
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Detecting and Mitigating Sampling Bias in
Cybersecurity with Unlabeled Data

Saravanan Thirumuruganathan, Independent Researcher; Fatih Deniz, Issa Khalil,
and Ting Yu, Qatar Computing Research Institute, HBKU; Mohamed Nabeel,

Palo Alto Networks; Mourad Ouzzani, Qatar Computing Research Institute, HBKU
https://www.usenix.org/conference/usenixsecurity24/presentation/thirumuruganathan

Detecting and Mitigating Sampling Bias in Cybersecurity with Unlabeled Data

Saravanan Thirumuruganathan†, Fatih Deniz‡, Issa Khalil‡, Ting Yu‡,
Mohamed Nabeel∗, Mourad Ouzzani‡

†Independent Researcher
‡Qatar Computing Research Institute, HBKU

∗Palo Alto Networks

Abstract
Machine Learning (ML) based systems have demonstrated
remarkable success in addressing various challenges within
the ever-evolving cybersecurity landscape, particularly in the
domain of malware detection/classification. However, a no-
table performance gap becomes evident when such classifiers
are deployed in production. This discrepancy, often observed
between accuracy scores reported in research papers and their
real-world deployments, can be largely attributed to sampling
bias. Intuitively, the data distribution in the production dif-
fers from that of training resulting in reduced performance
of the classifier. How to deal with such sampling bias is an
important problem in cybersecurity practice. In this paper,
we propose principled approaches to detect and mitigate the
adverse effects of sampling bias. First, we propose two simple
and intuitive algorithms based on domain discrimination and
distribution of k-th nearest neighbor distance to detect dis-
crepancies between training and production data distributions.
Second, we propose two algorithms based on the self-training
paradigm to alleviate the impact of sampling bias. Our ap-
proaches are inspired by domain adaptation and judiciously
harness the unlabeled data for enhancing the generalizability
of ML classifiers. Critically, our approach does not require
any modifications to the classifiers themselves, thus ensuring
seamless integration into existing deployments. We conducted
extensive experiments on four diverse datasets from malware,
web domains, and intrusion detection. In an adversarial set-
ting with large sampling bias, our proposed algorithms can
improve the F-score by as much as 10-16 percentage points.
Concretely, the F-score of a malware classifier on AndroZoo
dataset increases from 0.83 to 0.937.

1 Introduction

Machine learning (ML) based systems have achieved tremen-
dous success in diverse cybersecurity tasks such as malware
detection, detecting malicious URLs, and vulnerability analy-
sis, among others [17, 20, 53, 54]. However, when these sys-
tems are deployed in production, their performance does not

match the lofty performance that is reported in the research pa-
pers [43,62]. One of the central assumptions in ML is that the
training and test data are drawn identically and independently
(i.i.d.) from the same underlying data distribution [48]. When
this assumption is violated, intentionally or inadvertently, the
performance of the classifiers goes down. In the worst case,
this renders the ML systems unsuitable for cybersecurity ap-
plications that have stringent performance requirements.

The discrepancy between training and deployment data
distributions is especially high in the cybersecurity domain
where the classifiers are deployed in an adversarial environ-
ment. For example, adversaries could modify the malware
code to bypass detection. Not surprisingly, there has been
extensive work [8, 13, 27, 60, 62] on ensuring that the perfor-
mance of ML classifiers is stable. However, almost all of the
prior work focuses on concept drift [26]. In this setting, the de-
ployment data distribution slowly diverges from the training
data distribution over time resulting in performance degrada-
tion of the classifier. However, our empirical analysis over
multiple datasets from diverse tasks shows the discrepancy
arises much earlier in the ML workflow.

Sampling Bias. We use the term sampling bias to represent
the generic phenomenon where the distributions for training
and deployment data are not identical. Hence, the trained
classifier provides suboptimal performance in a production
setting even when the classifier is freshly deployed (unlike
the gradual degradation in concept drift). While some prior
work has observed this phenomenon, they often have a nar-
row focus. For example, Tesseract [38] considers spatial bias
where the ratio of goodware to malware in the data varies. In
contrast, we consider a generic setting where the discrepancy
between training and deployment data distributions is arbi-
trary. Training ML models in cybersecurity has a number of
subtle pitfalls that make this discrepancy likely. For example,
the bias could be due to using a benchmark dataset that is
no longer representative of the real-world settings (such as
using a dataset on Google Play store to design a classifier
for Chinese app store or using a dataset from a particular

USENIX Association 33rd USENIX Security Symposium 1741

geographical region to another [10, 11]). Alternatively, this
could be due to the various shortcuts taken in data collection.
Given the high cost of labeling, many researchers often use
convenience sampling [51] where the collected data is not rep-
resentative of the production data. For example, URLs from
".edu" or ".gov" domains or popular websites from Tranco
might be overrepresented in a dataset as they are likely to be
benign. Another pitfall arises from the labeling heuristics. For
example, a researcher could label a data item as malicious if
at least k (e.g., 10) engines label from VirusTotal [34] report
it as malicious. Similarly, every data item that none of the en-
gines report as malicious (i.e., k = 0) could be categorized as
benign. While intuitive, this has a subtle issue where the data
items with 1 to k−1 suspicious labels are underrepresented.
Finally, indiscriminate mixing of incompatible datasets – such
as apps from Google Play or Chinese app stores – could also
cause bias in the training data. Of course, these scenarios are
not comprehensive [21]. The adversarial and dynamic nature
of cybersecurity and the high cost of accurate labeling neces-
sitates the use of heuristics that exacerbate the sampling bias.
It is indisputable that sampling bias is a persistent issue with
ML classifiers in the cybersecurity domain [11, 43]. While it
is almost impossible to completely eliminate sampling bias,
in this paper, we propose novel algorithms that can reduce
the performance penalty caused by the bias. Concretely, we
make two major contributions - detection of sampling bias
and mitigation of its impact.

Detecting Sampling Bias. ML workflows are often com-
plex and filled with various subtle pitfalls that can result in
sampling bias. It is infeasible to make every cybersecurity
practitioner well-versed in sampling theory. We focus on
the practical problem where we are given a labeled training
dataset DT and an unlabeled deployment dataset DU . Our goal
is to detect if this training setup produces a biased classifier.
We propose two complementary techniques for bias detec-
tion. The first approach is based on the concept of domain
discrimination. Intuitively, we train a classifier to determine
if a data item belongs to DT or DU . If the accuracy of this
classifier is low (such as 0.5), then DT and DU are indistin-
guishable which implies a low sampling bias. In contrast, a
high accuracy means that DT and DU are substantially dif-
ferent and likely will result in a biased classifier. Our second
approach detects bias based on the distribution of the k-th
nearest neighbor distances between DT and DU .

Mitigating the Impact of Sampling Bias. Our second con-
tribution consists of two novel algorithms that can mitigate
the impact of sampling bias. Given DT and DU , our goal is
to train a classifier C ′ that has a higher performance than the
biased classifier C that is trained only on DT . Intuitively, we
achieve this by judiciously using the unlabeled data from DU .
In order to increase the adoption of our approach, we ensure
that the classifier C ′ uses the same training regimen as that of
C . Concretely, we use the self-training paradigm where the

C ′ is trained on DT ∪DP
U , where DP

U ⊆ DU . Since DU is unla-
beled, we need to obtain the pseudo-labels for DP

U . Instead of
obtaining labels for a data item t ∈ DP

U using a domain expert,
we obtain approximate (pseudo) labels using DT . We can see
that if these pseudo labels are inaccurate, the classifier C ′ will
have a lower performance than C . Hence, the key challenge
here is to design a procedure for obtaining accurate pseudo
labels.

We tackle this challenge by designing algorithms that pro-
duce better representations for data items in DT and DU . Our
first algorithm uses contrastive learning [22] for learning the
representations. This method is trained such that the repre-
sentations of similar data items are pushed together while the
representations of dissimilar items are pulled apart. The key
challenge is to identify similar items without having the label
information. Our second algorithm is based on an iterative ap-
proach. We train a classifier CT on DT and use its predictions
as the pseudo label for DU . Next, we train a classifier CU on
DU using the pseudo labels and use its predictions to obtain
pseudo labels for DT . The key insight is to use a common
encoder for producing representations such that the classifiers
CT and CU are quite accurate.

Experimental Highlights. We conduct extensive experiments
to demonstrate the efficacy of our proposed algorithms. Most
of our experiments focus on the malware detection domain.
We consider an especially challenging setting where the clas-
sifier is trained on one dataset DT (such as Ember [5]) and
then evaluated on a related but sufficiently different dataset
Dtest (such as UCSB-Packed [1] or BODMAS [61]). We also
investigate a further adversarial setting where the the classifier
is evaluated on the most challenging tuples from Dtest . As we
shall show in the experiments, a classifier CT that is trained
and tested on UCSB achieves an F-score of 0.986. A classifier
CT that is trained on Ember but tested on UCSB achieves an
F-score of 0.725. The low performance is to be expected as
Ember and USCB has different data distributions. However,
our proposed algorithms were able to bridge most of the dif-
ferences in the performance. Concretely, the classifier based
on CONL-BM achieves an F1-score of 0.916 while CYC-
BM achieves an F1-score of 0.938. We also demonstrate the
generalizability of our algorithms by conducting additional
experiments over domains and intrusion detection.

2 Preliminaries

Datasets. We have a labeled training dataset DT =
{(x1,y1), . . . ,(xN ,yN)} with N data items that are drawn i.i.d.
from a data distribution P. A classifier C that is trained on DT
is then deployed in a production setting where the data items
are drawn i.i.d. from a data distribution Q. Ideally, the joint
distribution of the training and deployment data are identical,
i.e. P(x,y) = Q(x,y). Very often, methodological issues in
collecting dataset DT produces sampling bias resulting in the

1742 33rd USENIX Security Symposium USENIX Association

divergence of their data distributions, i.e. P(x,y) ̸= Q(x,y).
When distributions P and Q diverge, any classifier C trained
on DT will provide sub-optimal performance when evaluated
on a testing dataset Dtest drawn i.i.d. from Q.

We assume the availability of an unlabeled dataset DU =
{x1,x2, . . . ,xM} with M data items that are drawn i.i.d. from
Q. Intuitively, DU is representative of the deployment data
that will be seen by a classifier in a production setting. We can
see that, any classifier that achieves high accuracy on DU will
also have a high accuracy in a production setting (and also
on Dtest). While it is desirable to have DU and Dtest the same
distribution Q, this strict assumption is not always necessary.
It is sufficient that DU is ‘closer’ to Dtest than DT which also
ensures that DU is less biased than DT . We do not assume
that DT is similar to DU (or Dtest).

