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Abstract
Machine learning-based binary function similarity detection
(ML-BFSD) has witnessed significant progress recently. They
often choose control flow graph (CFG) as an important feature
to learn out of functions, as CFGs characterize the control
dependencies between basic code blocks. However, the exact
role of CFGs in model decisions is not explored, and the ex-
tent to which CFGs might lead to model errors is unknown.
This work takes a first step towards assessing the role of
CFGs in ML-BFSD solutions both theoretically and practi-
cally, and promotes their performance accordingly. First, we
adapt existing explanation methods to interpreting ML-BFSD
solutions, and theoretically reveal that existing models heav-
ily rely on CFG features. Then, we design a solution δCFG
to manipulate CFGs and practically demonstrate the lack of
robustness of existing models. We have extensively evalu-
ated δCFG on 11 state-of-the-art (SOTA) ML-BFSD solutions,
and find that the models’ results would flip if we manipulate
the query functions’ CFGs but keep semantics, showing that
most models have bias on CFG features. Our theoretic and
practical assessment solutions can also serve as a robustness
validator for the development of future ML-BFSD solutions.
Lastly, we present a solution to utilize δCFG to augment train-
ing data, which helps deprioritize CFG features and enhance
the performance of existing ML-BFSD solutions. Evaluation
results show that, MRR, Recall@1, AUC and F1 score of
existing models are improved by up to 10.1%, 12.7%, 5.1%,
and 27.2% respectively, proving that reducing the models’
bias on CFG features could improve their performance.

1 Introduction

Binary function similarity detection (BFSD) takes a pair of
functions (usually in assembly or intermediate form) as input,
and computes a similarity score between them [10,38]. BFSD
has proven effective in a broad spectrum of applications, such

§ Corresponding authors.

as known vulnerability discovery [12, 21, 29], malware lin-
eage [2, 3, 30, 52], software plagiarism detection [43, 44, 58],
patch analysis [27, 32, 68], and software supply chain anal-
ysis [25]. Given recent advances in machine learning (ML),
SOTA BFSD are mostly ML-based [21, 37, 38, 46, 62–64, 67,
72], and we call them ML-BFSD solutions for brevity. Instead
of heavily relying on manually specified features, such solu-
tions design ML models to embed target binary functions into
a latent vector space, where geometric metrics are adopted to
compute function similarity.

We notice many ML-BFSD solutions [21, 38, 46, 67, 72]
develop their models over CFGs, which characterize control
dependencies within functions and help ML-BFSD solutions
interpret function semantics. However, reliance on CFGs
could impact the learning of semantics. For instance, solu-
tions [38, 72] that use GNNs distribute instructions among
different graph nodes based on control dependencies depicted
by CFGs. While GNNs effectively perceive relationships be-
tween instructions within directly connected basic blocks,
they struggle to learn relationships between instructions lo-
cated in distantly separated blocks. This limitation indicates
that CFG-based learning could restrict models’ ability to learn
function semantics. Since model decisions are influenced by
both semantic and CFG features, the impact on learning se-
mantics could lead to models’ over-reliance on CFG features.

We also note several works [28, 39] raise the concern that
some approaches heavily rely on CFG features, thereby under-
estimating the significance of semantics. Unfortunately, these
works mention the over-reliance on CFGs issue based purely
on experience or intuition, and the problematic approaches
they point out are typically non-machine learning methods.
Few studies explore the exact role of CFG features on deci-
sions of ML-BFSD solutions. Furthermore, it is unknown to
what extent the side effects introduced by CFGs could lead to
model errors. Modern developers are still unaware of this is-
sue. For instance, recent works [23,33,45,66] still heavily rely
on CFGs and are prone to errors. Given this, it is imperative
to quantify the exact role of CFG features and systematically
evaluate the severity of the over-reliance issue, serving as a
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robustness validator for future work. More importantly, we
should also provide a solution to mitigate the over-reliance
problem and improve model performance.

