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Abstract
Federated Learning (FL) trains a black-box and high-
dimensional model among different clients by exchanging
parameters instead of direct data sharing, which mitigates the
privacy leak incurred by machine learning. However, FL still
suffers from membership inference attacks (MIA) or data
reconstruction attacks (DRA). In particular, an attacker can
extract the information from local datasets by constructing
DRA, which cannot be effectively throttled by existing tech-
niques, e.g., Differential Privacy (DP).

In this paper, we aim to ensure a strong privacy guaran-
tee for FL under DRA. We prove that reconstruction errors
under DRA are constrained by the information acquired by
an attacker, which means that constraining the transmitted
information can effectively throttle DRA. To quantify the
information leakage incurred by FL, we establish a channel
model, which depends on the upper bound of joint mutual
information between the local dataset and multiple transmit-
ted parameters. Moreover, the channel model indicates that
the transmitted information can be constrained through data
space operation, which can improve training efficiency and the
model accuracy under constrained information. According to
the channel model, we propose algorithms to constrain the in-
formation transmitted in a single round of local training. With
a limited number of training rounds, the algorithms ensure
that the total amount of transmitted information is limited.
Furthermore, our channel model can be applied to various
privacy-enhancing techniques (such as DP) to enhance pri-
vacy guarantees against DRA. Extensive experiments with
real-world datasets validate the effectiveness of our methods.

1 Introduction

Federated learning (FL) [41, 58, 61, 62] is a new form of ma-
chine learning (ML), which protects privacy by transmitting
gradients or parameters to avoid sharing raw data. Specifi-
cally, the parameters form a communication channel between
the server and each client, so the server gets information

from local datasets via such channels. Based on the Data
Processing Inequality (DPI) [15], communication by parame-
ters, which is a deterministic mapping of local data, instead
of raw data, reduces the risk of data privacy. However, recent
studies reveal that the parameter channel of FL still leaks
privacy. For example, multiple literature indicates that adver-
saries can conduct membership inference attacks (MIA) with
uploaded model parameters [10, 13, 40, 42, 44, 48], which
breaks the anonymity of data privacy. Moreover, adversaries
can completely steal training data by data reconstruction at-
tacks (DRA) [11, 12, 24, 28, 63], resulting in serious privacy
issues in FL.

In order to enhance privacy protection for FL, dimension
reduction [36, 46, 52] or differential privacy (DP) [3, 34, 35]
are widely adopted approaches. However, dimension reduc-
tion lacks theoretical guarantees of the defense ability against
DRA, so it cannot flexibly configure defense capabilities ac-
cording to different privacy requirements. DP’s privacy pro-
tection can provide theoretical guarantees (e.g., the privacy
budget ε) for MIA attacks [7, 22]. It aims to guarantee that
changing any data point will not significantly affect the out-
put distribution of a system. This goal is different from the
one in defending against DRA, which focuses on preventing
the attacker from reconstructing the whole distribution of the
local dataset. Thus DP still cannot defend against DRA at-
tacks [7, 14, 22, 26, 38]. For instance, in DP-SGD, algorithms
with identical privacy budget but different training hyper-
parameters (e.g., different batch size B) cannot guarantee the
same success rate for DRA [26]. Moreover, quantifying in-
formation leakage is the basis for defending against DRA at-
tacks. Previous technique like Quantitative Information Flow
(QIF)1 [5] quantifies information leak under a white-box and
time-invariant setting[47]. It requires the knowledge of the
correlation between the distributions of inputs and outputs,
which cannot hold in FL systems.

1QIF focuses on a special security concern, namely the probability of
guessing a secret in one try [5, 51]. This security concern is different from the
one in DRA, where DRA focuses on reconstructing the whole distribution of
local data.
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It is difficult to defend against DRA attacks in FL due
to the following challenges. (i) the black-box model. For
DNN-based models, the correlation between the input dis-
tribution and output distribution is extremely complex, and
we cannot obtain the exact mapping function between the
two distributions, making theoretical analysis impossible. (ii)
the high-dimensional parameter space. Traditional math-
ematical tools (e.g., eigen-decomposition) cannot process
high-dimensional parameter spaces on the scale of thousands
of millions due to the requirements for large-scale storage
and high-performance computing. (iii) the time-variant sys-
tem. During the training process, constant parameter updates
change the model at each step, leading to a time-variant sys-
tem in FL. The time-variant system, which changes the output
distributions accordingly, leads to dynamic information leak-
age, requiring continuously changing quantifications.

To address the above challenges, we develop a theoretical
framework based on mutual information (MI)2 to evaluate
privacy leakage caused by DRA in FL, and design methods to
constrain information leakage to defend against DRA attacks.
Specifically, we demonstrate that the lower bound of mean
squared error (MSE), which serves as an indicator of DRA’s
precision in reconstruction (i.e., the smaller MSE means the
higher precision for the attacker), is determined by the amount
of acquired information, i.e., the MI between the local dataset
and the shared parameters. Thus, MI can be utilized as the
indicator for quantifying the information leakage in FL. Then
we build a channel model to analyze information leaks under
the black-box setting of FL. Through our proposed channel
model, we find that the transmitted information (i.e., the in-
formation leakage) is decided by two factors: the channel
capacity C, which represents the maximal ability to transmit
information in a single training round; and the optimization
rounds n, which is correlated to the information accumulation.
For example, if the channel capacity is bounded by a thresh-
old κ, and the number of optimization rounds is less than n,
then the total amount of information leakage is less than n ·κ.
Furthermore, our channel model can analyze various privacy-
enhancing methods in defending against DRA, including DP,
gradient compression, and utilizing large batch size.

Based on the channel model, we utilize DPI to transform
the operations (e.g., eigen-decomposition and adding noise)
of constraining channel capacity from the parameter space to
the data space. This transformation significantly improves the
training efficiency and the model accuracy of the high dimen-
sional and time-variant model under constrained information
leakage. Specifically, our protecting goal is to decide the co-
variance matrix for the added noise according to a given data
distribution DDD, which ensures privacy protection by constrain-
ing the reconstruction error above a certain threshold. Com-
pared to conventional protection techniques, which directly
deal with parameters after gradient mapping, constraining in

2Mutual information I(X ;Y ) [16, 29, 49] represents the uncertainty decre-
ment of X when we observe Y .

the data space has two distinct advantages: firstly, it makes
the computational complexity independent of the optimiza-
tion rounds n and the model’s dimensionality dm, reducing it
from O(n ·dm) to O(dD), where dD denotes the dimensional-
ity of the data and dD≪ dm. Secondly, data space preserves
the correlations between data attributes, hence we can lever-
age the prior knowledge of relative importance to implement
stronger safeguards for the critical attributes, which enhances
the capability to balance the utility and the privacy.

Finally, according to the theoretical results, we propose
three implementations for constraining the channel capacity.
These implementations incorporate different prior knowledge
in defending against DRA, which can be employed to flexibly
balance the utility and the privacy.

In summary, the contributions of our paper are as follows:

• We demonstrate that the amount of transmitted informa-
tion decides the lower bound of the reconstruction error
for DRA attacks.

• We establish a channel model to quantify the information
leakage of the black-box model in FL, which can be
applied to analyze various privacy-enhancing methods
for defending against DRA.

• We theoretically constrain the transmitted information
through the operation in data space instead of parameter
space for the first time and demonstrate that it signifi-
cantly improves the training efficiency and the model
accuracy under constrained information leakage.

• By incorporating different prior knowledge, we propose
three implementations to constrain channel capacity,
which can be utilized to flexibly balance the utility and
the privacy.

• Extensive experiments demonstrate that the newly pro-
posed methods effectively enhance the safety, efficiency,
and flexibility of FL.

2 Background and Preliminary

This paper studies the FL problem based on information the-
ory. Specifically, in the FL scenario, the server and clients
communicate by sending model parameters. Even without
direct data sharing, the MI between shared parameters and the
local dataset grows accordingly, which enhances the ability
for attackers to conduct DRA attacks. For clarity purposes,
Tab. 1 lists major notations used in the paper, and we will
describe the remaining variables when they are utilized.

2.1 Federated Learning

Regarding FL, a specific client, namely the victim, receives
the initial parameter WWW 1 from the server in a specific commu-
nication round and conducts the optimization process with
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Table 1: Major Notation Explanation

Notations Explanation

F(·), η Loss function and learning rate for local optimization
WWW (t)

i , WWW (t)
o The received (input) and shared (output) parameters of

the victim at time t
DDD Random variable follows data distribution of the victim
B Batch size for optimization

E, n Local steps for one communication round and the total
local steps for all communication rounds

A(t)(·) The aggregation method at time t
VVV (t) Variables (e.g., gradients, parameters) collected by the

server from clients other than the victim
C(t) The channel capacity (maximum transmitted informati-

on) of the victim at time t
κ The threshold of C(t), i.e., the setted channel capacity

ΣΣΣ∗ The covariance matrix of random variable
λ and σ Eigenvalues for the covariance matrix and noise variables
I(XXX ;YYY ) The mutual information between XXX and YYY

ξξξ The noise variable that is subject to Gaussian distribution

the victim’s dataset as

WWW t+1←WWW t −η ·∇WWW F(WWW t ;DDD), t = 1, · · · , E, (1)

where E is the number of local steps. Then the victim sends
WWW E+1 back to the server. If we rewrite WWW 1 and WWW E+1 as WWW i
and WWW o respectively, the two parameters form a communica-
tion channel for information transmission (as illustrated in
Fig. 2), and the local optimization process defined in Eq. (1)
loads information from the dataset to the communication
channel. Finally, the server collects the parameters from dif-
ferent clients (including the victim) for aggregation as

WWW i = A(WWW o;VVV ). (2)

2.2 Information Theory

Differential Entropy. The differential entropy of a random
variable XXX is defined as follows

h(XXX) =−
∫

XXX
f (xxx) log f (xxx)dxxx, (3)

which is utilized to describe the degree of random uncertainty.
For a dataset with high information entropy, i.e., a dataset with
plentiful information, it is difficult for an attacker to conduct
DRA attacks. While for the dataset with low information
entropy, the opposite is true.