Sampling Bias. In this paper, we use the total survey error
(TSE) framework proposed by [21]. Specifically, we focus on
representation error which corresponds to the divergence be-
tween a selected sample and the target population of interest.
There are three key sources for this type of error. Coverage
error occurs when the sampling frame is not the same as the
target population. Even though the target population is the set
of all URLs, millions of URLs that are internal to some enter-
prise are never exposed to the outside (such as to VirusTotal).
Hence the sampling frame consists of public URLs which is
only a subset of the target population. A sampling error oc-
curs when the subset of data items chosen from the sampling
frame is not representative. Given the set of all public URLs,
one could preferentially select URLs from ".edu" or ".gov"
domains, such as for ease of labeling. Hence the selected
sample is not representative of the sampling frame resulting
in sampling error. Finally, a non-response error occurs if a
non-uniform subset of the observed sample is excluded from
the final statistical sample. For example, the domain expert
could use a labeling heuristic by passing all the URLs from
the observed sample to VirusTotal. Then, she could label the
URLs that are not flagged by any engine as benign and label
those that are flagged by k (e.g. k = 10) engines as malicious.
However, this has resulted in the drop-off of URLs that were
flagged by 1 to k−1 engines causing non-responsive errors.
Our algorithms can handle bias injected due to common types
of representation errors.

Problem Definition. Our goal is to train a less biased clas-
sifier C ′ that achieves higher performance on Dtest than a
classifier C trained on DT . We achieve this by leveraging DU .
Concretely, we construct a new dataset D = DT ∪DP

U where
DP

U ⊆ DU . Since DU is unlabeled, we judiciously select a sub-
set DP

U for which relatively accurate (pseudo) labels can be
obtained. When one trains a classifier C ′ on D using the same
training regimen as C , it will have a higher accuracy than C .

Problem Scope. Our algorithms are designed to detect and
mitigate sampling bias injected due to common types of rep-
resentation errors. Furthermore, we focus on sampling bias

that exists between datasets Dt
T and Dt

test for a single snapshot
of time t. When the classifier has to be retrained (such as after
a week for time t +∆), then our approach can be used be-
tween datasets Dt+∆

T and Dt+∆
test . Our approach can be used in

a dynamic setting under limited circumstances. For example,
one could apply our bias detection algorithm to detect dis-
crepancies between Dt

T and the unlabeled datasets Dtest seen
in production for time periods t +∆, t +2×∆, When the
discrepancy crosses some threshold δ, then the classifier can
be retrained using our bias mitigation algorithms. Our bias
mitigation algorithms work best when the datasets DT , DU
and Dtest are all collected from approximately the same time
period t. When this assumption is violated, it is preferable to
use other specialized algorithms such as concept drift [8] or
continual learning [14].

Collecting Unlabeled Dataset DU . Each of our proposed
algorithms for the detection and mitigation of bias assumes
the existence of a less biased and unlabeled dataset DU . Since
DU can be unlabeled, it is often easier to collect. For example,
one could collect a set of domains using passive DNS or from
daily logs of VirusTotal. One could collect a set of mobile
apps by uniformly sampling Google Play or Apple App stores.
Another common source for DU would be to use recent data
from production (such as from last week). Regardless of the
collection procedure, it is desirable that DU is representative
of the data items that will be seen by the classifier in the
production setting than DT . The closer DU is to the production
setting, the higher the performance improvement that could
be obtained by our algorithms. In contrast, if DU is dissimilar
to Dtest , then our algorithms (or any ML algorithm for that
matter) would provide sub-optimal results.

3 Background

Our paper synthesizes ideas from diverse fields. We provide a
basic overview of the ideas that are relevant to the paper.

Unsupervised Domain Adaptation (UDA). Traditional su-
pervised learning relies on the assumption that the training
and test data are drawn from the same distribution. When
this assumption is violated, a classifier trained on the train-
ing data (also called the source domain) can provide inferior
performance when evaluated on the test data (also called the
target domain). The field of domain adaptation seeks to learn
a classifier using the source data that also performs well on
the target data. Of interest to us is the unsupervised domain
adaptation where we have labeled source data and unlabeled
target data. Different UDA techniques leverage the unlabeled
data in different ways to achieve improved performance. A
popular technique is domain alignment where the goal is to
minimize the discrepancy between the two domains. This
can be achieved by reweighting [56] the source samples so
that its distribution is closer to the target data distribution.
Alternatively, the samples from both domains can be trans-

USENIX Association 33rd USENIX Security Symposium 1743

formed to a common latent space through domain mapping
using a learned encoder. However, both of these methods are
not appropriate for our setting. The efficacy of reweighting
drops off steeply as the divergence between the two domains
increases. Domain mapping is not applicable as it typically
requires using a completely different set of classifiers that are
capable of learning an appropriate latent space.

Self-Training. Recently, self-training has become the domi-
nant paradigm for UDA [4]. Most of the self-training classi-
fiers [59, 64, 65] are iterative and perform two steps in each it-
eration: (a) create a set of pseudo-labels (i.e., approximate and
possibly incorrect labels) for the target domain; and (b) train
a classifier using the generated pseudo-labels (and the source
data). Different algorithms vary in how pseudo-labels are
generated and/or how the classifier is trained. Using a naive
method will generate noisy pseudo-labels resulting in a classi-
fier with bad performance. The vast majority of the algorithms
using self-training for UDA are developed for computer vi-
sion and are non-trivial to adapt to the cybersecurity setting.
The key issue is that many of these techniques rely on aug-
mentations - which are label-preserving transformations. For
example, if the prediction of a classifier for an image I and
(one or more of) its augmentations (such as rotation, random
cropping) are the same, then it is plausible to think that the
classifier is likely to be correct about the prediction for I. How-
ever, it is not obvious how to design such label-preserving
transformations for cybersecurity applications.

4 Detection of Sampling Bias

In this section, we describe two principled algorithms for
detecting sampling bias caused by representation errors.

Problem Scope. We are given a training dataset DT and an
unlabeled dataset DU . Our goal is to detect sampling bias be-
tween DT and DU . Concretely, we are interested in detecting
malignant sampling bias such that a classifier trained on DT
has a sub-optimal performance on DU .

A desirable preprocessing step is to ensure that the cardi-
nalities of DT and DU are approximately the same. If not, an
uniformly random sample from the larger dataset has to be
obtained with the same cardinality as the smaller dataset. This
ensures that bias detection operates in a ‘balanced’ setting
where neither DU nor DT dominate each other. Traditional
ML models produce poor results over imbalanced data unless
sophisticated balance correction techniques such as reweight-
ing are applied. For example, if |DU |/(|DU |+ |DT |) = 0.66
(i.e. DU is twice as large as DT), then the model has to be
trained on a weighted variant of the dataset where tuples from
the smaller dataset has a higher weight than the ones from the
larger dataset (in this case 2 vs 1).

4.1 Domain Discrimination

Our first algorithm takes a direct approach by treating clas-
sifier accuracy as a proxy for the discrepancy between DT
and DU . Suppose we train a classifier CT on the labeled data
DT . Hypothetically, if we have accurate labels for DU , we can
compare the accuracy of CT on a held-out dataset of DT and
DU . If the accuracies are comparable, then it is likely that DT
and DU have low sampling bias. A recent work [29] identified
intriguing connections between using two-sample tests and
classifier accuracy as a proxy for determining if two samples
came from different distributions.

Our approach is based on the concept of domain discrimina-
tion [15, 63]. The key challenge in using the aforementioned
approach is that we do not have the labels for DU . Hence,
we design an alternative classifier for discriminating two dis-
tributions. Concretely, we construct a dataset D by pooling
both DT and DU . All the data items from DT have a label of
1 and the data items from DU have a label of 0. Using this
labeled data, we train a logistic regression classifier CD. Given
a data item t, this classifier can determine if t belongs to DT
or DU . We choose logistic regression as it is efficient to train
and since its output, i.e., p(y = 1|x), can be interpreted as a
probability. If we use another classifier, it is important to cali-
brate their output so that it can be interpreted as a probability.
Intuitively, we can see that the accuracy of the classifier is
a good proxy for how different DT and DU are. If the accu-
racy is around 0.5 (comparable to a random coin toss), then it
implies that the two distributions are practically indistinguish-
able. In contrast, if the accuracy is high then it implies that the
two distributions are sufficiently different that even a logistic
regression classifier could discriminate them. Algorithm 1
provides the pseudocode.

Algorithm 1 Domain Discrimination

Input: DT , DU and threshold δ

DT = {(x,1) ∀(x,y) ∈ DT}
DU = {(x,0) ∀x ∈ DU}
Randomly split DT into equal sized partitions D1

T and D2
T

Randomly split DU into equal sized partitions D1
U and D2

U
Train classifier CD on D1

T ∪D1
U

acc = Accuracy of CD on D2
T ∪D2

U
Return acc > δ

4.2 k-NN based Bias Detection

Our second approach is complementary to the parametric
approach taken by the domain discriminator. The key intuition
is that if two data distributions are similar, then the distribution
of the distance to the k-th nearest neighbor will also be similar.
It is non-parametric and does not make any distributional
assumption on the underlying feature space [52].

1744 33rd USENIX Security Symposium USENIX Association

Figure 1: Computing kNN Distance Distribution.

Distribution of kNN Distance. Assume that we have an effec-
tive encoder hφ(·) that can take a feature vector x and output
its embedding z. First, we apply the encoder on each data
item in DT and obtain the corresponding embedding. Let
ZT = {hφ(x) ∀(x,y) ∈ DT} be the collection of all such em-
beddings. Given a data item x from DU , we obtain the normal-
ized embedding z∗ = hφ(x)/||hφ(x)||. Let δ(z,Z,k) represents
the distance of the k-th nearest neighbor of the normalized
vector z∗ = z/||z|| from the embedding dataset Z. We compute
the k-th nearest neighbor distance distribution for both DT
and DU . Formally,

∆T = {δ
(
hφ(x),ZT ,k

)
∀x ∈ DT} (1)

∆U = {δ
(
hφ(x),ZT ,k

)
∀x ∈ DU} (2)

Given the two distance distributions ∆T and ∆U , one could
use any heuristic to check if they are similar. This can be
achieved by a function F that takes ∆T and ∆U as input and
outputs a scalar that is then compared with a threshold λ. A
common and robust approach (that we also use in our exper-
iments) would be to compare the distance between median
values of ∆T and ∆U against a threshold λ. If it is above λ,
then the distributions are different from each other and exhibit
sampling bias. A domain expert could use other metrics such
as the average or any percentile values.