We take the first step towards assessing the role of CFG fea-
tures in ML-BFSD solutions. First, we theoretically interpret
the importance of CFG features in ML-BFSD models, and
show that existing models heavily rely on CFG features. Then,
through practical experiments, we evaluate the robustness of
existing models on CFGs. Specifically, we design a solution
δCFG to manipulate CFGs, while keep function semantics
intact. After manipulation, we evaluate existing models’ per-
formance on the modified functions. Results show existing
models tend to make mistakes once the CFGs change, sug-
gesting that existing models have bias on CFG features. Con-
taining theoretical interpretation and practical experiments,
our work serves as a robustness validator for developers. For
example, they can use our work to determine whether a model
exhibits over-reliance on CFG features, thereby guiding fur-
ther improvements. Without a validator, even if developers
recognize the over-reliance issue and make adjustments, it
remains challenging to verify that the adjustment is effective.
Further, we analyze why existing models are prone to such
bias, and show δCFG can be used to augment training data and
improve models through deprioritizing CFG features.

First, we analyze the importance of CFG features, by adapt-
ing existing explanation methods to ML-BFSD solutions.
This is not a trivial task. In traditional scenarios, e.g., com-
puter vision, a single pixel can be treated as a feature, and
explanation methods can be employed to calculate the impor-
tance of each pixel. Thus the importance of different features
on model decisions is intuitive. However, in BFSD scenarios,
it is inappropriate to model each byte as a feature, as binary
code has higher level of semantics (e.g., opcode, operands,
CFGs, call graphs). Given this challenge, we design function
features that are human-readable, which can represent both
CFGs and function semantics. Based on this, explanation
methods can intuitively reflect the importance of different
features. We adapt approximation-based explanation methods
to 11 representative ML-BFSD solutions, and reveal that CFG
features are significantly more important than other features
on most of these solutions. In other words, most of the existing
ML-BFSD solutions heavily rely on CFG features.

In addition to the theoretical analysis on CFG importance,
we further evaluate the robustness of existing models on CFG
features with quantitative experiments. Particularly, in real-
world software development, function CFGs can undergo
changes due to various factors such as code refactoring. Such
natural CFG transformations present unique challenges to
ML-BFSD solutions. To simulate and assess these real-world,
natural changes in CFGs, we design a solution δCFG, which
can manipulate CFGs while maintaining function semantics.
Given a pair of dissimilar (or similar) functions, δCFG can
make them have similar (or dissimilar) CFGs. As a result,
we have constructed hard-to-detect samples, including (1)

different functions with identical CFGs and (2) same function
with different CFGs, and evaluated 11 representative solutions
on them. Evaluation results show that most existing models
make mistakes on these samples. In other words, CFG features
are not reliable and may cause bias to ML-BFSD solutions.

Further, we analyze why these solutions heavily rely on
CFG features, with two potential reasons identified. (1) We
identify design flaws in these ML-BFSD solutions that im-
pede the learning of semantics. (2) We reveal that there is a
bias when constructing training datasets. Existing ML-BFSD
solutions construct training sets without considering function
pairs with identical CFGs but different semantics, inducing
the over-reliance on CFG features. Thus, we leverage δCFG
to augment training data and enhance the performance of
ML-BFSD solutions. Empirical results show δCFG can con-
siderably enhance model performance, improving MRR, Re-
call@1, AUC and F1 score by up to 10.1%, 12.7%, 5.1%, and
27.2% respectively. We further explain the enhanced models,
revealing that the over-reliance on CFG features has been
deprioritized.

In summary, this work makes the following contributions.

• We take the first step towards assessing the role of CFG
features in ML-BFSD solutions, with theoretic explana-
tion and quantitative evaluation, and provide a robustness
validator for developers to identify whether their models
suffer from the over-reliance issue.

• We are the first to adapt explanation methods to the
BFSD scenario for theoretic analysis, revealing that ex-
isting models heavily rely on CFG features.

• We present a CFG manipulation solution δCFG and con-
duct practical experiments, which shows that most mod-
els have bias on CFG features.

• We also present a data augmentation solution based on
δCFG, which helps deprioritizes CFG features and pro-
mote existing models’ performance.

2 Background and Related Work

2.1 ML-BFSD Solutions
Definition. ML-BFSD solutions aim to compute the simi-
larity of two binary functions (raw bytes), measured with a
similarity score from 0 (no similarity) to 1 (identical). Two
functions compiled from two source code functions that are
the same or similar to some extent (e.g., one is a patched ver-
sion of the other) should acquire high similarity scores [45,64].
Compared with Non-ML-BFSD solutions [14, 15, 29, 49, 53],
ML-BFSD solutions [9, 21, 36, 39, 55, 61, 69, 72, 74] gener-
ally offer higher accuracy, require less human involvement,
and have generalizes better. We present an intuitive example
describing the workflow of ML-BFSD solutions in Figure 1.
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Figure 1: The general workflow of ML-BFSD solutions.