However, calculating the differential entropy by Eq. (3)
is infeasible in practice since we cannot obtain the distribu-
tion function of the target variable. Therefore, we use the
maximum entropy distribution to analyze the worst-case sce-
nario. Specifically, with E[XXX ] = µµµ and Cov(XXX) = ΣΣΣ, the max-
imum entropy distribution is the Gaussian distribution, i.e.,
h(XXX)≤ h(N (µµµ,ΣΣΣ)).
Mutual Information. For two random variables XXX and YYY , the
mutual information between them is

I(XXX ;YYY ) = h(XXX)−h(XXX |YYY ) = h(YYY )−h(YYY |XXX). (4)

Specifically, the mutual information I(XXX ;YYY ) is a symmetric
function, which describes the random uncertainty decrement
of XXX when we observe YYY , and vice versa.

Specifically, in this paper, we utilize I(DDD;WWW i,WWW o) to quan-
tify the information leakage in FL. The intuition is that when
an attacker observes the communication parameters of a vic-
tim, the random uncertainty of the victim’s local dataset will
decrease, which implies the attacker can extract information
from the victim’s local dataset to achieve more precise DRA.
Channel Capacity. The key factor in describing a commu-
nication channel is channel capacity. In information theory,
traditional channel capacity is defined by the maximum MI
between the sending variable XXX and the receiving variable YYY ,
i.e., C = maxp(xxx) I(XXX ;YYY ), which is the maximum information
that we can send by information coding.

In this work, the sending variable is DDD, while the receiving
variable is WWW o, which is decided by the variables WWW i and
DDD according to Eq. (1), hence the channel capacity can be
formalized as C = maxp(wwwo) I(DDD;WWW o|WWW i), which is the upper
bound of the transmitted information.
The reasons for choosing MI to measure the information
leakage. Prior research like QIF and g-leakage utilizes min-
entropy [5, 51] to measure the information leakage, which
can only work in a white-box and time-invariant system [47].
However, FL is a black-box (e.g., deep neural networks) and
time-variant (e.g., parameter updating in each round) system.
Hence, these techniques are not applicable. Moreover, min-
entropy is unsuitable for modeling the attack against FL, e.g.,
DRA. The min-entropy focuses on measuring the uncertainty
of guessing the most likely output of random sources [23, 30],
which is more related to cryptographic systems. However, in
DRA, the attacker’s target is to reconstruct the whole data
distribution based on the victim’s sharing parameters, instead
of guessing a most likely data point. Therefore, the preci-
sion of DRA attacks depends on the difference between two
distributions, which must take all data of the distributions
into consideration. In this scenario, the Shannon entropy, i.e.,
MI, which is based on the expectation metric, can accurately
measure the correlation between the whole distributions, thus
is more suitable for analyzing the information leakage issue
under DRA. Therefore, we choose MI to measure the infor-
mation leakage in FL.

3 Key Observation and Method Overview

3.1 Key Observation
Regarding FL, different clients jointly optimize the model by
passing parameters to the server instead of raw data. Since
the parameters are the mapping of the original data, the at-
tacker can still reconstruct the private data from the parame-
ters, thereby stealing privacy. Correspondingly, the client can
preserve privacy by perturbing the transmitted parameters.
Therefore, we build a channel model to calculate the privacy
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Figure 1: To enhance the capability for defending against
DRA in FL, we develop techniques to constrain the amount
of transmitted information below a certain threshold κ.

data contained in parameters. Moreover, based on the quanti-
tative results, the privacy data in parameters can be flexibly
adjusted to meet various privacy requirements.

In this section, we establish a formal correlation between
the transmitted information, i.e., the MI, and the reconstruc-
tion error of DRA by the following theorem.

Theorem 1 (Lower bound for reconstruction error). For any
random variable DDD, DDD ∈ Rd and WWW, WWW ∈ Rm, we have

E[∥DDD− D̂DD(WWW )∥2/d]≥ e2h(DDD)/d

2πe
e−2I(DDD; WWW )/d , (5)

where D̂DD(WWW ) is an estimator of DDD constructed by WWW.

Specifically, Eq. (5) denotes the lower bound of MSE in
DRA, which represents the optimal error for data reconstruc-
tion. In the FL scenario, we denote DDD as the target data dis-
tribution and WWW as the shared parameter. Therefore h(DDD) is
the entropy of the target data distribution, which is a con-
stant during machine learning. Moreover, the lower bound
is negatively correlated to MI, i.e., I(DDD;WWW ), which indicates
that if WWW contains more information of target data DDD, i.e., a
larger I(DDD;WWW ), the attacker can achieve a more precise recon-
struction of DDD. Consequently, large I(DDD;WWW ) exacerbates the
privacy issue.

In FL, MI increases as the number of optimization rounds
increases, thereby enhancing the precision of DRA. There-
fore, constraining the overall MI in FL is the way to restrict
the precision of DRA. To this end, we build a channel model
to measure the increase of MI in Sec. 4, and propose three im-
plementation methods to limit MI within a certain threshold.

3.2 Method Overview
In this study, we develop techniques to enhance FL’s capabil-
ity of privacy protection, in particular, defending against DRA.
Normally, FL transmits information from the local dataset to
the server by model parameters, i.e., the parameter channel.
The transmitted information can be employed by an attacker
to conduct various attacks. Hence, the objective of privacy
protection is to constrain the amount of transmitted informa-
tion. Specifically, for DRA, the reconstruction error is lower

bounded by a function of MI (Thm. 1), which indicates that a
smaller MI leads to a larger reconstruction error. Therefore,
our technique is devoted to limiting the reconstruction ability
by constraining the total MI in FL.
Threat Model. In this work, we focus on privacy leaks in-
curred by DRA in FL. Specifically, the attacker aims to re-
construct the data distribution DDD of a specific client (i.e., the
victim) via parameters shared by the victim. We assume that
the attacker can get the transmitted parameters by the vic-
tim (i.e., WWW i and WWW o). Then the attacker can reconstruct a
data distribution D̂DD(WWW i,WWW o) to approximate the target data
distribution DDD (Appendix A explains the details of DRA).

Our goal is to constrain the private data that the attacker
can obtain according to the transmitted parameters in FL.
Therefore, the attacker’s ability to construct the DRA attack
is limited.
Controlled parameter channel. As illustrated in Fig. 1, to re-
strict the transmitted information, we transform the noiseless
parameter WWW o to a noisy Gaussian channel by adding Gaus-
sian noise N (000,ΣΣΣ) to it. Based on the theorem of Gaussian
channel in information theory [15], the noisy Gaussian chan-
nel has limited capability for information transmission, which
is the channel capacity. Thus, with the eigenvalues of WWW o, we
derive a formula f (ΣΣΣ) to characterize the channel capacity of
the Gaussian channel by the maximum entropy distribution.
Finally, we solve the equation f (ΣΣΣ) = κ to decide ΣΣΣ for con-
straining the transmitted information within a threshold κ. We
will explain how the controlled parameter channel constrains
transmitted information in Sec. 4 and Sec. 5.1.
Constraining channel capacity in the data space. To over-
come the efficiency issue caused by the high dimensional and
time-variant model in FL, we theoretically transform oper-
ations of constraining channel capacity from the parameter
space to the data space. Specifically, the information con-
tained in the resulting parameter is decided by the input data,
thus constraining channel capacity can be achieved by restrict-
ing the information contained in the input data. Moreover, this
transformation significantly improves the training efficiency
and the model accuracy under constrained information leak-
age. We will explain the transformation in Sec. 5.2.

Theoretically, when an attacker observes WWW i and WWW o, the
random uncertainty of the local data DDD decreases, which
means the attacker gets more information to conduct DRA
attacks, leading to more precise reconstruction. The amount
of random uncertainty reduction ∆I (i.e., information leakage)
in a round can be formalized as

∆I = I(DDD;WWW i,WWW o)− I(DDD;WWW i) = I(DDD;WWW o|WWW i),

which means the attacker gets ∆I information from DDD (as
illustrated in Fig. 2). Moreover, this privacy leak occurs in
each optimization round, which results in an increase in MI
and consistently increases the risk of privacy.

As aforementioned, for defending against DRA, our tech-
nique constructs a controlled parameter channel by limiting
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∆I to less than a threshold κ for all optimization rounds. Then
together with the bounded optimization rounds n, we pro-
vide n ·κ guarantee for the total information leakage, thereby
constraining the attack precision of DRA.

4 Channel Model of the Information Leakage

In this section, we formalize the problem of FL into a commu-
nication process based on information theory and then unfold
the recurrent communication process into a time-dependent
Markov Chain. Finally, we build a channel model to calculate
the MI according to the unfolded communication process.

4.1 Accumulation of Mutual Information
As illustrated in Fig. 2, in the FL scenario, a specific client,
i.e., the victim, communicates with the server through a logic
channel: the parameters WWW i and WWW o. Specifically, There are
three different information flows: the ingress flow, i.e., the
received parameter WWW i, which determines the background
knowledge possessed by the server (i.e., the attacker); the
egress flow, which is the information contained in the sharing
parameter WWW o; and the internal flow, i.e., local optimization
process, which loads the information contained in the local
dataset to the egress flow. Particularly, due to privacy requests,
the victim only communicates with the server by WWW i and WWW o.