Learning Embeddings. We use the supervised contrastive
learning approach SupCon [28] for learning the embeddings.
Intuitively, this approach ensures that normalized embeddings
from the same class (benign or malicious) are grouped to-
gether in the embedding space. In contrast, embeddings of
data items from different classes are pulled apart. Given a data
item x, SupCon generates multiple positive and negative pairs
by randomly selecting samples belonging to the same and
different classes respectively. It also uses a label-aware con-
trastive loss resulting in effective embeddings. Algorithm 2
shows the pseudocode and Figure 1 illustrates the algorithm.

5 Mitigating Sampling Bias

In this section, we introduce some key ideas and assumptions
that are relevant for designing algorithms that can mitigate

Algorithm 2 Distribution of k-th Nearest Neighor Distance

Input: DT , DU and threshold λ

Learn encoder hφ using SupCon(DT)
ZT = {hφ(x) ∀x ∈ DT}
∆T = {δ

(
hφ(x),ZT ,k

)
∀(x,y) ∈ DT}

∆U = {δ
(
hφ(x),ZT ,k

)
∀x ∈ DU}

Return F (∆T ,∆U)> λ

sampling bias.

Generating Accurate Pseudo Labels. The fundamental chal-
lenge is to come up with a procedure to generate effective
pseudo-labels. The success of any self-training method hinges
on pseudo-label accuracy. We cannot use the self-training ap-
proaches designed for computer vision or tabular ML. Com-
puter vision often relies on label-preserving transformations
(a rotated picture of a cat has the label cat). It is challenging
to come up with such general-purpose transformations that
can work across multiple domains in cybersecurity. Another
related area is that of tabular ML that creates transformations
through controlled feature corruption (i.e. replacing a fea-
ture value from one tuple with the corresponding value from
another randomly picked tuple). This approach is not label
preserving as cybersecurity classifiers are more sensitive to
individual feature values. Our solution is to sidestep the typi-
cal use of label-preserving transformation and instead rely on
geometric aspects of ML classifiers over the latent space.

In Sections 6 and 7, we propose two novel algorithms based
on the self-training paradigm. The output of these algorithms
are the classifiers CU that have been trained on using pseudo
labels. Once we have the classifier CU , we can then apply
it on DU to make predictions. Of course, it is unlikely that
CU is perfect. We will select a subset of DP

U ⊆ DU where the
classifier is most confident that is then used by the practitioner
to train a classifier C f inal on DT ∪DP

U . We would like to
note that these assumptions holds on expectation. Hence, it is
not necessary that all the tuples in the dataset satisfies these
assumptions. A small fraction of the tuples can safely violate
them. However, if a large proportion of the tuples violate them
then no ML model can achieve good accuracy.

ML Assumptions. In our paper, we rely on two widely held
assumptions in self-training and semi-supervised learning and
use it to design better pseudo-labeling strategies. The first is
the continuity/smoothness assumption [12] that posits that
data items that are close to each other are very likely to share
a label. Intuitively, this assumption results in classifiers that
have geometrically simple decision boundaries. The second is
the cluster assumption [25] that claims that data items tend to
form discrete clusters and that data items within a cluster are
likely to share a label. This does not imply that all the data
items of a particular class form a single cluster – data items
from the same class might form multiple discrete clusters,
each satisfying the cluster assumption.

USENIX Association 33rd USENIX Security Symposium 1745

We can operationalize these assumptions by developing
representation learning algorithms that transform data items
from DT and DU into a latent space where the continuity and
cluster assumptions hold. Concretely, our goal is to design a
latent space such that decision boundaries lie in low-density
regions and do not cross high-density regions (which will
result in similar points having different labels violating both
these assumptions).

Baseline Approaches. One might be tempted to design some
simple techniques based on the ML assumptions stated above.
For example, one could try to leverage continuity assumption
by designing a k-NN-based classifier for obtaining pseudo
labels for a data item x ∈ DU . Since similar items are likely
to share similar labels, we first select the k labeled data items
from DT that are most similar to x. Then we can use a strategy
such as (distance-weighted) majority voting to estimate the
pseudo label for x. We then repeat this process for each x∈DU .
Another approach would be to leverage the cluster assumption.
One could use a hierarchical clustering algorithm such as
hclust [37] over DT ∪DU to cluster the data items and obtain
dendrograms. Then we can use metrics such gap statistic [55]
or cophenetic correlation [46] to cut the dendrograms into
various clusters. Using the cluster assumption, any unlabeled
data item is assigned the same class as the majority label of
the cluster. While intuitive, both these approaches perform
poorly in practice. The key issue is that the original feature
space is often sub-optimal for using such simple techniques.
In the next two sections, we propose two novel algorithms that
leverage these assumptions and design a better latent space to
obtain better pseudo labels.

6 Contrastive Learning for Bias Mitigation

In this section, we describe how ideas from contrastive learn-
ing can be combined with the two ML assumptions mentioned
earlier to design effective pseudo-labeling strategies.

Improving Baseline Methods with Contrastive Learning.
The k-NN and clustering-based baseline approaches do not
work well. However, both approaches have a kernel of promis-
ing ideas whose potential can be fully exploited through con-
trastive learning. The k-NN classifier-based approach suf-
fers from two issues. First, the k-NN is a non-parametric
approach and hence results in overly complex decision bound-
aries. Such a decision boundary makes pseudo-labeling strate-
gies more fragile. Second, the original feature space is often
not conducive to applying the nearest neighbor-based clas-
sifiers. It is desirable to map the features of the data items
into a new representation space (also called an embedding
space). Ideally, this embedding space is semantically aware
so that similar items (such as a pair of benign items) will be
closer to each other. We can achieve this using contrastive
learning. The clustering-based baseline suffers from a similar
ailment. The original feature space is not well suited to se-

mantic clustering resulting in a non-homogeneous set of data
items within each cluster which then dilutes the accuracy of
majority voting-based pseudo labels.

Contrastive Learning (CL) with Pseudo Labels. CL is
trained using a set of positive and negative sample pairs. The
goal is to design an encoder that converts each data item into
an embedding such that the distance between embeddings
of the positive sample pairs is minimized while the distance
between embeddings of negative sample pairs is maximized.
This ensures that the embeddings of similar items are closer
to each other while those of dissimilar items are farther apart.

Our key insight is to use pseudo labels to produce the set
of positive and negative sample pairs. Suppose an oracle pro-
vided us with reasonably accurate pseudo-labels (we will
describe the labeling strategy shortly). Given a pair of data
items, if they have the same pseudo labels, then we can treat
them as a positive sample pair. Alternatively, data items with
different pseudo labels will be considered negative sample
pairs. Once we have the set of positive and negative sample
pairs, we can use them to learn a contrastive encoder. By
design, the learned embedding space will be more conducive
to pseudo-labeling. Contrastive learning ensures that in the
embedding space, similar items are closer to each other and
share the same label (i.e., continuity assumption). More inter-
estingly, the embedding space satisfies a simpler version of
the cluster assumption where all data items related to a single
class label form a single cluster. Recall that in the original
space, it is possible that data items from the same label might
form multiple independent clusters. However, the objective
function of contrastive learning ensures that all the data items
of a given label (benign or malicious) form a single cluster.
We use soft nearest neighbor loss as the objective function
for contrastive learning. Given a batch B of samples {(xi, ŷi)}
where ŷi is the (pseudo) label for xi and a function sim(·, ·)
that measures the similarity between two data items, the loss
function is defined at temperature τ as

Lsnn =− 1
|B|

|B|

∑
i=1

log
∑i̸= j,ŷi=ŷ j exp(−sim(xi,x j)/τ)

∑i ̸=k exp(−sim(xi,xk)/τ)
(3)

Obtaining Pseudo Labels. The simplified geometry of the
embedding space from contrastive learning allows us to use
relatively simple and intuitive pseudo-labeling strategies. We
do not desire to use the k-NN-based classifier as it results in
overly complex and fragile decision boundaries. Our approach
is based on two steps. First, given the labeled data DT , we
identify class prototypes – exemplars of data items that are
representative of a given class. Second, for each item x ∈
DU , we estimate the pseudo label using the nearest neighbor
strategy. So if x is closer to the benign class prototype, then
it is assigned a pseudo label as benign (and vice versa). We
use cosine distance to measure the similarity between the
embedding of the class prototype and that of x.

1746 33rd USENIX Security Symposium USENIX Association

There are many methods to compute the class prototypes.
A simple approach would be to compute the class centroid.
Recall that we know the labels for each data item x ∈ DT .
So, we begin by partitioning DT based on the class labels. In
the case of a binary classification problem, we will have two
partitions – one corresponding to benign items and another for
malicious items. We compute the class centroid by computing
the average feature vector of all the data items from that
cluster. Of course, the centroid produced using the original
feature vector could produce sub-optimal centroids as the data
items for a single class could belong to distinct clusters in
the feature space. A better alternative is to use the contrastive
encoder that can produce better clusters. Given a partition
(such as for benign items), we compute the embedding of
each data item by feeding it to the encoder and then compute
the centroid as the average of the embeddings. We can see that
the embedding centroid is more robust and a better prototype.

Algorithm 3 provides the pseudocode. One additional de-
tail that can be in the pseudocode is that we also use the
learned contrastive encoder to train a classifier C with param-
eters θ using the labeled data from DT . We use the standard
cross entropy loss to measure its accuracy. This ensures that
the learned embeddings are good for both pseudo-labeling
and training a classifier. The whole process has to be iterated
multiple times before the encoder produces good-quality em-
beddings. Initially, the encoder is randomly initialized and
hence produces low-quality class prototypes resulting in poor
pseudo labels. However, as the quality of the encoder im-
proves, the accuracy of the pseudo-labeler also increases.

Algorithm 3 Contrastive Bias Mitigation

Input: DT and DU
Randomly initialize parameters φ of contrastive encoder h
for epoch = 1 to max epoch do

Compute class prototypes from DT using hφ

Compute pseudo labels ŷi for each xi ∈ DU using their
distance to the class prototypes
Form positive and negative sample pairs using ŷi and
compute Lsnn
Train classifier C on embeddings from h(DT) and com-
pute cross-entropy loss LCE
L = Lsnn +LCE
Back propagate and update parameters φ of h and θ of C

end for

7 Bias Mitigation using Cycle Consistency

In this section, we propose a novel algorithm for mitigating
sampling bias. Our approach is based on the concept of cyclic
consistency loss – where our goal is to train an encoder such
that it learns an effective mapping between DT and DU . Once
both DT and DU are mapped into the same representation

space, then we can design accurate pseudo-labeling strategies.

