent, Bernhard Scholz, and Yan-
nis Smaragdakis. Gigahorse: thorough, declarative de-
compilation of smart contracts. In 2019 IEEE/ACM
41st International Conference on Software Engineering
(ICSE), pages 1176–1186. IEEE, 2019.

[35] Neville Grech, Michael Kong, Anton Jurisevic, Lexi
Brent, Bernhard Scholz, and Yannis Smaragdakis. Mad-
max: Surviving out-of-gas conditions in ethereum smart
contracts. Proceedings of the ACM on Programming
Languages, 2(OOPSLA):1–27, 2018.

[36] Ilya Grishchenko, Matteo Maffei, and Clara Schnei-
dewind. Ethertrust: Sound static analysis of ethereum
bytecode. Technische Universität Wien, Tech. Rep, pages
1–41, 2018.

[37] Fabio Gritti, Nicola Ruaro, Robert McLaughlin,
Priyanka Bose, Dipanjan Das, Ilya Grishchenko,
Christopher Kruegel, and Giovanni Vigna. Confusum
contractum: confused deputy vulnerabilities in ethereum
smart contracts. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 1793–1810, 2023.

[38] Ningyu He, Lei Wu, Haoyu Wang, Yao Guo, and Xux-
ian Jiang. Characterizing code clones in the ethereum
smart contract ecosystem. In Financial Cryptography
and Data Security: 24th International Conference, FC
2020, Kota Kinabalu, Malaysia, February 10–14, 2020
Revised Selected Papers 24, pages 654–675. Springer,
2020.

[39] Ningyu He, Ruiyi Zhang, Haoyu Wang, Lei Wu, Xiapu
Luo, Yao Guo, Ting Yu, and Xuxian Jiang. {EOSAFE}:
security analysis of {EOSIO} smart contracts. In 30th
USENIX Security Symposium (USENIX Security 21),
pages 1271–1288, 2021.

[40] Everett Hildenbrandt, Manasvi Saxena, Nishant Ro-
drigues, Xiaoran Zhu, Philip Daian, Dwight Guth, Bran-
don Moore, Daejun Park, Yi Zhang, Andrei Stefanescu,
et al. Kevm: A complete formal semantics of the
ethereum virtual machine. In 2018 IEEE 31st Com-
puter Security Foundations Symposium (CSF), pages
204–217. IEEE, 2018.

[41] Yoichi Hirai. Defining the ethereum virtual machine
for interactive theorem provers. In Financial Cryp-
tography and Data Security: FC 2017 International
Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA,
Sliema, Malta, April 7, 2017, Revised Selected Papers
21, pages 520–535. Springer, 2017.

[42] Bo Jiang, Ye Liu, and Wing Kwong Chan. Contract-
fuzzer: Fuzzing smart contracts for vulnerability detec-
tion. In Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering,
pages 259–269, 2018.

[43] Priyanka Kamboj, Shivang Khare, and Sujata Pal. User
authentication using blockchain based smart contract in
role-based access control. Peer-to-Peer Networking and
Applications, 14(5):2961–2976, 2021.

[44] Satpal Singh Kushwaha, Sandeep Joshi, Dilbag Singh,
Manjit Kaur, and Heung-No Lee. Ethereum smart con-
tract analysis tools: A systematic review. IEEE Access,
10:57037–57062, 2022.

[45] Satpal Singh Kushwaha, Sandeep Joshi, Dilbag Singh,
Manjit Kaur, and Heung-No Lee. Systematic review of
security vulnerabilities in ethereum blockchain smart
contract. IEEE Access, 10:6605–6621, 2022.

[46] Xiaoqi Li et al. Hybrid analysis of smart contracts and
malicious behaviors in ethereum. 2021.

[47] Haojun Liu, Xinbo Luo, Hongrui Liu, and Xubo Xia.
Merkle tree: A fundamental component of blockchains.
In 2021 International Conference on Electronic Infor-
mation Engineering and Computer Science (EIECS),
pages 556–561. IEEE, 2021.

[48] Jiageng Liu, Igor Makarov, and Antoinette Schoar.
Anatomy of a run: The terra luna crash. Technical
report, National Bureau of Economic Research, 2023.