The information leakage of the communication channel
depends on the MI increment when the server observes WWW o.
Thus, it can be formalized as

I(DDD;WWW i,WWW o) = I(DDD;WWW i)︸ ︷︷ ︸
Prior

+ I(DDD;WWW o|WWW i)︸ ︷︷ ︸
Information Leakage (∆I)

. (6)

Eq. (6) is an immediate result according to the chain rule
of MI. It indicates that the MI between DDD and the joint dis-
tribution (WWW i,WWW o) can be divided into two parts: the prior
knowledge and the information leakage ∆I. In the rest of this
paper, we will utilize I(DDD;WWW o|WWW i) instead of ∆I for more
comprehensible analysis.

However, WWW i and WWW o are joint distributions of differ-
ent rounds, which contain multiple local learning processes.
Hence, connecting Eq. (6) to the internal flow is difficult. To
resolve this issue, we unfold the recurrent process to a time-
dependent Markov chain. As illustrated in Fig. 2, there is only
one local optimization process within a round from WWW (t)

i to
WWW (t+1)

i , hence we can analyze MI increment at round t.
Specifically, according to Eq. (1) and Eq. (2), the relation-

ship between WWW (t)
i and WWW (t)

o in Fig. 2 is

WWW (t)
o =WWW (t)

i −η ·∇WWW F(WWW (t)
i ;DDD), (7)

which represents the local learning process with SGD. While
for WWW (t)

o and WWW (t+1)
i , the relationship is

WWW (t+1)
i = A(t)(WWW (t)

o ;VVV (t)), (8)
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Figure 2: The process of FL can be unfolded to a time-
dependent Markov chain. Hence we can analyze the mutual
information in a round from WWW (t)

i to WWW (t+1)
i .

where VVV (t) are the variables uploaded by clients other than
the victim.

Then based on the unfolded process, we transform the MI
in Eq. (6) to the joint mutual information as

I(DDD; WWW (0)
i ,WWW (0)

o , · · · ,WWW (n)
i )

= ∑
n
t=0 I(DDD;WWW (t)

i |WWW
(t−1)
o ,WWW (t−1)

i , · · · ,WWW (0)
o ,WWW (0)

i )

+∑
n−1
t=0 I(DDD;WWW (t)

o |WWW (t)
i ,WWW (t−1)

o , · · · ,WWW (0)
o ,WWW (0)

i )

= ∑
n−1
t=0 I(DDD;WWW (t)

o |WWW (t)
i )︸ ︷︷ ︸

Γclient

+∑
n−1
t=0 I(DDD;WWW (t+1)

i |WWW (t)
o )︸ ︷︷ ︸

Γserver

+ I(DDD;WWW (0)
i )︸ ︷︷ ︸

Prior

, (9)

where the first equality depends on the chain rule of MI and
the last equality is an immediate consequence of the Markov
property of the learning process.

Specifically, Eq. (9) indicates that the overall MI is com-
prised of three parts: the prior, Γserver, and Γclient .

4.2 Analysis of Mutual Information
Regarding Eq. (9), the information can be divided into three
parts: the prior, Γserver, and Γclient . The prior knowledge
I(DDD;WWW (0)

i ) is decided by the background knowledge of the
attacker before the learning process.

For Γserver, it represents the aggregation process on the
server, hence it cannot be controlled by the local learning
process. On the contrary, it can be exploited by an attacker.
Without loss of generality, we focus on the general term
I(DDD;WWW (t+1)

i |WWW (t)
o ), t ∈ {0, · · · ,n− 1}, which is the informa-

tion increment on the server. Based on the relationship be-
tween the MI and the entropy, we rewrite it as

I(DDD;WWW (t+1)
i |WWW (t)

o )

= h(WWW (t+1)
i |WWW (t)

o )−h(WWW (t+1)
i |DDD,WWW (t)

o )

= h(A(t)(WWW (t)
o ;VVV (t))|WWW (t)

o )−h(A(t)(WWW (t)
o ;VVV (t))|DDD,WWW (t)

o ),
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the last equality is a substitution according to Eq. (8). The
formula indicates that I(DDD;WWW (t+1)

i |WWW (t)
o ) is decided by VVV (t),

which are variables independent of local learning process.
Specifically, if VVV (t) is independent of DDD, then DDD→WWW (t)

o →
WWW (t+1)

i forms a Markov chain. Therefore, given the obser-
vation of WWW (t)

o , DDD is conditional independent of WWW (t+1)
i , i.e.,

I(DDD;WWW (t+1)
i |WWW (t)

o ) = 0. In this situation, Γserver = 0, which
means the server (i.e., the attacker) cannot affect DRA at-
tacks. On the contrary, if VVV (t) has the information of DDD that
is independent of WWW (t)

o , i.e., the attacker can get auxiliary in-
formation other than the local learning process, the mutual
information I(DDD;WWW (t+1)

i |WWW (t)
o )> 0, which increases the risk

of information leakage for the rest communication rounds
when T ≥ t +1. In this situation, the server (i.e., the attacker)
can increase the risk of privacy by utilizing the information
collected by means other than FL.

However, the analysis of Γserver is beyond the protection
of the local learning process in FL, since Γserver is related
to the auxiliary information for the attacker to conduct the
DRA attack. Particularly, our target is to bound Γclient , which
is the information leakage of the local learning process in FL.
Sec. 5 indicates that regardless of Γserver > 0 or not, Γclient is
constrained by our methods.

Finally, we put emphasis on Γclient , the most important
part that is correlated to information leakage of the local
learning process in FL. Similarly, we focus on the general
term of Γclient , i.e., I(DDD;WWW (t)

o |WWW (t)
i ), which is the MI increment

at round t, then we have

I(DDD;WWW (t)
o |WWW (t)

i ) = h(WWW (t)
o |WWW (t)

i )−h(WWW (t)
o |DDD,WWW (t)

i ). (10)

Based on Eq (7), if WWW (t)
i is observed, WWW (t)

o is decided by a
deterministic function of DDD, which has a finite entropy. More-
over, if WWW (t)

i and DDD are both observed, WWW (t)
o is deterministic,

thereby h(WWW (t)
o |DDD,WWW (t)

i )→−∞. The result is reasonable since
the volume of a constant’s support set3 goes to 0, i.e., 2−∞ = 0.
In this case, I(DDD;WWW (t)

o |WWW (t)
i )→+∞, which means a noiseless

channel results in unlimited risk of privacy leaks.
To limit the information leakage, we add a Gaussian noise

to WWW (t)
o , which transforms Eq. (10) to a noisy egress flow.

Specifically, we turn to analyze

W̃WW
(t)
o =WWW (t)

o +ξξξ, (11)

where ξξξ∼N (000,ΣΣΣ), and WWW (t)
o = limΣΣΣ→000 W̃WW

(t)
o . Then the prop-

erty of W̃WW
(t)
o is implied by following lemma.

Lemma 1 (Maximum entropy distribution). Let XXX be a con-
tinuous random vector with E[XXX ] = µµµXXX , Cov(XXX) = ΣΣΣXXX . Let
YYY ∼N (µµµYYY ,ΣΣΣYYY ) be a Gaussian random variable that is inde-
pendent with XXX, then h(XXX +YYY ) achieves its maximum when
XXX ∼N (µµµXXX ,ΣΣΣXXX ).

3The volume of support set for a random variable XXX is 2h(XXX) [15].

To analyze the noisy egress flow after transformation, we
rewrite Eq. (10) as

I(DDD;W̃WW
(t)
o |WWW

(t)
i ) = h(WWW (t)

o +ξξξ|WWW (t)
i )−h(WWW (t)

o +ξξξ|DDD,WWW (t)
i ).
(12)

As ξξξ is a Gaussian variable, Lemma 1 implies that the first
term on the right-hand side of Eq. (12), i.e., h(WWW (t)

o +ξξξ|WWW (t)
i ),

is upper bounded by the entropy of the Gaussian distribution.
Moreover, when DDD and WWW (t)

i are both observed, WWW (t)
o is a

constant, which means the only randomness of W̃WW
(t)
o =WWW (t)

o +
ξξξ comes from ξξξ, thus the second term on the right-hand side of
Eq. (12) is h(N (000,ΣΣΣ)). Let E[WWW (t)

o ] = µµµWWW and Cov(WWW (t)
o ) =

ΣΣΣWWW , we have the upper bound of Eq. (12) as

I(DDD;W̃WW
(t)
o |WWW

(t)
i )≤ h(N (µµµWWW ,ΣΣΣWWW +ΣΣΣ))−h(N (000,ΣΣΣ)). (13)

In practice, the distribution of WWW (t)
o is extremely complex

and time-variant, so we utilize upper bound (13) to limit the
information leakage. The important parts of Eq. (13) are the
covariance matrixes of WWW (t)

o and ξξξ. Moreover, Sec. 5 indicates

that regardless of ΣΣΣWWW , we can restrict I(DDD;W̃WW
(t)
o |WWW

(t)
i ) ≤ κ,

∀κ > 0, by deciding ΣΣΣ.
Finally, for multiple local updates, the scenario is slightly

different. We denote the number of local steps in one com-
munication round as E, and the total number of local steps
for all communication rounds as n, where n is divisible into
E. These notations imply that the number of communications
is T = n

E . Then the issue can be transformed to the one-step
case by a time-dependent aggregation method as

WWW (t)
i =

{
A(t)(WWW (t−1)

o ; VVV (t−1)), if E | t
WWW (t−1)

o , otherwise.
(14)

Where E | t represents we make aggregation on the server
every E steps. If we set E = n, the FL problem reduces to
classical ML without collaboration.

Based on the former analysis, the new aggregation rule
only changes Γserver in Eq. (9), while Γclient remains the same.
Hence, the privacy analysis for the local optimization process
is identical to classical ML. Therefore, our analysis of Γclient
will focus on classical ML in the remainder of this paper.