Measuring Pseudo Label Accuracy. A key challenge in
self-training is to get an estimate of how accurate the pseudo
labels are. If the pseudo labels are quite accurate, then self-
training works well in practice. If not, the training regimen
often enters a doom loop where the quality continuously
deteriorates. Hence, an important sub-problem is to get an
indication of the quality of pseudo labels at any stage in the
classifier training. Unfortunately, solving this problem is not
trivial as we do not have any labels for DU . In this section, we
introduce a simple idea that can address this issue. We make
two key changes. First, instead of using a single classifier for
self-training, we use a pair of inter-related classifiers – one
trained over DT and one trained over DU . Second, this two-
step process provides a proxy for measuring the accuracy of
pseudo labels. Intuitively, we use a cyclic approach where we
train a classifier CT on DT and use it to obtain pseudo labels
for DU . In reverse, we train a classifier CU on DU and use
it to obtain pseudo labels for DT . However, since we have
accurate labels for DT , we can compare the pseudo labels
with the actual labels. This allows us to indirectly evaluate
the accuracy of the generic pseudo-labeling strategy. In the
rest of the section, we flesh out the relevant details.

Common Setup. A key factor that is necessary for the success
of the cyclic training approach is that of a shared encoder hφ

whose parameters are shared between CT and CU . In other
words, the inputs to both the classifiers are passed first to the
encoder hφ to obtain the embeddings. The predictions of both
the classifiers are then performed over the embeddings. It
is essential to have the shared encoder as it ensures that the
latent embedding space for data items from both DT and DU
is aligned resulting in better pseudo labeling.

Forward Step. We begin by training a source classifier CT
using DT (on top of shared representation hφ(DT)). Once the
classifier is trained, we can then use it to obtain pseudo labels
for each data item x ∈ DU . For simplicity, we use the arg max
approach where we select the class label produced by CT with
the highest confidence. In a typical self-training setup, we will
select a subset of the most confident pseudo-labels and then
use it to retrain the classifier in the next iteration. However,
one could design a better algorithm if we have some indication
of the accuracy of the generated pseudo labels. We make a
simple observation. The data items x ∈ DU that are likely to
have accurate pseudo labels are those that are most similar to
data items from DT . In other words, if an unseen data item is
similar to one that is seen in the training data, then it is likely
to have the right prediction (and hence accurate pseudo-label).
As a corollary, this also means that once the shared encoder
aligns the two distributions DT and DU , the accuracy of the
pseudo labels becomes proportional to the accuracy of the
classifier CT on DT . The contra-positive of this observation
motivates us to design the reverse step. Suppose that we train
a classifier CU and use it to generate pseudo labels for DT .

USENIX Association 33rd USENIX Security Symposium 1747

Using the same line of reasoning, we can argue that the data
items from DT that have accurate pseudo labels are those that
are most similar to those from DU . However, since we do have
access to the actual labels of DT , we can use it to estimate the
level of alignment between DT and DU .

Reverse Step. Using the classifier CT , we first obtain the
pseudo labels for all data items x ∈ DU . Next, we train a
classifier CU using the pseudo labeled data DU . Our goal is
twofold. First, we can see that the accurate pseudo labels from
DU have the ability to produce accurate pseudo labels for DT .
Second, by forcing the pseudo labels of DU (and thereby CT)
to be more accurate for source domain, we can indirectly en-
sure that their accuracy on the target domain DU is improved.
In other words, by forcing the classifier CT to work well on
DT , it iteratively improves upon the learned embeddings and
thereby the learned pseudo labels. After a few iterations, this
cyclic consistency constraint results in the alignment of DT
and DU which results in more accurate pseudo labeling for
both DT and DU . Finally, we can monitor the progress of
the learning by measuring the accuracy of the pseudo labels
for DT . Algorithm 4 provides the pseudocode. An important
thing to note is that we perform backpropagation to update the
parameters for the shared encoder and the classifier CU and
not CT . In other words, our goal is to keep updating the param-
eters so that the classifier performs well on the source domain.
Empirically, we found that this produces better results than
improving CT .

Algorithm 4 Bias Mitigation with Cycle Consistency

Input: DT and DU
Randomly initialize parameters φ of shared encoder h
for epoch = 1 to max epoch do

Train CT on DT and generate pseudo labels for DU
Train classifier CU using DU and pseudo labels
Apply CU on DT and generate pseudo labels
Estimate accuracy of pseudo labels using labeled data
YT from DT
Back propagate and update parameters of hφ and CU
using YT

end for

8 Experiments

In this section, we describe the results of the extensive exper-
iments that show the efficacy of our proposed algorithm for
detecting and mitigating sampling bias.

8.1 Experimental Setup
All our experiments are conducted on widely used benchmark
datasets from three different domains to demonstrate the ef-
ficacy and utility of our algorithms. Concretely, our goal is

to show that our methods work well and produce non-trivial
improvement in performance even in the case of well-studied
datasets where such heuristics have been exhaustively studied.

Training and Deployment Datasets. We are provided with
a training dataset DT . Our goal is to train a classifier C that
can work well in production DTest by leveraging an unlabeled
dataset DU . In a realistic setting, the classifier C is applied to
production data, and its performance is unknown as the pro-
duction data is unlabeled. Typically, the domain expert might
inspect some of the production data to get an estimate. How-
ever, by sampling theoretic bounds, the size of the inspected
data to get a good estimate of the performance runs in the
hundreds. In other words, a domain expert has to label hun-
dreds of data items before obtaining a classifier performance
estimate with high accuracy and low variance.

In this paper, we avoid this issue by using a pair of inter-
related and labeled benchmark datasets. Generically, we rep-
resent a dataset of the form D1 −D2 where both datasets D1
and D2 belong to the same domain (such as Android malware
or Microsoft PE malware). Naturally, the two datasets are
quite different and have different data collection methodolo-
gies. Concretely, datasets D1 and D2 have different sampling
biases and their data distributions are different from each
other. Hence blindly using a classifier trained on D1 to D2
will provide poor performance. Dataset D1 corresponds to
the training dataset DT and our goal is to train a classifier
that performs well on D2 that we use for testing. Recall that
our approach requires an unlabeled dataset DU that is similar
to Dtest . Hence, we partition D2 into two subsets that corre-
sponds to the unlabeled dataset DU and testing datasets Dtest .
The feature engineering for D1 and D2 are identical.

Our experiments are conducted over widely used malware
benchmark datasets from Android and Microsoft PE. These
datasets are used in a number of recent research papers that ap-
ply ML for malware detection. A compendium of these papers
can be found in [2, 14, 33, 39, 41, 42]. Each of these datasets
has distinct data collection methodologies and thereby sam-
pling biases. Hence, blindly using a classifier trained on D1
will result in poor performance over D2.

Android Malware Datasets. Our first group of datasets cor-
responds to malware detection in the Android domain. As be-
fore, this dataset consists of two parts – D1 and D2. For D1, we
use a subsample of AndroZoo [3] from the recently published
Transcendent paper [8]. It has 232,848 benign and 26,387
malicious apps spanning 5 years from Jan 2014 through to
Dec 2018. For dataset D2, we use five different subsampling
strategies (described shortly below) to randomly sample apps
of the same size from AndroZoo during the same time period.
We construct two variants of this dataset – TRANSCENDENT-
ANDROZOO and ANDROZOO-TRANSCENDENT where the
training and deployment datasets are swapped.

Microsoft PE Datasets. We use three widely used PE datasets
and then appropriately pair them as D1 and D2 respectively.

1748 33rd USENIX Security Symposium USENIX Association

The first dataset is Ember [5] which has 750K benign and
800K malicious samples. The second is the UCSB-Packed [1]
dataset with 109K benign and 232K malicious samples. Our
final dataset is BODMAS [61] which has 77K benign and
57K malicious samples. We construct two datasets EMBER-
UCSB and EMBER-BODMAS by using Ember for DT and
UCSB/BODMAS for DU and Dtest respectively. Table 1
shows the details.

Performance Measures. Due to the unbalanced nature of the
datasets, we use the F-score to measure the performance.

8.2 Detection of Sampling Bias

Dataset Variants. Each of the four datasets that we intro-
duced in the previous subsection (TN-AZ, AZ-TN, EMB-
UCSB, EMB-BODMAS) exhibit malignant sampling bias
– wherein a classifier trained on DT and applied directly on
Dtest produces sub-optimal performance. In order to show-
case the versatility and robustness of our algorithms, we create
additional variants for each of the four datasets. Concretely,
we use five strategies to create 10,000 different variants of
the datasets (with 2,000 variants for each strategy). Each of
these strategies differs in how the base datasets D1 and D2
are sampled to form datasets DT , DU , and Dtest respectively.
The strategies are: (a) adversarial where the data items in
DU and Dtest are selected to be most different from that in
DT ; (b) benign where the data items are chosen in a benign
and non-adversarial manner so that DU and Dtest are similar
to each other; (c) mixed where the datasets from each of the
aforementioned strategies are randomly mixed to produce a
more complex partitioning of data; (d) mixed-2 where the test
set Dtest consists of tuples from both D1 and D2 (to ensure
that the classifier can perform well on data items in produc-
tion that could be similar to D1); (e) mixed-3 where Dtest
consists of data distribution that is distinct from DT and DU .
For example, Dtest can include malware families that are not
present in either DT or DU . We use the domain discrimina-
tion (DOMDISC) from Section 4.1 for adversarial and benign
sampling strategies. Intuitively, we train a classifier to differ-
entiate between DU and Dtest . We can see that tuples from
DU that were correctly classified form the source of benign
samples. Similarly, tuples that were incorrectly classified or
those classified correctly with low confidence can be treated
as a source of adversarial samples.

For each of the dataset variants, we train two classifiers –
one trained on DT and another trained on DU and evaluate
their performance on Dtest . If the difference in performance
(e.g. F-score) is at least 5 percentage points, we conclude that
malignant sampling bias exists. If not, we assume that the
sampling bias is not severely malignant.