ML-BFSD solutions represent binary functions as embed-
dings through adopting ML models, and then apply specific
metrics to compute the similarity score between functions. In
practical applications, a given function is compared with all
the functions in a function pool. Similarity scores are then
used to rank functions in the pool, identifying the closest
matches to the given function.

ML-BFSD solutions studied by us. CFGs encode func-
tion structures, depicting control dependencies between ba-
sic blocks. We note numerous ML-BFSD solutions treat
CFGs [6, 45, 64] as critical components. However, the ex-
act role of CFGs and the side effects of over-reliance on
CFGs are not investigated. In this work, we conduct studies
on 11 representative ML-BFSD solutions, which are proven
to be top-performing, open-sourced and widely adopted [64].
Our work is model-agnostic, suitable for evaluating solutions
regardless of whether they employ CFGs. To validate this
point, beyond assessing solutions that use CFGs (the first
eight [8, 16, 33, 38, 46, 50, 67, 72]), we also selected three
solutions that don’t use CFGs for evaluation (the last three,
namely Safe [47], Trex [52] and jTrans [64]).

2.2 Explanation Methods

Explanation methods [41, 57, 70, 71] have been widely used
in interpreting model behaviors. We aim to utilize explana-
tion methods to study the role of CFGs. We hope that expla-
nation methods can explicitly determine the importance of
CFG features in model decisions. In this regard, we refer to
approximation-based explanation methods [7, 22, 54, 56, 73].

Approximation-based approaches. We focus on local ex-
planation approaches [7, 22, 54, 56, 73] which are the most
prevailing form in the explanation domain [24,40]. Such local
approximation-based approaches concentrate on explaining
the decision of target models for a given input instance. These
approaches use interpretable models to locally approximate
decision boundaries of target models in the vicinity of the
input model. According to the interpretable models, these

approaches can provide the importance score of each fea-
ture. Specifically, given an instance x with d features, i.e.,
x = [x1,x2, ...,xd ], they perturb feature values of x under spe-
cific strategy to generate numerous variants (i.e., local in-
stances in the vicinity of x) as training data. With training
data, they adopt interpretable models f (e.g., linear models)
to locally approximate decision boundaries of target models.
When the approximation finishes, they utilize f to form a vec-
tor a = [a1,a2, ...,ad ], where ai is treated as the contribution
(importance score) of xi to the decision of target models at x.

Why choose approximation-based approaches? We
choose approximation-based approaches for three reasons.
First, such methods approximate target models with inter-
pretable models, which can explicitly measure feature im-
portance, helping understand the role of CFGs. Second, such
approaches are model-agnostic. ML-BFSD solutions to be
explained contain different types of models, such as GNNs
and Transformers. We need a model-agnostic method that can
be applied to explain all these models. Third, such methods
are popular in explaining models deployed in function-related
scenarios [13, 22, 40], which are closely related to our tasks.

There are other types of explanation approaches, such as
backpropagation-based [11, 59, 60], perturbation-based [4, 17,
18], and GNN-based [41,42,42,65,71] approaches. We neglect
these approaches since many of them are tailored for the
image domain. Additionally, some of them focus on specific
network architectures, e.g., GNNs, and are not model-agnostic.
For example, CFGExplainer [26] specifically supports GNN-
based classifiers. In contrast, our task targets a broader range
of models such as RNNs and Transformers. More importantly,
we focus on exploring the role of CFG features. It is essential
to separate CFG features from semantic features to ascertain
the role of CFGs. CFGExplainer can only identify significant
function sub-parts encompassing many instructions, which
merge CFG features with semantic features, obscuring the
role of CFG features.

2.3 Divergence from Related Work

Related work on model evaluation. A recent study [45]
evaluates a batch of BFSD solutions, aiming at fair and mean-
ingful comparison among them. It fails to consider the role of
CFGs, and is considerably different from our work. They ar-
gue many solutions are tailored to slightly different objectives,
depending on the context or specific scenarios, and as such, a
direct comparison of BFSD solutions is infeasible. Thus, they
focus on establishing a uniform dataset, and re-implement
many BFSD solutions to conduct comparison with uniform
metrics, such as recall and area under curve (AUC). Even
though the study tries to observe the performance of BFSD
solutions under different settings, for instance, by using dif-
ferent GNN variants and diverse feature engineering methods,
they do not consider exploring the role of CFGs. In contrast,
we focus on exploring the role of CFGs, model enhancement,
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and mitigation on the over-reliance on CFG features.
Limited understanding on CFG over-reliance. Although