5 Controlled Parameter Channel

Based on the former analysis, the important part of defend-

ing against DRA is I(DDD;W̃WW
(t)
o |WWW

(t)
i ), which represents the MI

increment at round t. The key parameters to restrict the MI
increment are ΣΣΣWWW and ΣΣΣ. In this section, we first propose

a method for deciding ΣΣΣ that ensures I(DDD;W̃WW
(t)
o |WWW

(t)
i ) ≤ κ.

Then, we transform the operations for constraining MI from
the parameter space to the data space and propose three im-
plementation methods for constraining the channel capacity.
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Finally, we analyze existing techniques with our theoretical
results in defending against DRA.

5.1 Controlled Channel Capacity

Channel capacity is the maximum ability to transmit informa-

tion within a single round, i.e., max I(DDD;W̃WW
(t)
o |WWW

(t)
i ), which

is the key parameter for constraining the information leakage.
To constrain the channel capacity, we have Thm 2.

Theorem 2 (Channel capacity). Let W̃WW
(t)
o = WWW (t)

o +
√

σ · ξξξ,
where σ ≥ 0 and ξξξ ∼ N (000,I), if µµµ(t) and ΣΣΣ

(t) are the mean
vector and covariance matrix of WWW (t)

o when WWW (t)
i is observed,

we have I(DDD;W̃WW
(t)
o |WWW

(t)
i )≤ f (t)(σ), where

f (t)(σ) :=
1
2

d

∑
i=1

ln
λ
(t)
i +σ

σ
, σ ∈ (0, +∞). (15)

where λ
(t)
i is the i-th eigenvalue of the covariance matrix ΣΣΣ

(t)

and d represents the dimension of WWW (t)
o .

Based on Lemma 1, I(DDD, W̃WW
(t)
o |WWW

(t)
i ) achieves its maximum

f (t)(σ) when WWW (t)
o conforms to the Gaussian distribution. Ac-

cording to the Central Limit Theorem, if we use mini-batch
SGD, the distribution of WWW (t)

o converges to the Gaussian distri-
bution, which means upper bound (15) becomes tighter when
we utilize larger batch size for local training.

Regarding Γclient , if we denote C(t) = f (t)(σ(t)), where σ(t)

represents σ at time t, we have I(DDD;W̃WW
(t)
o |WWW

(t)
i )≤C(t), which

indicates WWW (t)
i and W̃WW

(t)
o form a communication channel with

channel capacity C(t).
Specifically, according to Eq. (15), C(t) is decided by two

components: {λ(t)
i }d

i=1 and σ(t). First, {λ(t)
i }d

i=1 represent the
eigenvalues of ΣΣΣ

(t). Based on Eq. (7), WWW (t)
o is related to WWW (t)

i ,
which is the parameter received from the server. Therefore,
the server (i.e., the attacker) can craft WWW (t)

i to get more infor-
mation from the local dataset (as displayed in Fig. 3).

Second, σ(t) is related to the added noise. Based on the
monotonicity of C(t) = f (t)(σ(t)), we conclude that for any
WWW (t)

i , there exists an unique σ(t) that satisfies f (t)(σ(t)) = κ,
where κ≥ 0 is a certain threshold.

If we denote λ
(t)
i = λ(t), i ∈ {1, · · · ,d}, we have C(t) =

d
2 ln(λ(t)+σ(t)

σ(t) ). In this scenario, the channel capacity can be
displayed as Fig. 3. Specifically, the channel capacity is an
increasing function of λ(t) and a decreasing function of σ(t).
Moreover, it is worth noting that even the server can change
the channel capacity by crafting WWW (t)

i , the victim can constrain
the transmitted information within κ by solving f (t)(σ(t)) = κ

after receiving WWW (t)
i , which decides the added noise σ(t).

5.2 Limiting Channel Capacity in Data Space
For a controlled parameter channel, our target is to constrain

the transmitted information at round t, i.e., I(DDD;W̃WW
(t)
o |WWW

(t)
i ).

Based on Thm. 2, there are two steps for solving the equa-
tion C(t) = κ in the parameter space: the eigen-decomposition
of ΣΣΣ

(t) and solving the high order equation with correspond-
ing eigenvalues. Whereas, WWW (t)

o is a high-dimensional and
time-variant parameter, which leads to an extremely large
number of calculations. Hence, the implementation of the
aforementioned method in the parameter space is computa-
tionally expensive.

Regarding WWW (t)
o in Fig. 2, when WWW (t)

i is observed, it is condi-
tional independent with the previous parameters WWW (s)

∗ , ∀s < t,
and all of the previous local learning processes. Therefore, if
WWW (t)

i is observed, WWW (t)
o is purely decided by the local learning

process at round t, i.e., DDD→WWW (t)
o |WWW (t)

i . Then based on these
properties, we design a random function M(·) to map the raw
data DDD to the noisy data D̃DD, and then utilize the noisy data for

the local training, i.e., W̃WW
(t)
o =WWW (t)

i −η ·∇WWW F(WWW (t)
i ; D̃DD).

If we use the random function M(·) before the local
learning process, the variables form a Markov Chain, i.e.,
DDD→ D̃DD→WWW (t)

o |WWW (t)
i . According to the DPI [15], we have

I(DDD;WWW (t)
o |WWW (t)

i )≤ I(DDD; D̃DD|WWW (t)
i ) = I(DDD; D̃DD), (16)

where the last equality results from the independence between
M(·) and WWW (t)

i . Therefore, we can bound I(DDD; D̃DD) so as to
restrict I(DDD;WWW (t)

o |WWW (t)
i ). Moreover, bounding I(DDD; D̃DD) enables

us to limit the channel capacity in the data space. Specifically,
we use D̃DD = M(DDD) = DDD+ ξξξ as the random function, where
ξξξ∼N (000,ΣΣΣξξξ), and the key parameter is ΣΣΣξξξ.
The rationale of constraining transmitted information in
data space. In addition to the upper bound derived by DPI,
we can explain the rationale of constraining in data space
by Taylor’s expansion for a more comprehensible analysis.
Specifically, if we use a Gaussian noise in the data space to
constrain the information leakage, we can expand the gradient
mapping as follows

∇WWW F(WWW ;DDD+ξξξ) =∇WWW F(WWW ;DDD)+∇DDD∇WWW F(WWW ;DDD)T ·ξξξ
+O(∥ξξξ∥2). (17)

Eq. (17) indicates that constraining the transmitted infor-
mation in the data space is equivalent to adding an adaptive
noise ∇DDD∇WWW F(WWW ;DDD)T ·ξξξ to the parameter.

Moreover, the coefficient ∇DDD∇WWW F(WWW ;DDD)is the variation of
∇WWW F(WWW ;DDD). If ∇WWW F(WWW ;DDD) changes significantly according
to the data DDD, which means the gradient has a high distinction
degree with regard to the data, i.e., the gradient leaks more
information, the large coefficient will provide strong privacy
protection. Otherwise, the small coefficient leads to better
utility without violating the privacy requirements.

Additionally, Fig. 4 provides a toy example for understand-
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Figure 5: Visualizations for CelebA when
we apply different channel implementations
(Natural, White, and Personalized) and uti-
lize different channel capacities.

ing the rationale of constraining in the data space. Specifi-
cally, we set D ∼ N (−1,1) and our target is to decide the
model W that minimizes F(W ;D) =W 2D through gradient
descent. Particularly, we require the information leakage to
be less than 1, i.e., C(t) = 1. As illustrated in Fig. 4, when
we use the method in the parameter space to limit C(t) = 1 at
W (t) = 2, i.e., adding the noise ξ∼N (0, 16

e2−1 ) to the gradi-
ent ∇W F(W ;D) = 2WD, the resulting noise cannot guarantee
C(t+1) = 1 at next round W (t+1) = 6 (we set the learning rate
to 1), which implies that we need to recalculate the covariance
matrix for the noise at each round. On the contrary, constrain-
ing in the data space (adding the noise ξ∼N (0, 1

e2−1 ) to the

data D) results in an adaptive noise to guarantee C(t) = 1 for
all t regardless of W (t), leading to the O(1) time-complexity
for achieving the privacy requirement.

By incorporating different prior knowledge, we propose
three implementation methods for deciding ΣΣΣξξξ.
Natural Channel. For Natural Channel, the relative impor-
tance of different data attributes is naturally decided by the
data itself. Specifically, based on Thm. 2, with substituting D̃DD

for W̃WW
(t)
o , we have

I(DDD; D̃DD)≤ f (σ) =
1
2

d

∑
i=1

ln
λi +σ

σ
, σ ∈ (0, +∞), (18)

where λi and d represents the i-th eigenvalue and the dimen-
sion of data DDD, respectively. In this case, we chose ΣΣΣξξξ = σI.
Moreover, f (σ) is a monotone function of σ, hence there is a
unique σ satisfying f (σ) = κ. Meanwhile, this σ guarantees
I(DDD; D̃DD)≤ f (σ) = κ. Combining it with Eq. (16), we conclude
that the information leakage at time t is less than κ. However,
f (σ) = κ is a polynomial equation of order d, hence we need
to solve it with numerical methods (e.g., binary search). In
summary, the process of Natural Channel is

1. Make the eigen-decomposition of ΣΣΣDDD, which is the co-
variance matrix of data DDD, to get Λ = diag(λ1, · · · ,λd)

2. Solve the equation f (σ) = κ to get σ with binary search

3. Get D̃DD = DDD+ξξξ, where ξξξ∼N (000, σI)
White Channel. In the method of the White Channel, we treat

the relative importance of all attributes to be equal, which
provides much stronger protection for the local dataset. For
such a purpose, we add a constraint to Eq. (18) as

f (ΨΨΨ) =
1
2

d

∑
i=1

ln
λi +σi

σi
= κ (19)

s.t. ln
λi +σi

σi
= ln

λ j +σ j

σ j
, for 1≤ i < j ≤ d,

where ΨΨΨ = diag(σ1, · · · ,σd) represents the eigenvalues of ΣΣΣξξξ.
Then we can get σi =