Algorithms Evaluated. We propose two algorithms to detect
sampling bias– DOMDISC based on domain discrimination
and KNN-DIST based on distance distribution of the k-th

nearest neighbor. We are not aware of any prior algorithms
from the cybersecurity community for the detection of sam-
pling bias. Hence, we select 5 state-of-the-art algorithms from
ML and related communities and adapt them to this problem.
Concretely, the baseline algorithms are:

(a) Permutation method (PM) [9] is an exact statistical
hypothesis testing method that compares two separate data
samples. The null hypothesis is that the two samples are from
the same underlying data distribution. We use the classifier
F-score as the test statistic T . Permutation tests are one of
the most powerful nonparametric tests that can distinguish
data samples without making any distributional assumptions.
Furthermore, a permutation test is known to exist for any test
statistic and is simple to design.

(b) Cross Match method (CM) [45] is another powerful
hypothesis testing method for verifying if two data samples
are from the same underlying distribution. We create a bi-
partite graph where data items from DT and DU form the
nodes where the edge between the two nodes measures their
corresponding similarity. Next, we run a maximum bipartite
matching algorithm that chooses a set of edges such that no
two edges share a common node. The matching algorithm
maximizes the overall similarity between matched pairs of
data items. Then we use Rosenbaum’s test [45] to find the
distribution of edges where both the nodes are from DT , DU ,
or a combination of DT and DU .

(c) f-divergence (f-div) [44] is a function that measures
the distance between two probability distributions P and Q.
It generalizes other popular metrics such as KL-divergence,
Hellinger distance, and total variation distance.

(d) Virtual-logit Matching (ViM) [58] and (e) MaxLogit
method [24]. Our final two methods are based on state-of-
the-art ML methods for detecting out-of-distribution (OOD)
data items from tabular data. We apply the OOD method for
each data item in DU and if the proportion of OOD crosses a
threshold then we conclude that sampling bias exists.

Each of the five baseline algorithms relies on a thresh-
old to determine whether sampling bias exists. We chose an
oracular approach where an omniscient oracle tells us the
optimal threshold such as many of the 10K dataset variants
are correctly classified. In contrast, we artificially handicap
our algorithms by forcing them to use a fixed thresholding
strategy. For DOMDISC, we assume that sampling bias exists
if the accuracy of the logistic regression classifier is at least
60%. For KNN-DIST, we use the median absolute deviation
metric that is known to be a strong and robust estimator.

Comparison against Baseline Algorithms. In our first set of
experiments, we compare our two algorithms against the five
baseline algorithms. As mentioned above, we created 10K dif-
ferent dataset variants using different subsampling strategies
and categorized each of them based on whether it exhibits ma-
lignant sampling bias. Each of the algorithms evaluated used
the chosen threshold to do the same categorization. Table 2

USENIX Association 33rd USENIX Security Symposium 1749

Dataset Domain DT #Benign #Malware DU , Dtest #Benign #Malware
TN-AZ Android Transcendent 232,848 26,387 AndroZoo 232,848 26,387
AZ-TN Android AndroZoo 232,848 26,387 Transcendent 232,848 26,387

EMB-UCSB Microsoft PE Ember 750,000 800,000 UCSB 109,030 232,415
EMB-BODMAS Microsoft PE Ember 750,000 800,000 BODMAS 77,142 57,293

Table 1: Dataset Characteristics.

shows the results of the F-score of the categorization for each
of the algorithms. We can see that our two proposed algo-
rithms achieve the highest F-score. The f -divergence-based
method achieves the least F-score as it only measures diver-
gence between the two data distributions without quantifying
if the divergence is benign or malignant. Both the hypothe-
sis testing-based methods (permutation tests and cross-match
tests) provide good F-score. However, this performance is not
representative of the real-world as identifying an appropri-
ate threshold is a challenging problem in hypothesis testing.
Finally, the two OOD-based methods ViM and MaxLogit
work well. This shows that extending OOD-based methods
for detecting sampling bias is a promising line of research.

TN-AZ AZ-TN
Emb-
UCSB

Emb-
BODMAS

DomDisc 0.97 0.98 0.99 0.97
kNN-Dist 0.99 0.98 0.99 0.98

PM 0.89 0.91 0.88 0.9
CM 0.91 0.86 0.9 0.86

f-Div 0.78 0.81 0.77 0.72
ViM 0.94 0.96 0.96 0.95

MaxLogit 0.92 0.93 0.96 0.91

Table 2: Accuracy of Bias Detection Algorithms for 5%
threshold.

Impact of Subsampling Strategies. In the next set of ex-
periments, we investigate how the various bias detection al-
gorithms are impacted by the subsampling strategies – ad-
versarial, benign, mixed, mixed-2 and mixed-3 respectively.
Due to space limits, Table 3 shows the results for the TN-
AZ dataset. The results for the other datasets show the same
overall trend. Once again, our proposed algorithms provide
robust results regardless of how the datasets were constructed.
In fact, our algorithms achieve high F-score even in the case
of the adversarial dataset construction strategy. The hypothe-
sis testing-based methods perform poorly in the adversarial
setting which is not surprising as they violate the underlying
assumption of the two-sample hypothesis testing methods.
The OOD-based methods ViM and MaxLogit work well in
general and form a promising backup option. In the mixed-2
approach, Dtest also consists of tuples from the same data
distribution as DT . This is an easier setting as our pseudo-
labeling approaches can leverage information from DT to

accurately label these tuples. Hence, this produces results
that are better than adversarial and mixed sampling strategies
though not as much as that of benign sampling. In the mixed-3
setting, Dtest (partially) consists of data points that are distinct
from both DT and DU . This is again a beneficial setting as it is
relatively easier to identify a distinct data distribution. Almost
all of the baseline algorithms and our proposed algorithms
achieve high accuracy in this setting.

Adv. Benign Mxd Mxd-2 Mxd-3
DomDisc 0.91 0.99 0.92 0.93 0.98
kNN-Dist 0.89 0.99 0.94 0.94 0.99

PM 0.68 0.92 0.77 0.8 0.89
CM 0.81 0.93 0.81 0.86 0.95

f-Div 0.66 0.86 0.77 0.81 0.89
ViM 0.8 0.95 0.82 0.88 0.96

MaxLogit 0.83 0.95 0.87 0.89 0.92

Table 3: Impact of subsampling strategies on the F-score of
bias detection algorithms.

Impact of Downstream Classifier. Next, we investigate how
the various bias detection algorithms are impacted based on
the downstream classifier. Any cybersecurity setup often has
a custom ML pipeline and a downstream classifier. For ex-
ample, Drebin [7] used a linear SVM classifier for malware
classification. It is important that all our proposed methods
are robust to the downstream classifier. Otherwise, it would be
necessary to design different algorithms that are cognizant of
the ML setup. Table 4 shows the F-score of the algorithms for
five different classifiers – SVM, random forest (RF), logistic
regression (LogReg), fully connected DL model (DL), and
simple transformer (Trans). We can see that both of our pro-
posed algorithms and the baseline algorithms produce similar
results regardless of the classifier. This is the ideal behavior
as it allows us to use the same algorithm regardless of the ML
pipeline setup.

Impact of Threshold for Bias Detection. By default, we
use a threshold of 5% to determine the existence of sampling
bias. This is a threshold that is large enough to avoid false
positives but small enough to detect meaningful data distribu-
tion discrepancies. We conducted additional experiments over
other threshold values to show that our method can address
both small and large deviations. Table 5 shows the results.
As expected, if the threshold is too small (such as 1%), then

1750 33rd USENIX Security Symposium USENIX Association

SVM RF LogReg DL Trans
DomDisc 0.96 0.97 0.97 0.98 0.98
kNN-Dist 0.95 0.95 0.96 0.96 0.96

PM 0.86 0.86 0.84 0.83 0.88
CM 0.89 0.88 0.86 0.83 0.87

f-Div 0.77 0.79 0.8 0.77 0.78
ViM 0.92 0.93 0.92 0.94 0.95

MaxLogit 0.92 0.91 0.91 0.92 0.93

Table 4: Impact of sampling bias detection based on down-
stream classifier

there is a large amount of false positives resulting in lowered
performance. Our models achieve almost perfect performance
for higher thresholds. The practitioner can choose a threshold
that is appropriate to their situation.

1% 2% 5% 10%
DomDisc 0.84 0.87 0.97 0.99
kNN-Dist 0.88 0.92 0.96 0.99

Table 5: Impact of threshold parameter on accuracy of bias
detection

8.3 Mitigation of Sampling Bias

Algorithms Evaluated. In this paper, we proposed two al-
gorithms – contrastive learning based (ConL-BM) and cycle
consistency (CyC-BM) that use different techniques for learn-
ing effective representations that are then useful for obtaining
pseudo-labels. We also compare these algorithms against 4
state-of-the-art baseline algorithms from unsupervised do-
main adaptation and self-training, respectively. Recall that
the biggest challenge in using prior methods from ML is that
they are based on augmentations that are not easy to design
for tabular data from cybersecurity. Hence, we focus on SoTA
methods that can work well for tabular data. They include:

(a) DANN [19] is a classic algorithm that works by identify-
ing discriminative features that work well on source domains
and that are also invariant to the shift between source and
target domains. In the modern parlance, the algorithm can
be reinterpreted as using a domain discriminator that uses
adversarial learning to minimize the domain gap.

(b) SHOT [32] is a SoTA algorithm for performing data-
free unsupervised domain adaptation using hypothesis trans-
fer learning. It works by freezing the classifier module (i.e.
hypothesis) and learning a target-specific features extraction
module through self-supervised pseudo-labeling methods.

(c) VAT [35] is a novel regularization-based learning algo-
rithm based on virtual adversarial loss. It works by exploiting
the continuity assumption by making the classifier robust to
the conditional label distribution around data items against

simple adversarial perturbations. A key advantage is that VAT
can be defined without label information and hence can be
used to obtain pseudo-labels.

(d) FixMatch [50] uses a two-step process where the model
first generates pseudo-labels on weakly augmented unlabeled
data items that are then used to train a classifier that works
well with strongly augmented data. We use the masking strat-
egy with p = 0.05 and p = 0.15 from SIRAJ [54] to generate
weak and strong augmentations.

Comparison against Baseline Algorithms. Our first set of
experiments compares how our two proposed algorithms –
ConL-BM and CyC-BM compare against the four state-of-
the-art algorithms for minimizing sampling bias mitigation.
We use the same setup as the bias detection experiments. For
each of the benchmark datasets, we generated 10K dataset
variants using different subsampling strategies. For each of
the dataset variants, we train three classifiers – classifier CT
that is trained on DT , classifier CTU that is trained on both
DT and DU (using our proposed and baseline algorithms)
classifier CU that is trained on DU . We measure the difference
in F-score between (CU - CT) and (CU - CTU). We can see that
the former is an upper bound of the improvement in F-score
that can be obtained by any algorithm.