[49] Ye Liu, Yi Li, Shang-Wei Lin, and Cyrille Artho. Find-
ing permission bugs in smart contracts with role mining.
In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
716–727, 2022.

[50] DeFi Llama. Ethereum defi statistics. https://
defillama.com/chain/Ethereum, 2023.

[51] DeFi Llama. Hacks. https://defillama.com/?tvl=
true, 2023.

[52] Fuchen Ma, Ying Fu, Meng Ren, Mingzhe Wang,
Yu Jiang, Kaixiang Zhang, Huizhong Li, and Xiang Shi.
Evm: From offline detection to online reinforcement for
ethereum virtual machine. In 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 554–558. IEEE, 2019.

[53] Fuchen Ma, Meng Ren, Ying Fu, Mingzhe Wang,
Huizhong Li, Houbing Song, and Yu Jiang. Security re-
inforcement for ethereum virtual machine. Information
Processing & Management, 58(4):102565, 2021.

USENIX Association 33rd USENIX Security Symposium 3583

https://defillama.com/chain/Ethereum
https://defillama.com/chain/Ethereum
https://defillama.com/?tvl=true
https://defillama.com/?tvl=true

[54] Fuchen Ma, Meng Ren, Lerong Ouyang, Yuanliang
Chen, Juan Zhu, Ting Chen, Yingli Zheng, Xiao Dai,
Yu Jiang, and Jiaguang Sun. Pied-piper: Revealing the
backdoor threats in ethereum erc token contracts. ACM
Transactions on Software Engineering and Methodol-
ogy, 32(3):1–24, 2023.

[55] Fuchen Ma, Zhenyang Xu, Meng Ren, Zijing Yin, Yuan-
liang Chen, Lei Qiao, Bin Gu, Huizhong Li, Yu Jiang,
and Jiaguang Sun. Pluto: Exposing vulnerabilities in
inter-contract scenarios. IEEE Transactions on Software
Engineering, 48(11):4380–4396, 2021.

[56] Pengxiang Ma, Ningyu He, Yuhua Huang, Haoyu Wang,
and Xiapu Luo. Abusing the ethereum smart contract
verification services for fun and profit. arXiv preprint
arXiv:2307.00549, 2023.

[57] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Decentralized business review, 2008.

[58] Robert Norvill, Beltran Borja Fiz Pontiveros, Radu State,
Irfan Awan, and Andrea Cullen. Automated labeling
of unknown contracts in ethereum. In 2017 26th Inter-
national Conference on Computer Communication and
Networks (ICCCN), pages 1–6. IEEE, 2017.

[59] Gustavo A Oliva, Ahmed E Hassan, and Zhen Ming
Jiang. An exploratory study of smart contracts in the
ethereum blockchain platform. Empirical Software En-
gineering, 25:1864–1904, 2020.

[60] OpenZeppelin. Erc20 tokens. https:
//docs.openzeppelin.com/contracts/4.x/erc20,
2023.

[61] OpenZeppelin. Openzeppelin contracts: Access
control. https://github.com/OpenZeppelin/
openzeppelin-contracts/tree/master/
contracts/access, 2023.

[62] PeckShieldAlert. Tweet by peckshieldalert.
https://twitter.com/PeckShieldAlert/status/
1483363515411099651, 2023.

[63] Michael Rodler, Wenting Li, Ghassan O Karame, and
Lucas Davi. Sereum: Protecting existing smart con-
tracts against re-entrancy attacks. arXiv preprint
arXiv:1812.05934, 2018.

[64] Sina Shahab and Zaheer Allam. Reducing transaction
costs of tradable permit schemes using blockchain smart
contracts. Growth and Change, 51(1):302–308, 2020.

[65] SlowMist. Slowmist 2022 blockchain security and aml
analysis annual report. Medium, 2022.

[66] Para Space. Para space official documentation. https:
//docs.para.space/para-space/, 2023.

[67] Mythril Team. Mythril: Security analysis tool for
ethereum smart contracts. https://github.com/
ConsenSys/mythril, 2018.