λi
exp(2κ/d)−1 by solving Eq (19). Finally,

we need to transform ΨΨΨ back to ΣΣΣξξξ. According to Eq. (25)
in the proof of Thm. 2, we have ΣΣΣDDD = QQQΛΛΛQQQT , where QQQ is
an orthogonal matrix composed with the eigenvectors of ΣΣΣDDD.
Then with a similar process, we have ΣΣΣξξξ = QQQΨΨΨQQQT . Therefore,
the typical process of the White Channel is

1. Make the eigen-decomposition of ΣΣΣDDD to get Λ =
diag(λ1, · · · ,λd) and the eigenspace QQQ

2. Get ΨΨΨ = diag(σ1, · · · ,σd) by σi =
λi

exp(2κ/d)−1

3. Get ΣΣΣξξξ = QQQΨΨΨQQQT

4. Get D̃DD = DDD+ξξξ, where ξξξ∼N (000, ΣΣΣξξξ)

Personalized Channel. In practice, the relative importance
of different attributes in data is different. For example, [59]
claims that for online diagnosis, our target is to extract disease-
relevant features but remove identity features from the facial
images of patients, which means we add more noise to the
identity features compared to the disease-relevant features.
For analyzing the problem, we assume the relative importance
of different dimensions is βββ = (β0, · · · ,βd−1)

T , e.g., (height,
weight)=(1, 2) represents the relative importance of the height
to the weight is 1 : 2.

The relative importance decides the level of noise addition.
In other words, if the attribute is more important, we add
more noise to it for stronger protection. To utilize the prior
knowledge βββ, we chose ΣΣΣξξξ = σ · diag(βββ). According to the
proof of Thm. 2, σ is decided by
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f (σ) =
lndet[ΣΣΣDDD +σ ·diag(βββ)]

2∑
d
i=1 ln(σ ·βi)

= κ. (20)

However, the intrinsic correlations of local data bring difficul-
ties in solving Eq. (20), so we derive the following theorem
for simplifying the calculation.
Theorem 3 (Upper bound of Personalized Channel.). Let
ΣΣΣ = ΣΣΣd−1, we can rewrite ΣΣΣ as

ΣΣΣi =

(
ΣΣΣi−1 ρρρi
ρρρT

i ci,i

)
, i ∈ {0, · · · ,d−1} (21)

where d represent the dimension of ΣΣΣ, then we have

lndet(ΣΣΣ+diag(βββ))≤min[
d−1

∑
i=0

ln(ci,i +βi),
d−1

∑
i=0

ln(ui + ki)],

ui = ci,i−ρρρ
T
i ΣΣΣ
−1
i−1ρρρi, ki = βi +(ΣΣΣ−1

i−1ρρρi)
T diag(βββ)(ΣΣΣ−1

i−1ρρρi).

Combining Thm. 3 with Eq. (20), we can get an upper
bound of the channel capacity for the Personalized Channel

U(σ) =
min[∑d−1

i=0 ln(ci,i +σβi),∑
d−1
i=0 ln(ui +σki)]

2∑
d
i=1 ln(σ ·βi)

.

Moreover,U(σ) decouples ΣΣΣ and diag(βββ),hence we can use
a pre-processing to reduce the calculation of solving U(σ) =
κ. The process of the Personalized Channel is

1. Get ui and ki according to Thm. (3)
2. Solve the equation U(σ) = κ to get σ with binary search
3. Get ΣΣΣξξξ = σ ·diag(βββ)

4. Get D̃DD = DDD+ξξξ, where ξξξ∼N (000, ΣΣΣξξξ)

Finally, we visualize D̃DD of different implementations ac-
cording to different channel capacities in Fig. 5.

Furthermore, constraining in the data space brings two ad-
vantages: first, compared to the parameter space, data space
is white-box, low-dimensional, and time-invariant. Second,
in the data space, the relative importance of attributes is pre-
served, which makes it easier to leverage prior knowledge.
Guidelines for noise injection. In summary, for defending
against DRA, the important target is to restrict the transmitted
information by noise addition. Here we provide guidelines
for the noise injection:

• For privacy-enhancing techniques (e.g., DP and gradient
compression) in FL, the reconstruction error for DRA
is theoretically above a threshold (Thm. 1) when we
restrict the transmitted information within κ. It can be
achieved by solving f (σ) = κ, where f (σ) is defined in
Eq. (18). This equation decides the injection noise with
corresponding statistics.

• For defending against DRA in FL, we can inject noise to
the training data instead of transmitted parameters. This
transformation can produce an adaptive noise, which
reduces the computational complexity brought by the
high dimensional and time-variant system in FL.

• For any pre-processing process such as embedding, we
can get the same theoretical guarantee by substituting
ΣΣΣembedding for ΣΣΣDDD in Eq. (18), where ΣΣΣembedding and ΣΣΣDDD
are covariance matrixes calculated by embeddings and
data, respectively.

• In our method, a larger batch size leads to a tighter upper
bound and a stronger ability to defend against DRA.

5.3 Channel Capacity for Existing Methods
With Thm. 1 and Thm. 2, we can analyze existing methods
for defending against DRA by the channel capacity C(t).

Existing privacy-enhancing methods in FL can be divided
into three categories: perturbation, compression, and utilizing
large batch size. The method of perturbation is represented
by DP. Moreover, we demonstrate that for defending against
DRA, the methods of gradient compression and utilizing large
batch size are equivalent to adding more noise for perturba-
tion, and the intrinsic mechanism of them are restricting the
transmitted information.
Perturbation. As a method with theoretical guarantee, DP
focuses on the problem of protecting individual information.
In this work, we consider the event-level DP [35, 37] because
we focus on the privacy issue for a specific client (i.e., the
victim). That is, whether the attacker can reconstruct the local
dataset with the victim’s shared parameters. Specifically, the
widely used DP technique in FL is the Gaussian mechanism,
thus we analyze the Gaussian mechanism in this section. A
typical process of the Gaussian mechanism for (ε,δ)-DP con-
sists of two stages: gradient clipping, which guarantees the
sensitivity of the gradient is bounded; noise addition, which
provides the (ε,δ)-DP guarantee based on the bounded sensi-
tivity. To analyze DP based on information theory, we have
the following theorem.

Theorem 4 (Channel capacity for DP). In FL, if the sensitivity
of the gradient mapping is upper bounded by S, i.e., ∥ggg∥2 ≤ S,
the channel capacity of (ε,δ)-DP, i.e., CDP, is upper bounded
by following formulas:

(1) CDP ≤ B·S2

σ
,

(2) CDP ≤ B·ε2

2log(1.25/δ) ,

where B represents the batch size and σ is the noise scale.

Compared to the conventional DP theorem, Thm. 4 indi-
cates that batch size B is a key factor of the defense ability
to defend against DRA, which has been overlooked by prior
literature. Specifically, increasing B reduces DP’s ability to de-
fend against DRA, which has been validated by experiments
in Fig. 6 (the details are explained in Appendix D).
Compression. Another defense technique is compression, it
intuitively focuses on reducing transmitted information by
reducing the dimension of shared parameters. However, most
of these methods lack theoretical guarantees.
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Specifically, information is contained in each dimension
of the gradient (i.e., the parameter), and the channel capacity
decreases accordingly when we reduce the dimension of it.
If we analyze the compression in the eigenspace, dimension
reduction can be theoretically described by Thm. 2. Specifi-

cally, the total channel capacity is C(t) = 1
2 ∑

d
i=1 ln λ

(t)
i +σ

σ
, and

the general term 1
2 ln λ

(t)
i +σ

σ
represents the channel capacity

of the i-th dimension. Compressing the i-th dimension in the
eigenspace, i.e., setting λ

(t)
i = 0, leads the channel capacity

of i-th dimension to be 0, thereby reducing the total channel
capacity. As illustrated in Fig. 7, when we compress the gradi-
ent, i.e., setting eigenvalues to be 0, the results are equivalent
to adding more noise for perturbation. As displayed in Fig. 8,
we also conduct experiments to validate our theoretical result,
the experiments indicate that the improvement of the defense
ability becomes more significant when we compress the di-
mension with a larger eigenvalue (the details are explained in
Appendix D).
Large Batch Size. Another defense strategy for privacy pro-
tection in FL is utilizing large batch size [63]. Our model
can theoretically formalize this strategy. If we denote the
batch size as B, then the gradient in mini-batch SGD is
1
B ∑

B
i=1 ∇WWW F(WWW (t)

i ; DDDi), where {DDDi}B
i=1 represents the set of

iid data points sampled from the dataset. The covariance ma-
trix with large batch size is scaled by B, i.e., ΣΣΣ

(t)
B = 1

B ΣΣΣ
(t).

Hence, with substituting ΣΣΣ
(t)
B for ΣΣΣ

(t) in Thm. 2, we have

C(t)
B = f (t)B (σ) :=

1
2

d

∑
i=1

ln
(λ

(t)
i /B+σ)

σ
. (22)

With the constant noise addition, C(t) is a decreasing func-
tion of B, which means we can enhance the ability to defend
against DRA by increasing B. Fig. 6 experimentally validates
this theory and we put the details of Fig. 6 in Appendix D due
to the space limitation.
Guidelines for hyper-parameters. Finally, to improve exist-
ing defensive algorithms, we provide several guidelines for
choosing the hyper-parameters in FL:

• A smaller batch size in DP algorithm is more effective
to defend against DRA.