We would like to note that the performance of each of the
classifiers CT , CTU and CU are sufficiently high for practical
deployment. For example, for AZ-TN dataset, CU has an F1-
score of 0.96 for the best classifier, while CT achieves an
F1-score of 0.83. Of course, this value is artificially low as
TN has a different data distribution than AZ. In most practical
scenarios, the difference between CT and CU will be small
(such as 5%). However, our proposed algorithms were able to
bridge most of the differences in the performance. Concretely,
the classifier CTU based on CONL-BM achieves an F1-score
of 0.933 while CYC-BM achieves an F1-score of 0.937.

Table 6 shows the results of this experiment. We can see
that the gap in F-score between a classifier trained only on
DT and only on DU for TN-AZ dataset is 16.9. Hence, any
classifier using unlabeled DU will necessarily get a lower
improvement. Concretely, our contrastive learning-based al-
gorithm was able to achieve 12.3 out of the maximum 16.9
without using the labeled data information. We can see that
our two proposed algorithms are able to cover most of the
difference in the F-score gap for all the 4 benchmark datasets
and their 10K subsampling variants. None of the unsupervised
domain adaptation and self-training-based baselines are even
able to match 50% of their F-score gap reduction. This is not
surprising as these algorithms were designed for computer
vision tasks and require non-trivial adaptation. It is our hope
that more work will be done on tabular unsupervised domain
adaptation so that we get stronger baselines.

Impact of Subsampling Strategies. In the next set of ex-
periments, we investigate how the various bias mitigation
algorithms are impacted by the subsampling strategies – ad-

USENIX Association 33rd USENIX Security Symposium 1751

TN-AZ AZ-TN Emb-
UCSB

Emb-
BODMAS

max∆ 16.9 12.9 26.1 27.3
ConL-BM 12.3 10.2 19.1 22.3
CyC-BM 14.3 10.6 21.3 22.7
DANN 9.8 8.1 14.7 16.1
SHOT 6.5 6.2 10.1 11.3
VAT 4.4 4.1 8.8 7.9

FixMatch 7.5 6.6 11.3 13.4

Table 6: Comparison of Bias Mitigation Algorithms.

versarial, benign, mixed, mixed-2 and mixed-3 respectively.
Due to space limits, Table 7 shows the results for the TN-
AZ dataset. The results for the other datasets show the same
overall trend. Once again, we can see that our proposed algo-
rithms can successfully mitigate sampling bias regardless of
the subsampling strategy used to generate the dataset variant.
Interestingly, we achieve good performance in the case of
the adversarial strategy even though our algorithms do not
use any form of adversarial learning. This is a testament to
our representation learning strategy that is class label aware.
In the mixed-2 approach, Dtest also consists of tuples from
the same data distribution as DT . This is an easier setting
as our pseudo-labeling approaches can leverage information
from DT to accurately label these tuples. Hence, this produces
results that are better than adversarial and mixed sampling
strategies though not as much as that of benign sampling. In
the mixed-3 sampling strategy, Dtest partially includes tuples
that are very distinct from DT and DU . As we can see from
the results, almost all of the algorithms perform sub-optimally.
This is to be expected as the test distribution diverges sharply
from both DT and DU . In this very challenging setting, our
algorithms outperform the competing algorithms. We can see
that the baseline algorithms perform comparatively poorly for
all the sub-sampling strategies. This is not surprising as they
are often designed for a particular type of domain shift (such
as adversarial for DANN). Hence, it is especially gratifying
to see that our algorithm works well for different dataset con-
struction strategies. We believe that it is important to design
generic algorithms that can automatically work regardless of
the type of domain gap.

Adv. Benign Mxd Mxd-2 Mxd-3
max∆ 24.9 7.9 19.7 11.4 22.7

ConL-BM 18.2 6.7 16.5 12.6 11.2
CyC-BM 19.1 7.1 17.1 9.9 12.4
DANN 11.2 5.4 13.2 8.4 7.2
SHOT 7.6 3.3 7.8 5.4 5.8
VAT 5.1 4.1 7.5 4.8 6.9

FixMatch 8.3 5.1 6.2 5.6 4.4

Table 7: Impact of subsampling strategies on Bias Mitigation

SVM RF LogReg DL Trans.
max∆ 9.2 11.3 8.7 16.9 16.2

ConL-BM 8.8 10.2 6.4 12.1 11.9
CyC-BM 9.1 10.3 6.8 14.2 13.8
DANN 6.6 6.8 4.2 9.8 9.8
SHOT 5.1 5.6 3.9 6.6 6.4
VAT 4.4 4.7 3.8 4.3 4.1

FixMatch 6.1 6.3 5.9 7.9 7.7

Table 8: Impact of downstream classifier for Bias Mitigation

Impact of Downstream Classifier on Bias Mitigation. Next,
we investigate how the various bias mitigation algorithms are
impacted based on the downstream classifier. Recall from
Section 8.2 that both our bias detection algorithms and the
baselines were not impacted by the classifier. In contrast,
the classifier has a significant impact on bias mitigation algo-
rithms. For each of the dataset variants, we varied the classifier
used to perform the malware/goodware classification on the
TN-AZ dataset. Specifically, we tried five different classifiers
– SVM, random forest (RF), logistic regression (LogReg), fully
connected DL model (DL), and simple transformer (Trans).
Table 8 shows the result of the experiments. We can see that
the delta in F-score varies between the classifiers with simpler
classifiers such as SVM and Logistic regression achieving a
lower improvement compared to deep learning-based methods
(DL and Transformers). Ensemble methods based on random
forests are in between. This observation can be explained due
to the difference in the computational capacity of the clas-
sifiers. SVM and Logistic regression are simple classifiers
that mostly rely on the linear transformation of features to
perform prediction while DL and transformer-based methods
can create “deep” features that are more suitable for accurate
prediction. Regardless, the gap in performance between the
classifiers is not very large in our proposed algorithms. This
is due to the fact that our algorithms produce an encoder with
an appropriate embedding space where even simple linear
classifiers can work accurately. In contrast, other baseline
algorithms perform poorly (except for DANN which uses
adversarial domain discrimination for feature alignment).

8.4 Generalizability of Bias Mitigation
Our next set of experiments is designed to demonstrate the
generalizability of our proposed methods. So far, our exper-
iments have been done on the malware domain. In this sub-
section, we conduct experiments on intrusion detection and
domains. Due to space limits, we focus on bias mitigation
experiments as they are more challenging and informative.

IDS Datasets. We demonstrate the efficacy of our approach by
evaluating it across three common Intrusion Detection System
(IDS) datasets, namely CICIDS2017 [49], ToN-IoT [36], and
BoT-IoT [30]. These datasets provide labeled network flows

1752 33rd USENIX Security Symposium USENIX Association

encompassing diverse attack categories. The CICIDS2017
dataset is designed to resemble real-world scenarios, encom-
passing both benign activities and common attacks such as
Brute Force, DoS, DDoS, Heartbleed, Web Attacks, Infiltra-
tion, and Botnet attacks. ToN-IoT features labeled network
traffic sourced from typical network elements combined with
IoT sensors, while BoT-IoT provides IoT network traffic cov-
ering a variety of attacks involving Botnets. For each dataset,
we extract standard features [47] using the CICFlowMeter-
V4 tool [31], which encompasses attributes including basic
flow characteristics, statistical properties, temporal patterns,
protocol-specific details, and payload-based information. We
train a classifier to distinguish attack flows from legitimate
traffic, without differentiating between specific attack types.

We construct three dataset pairs to evaluate our algorithms.
The dataset IDS2017 is constructed by temporally splitting
the CICIDS2017 dataset. We use the data from the first three
days for training, the fourth day as unlabeled DU , and the
data from the fifth day for testing. The dataset IDS2017-BoT
has the same setting as IDS2017 except that BoT-IoT [30]
is used for testing. Finally, the dataset IDS2017-ToN has the
same setting as IDS2017 except that ToN-IoT [36] is used for
testing. We can see that IDS2017-BoT and IDS2017-ToN are
challenging settings as we use IDS2017 for DU even though
they are sufficiently from the dataset used for testing.

IDS2017 IDS2017-BoT IDS2017-ToN
max∆ 4.2 12.4 14.6

ConL-BM 3.5 9.1 11.4
CyC-BM 3.8 10.2 12.3

Table 9: Performance of bias mitigation algorithms for intru-
sion detection

Table 9 shows the results. As expected, our methods per-
form well for all three dataset pairs. Since the domain dis-
crepancy is the least for IDS2017, the maximum possible
improvement in classifier performance is just 4.2 percentage
points. Nevertheless, our methods are able to recover as much
as 3.8 out of 4.2 that was lost due to domain discrepancy.
The improvements are much larger for IDS2017-BoT and
IDS2017-ToN as the distribution discrepancy between DU
and Dtest is much higher.

Domain Datasets. We further analyze three distinct domain
datasets, comprising two benign and one malicious, to assess
the effectiveness of our approach. The first dataset consists
of domains sourced from the Tranco top 100K list [40], rep-
resenting widely used domains on the Internet. The second
dataset is derived from the manually profiled organizations list
from Crunchbase [16], with 100K domains randomly selected
from a pool of 3 million excluding overlaps with the Tranco
1M list. Our third dataset, which is malicious, was collected
from the daily VirusTotal data feed [57], comprising domains
flagged as malicious by at least six scanners, observed on

February 6, 2024. As for the features, we utilize passive DNS
attributes from Farsight PDNS data [18], which shed light on
the hosting environment, along with features extracted from
registration records such as lifetime, number of name servers,
and indicators of privacy protection. To train a classifier, we
combine each benign dataset with the malicious one and train
a binary classifier. Subsequently, we test the trained classifier
on the other benign dataset to assess its performance.

Tranco-CB CB-Tranco
max∆ 5.3 5.1

ConL-BM 4.7 4.6
CyC-BM 5.1 4.8

Table 10: Performance of bias mitigation algorithms for do-
mains

Table 10 shows the results. We can see that the data dis-
tribution discrepancy between the two pairs of datasets is
comparable. In both cases, our proposed algorithms are able
to recover most of the performance lost to the discrepancy.
Once again, the iterative algorithm CYC-BM outperforms
that simpler CONL-BM.

9 Discussion

In this section, we provide additional details about the various
facets of our proposed approach.