several studies [28, 39] came across over-reliance on CFGs,
the approaches they identify are non-ML models, which are
rather different from ML-based models. For example, Liu
et al. [39] comment that some non-machine learning ap-
proaches [20, 48] based on graph isomorphism heavily rely
on CFGs. Furthermore, these studies often briefly acknowl-
edge over-reliance based on experience or intuition, without a
systematic evaluation of CFG’s exact role. This makes it hard
to effectively caution subsequent developers about the over-
reliance. In line with this observation, later studies [38,46,72]
tested by us still suffer from this issue. Our work fills this gap.
It serves as a model-agnostic robustness validator, poised to be
applied to future models, aiding in discerning their potential
over-reliance on CFG features. Otherwise, even if developers
refine their models, efficacy of such refinement is elusive.

Table 1: Human-readable features.

Type Feature Name

Semantic Features

Call Instructions (Call)
Jump Instructions (Jump)

Arithmetic Instructions (Arith)
Data Transfer Instructions (Data-Tran)

Other Instructions (Other)

CFG Features
No. of Nodes (Nodes)
No. of Edges (Edges)

Graph Similarity (Graph-Sim)

3 Explainer: Explaining ML-BFSD Solutions

To understand the role of CFGs in ML-BFSD solutions, we
implement an explanation module Explainer, which refers
to prior art [7,22,54,56,73] and adapts them to the BFSD do-
main. The basic idea is to locally approximate a target model
with an interpretable ML model, then present the importance
of different features. Given a model F adopted by the target
ML-BFSD solution, an instance (a function) x, we aim to ac-
quire the importance score of each feature in x to the decision
of F at x. (1) we first specify features to represent functions,
supporting Explainer to score the importance of each fea-
ture. (2) Then, we generate local instances in the vicinity of x,
to locally approximate F with an interpretable model M. M
explicitly represents the importance score of each feature, and
the role of CFGs becomes intuitive. We introduce the above
two points in Sections 3.1 and 3.2, respectively, and present
the explanation results in Section 3.3.

3.1 Feature Specification

We are the first to apply explanation approaches to the BFSD
domain, and existing explanation approaches lack feature
specifications, particularly regarding the features depicting
CFGs. This hinders Explainer from scoring the importance

of each feature. We note some explanation methods [22] di-
rectly score function bytes, which is pointless in our task,
since CFGs are hard to directly characterize using bytes, and
the importance of CFGs is lacking in these explanation meth-
ods. To overcome this challenge, we specify human-readable
features to represent functions. Each feature represents a com-
ponent affecting decisions of ML-BFSD solutions, and can
be scored by Explainer to intuitively reflect its importance.
We specify eight features in Table 1, the first five are used to
depict function semantics, namely semantic features, and the
last three to characterize CFGs, namely CFG features.

Semantic features. We design semantic features to de-
pict function semantics in two stages. Stage I: Instead of
employing function bytes directly, we disassemble them into
instructions, each viewed as an individual semantic feature.
The motivation is two-fold: (1) Instructions, in contrast to
bytes, are more human-readable, enhancing direct understand-
ing of feature importance. (2) Instructions capture the entirety
of a function’s semantics without loss. However, acquiring
global explanation results typically requires analyzing many
functions consisting of a variety of instructions. Given the
expansive nature of the instruction space and the myriad com-
binations of opcodes and operands, directly enumerating the
importance scores of instructions becomes impractical.

Stage II: To address the above challenge, we catego-
rize instructions into five common types: call, jump, arith-
metic, data transfer, and others, collectively denoted as T =
{T1,T2,T3,T4,T5}. We first aggregate the importance scores
of each type’s instructions. A challenge arises from the poten-
tial variation in the number of instructions among these types,
which could lead to biased perceptions of importance. We
normalize these aggregated scores by dividing them by the to-
tal number of instructions within the respective type, thereby
ensuring an equitable depiction of importance. Formally, if
Ik is the set of instructions of type Tk and s(i) indicates the
importance score for instruction i, then the score for type Tk

is STk =
∑i∈Ik

s(i)
|Ik|

. Using this approach, we compute scores
for these five instruction types, presenting them as semantic
feature scores to users.