• Compressing the dimension with larger eigenvalue re-
sults in the stronger ability to defend against DRA.

• A larger batch size leads to a stronger defense ability to
defend against DRA when we add a constant noise to
the parameter during training.

6 Experiment

In this section, we conduct experiments with various models
and datasets to validate our theories and compare our methods
with other privacy-enhancing techniques. All experiments are
performed upon a Supermicro SYS-420GP-TNR server with
two Intel(R) Xeon(R) Gold 6348 CPUs (2×28 cores), Ubuntu
18.04.1, 10GB memory, and four NVIDIA A100 PCIe 80GB
GPUs. Meanwhile, to eliminate the impact of randomness,
each experiment is repeated 10 times.

6.1 Experimental Settings
Datasets. Dataset is a task-dependent factor, which means we
cannot change the dataset when the training task is decided. In
our experiments, we resize the data to 32*32 for comparison,
and utilize four classical datasets, including CIFAR10 [31],
CelebA [39], SVHN [45], and Fashion-MNIST [57].
Basic Models. In this work, we experiment with four classi-
cal model architectures, including LeNet [33], AlexNet [32],
VGG16 [50], and ResNet10 [27]. Moreover, model architec-
tures are task-independent, we can select architectures accord-
ing to different goals, e.g., utility or privacy.
Attacks. We test our methods on two typical attacks in FL:
MIA and DRA, the details of different attacks are as follows.

Membership Inference Attack. For MIA, we use the white-
box attack [38, 44]. Meanwhile, we employ a partial knowl-
edge attacker, which means the attacker can access to part
of the training dataset. In this case, the attacker has much
stronger background knowledge. Moreover, we use four in-
puts for attacking [38]: the samples’ ranked posteriors, classi-
fication loss, gradients of the last layer, and one-hot encoding
of the true label. These inputs are fed into different neural
networks to get different embeddings, then we concatenate all
embeddings as the input of a 4-layer MLP to get the inference.
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Figure 9: The effect of channel capacities (κ) for model accuracy (Natural Channel).
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Figure 10: The effect of channel capacities (κ) for DRA (Natural Channel).
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Figure 11: Utility privacy tradeoff according to different channel capacities.

Data Reconstruction Attack. For DRA, we employ two
representative attacks: model inversion attack and gradient
inversion attack. For model inversion attack [20, 38], we first
construct a dummy input with auxiliary information (i.e., the
mean value of images that are not in the training dataset)
as the input for the target model, then utilize different target
labels to optimize the dummy input. We use Adam optimizer
with a learning rate of 1e-2 for 600 iterations. Additionally,
we employ the settings proposed by Geiping et al. [21] to
investigate the defense ability for gradient inversion attacks.
Metric. We evaluate our design with various criteria, includ-
ing the model utility, the defense capability against different
attacks, the utility-privacy trade-offs, and the efficiency. To
this end, we employ the following metrics for evaluation.

Test Accuracy. FL searches for an accurate model for clas-
sification, hence we use test accuracy as the metric for utility.

AUC. We use the attack AUC to measure the attack perfor-
mance for MIA. It’s worth noting that a smaller AUC means
a stronger defense capability.

MSE. We use MSE as the main metric for DRA since MSE
is a general metric that indicates the convergence of random
variables. That is, if the MSE of two random variables is 0,
we conclude that they have identical distributions [55], which
means a perfect reconstruction. Additionally, a large MSE
means a stronger ability to defend against DRA. Specifically,
for model inversion attacks, we calculate the metric between
the reversed data and the center of the corresponding class for
different classes. We use the median of all classes as the final

metric. For gradient inversion attacks, we employ the mean
value of the metric between the reconstructed data and the
target data.

General Defense Capability (GDC). For evaluating the
comprehensive defense capability, we use the improvements
of the aforementioned attacks. Specifically, for MIA, we de-
fine the improvement as

IMPMIA = (AUCwithout_de f −AUC)/AUCwithout_de f .

While the improvement for DRA is

IMPDRA = (
1

MSEwithout_de f
− 1

MSE
)/

1
MSEwithout_de f

.

Finally, we define general defense capability as

GDC = (IMPMIA + IMPDRA)/2,

and a larger GDC means a stronger defense capability.

Default parameter configuration. In our experiments, we
mainly utilize natural channel to investigate the channel pa-
rameters. Specifically, we fix the optimization rounds as
n = 1× 104 and utilize κ in {50, 100, 200, 300} to inves-
tigate the effect of different channel capacities. Additionally,
we fix κ= 300 and utilize TotalIn f o in {5×105,1×106,2×
106,3× 106} to investigate the effect of different n, where
n = ⌊TotalIn f o

κ
⌋ and ⌊·⌋ is the floor function. We will explicitly

explain it when we utilize different configurations.
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Figure 12: The effect of optimization number (n) for model accuracy when κ = 300 (Natural Channel).
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Figure 13: The effect of optimization number (n) for DRA when κ = 300 (Natural Channel).
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Figure 14: Heatmaps of MSE for the gradient inversion attacks on CIFAR-10.

6.2 The Effect of Controlled Channel
Impact of channel capacity (κ). κ represents the upper bound
of information leakage in a single training round. As illus-
trated in Fig. 9, when we enhance the channel, i.e., increase κ,
the accuracy increases accordingly regardless of the datasets
and the model architectures, which means a wider channel
leads to a better utility. However, the increasing utility is at
the cost of reducing data privacy. Fig. 10 displays the corre-
sponding defense capability against DRA. Specifically, for
DRA attacks, the MSE decreases according to the increasing
κ, which means the reconstructed data is closer to the target
data. These results indicate that in the practical scenario, we
can adjust channel capacity by κ to balance the utility and the
privacy according to various requirements.

Moreover, we explicitly display the utility-privacy tradeoff
in Fig. 11. Specifically, the utility increases with the increase
of channel capacity κ, while the ability of privacy protection
decreases with the increase of κ. These results are reasonable
since channel capacity constrains the transmitted information,
and the reconstruction error, i.e., the MSE, can be theoretically
restricted when the transmitted information is limited based
on Thm. 1. Meanwhile, more available information results in
a more accurate model, indicating that the adjustable channel
capacity can be utilized to balance the utility-privacy tradeoff.
Impact of optimization rounds (n). Different from the chan-
nel capacity C, the number of optimization rounds n affects the
parameter channel through another dimension: information
accumulation. Similarly, the results in Fig. 12 and 13 imply
that n is another parameter to influence the utility and the

defense ability of the controlled channel. Increasing n results
in obtaining more information from the local dataset, thereby
enhancing the utility while reducing the defense ability.
Defense ability against gradient inversion attack. We ran-
domly select 30 images from each dataset as the target data
and evaluate the defense abilities to defend against gradient
inversion attacks. As shown in Fig. 14, the MSE of data recon-
struction consistently increases as we decrease the threshold
κ, which means a smaller κ leads to a stronger ability to de-
fend against DRA. The MSE of the White Channel and the
Personalized Channel are larger than the Natural Channel, in-
dicating that the other two methods provide stronger defense
capability compared to the Natural Channel.

6.3 Comparing with Other Methods

In this section, we compare our methods with two classic
perturbation mechanisms: DP-SGD [1] and DP-PSAC [56].
Specifically, DP-SGD first utilizes DP for ML and DP-PSAC
is the state-of-art method to improve DP-SGD by adaptively
clipping the gradients.
Utility-Privacy trade-off. We first compare our methods with
DP-SGD and DP-PSAC in the utility-privacy plane. The plane
is formed by two axes: the x-axis represents GDC, which is
the general ability for privacy protection. While the y-axis
represents the accuracy, which represents the utility. For all
methods, we use the model of LeNet and fix the rounds as
n = 1×104. The results are displayed in Fig. 15. Specifically,
in our methods, we use channel capacity in {50, 100, 200,
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Figure 15: Evaluating different methods in the Utility-Privacy plane.
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Figure 16: Evaluating different methods in the Defense-Defense plane.

300} for the Natural Channel, and {500, 800, 1000, 1500}
for the White Channel and the Personalized Channel. Addi-
tionally, we use 1:50 in βββ for the Personalized Channel to
protect the attributes around the eyes (Appendix C indicates
the details of βββ). For DP-SGD and DP-PSAC, we use the clip-
ping bound S = 1.0, δ = 1×10−5 (δ = 3×10−6 for CelebA),
and the multiplier

√
σ in {0.8, 0.57, 0.46, 0.2066} (the corre-

sponding privacy budget ε for these DP training are {1.705,
5.120, 12.026, 331.668}, respectively) . According to Thm. 4,
these σ result in channel capacities in {100, 200, 300, 1500}
when we utilize B = 64, which are identical to the channel
capacities of our methods. As in Fig. 15, the Natural Channel
achieves the best utility-privacy trade-off. The reason is that it
utilizes the original importance to maintain the information in
data attributes, and the constrained channel capacity ensures
the ability to defend against DRA.
Comparison of the details in defense ability. To investigate
the detailed defense ability of different methods, we decouple
the defense capabilities to display them in the defense-defense
plane. Specifically, x-axis represents IMPDRA and y-axis rep-
resents IMPMIA. As displayed in Fig. 16, DP specializes in
defending against MIA but is weaker in defending against
DRA, this is reasonable since DP focuses on protecting indi-
vidual information. Compared to DP, our methods specialize
in defending against DRA. Moreover, our methods achieve
the best comprehensive defense capability for both attacks.