Domain Adaptation vs Sampling Bias Detec-
tion/Mitigation. Our work is closely related to the
unsupervised domain adaptation idea. However, instead of
directly attacking this problem, we split this into two parts
– bias detection and mitigation. This problem partitioning
allows the practitioner to pick and choose the solutions based
on their individualized setting. For example, a practitioner
can use a bias detection component and if the bias is deemed
small enough, use their existing set classifier without running
the bias mitigation algorithms that are effective but expensive.
The practitioner is also free to choose thresholds other than
5%. Alternatively, a conservative practitioner might always
choose to run the bias mitigation algorithm that is guaranteed
to help in the worst case (when DT and Dtest are different)
and does not cause any performance regression in the best
case (when DT and Dtest are similar). We believe that our
proposed approach allows for many more degrees of freedom
than directly solving it as a domain adaptation problem.

Accuracy-Performance Trade-offs. Each of our four algo-
rithms is designed to achieve different trade-offs. For example,
DOMDISC is designed to be very efficient. Even on a dataset
with tens of millions of tuples, DOMDISC produces an output
within a minute. However, KNN-DIST is less efficient but
much more tunable and can produce more accurate results
than DOMDISC. As mentioned in Section 8.1, we artificially

USENIX Association 33rd USENIX Security Symposium 1753

handicapped all of our algorithms to use a fixed threshold
(such as 5% for DOMDISC and median absolute deviation for
KNN-DIST). However, with some careful tuning, KNN-DIST
will always outperform DOMDISC at the cost of increased
runtime. CONL-BM is a comparatively simpler algorithm
than CYC-BM where it learns a latent space using carefully
chosen positive and negative tuple pairs. In contrast, CYC-
BM is an iterative algorithm where the latent space is learned
in each of the forward and reverse steps. This iterative nature
results in a much more sophisticated latent space as it focuses
on a tougher task (getting good accuracy using pseudo labels)
as against CONL-BM which only seeks to embed similar
tuples closer together. In both cases, the slower algorithm
takes 3-8x more time than the faster one. We have described
all these algorithms so that the practitioner can choose the
algorithm based on their specific setup.

Threshold Selection. The threshold parameter for bias de-
tection can be considered as a proxy for the tolerance level
of the cybersecurity application for data distribution discrep-
ancies. Hence a low threshold (such as 1%) can be chosen
when the classifier is used in a highly performance sensitive
scenario where even a drop of 1% in accuracy is unacceptable.
However, the trade-off is that it can inadvertently detect some
false positives. A higher threshold (such as 5% or 10%) can
be used in exploratory setting (such as evaluating diverse DU
or different algorithms for bias mitigation).

Limitations of Our Approach. Our proposed algorithms (or
any ML classifier for that matter) will produce sub-optimal
performance when Dtest is very distinct from both DT and
DU . Another common source of failure is the low accuracy
of pseudo labels. Due to the various tricks that we employ
(such as cyclic training and encoders to learn shared latent
space), the pseudo labels typically have good accuracy. The
performance of classifier CU can be used as a proxy for the
pseudo label accuracy. If the accuracy is low, then the domain
expert has to be called upon to label a few tuples from DU .

For both the bias mitigation algorithms, the accuracy of
the pseudo labels is quite low in the first few epochs as the
encoder has not learned to map both DT and DU into a shared
latent space. However, after a few epochs, the accuracy of the
pseudo labels starts increasing. In our experiments, we found
that the pseudo labels have an accuracy between 70-80% on
average and as much as 95% for the benign subset sampling
strategy. The pseudo-labeling community has come up with a
wide variety of confidence-based heuristics so that only the
pseudo-labels that have a high likelihood of being correct
are added to the pool of DP

U . In other words, even though
the classifiers trained on pseudo labels have only 70-80%
accuracy, the subset of tuples DU

P that are used to train CU
have an accuracy above 90%. Of course, it is possible that the
pseudo-labeling strategy does not work for certain datasets.
In that case, the domain expert has to be called upon to label
a few tuples from DU and repeat the whole process.

10 Related Work

As discussed in [11, 43], sampling bias is the most com-
mon pitfall in cybersecurity projects that use ML. Approxi-
mately 90% of cybersecurity research exhibits some degree
of sampling bias. Despite its prevalence, this issue has not
received extensive attention. Tesseract [38] considers spatial
bias, which arises from variations in the ratio of goodware to
malware, and temporal bias, caused by incorrect time splits
in the training and testing sets. As a special case of sampling
bias, where training and testing data distribution change over
time, several studies address concept drift. Transcend [26]
employs conformal evaluators that rely on the similarity of a
new sample to a history of past samples. They define a non-
conformity measure as a fitness assessment and use a credi-
bility p-value to quantify how similar the testing sample is to
the training samples that belong to the same class. Trancen-
dent [8] introduces a general form of Transcend and proposes
methods to define class-level thresholds. CADE [62] employs
contrastive learning to detect drifting samples. Similarly, [13]
proposes hierarchical contrastive learning for detection and
uses pseudo-loss uncertainty to decide which samples to in-
clude in the active learning process.

DroidEvolver [60] utilizes a model pool, where each model
maintains a subset of the training samples. A model is desig-
nated as aging if the new sample differs from its training sam-
ples, and the aging models are updated using active learning
with the pseudo-labels generated by the non-aging models in
the pool. DroidEvolver++ [27] observes the self-poisoning ef-
fect of pseudo-labels and uses only high-quality pseudo-labels
through a confidence thresholding mechanism. Insomnia [6]
also leverages pseudo-labels for updating its classifier through
active learning. It selects samples using uncertainty sampling
and generates pseudo-labels by identifying the nearest cen-
troid. OWAD [23] employs a statistical approach and applies
hypothesis testing to detect whether the model outputs exhibit
a normality shift. It uses uncertainty sampling to select new
samples for labeling.

11 Conclusion

In this paper, we initiated investigations into an understudied
problem of sampling bias in cybersecurity. We focused on
two key sub-problems – detection and mitigation. We pro-
posed two different algorithms for the detection of sampling
bias. We proposed two different algorithms for bias miti-
gation that learns effective embedding space wherein even
simple pseudo-labeling strategies produce good results. Our
extensive experiments over four datasets from three different
domains shows that our proposed methods are effective and
generalizable across cybersecurity.

1754 33rd USENIX Security Symposium USENIX Association

Acknowledgments

We thank the anonymous reviewers for their helpful and valu-
able feedback. This work was partially supported by the Qatar
National Research Fund under Grant ARG01-0531-230438.

References

[1] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Mar-
tina Lindorfer, Stefano Ortolani, Davide Balzarotti, Gio-
vanni Vigna, and Christopher Kruegel. When malware is
packin’heat; limits of machine learning classifiers based
on static analysis features. In Network and Distributed
Systems Security (NDSS) Symposium 2020, 2020.

[2] Mostofa Ahsan, Kendall E Nygard, Rahul Gomes,
Md Minhaz Chowdhury, Nafiz Rifat, and Jayden F Con-
nolly. Cybersecurity threats and their mitigation ap-
proaches using machine learning—a review. Journal of
Cybersecurity and Privacy, 2(3):527–555, 2022.

[3] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein,
and Yves Le Traon. Androzoo: Collecting millions
of android apps for the research community. In Pro-
ceedings of the 13th international conference on mining
software repositories, pages 468–471, 2016.

[4] Massih-Reza Amini, Vasilii Feofanov, Loic Pauletto,
Emilie Devijver, and Yury Maximov. Self-training: A
survey. arXiv preprint arXiv:2202.12040, 2022.

[5] Hyrum S Anderson and Phil Roth. Ember: an open
dataset for training static pe malware machine learning
models. arXiv preprint arXiv:1804.04637, 2018.

[6] Giuseppina Andresini, Feargus Pendlebury, Fabio Pier-
azzi, Corrado Loglisci, Annalisa Appice, and Lorenzo
Cavallaro. Insomnia: Towards concept-drift robustness
in network intrusion detection. In Proceedings of the
14th ACM workshop on artificial intelligence and secu-
rity, pages 111–122, 2021.

[7] Daniel Arp, Michael Spreitzenbarth, Malte Hubner,
Hugo Gascon, Konrad Rieck, and CERT Siemens.
Drebin: Effective and explainable detection of android
malware in your pocket. In Ndss, volume 14, pages
23–26, 2014.

[8] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi,
and Lorenzo Cavallaro. Transcending transcend: Revis-
iting malware classification in the presence of concept
drift. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 805–823. IEEE, 2022.

[9] Kenneth J Berry, Janis E Johnston, and Paul W Mielke Jr.
Permutation methods. Wiley Interdisciplinary Reviews:
Computational Statistics, 3(6):527–542, 2011.

[10] Marcus Botacin, Hojjat Aghakhani, Stefano Ortolani,
Christopher Kruegel, Giovanni Vigna, Daniela Oliveira,
Paulo Lício De Geus, and André Grégio. One size does
not fit all: A longitudinal analysis of brazilian financial
malware. ACM Transactions on Privacy and Security
(TOPS), 24(2):1–31, 2021.

[11] Marcus Botacin, Fabricio Ceschin, Ruimin Sun, Daniela
Oliveira, and André Grégio. Challenges and pitfalls in
malware research. Computers & Security, 106:102287,
2021.

[12] Ke Chen and Shihai Wang. Semi-supervised learn-
ing via regularized boosting working on multiple semi-
supervised assumptions. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 33(1):129–143,
2010.

[13] Yizheng Chen, Zhoujie Ding, and David Wagner. Con-
tinuous learning for android malware detection. In
Proceedings of the 32nd USENIX Security Symposium,
2023.

[14] Yizheng Chen, Zhoujie Ding, and David Wagner. Con-
tinuous learning for android malware detection. In 32nd
USENIX Security Symposium (USENIX Security 23),
pages 1127–1144, 2023.

[15] Corinna Cortes, Mehryar Mohri, Michael Riley, and Af-
shin Rostamizadeh. Sample selection bias correction
theory. In International conference on algorithmic learn-
ing theory, pages 38–53. Springer, 2008.

[16] Crunchbase. Crunchbase. http://www.crunchbase.
com/. Accessed: 08-02-2024.

[17] Mohammed Elbes, Samar Hendawi, Shadi AlZu’bi,
Tarek Kanan, and Ala Mughaid. Unleashing the full
potential of artificial intelligence and machine learning
in cybersecurity vulnerability management. In 2023
International Conference on Information Technology
(ICIT), pages 276–283. IEEE, 2023.

[18] Farsight Security, Inc. DNS Database.
https://www.dnsdb.info/, 2022.

[19] Yaroslav Ganin and Victor Lempitsky. Unsupervised
domain adaptation by backpropagation. In Interna-
tional conference on machine learning, pages 1180–
1189. PMLR, 2015.