[68] Huang Teng, Wayneyuan Tian, Haocheng Wang, and
Zhiyuan Yang. Applications of the decentralized fi-
nance (defi) on the ethereum. In 2022 IEEE Asia-Pacific
Conference on Image Processing, Electronics and Com-
puters (IPEC), pages 573–578. IEEE, 2022.

[69] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan
Ivanitskiy, Ramil Takhaviev, Evgeny Marchenko, and
Yaroslav Alexandrov. Smartcheck: Static analysis of
ethereum smart contracts. In Proceedings of the 1st
international workshop on emerging trends in software
engineering for blockchain, pages 9–16, 2018.

[70] Christof Ferreira Torres, Julian Schütte, and Radu State.
Osiris: Hunting for integer bugs in ethereum smart con-
tracts. In Proceedings of the 34th annual computer
security applications conference, pages 664–676, 2018.

[71] Uniswap. Uniswap official documentation. https:
//docs.uniswap.org/, 2023.

[72] Maximilian Wohrer and Uwe Zdun. Smart contracts:
security patterns in the ethereum ecosystem and solid-
ity. In 2018 International Workshop on Blockchain
Oriented Software Engineering (IWBOSE), pages 2–8.
IEEE, 2018.

[73] Pengcheng Xia, Haoyu Wang, Bingyu Gao, Weihang Su,
Zhou Yu, Xiapu Luo, Chao Zhang, Xusheng Xiao, and
Guoai Xu. Trade or trick? detecting and characterizing
scam tokens on uniswap decentralized exchange. Pro-
ceedings of the ACM on Measurement and Analysis of
Computing Systems, 5(3):1–26, 2021.

[74] Jiahua Xu and Nikhil Vadgama. From banks to defi: the
evolution of the lending market. Enabling the Internet
of Value: How Blockchain Connects Global Businesses,
pages 53–66, 2022.

[75] Jiaming Ye, Mingliang Ma, Yun Lin, Lei Ma, Yinxing
Xue, and Jianjun Zhao. Vulpedia: Detecting vulner-
able ethereum smart contracts via abstracted vulner-
ability signatures. Journal of Systems and Software,
192:111410, 2022.

[76] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and
Zhiqiang Lin. {TXSPECTOR}: Uncovering attacks in
ethereum from transactions. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2775–2792,
2020.

[77] Yuanyu Zhang, Shoji Kasahara, Yulong Shen, Xiaohong
Jiang, and Jianxiong Wan. Smart contract-based access
control for the internet of things. IEEE Internet of Things
Journal, 6(2):1594–1605, 2018.

3584 33rd USENIX Security Symposium USENIX Association

https://docs.openzeppelin.com/contracts/4.x/erc20
https://docs.openzeppelin.com/contracts/4.x/erc20
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/access
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/access
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/access
https://twitter.com/PeckShieldAlert/status/1483363515411099651
https://twitter.com/PeckShieldAlert/status/1483363515411099651
https://docs.para.space/para-space/
https://docs.para.space/para-space/
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://docs.uniswap.org/
https://docs.uniswap.org/

	Introduction
	Background
	Ethereum Primer
	Whitelisted Address Verification
	Taint Analysis on Smart Contracts
	Threat Model

	Motivating Example and Challenges
	Motivating Example
	Challenges
	Limitations of Existing Tools

	Design of AVVerifier
	Overview
	Notations
	Component#1: Code Grapher
	Component#2: EVM Simulator
	Stack Related Opcodes
	Load & Store Related Opcodes
	Call Related Opcodes
	Control Flow Related Opcodes

	Component#3: Vulnerability Detector
	Phase I: Whitelisted Verification Examination
	Phase II: External Call Check
	Phase III: Post-call State Modifications
	Address Verification Vulnerable Contracts

	Evaluation
	Experimental Setup & Research Questions
	RQ1: Effectiveness & Efficiency
	Evaluating Results on Benchmark
	Real-world Contracts Results

	RQ2: Characteristics of Real-world Vulnerable Contracts
	Overall Results
	Activity Related Metrics
	Financial Related Metrics

	RQ3: Real-time Detection
	Quantitative Analysis
	Case Study: A Real-world Early-warning Case

	Discussion
	Threats to Validity
	Limitations
	Ethical Consideration

	Related Work
	Conclusion