Table 2: Training time (s) for 25 epochs of different models

Model Parameters SGD DP-SGD Ours

LeNet 6.20×104 283.43±0.95
445.45±20.41 312.99±1.40

(+57.16%) (+10.43%)

ResNet10 4.90×106 624.23±8.66
1397.34±17.38 651.29±10.39

(+123.85%) (+4.33%)

AlexNet 3.59×107 374.13±2.68
1023.83±2.85 406.02±1.04
(+173.66%) (+8.52%)

VGG16 1.34×108 581.69±5.35
3402.91±4.72 612.99±4.62
(+485.00%) (+5.38%)

Efficiency of constraining in the data space. As displayed
in Tab. 2, we compare the efficiency of our method with
DP-SGD, which is a method that works in the parameter
space. We use OPACUS 1.1.2 [60] for the implementation
of DP-SGD. The results indicate that when we transform
the operations to the data space, it significantly reduces the
amount of calculation, i.e., the training time, especially when
the dimension of the parameter increases.

7 Related Work

Differential Privacy. Differential Privacy [18] is an impor-
tant technique for privacy protection. For the definition of
differential privacy, Mironov [43] proposes to utilize Rényi
divergence, which leads to compact and accurate privacy loss.
Moreover, Abadi et al. [1] propose an empirical algorithm
DP-SGD for applying DP to ML training, then multiple litera-
ture tries to improve the performance of DP-SGD [3, 6, 9, 56].
Most of them focus on the utility, trying to adaptively clip the
gradients or add suitable perturbations. For the application of
DP, Levy et al. [35] propose to protect user-level DP instead
of ensuring the privacy of individual samples, which makes
DP more reliable to FL. Truex et al. [53] present a proto-
col LDP-Fed to formally ensure data privacy in collecting
local parameters with high precision. However, DP is still
vulnerable to DRA, several researchers indicate that they can
reconstruct the data without violating the requirements of
DP [14, 17], implying that the algorithms are still vulnerable
to DRA. Compared to DP, our work aims to defend against
DRA based on information theory.
Limiting Mutual Information. Another related concept of
privacy protection depends on MI. Several studies connect
MI with DP by deriving the upper bound of MI for a dis-
tinct DP mechanism [4, 8, 16]. For privacy protection, Li et
al. [36] propose to train a feature extractor that minimizes
MI between the output features and the assigned label while
maximizing the MI between output features and the original
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data. Similarly, Osia et al. [46] propose to train an extractor
with the variational lower bound for MI estimation. Moreover,
Hannun et al. [25] utilize Fisher Information to measure the in-
formation leakage, and the conclusions are consistent with our
theories. Finally, we can also model FL based on information
theory [2, 54], which measures the MI between different vari-
ables in FL. Compared to the former methods, our technique
models the communication channel of FL directly based on
information theory and utilizes its upper bound to derive prac-
tical methods for constraining the transmitted information,
which leads to the strong ability to defend against DRA.

8 Discussion and Conclusion

Our method constrains the information leakage of the black-
box model according to an upper bound derived by maximum
entropy distribution (Lemma 1). We can tighten the upper
bound by utilizing a large batch size or incorporating domain
knowledge. Among them, utilizing large batch size for train-
ing causes the output distribution to be closer to a Gaussian
distribution, while incorporating domain knowledge enables
us to get more properties of the output distribution. If we get
a tighter upper bound, the tradeoff between utility and privacy
can be further improved.

In summary, as the reconstruction error of DRA is decided
by the transmitted information, we build a channel model to
measure the information leakage of the black-box model in
FL. The model indicates that the amount of transmitted infor-
mation is decided by the channel capacity C and the number
of optimization rounds n. Guided by the model, we develop
methods to constrain the channel capacity within a thresh-
old κ. Combining it with the limited optimization rounds
n, the upper bound of the total transmitted information re-
mains below n ·κ, which ensures the ability to defend against
DRA. Furthermore, we transform the operations of constrain-
ing channel capacity from the parameter space to the data
space. The transformation significantly improves the training
efficiency and the model accuracy under constrained informa-
tion leakage. Finally, extensive experiments with real-world
datasets validate the benefit of our methods.
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A The detail explanation of DRA

For DRA in FL, the attacker aims to build a reconstruction
D̂DD(WWW i,WWW o) to approximate the data DDD, where WWW i and WWW o
are the transmitted parameters in FL. Moreover, if the MSE
between D̂DD(WWW i,WWW o) and DDD achieves 0, i.e., E∥D̂DD(WWW i,WWW o)−
DDD∥2 = 0, we conclude that D̂DD(WWW i,WWW o) and DDD have identical
distributions [55].

Additionally, with the definition of DDD, i.e., the random vari-
able that follows the distribution of the local dataset, the MIA
[10] can be viewed as inferring whether a particular data point
belongs to the support set of DDD.

B Proofs of Lemmas and Theorems

B.1 Proof of Theorem 1
Before the proof of Thm. 1, we have the following lemma.
Lemma 2. For any d-dimensional semi-positive definite ma-

trix AAA, i.e., AAA ∈ Rd×d , we have det(AAA)≤
(

tr(AAA)
d

)d
.

Proof. Since AAA is a semi-positive definite matrix, we have its
eigen values, i.e., {λi}d

i=1, are non-negative. we can get

det(AAA) =
d

∏
i=1

λi ≤
(

∑
d
i=1 λi

d

)d

=

(
tr(AAA)

d

)d

,

where the inequality depends on the AM-GM inequality.

Then based on Lemma 2, we can prove Thm. 1.

Proof. As Cov(DDD) is the covariance matrix of DDD, we have

h(DDD|WWW )
(1)
≤ EWWW [

d
2

log(2πe)+
1
2

logdet(Cov(DDD|WWW ))]

(2)
≤ d

2
log(2πe)+E[

d
2

log(
tr(Cov(DDD|WWW ))

d
)]

(3)
≤ d

2
log(2πe)+E[

d
2

log(
E[∥DDD− D̂DD(WWW )∥2|WWW ]

d
)]

(4)
≤ d

2
log(2πe)+

d
2

log(
E[E[∥DDD− D̂DD(WWW )∥2|WWW ]]

d
)

=
d
2

log(2πe)+
d
2

log(
E[∥DDD− D̂DD(WWW )∥2]

d
),

where (1) is a consequence that with identical mean vector
and covariance matrix, Gaussian distribution is the maximum
entropy distribution. (2) depends on Lemma 2. The reason
for (3) is that mean vector is the optimal estimator in terms
of mean squared error, and (4) is a consequence of Jensen’s
inequality. Hence,

E[∥DDD− D̂DD(WWW )∥2/d])≥ 1
2πe

e2h(DDD|WWW )/d

=
e2h(DDD)/d

2πe
e−2I(DDD;WWW )/d ,

where the last equality is a consequence of Eq. (4).

B.2 Proof of Lemma 1
Proof. Firstly, as XXX and YYY are independent, then E[XXX +YYY ] =
µµµXXX +µµµYYY and Cov(XXX +YYY ) = ΣΣΣXXX +ΣΣΣYYY .

Secondly, with a specific mean vector and covariance ma-
trix, the maximum entropy distribution is Gaussian, which
implies that h(XXX +YYY )≤ h(N (µµµXXX +µµµYYY , ΣΣΣXXX +ΣΣΣYYY )).
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Finally, if XXX ∼ N (µµµXXX , ΣΣΣXXX ), then XXX + YYY ∼ N (µµµXXX +
µµµYYY , ΣΣΣXXX +ΣΣΣYYY ), which concludes the proof.

B.3 Proof of Theorem 2
Proof. According to the relationship between mutual infor-
mation and differential entropy, we have

I(DDD, W̃WW
(t)
o |WWW

(t)
i )

= h(W̃WW
(t)
o |WWW

(t)
i )−h(W̃WW

(t)
o | DDD, WWW (t)

i )

= h(W̃WW
(t)
o |WWW

(t)
i )−h(N (000, σ · I))

≤ h(N (µµµ(t), ΣΣΣ
(t)+σ · I))−h(N (000, σ · I)), (23)

where the second equality depends on the fact that WWW (t)
o is

a constant when WWW (t)
i and DDD are both observed. The last

inequality is an immediate consequence of Lemma 1 with

W̃WW
(t)
o =WWW (t)

o +
√

σ ·ξξξ.
Then with the differential entropy of Gaussian distribution,

we can further transform Eq. (23) to

h(N (µµµ(t), ΣΣΣ
(t)+σ · I))−h(N (000, σ · I))

=
1
2

ln(2πe)d det(ΣΣΣ(t)+σ · I)− 1
2

ln(2πe)d
σ

d , (24)

where det(·) denotes the determinant of a matrix and the
second term of Eq. (24) is decided by det(σ · I) = σd .

Next, we focus on the first term of Eq. (24). Note that ΣΣΣ
(t)

is the covariance matrix of WWW (t)
o , hence it’s a real symmetric

matrix, then according to eigen decomposition, we have

ΣΣΣ
(t) = QQQ(t)

ΛΛΛ
(t)QQQ(t)T = QQQ(t)diag(λ(t)

1 , · · · ,λ(t)
d )QQQ(t)T, (25)

where QQQ(t) is an orthogonal matrix, i.e., QQQ(t)QQQ(t)T = I. Hence,
σ · I = QQQ(t)(σI)QQQ(t)T. Then we have

det(ΣΣΣ(t)+σ · I)

= det(QQQ(t)diag(λ(t)
1 , · · · ,λ(t)

d )QQQ(t)T +QQQ(t)(σI)QQQ(t)T)

= det(diag(λ(t)
1 , · · · ,λ(t)

d )+σI) =
d

∏
i=1

(λ
(t)
i +σ).

Then we have I(DDD, W̃WW
(t)
o |WWW

(t)
i )≤ 1

2 ln ∏
d
i=1(λ

(t)
i +σ)

σd , which im-
mediately completes the proof.

B.4 Proof of Theorem 3
Before the proof of Thm. 3, we have the following lemma.