[20] R Geetha and T Thilagam. A review on the effectiveness
of machine learning and deep learning algorithms for
cyber security. Archives of Computational Methods in
Engineering, 28:2861–2879, 2021.

[21] Robert M Groves and Lars Lyberg. Total survey er-
ror: Past, present, and future. Public opinion quarterly,
74(5):849–879, 2010.

USENIX Association 33rd USENIX Security Symposium 1755

http://www.crunchbase.com/
http://www.crunchbase.com/

[22] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimen-
sionality reduction by learning an invariant mapping. In
2006 IEEE computer society conference on computer
vision and pattern recognition (CVPR’06), volume 2,
pages 1735–1742. IEEE, 2006.

[23] Dongqi Han, Zhiliang Wang, Wenqi Chen, Kai Wang,
Rui Yu, Su Wang, Han Zhang, Zhihua Wang, Minghui
Jin, Jiahai Yang, et al. Anomaly detection in the open
world: Normality shift detection, explanation, and adap-
tation. In 30th Annual Network and Distributed System
Security Symposium (NDSS), 2023.

[24] Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy
Zou, Joe Kwon, Mohammadreza Mostajabi, Jacob Stein-
hardt, and Dawn Song. Scaling out-of-distribution
detection for real-world settings. arXiv preprint
arXiv:1911.11132, 2019.

[25] Anil K Jain, M Narasimha Murty, and Patrick J Flynn.
Data clustering: a review. ACM computing surveys
(CSUR), 31(3):264–323, 1999.

[26] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi
Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo
Cavallaro. Transcend: Detecting concept drift in mal-
ware classification models. In 26th USENIX Secu-
rity Symposium (USENIX Security 17), pages 625–642,
2017.

[27] Zeliang Kan, Feargus Pendlebury, Fabio Pierazzi, and
Lorenzo Cavallaro. Investigating labelless drift adapta-
tion for malware detection. In Proceedings of the 14th
ACM Workshop on Artificial Intelligence and Security,
pages 123–134, 2021.

[28] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot,
Ce Liu, and Dilip Krishnan. Supervised contrastive
learning. Advances in neural information processing
systems, 33:18661–18673, 2020.

[29] Ilmun Kim, Aaditya Ramdas, Aarti Singh, and Larry
Wasserman. Classification accuracy as a proxy for two-
sample testing. Annals of Statistics, 49(1):411–434,
2021.

[30] Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova,
and Benjamin Turnbull. Towards the development of re-
alistic botnet dataset in the internet of things for network
forensic analytics: Bot-iot dataset. Future Generation
Computer Systems, 100:779–796, 2019.

[31] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad
Saiful Islam Mamun, and Ali A Ghorbani. Characteriza-
tion of tor traffic using time based features. In Interna-
tional Conference on Information Systems Security and
Privacy, volume 2, pages 253–262. SciTePress, 2017.

[32] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we re-
ally need to access the source data? source hypothesis
transfer for unsupervised domain adaptation. In Inter-
national conference on machine learning, pages 6028–
6039. PMLR, 2020.

[33] Kaijun Liu, Shengwei Xu, Guoai Xu, Miao Zhang,
Dawei Sun, and Haifeng Liu. A review of android mal-
ware detection approaches based on machine learning.
IEEE access, 8:124579–124607, 2020.

[34] Brad Miller, Alex Kantchelian, Michael Carl Tschantz,
Sadia Afroz, Rekha Bachwani, Riyaz Faizullabhoy, Ling
Huang, Vaishaal Shankar, Tony Wu, George Yiu, et al.
Reviewer integration and performance measurement for
malware detection. In Detection of Intrusions and Mal-
ware, and Vulnerability Assessment: 13th International
Conference, DIMVA 2016, San Sebastián, Spain, July
7-8, 2016, Proceedings 13, pages 122–141. Springer,
2016.

[35] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. Virtual adversarial training: a regulariza-
tion method for supervised and semi-supervised learn-
ing. IEEE transactions on pattern analysis and machine
intelligence, 41(8):1979–1993, 2018.

[36] Nour Moustafa. A new distributed architecture for
evaluating ai-based security systems at the edge: Net-
work ton_iot datasets. Sustainable Cities and Society,
72:102994, 2021.

[37] Fionn Murtagh and Pedro Contreras. Algorithms for
hierarchical clustering: an overview. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discov-
ery, 2(1):86–97, 2012.

[38] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney,
Johannes Kinder, Lorenzo Cavallaro, et al. Tesseract:
Eliminating experimental bias in malware classifica-
tion across space and time. In Proceedings of the 28th
USENIX Security Symposium, pages 729–746. USENIX
Association, 2019.

[39] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi,
and Lorenzo Cavallaro. Intriguing properties of adver-
sarial ml attacks in the problem space. In 2020 IEEE
symposium on security and privacy (SP), pages 1332–
1349. IEEE, 2020.

[40] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. arXiv preprint arXiv:1806.01156,
2018.

1756 33rd USENIX Security Symposium USENIX Association

[41] Morteza Safaei Pour, Christelle Nader, Kurt Friday, and
Elias Bou-Harb. A comprehensive survey of recent in-
ternet measurement techniques for cyber security. Com-
puters & Security, 128:103123, 2023.

[42] Junyang Qiu, Jun Zhang, Wei Luo, Lei Pan, Surya Nepal,
and Yang Xiang. A survey of android malware detection
with deep neural models. ACM Computing Surveys
(CSUR), 53(6):1–36, 2020.

[43] E Quiring, F Pendlebury, A Warnecke, F Pierazzi,
C Wressnegger, L Cavallaro, and K Rieck. Dos and
don’ts of machine learning in computer security. In
31st USENIX Security Symposium (USENIX Security
22), USENIX Association, Boston, MA, 2022.

[44] Alfréd Rényi. On measures of entropy and information.
In Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Con-
tributions to the Theory of Statistics, volume 4, pages
547–562. University of California Press, 1961.

[45] Paul R Rosenbaum. An exact distribution-free test com-
paring two multivariate distributions based on adjacency.
Journal of the Royal Statistical Society Series B: Statis-
tical Methodology, 67(4):515–530, 2005.

[46] Sinan Saraçli, Nurhan Doğan, and İsmet Doğan. Com-
parison of hierarchical cluster analysis methods by
cophenetic correlation. Journal of inequalities and Ap-
plications, 2013(1):1–8, 2013.

[47] Mohanad Sarhan, Siamak Layeghy, and Marius Port-
mann. Evaluating standard feature sets towards in-
creased generalisability and explainability of ml-based
network intrusion detection. Big Data Research,
30:100359, 2022.

[48] Shai Shalev-Shwartz and Shai Ben-David. Understand-
ing machine learning: From theory to algorithms. Cam-
bridge university press, 2014.

[49] Iman Sharafaldin, Arash Habibi Lashkari, Ali A Ghor-
bani, et al. Toward generating a new intrusion detection
dataset and intrusion traffic characterization. ICISSp,
1:108–116, 2018.

[50] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. Fixmatch: Sim-
plifying semi-supervised learning with consistency and
confidence. Advances in neural information processing
systems, 33:596–608, 2020.

[51] Valmi D Sousa, Jaclene A Zauszniewski, and Carol M
Musil. How to determine whether a convenience sample
represents the population. Applied Nursing Research,
17(2):130–133, 2004.

[52] Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-
of-distribution detection with deep nearest neighbors. In
International Conference on Machine Learning, pages
20827–20840. PMLR, 2022.

[53] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mis-
love. Mind your weight (s): A large-scale study on in-
sufficient machine learning model protection in mobile
apps. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1955–1972, 2021.

[54] Saravanan Thirumuruganathan, Mohamed Nabeel, Eu-
ijin Choo, Issa Khalil, and Ting Yu. Siraj: a unified
framework for aggregation of malicious entity detectors.
In 2022 IEEE Symposium on Security and Privacy (SP),
pages 507–521. IEEE, 2022.

[55] Robert Tibshirani, Guenther Walther, and Trevor Hastie.
Estimating the number of clusters in a data set via the
gap statistic. Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology), 63(2):411–423, 2001.

[56] Rosanna Turrisi, Rémi Flamary, Alain Rakotomamonjy,
and Massimiliano Pontil. Multi-source domain adapta-
tion via weighted joint distributions optimal transport. In
Uncertainty in Artificial Intelligence, pages 1970–1980.
PMLR, 2022.

[57] VirusTotal. Free Online Virus, Malware and URL Scan-
ner. https://www.virustotal.com/. Accessed: 04-
11-2023.

[58] Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne
Zhang. Vim: Out-of-distribution with virtual-logit
matching. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages
4921–4930, 2022.

[59] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and
Quoc V Le. Self-training with noisy student im-
proves imagenet classification. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 10687–10698, 2020.

[60] Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun
Xu. Droidevolver: Self-evolving android malware de-
tection system. In 2019 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 47–62. IEEE,
2019.

[61] Limin Yang, Arridhana Ciptadi, Ihar Laziuk, Ali Ah-
madzadeh, and Gang Wang. Bodmas: An open dataset
for learning based temporal analysis of pe malware. In
4th Deep Learning and Security Workshop, 2021.

[62] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Cip-
tadi, Ali Ahmadzadeh, Xinyu Xing, and Gang Wang.
Cade: Detecting and explaining concept drift samples

USENIX Association 33rd USENIX Security Symposium 1757

https://www.virustotal.com/

for security applications. In USENIX security sympo-
sium, pages 2327–2344, 2021.

[63] Bianca Zadrozny. Learning and evaluating classifiers un-
der sample selection bias. In Proceedings of the twenty-
first international conference on Machine learning, page
114, 2004.

[64] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui,
Hanxiao Liu, Ekin Dogus Cubuk, and Quoc Le. Re-
thinking pre-training and self-training. Advances in
neural information processing systems, 33:3833–3845,
2020.

[65] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and
Jinsong Wang. Confidence regularized self-training. In
Proceedings of the IEEE/CVF international conference
on computer vision, pages 5982–5991, 2019.

1758 33rd USENIX Security Symposium USENIX Association

	Introduction
	Preliminaries
	Background
	Detection of Sampling Bias
	Domain Discrimination
	k-NN based Bias Detection

	Mitigating Sampling Bias
	Contrastive Learning for Bias Mitigation
	Bias Mitigation using Cycle Consistency
	Experiments
	Experimental Setup
	Detection of Sampling Bias
	Mitigation of Sampling Bias
	Generalizability of Bias Mitigation

	Discussion
	Related Work
	Conclusion