Lemma 3. For any d-dimensional semi-positive definite ma-
trix AAA and BBB, we have

(1) αααT(AAA+BBB)−1ααα≤ αααTAAA−1
ααα,

(2) αααT(AAA+BBB)−1ααα≤ αααTBBB−1
ααα,

where ααα is a d-dimensional vector.

Proof. Here we only prove inequality (1), and the proof for
inequality (2) is the same as inequality (1). First, we have

(AAA+BBB)−1 = AAA−1−AAA−1(AAA−1 +BBB−1)−1AAA−1, (26)

hence, we can get following result.

ααα
T(AAA+BBB)−1

ααα = ααα
T(AAA−1−AAA−1(AAA−1 +BBB−1)−1AAA−1)ααα.

Then we need to prove

ααα
TAAA−1(AAA−1 +BBB−1)−1AAA−1

ααα≥ 0. (27)

As AAA−1 is a symmetric matrix, we can rewrite Eq. (27) as

α̃αα
T(AAA−1 +BBB−1)−1

α̃αα≥ 0, (28)

where α̃αα = AAA−1
ααα. As AAA and BBB are semi-positive definite, we

have (AAA−1 +BBB−1)−1 is a semi-positive definite matrix either,
hence inequality (28) holds, which concludes the proof.

Then with Lemma 3, we can prove Thm. 3.

Proof. As we can rewrite ΣΣΣi, i ∈ {0, · · · ,d−1}, as

ΣΣΣi =

(
ΣΣΣi−1 ρρρi
ρρρT

i ci,i

)
(29)

=

(
IIIi−1 0

ρρρT
i ΣΣΣ
−1
i−1 1

)(
ΣΣΣi−1 ρρρi

0 ci,i−ρρρT
i ΣΣΣ
−1
i−1ρρρi

)
,

Hence, the determinant is

detΣΣΣi = (ci,i−ρρρ
T
i ΣΣΣ
−1
i−1ρρρi)detΣΣΣi−1. (30)

Based on this result, with substitution ΣΣΣi+βββi for ΣΣΣi, we have

det(ΣΣΣi +βββi) = vi ·det(ΣΣΣi−1 +diag(βββi−1)), (31)

vi = ci,i +βi−ρρρ
T
i (ΣΣΣi−1 +diag(βββi−1))

−1
ρρρi, (32)

where βββi = (β0, · · · ,βi−1). Then as (ΣΣΣi−1 +diag(βββi−1))
−1 is

a semi-positive definite matrix, we have vi ≤ ci,i +βi.
Furthermore, we can rewrite vi as

vi = ci,i +βi−ρρρ
T
i ΣΣΣ
−1
i−1ρρρi

+ρρρ
T
i ΣΣΣ
−1
i−1(ΣΣΣ

−1
i−1 +diag(βββi−1)

−1)−1
ΣΣΣ
−1
i−1ρρρi

≤ ci,i +βi−ρρρ
T
i ΣΣΣ
−1
i−1ρρρi +ρρρ

T
i ΣΣΣ
−1
i−1 diag(βββi−1)ΣΣΣ

−1
i−1ρρρi,

where the first equality is based on Eq. (26), and the last in-
equality depends on Lemma 3. Finally, according to Eq. (30),
we have lndetΣΣΣd−1 = ∑

d−1
i=0 lnvi by induction. Combining

above results, we can immediately conclude the proof.

B.5 Proof of Theorem 4
Proof. For the first stage, if we denote the threshold of gradi-
ent clipping as S and denote the added noise as σ · I, we get
∥ggg(t)∥2 ≤ S, where ggg(t) = ∇WWW F(WWW (t)

i ; DDD) is a random vector
as a function of DDD. Hence, we have

tr(ΣΣΣ(t))≤ tr(E(ggg(t)(ggg(t))T )) = E(∥ggg(t)∥2
2)≤ S2, (33)

where the first inequality depends on the relationship be-
tween covariance matrix and the auto-correlation matrix, i.e.,
tr[E(ggg(t)(ggg(t))T )−ΣΣΣ

(t)] = tr[E(ggg(t))E(ggg(t))T )]≥ 0.
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Then we have ∑
d
i=1 λ

(t)
i = tr(ΣΣΣ(t))≤ S2. Based on AM-GM

inequality and the fact λ
(t)
i ≥ 0, the channel capacity derived

by Eq. (15) has an upper bound as

f (t)(σ)≤ f̂ (t)(σ) = d · ln
σ+

∑
d
i=1 λ

(t)
i

d
σ

≤ d · ln σ+S2/d
σ

.

Therefore, if we treat σ as a constant, and denote uσ(d) :=

d · ln σ+S2/d
σ

,d ≥ 0, we have f (t)(σ)≤ uσ(d). We observe that

u
′
σ(d) = ln σ+S2/d

σ
+ σ

σ+S2/d −1. Hence

u′′σ(d) =−
S2(2σd +S2)

d(σd +S2)2 ≤ 0⇒ u
′
σ(d)≥ u

′
σ(+∞) = 0,

which implies uσ(d) is an increasing function of the dimen-
sion d. Based on L’Hospital’s rule, we can conclude that

C(t) = f (t)(σ)≤ uσ(d)≤ uσ(+∞) =
S2

σ
. (34)

For the second stage, which provides a (ε,δ)-DP, the au-
thors in [19] demonstrate that we need to choose σ ≥ S2 ·
2log(1.25/δ)

ε2 , then with a substitution in Eq. (34), we have

C(t) ≤ ε2

2log(1.25/δ) . Hence, the channel capacity of (ε,δ)-DP

in the FL scenario is upper bounded by ε2

2log(1.25/δ) .
Finally, as illustrated in [19], for mini-batch SGD in DP, i.e.,

the batch size B> 1, the mechanism becomes ggg= 1
B (∑

B
i=1 ḡggi+

ξξξ), let g̃gg = 1
B ∑

B
i=1 ḡggi and ξ̃ξξ = 1

B ξξξ, we have ΣΣΣg̃gg = 1
B ΣΣΣgggi and

ΣΣΣ
ξ̃ξξ
= 1

B2 ΣΣΣξξξ. By substitution them into Eq. (33), we can imme-
diately conclude the proof.

C Details of the Prior Knowledge
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Figure 17: The prior knowledge βββ used for the Personalized
Channel in Sec. 6. Specifically, the number in the matrix
represents the coefficient for the added noise.

For the Personalized Channel, the prior knowledge βββ used
in Sec. 6 is a 32∗32∗c tensor, where c represents the number
of image channel (e.g., c = 1 for Fashion-MNIST dataset and
c = 3 for CIFAR-10 dataset, respectively). The number in βββ

represents the coefficient for the added noise, which means
we add more noise to the dimension if the coefficient of this
dimension is larger. In these experiments, we employ position-
based prior knowledge, which means the prior knowledge for
all image channels are identical. Therefore, the important

parameters are the numbers of one channel, which is a 32∗32
matrix (as displayed in Fig. 17).

Specifically, as we aim to protect the private information
around eyes for the data in CelebA (as displayed in Fig. 5),
we set the number of these positions (i.e., the sub-matrix with
row 12 to 19 and column 8 to 23.) to be 50, and set the rest
number of the matrix to be 1. Therefore, this prior knowledge
adds 50 times noise to the chosen positions (i.e., the positions
around the eyes) to provide stronger privacy protection for this
area. Additionally, we also use this prior knowledge for other
datasets, including Fashion-MNIST, CIFAR10, and SVHN.

D Validating the theories of existing methods

The impact of batch size for DP and utilizing large batch
size in defending against DRA. To improve the existing
defense algorithm for defending against DRA, we design
experiments to validate the roles of B by gradient inversion
attack on CIFAR-10. Specifically, to keep identical reconstruc-
tion difficulties for different B, we only reconstruct one image
from the gradient as the mean restoration E[D̂DD]. Then we cal-
culate the MSE between E[D̂DD] and the mean value of local
dataset E[DDD], i.e., ∥E[D̂DD]−E[DDD]∥2. Due to the convexity of
MSE, the difference between D̂DD and DDD is lower bounded, i.e.,
E∥D̂DD−DDD∥2 ≥∥E[D̂DD]−E[DDD]∥2. Moreover, we utilize clipping
bound S = 1.0 and the noise multiplier σ = 1.3 for the DP
training. The results are displayed in Fig. 6. If we utilize DP
for privacy protection, the performance for defending against
DRA consistently decreases with an increasing B. This phe-
nomenon is consistent with Thm. 4, indicating that the small
B is beneficial for DP in defending against DRA.

Additionally, when we do not apply any defense technique
for privacy, the defense ability increases according to the
increasing B. This phenomenon is consistent with Eq. (22)
due to the intrinsic noise in the collected data. Moreover, the
performance improvement becomes more significant when
we add a constant noise to the parameters. The conclusion is
that when we add a constant noise to the parameter, a larger
B leads to a stronger ability to defend against DRA.
The impact of eigenvalues in compression. We also validate
our theories for compression on CIFAR-10 datasets. In these
experiments, we utilize the gradient inversion attack to recon-
struct data from the gradients. For the compression, we set
the eigenvector to be 0 to reduce the information in the cor-
responding dimension. Then we map the training data to the
compressed eigenspace. For comparison, we only compress
one dimension according to the eigenvalue. The results are dis-
played in Fig. 8. Specifically, the eigenvalues {λmax,λ1,λ10}
are as follows: {222.21, 85.08, 9.91} for CIFAR10, {346.21,
71.01, 12.82} for CelebA, {313.0, 28.04, 4.67} for SVHN, and
{101.88, 61.80, 3.21} for Fashion-MNIST. The experiment
results demonstrate that the compression on the dimension
with a larger eigenvalue leads to a stronger defensive ability
to defend against DRA, which is consistent with our theories.
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