CFG features. We then specify CFG features to depict
characteristics of CFGs. We first consider the number of nodes
and edges to represent the basic attributes of CFGs. Depicting
CFGs is equivalent to depicting graphs, and these two features
cannot distinguish graphs with the same number of nodes and
edges. We further specify graph similarity, which reflects the
difference between two graphs, and could distinguish graphs
with the same size. We choose the widely-adopted Weisfeiler-
Lehman optimal assignment kernel [34] to compute CFG
similarity. For each local instance x′ in the vicinity of x, we
compute the graph similarity between the CFGs of x′ and x,
and treat it as a feature.

After feature specification, we represent x by d-dimension
features, i.e., x = [x1,x2, ...,xd ]. Here, x[1 : d −3] represents
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all the instructions (stage I) within x, while x[d − 2 : d] de-
notes CFG features. Explanation methods can then assign
importance scores to each feature. Note that when presenting
scores of semantic features to users, we compute scores for
the five instruction types (stage II) based on the scores of each
individual instruction and then present these scores to users.

3.2 Local Approximation

We then locally approximate decision boundaries of target
models. (1) we first generate local instances in the vicinity of
x. (2) Then, we label these instances, constructing the training
set. (3) We train interpretable models to locally approximate
decision boundaries.

Local instance generation. The basic idea for the genera-
tion is to perturb x to generate local instances in the vicinity
of x [22, 56]. Perturbations target both semantic and CFG
features. To this end, we randomly delete instructions in x for
the generation. From a semantic perspective, any instruction
deletion naturally results in perturbation of semantic features.
On the CFG side, if a jump instruction is deleted, it affects
the number of CFG edges. Furthermore, if all instructions
within a basic block are coincidentally deleted, it leads to the
removal of that particular basic block, which then alters the
number of CFG nodes. Both scenarios influence graph simi-
larity. During the generation of local instance x′, Explainer
randomly deletes q of instructions, where q is uniformly sam-
pled from (0,τ]. Here we set the threshold τ to restrict the
perturbations, to ensure x′ is in the vicinity of x. Each local
instance is generated by applying a direct perturbation to the
original x, not iteratively on previously perturbed versions.
Under this strategy, Explainer generates N unique local
instances, which are utilized as training data.

Labeling training data. Then, we label the generated local
instances for approximating decision boundaries. Given a
local instance x′, existing approximation-based methods label
it with F(x′), which is unsuitable in our scenarios. The main
reason is that similarity detection models are trained in a
contrastive learning manner, dramatically different from a
supervised learning manner. Here, F(x′) is a multi-dimension
feature vector, which cannot be directly treated as a label.

Similarity detection models make decisions by computing
the similarity between function feature vectors. Inspired by
this, we propose labeling x′ by computing the similarity be-
tween x′ and x. Specifically, we label x′ with D(F(x′),F(x)),
where D represents the cosine similarity function. Such labels
reflect the impacts of feature perturbations on model deci-
sions. Intuitively, a high D(F(x′),F(x)) implies x′ and x are
similar, and the corresponding perturbations on features do
not significantly affect model decisions, and vice versa.

Model development. After labeling training data, we train
interpretable models to locally approximate decision bound-
aries. Previous approximation-based methods assume local
decision boundaries to be either linear [56], or non-linear [22].

This work applies both types of methods to interpret ML-
BFSD solutions, since local boundaries vary in different so-
lutions. Specifically, (1) for the linear hypothesis, we train
a linear regression model f to locally approximate decision
boundaries [56]. Recall we represent x as [x1,x2, ...,xd ]. After
approximation, f (x) = ∑

d
i=1(wi ∗ xi), where wi is the coeffi-

cient of f that corresponds to the feature xi, and the coef-
ficient presents the importance of xi. (2) For the non-linear
hypothesis, we construct a mixture regression model to locally
approximate F [22], and score feature importance.

3.3 Explanation Results

Experiment setup. To assess the role of CFGs, we adopt
Explainer to explain 11 representative ML-BFSD solutions.
Eight of them leverage CFGs: Genius [16], Asm2Vec [8],
Gemini [67], GMN [38], GraphEmb [46], OrderMatters [72],
XBA [33], and DEXTER [50]. The remaining three, Safe [47],
Trex [52], and jTrans [64], do not. We randomly select 5,000
functions from open-source projects. For each function x, we
generate 1,000 local instances around it, and set the thresh-
old τ = 0.5. Then we apply both linear and non-linear mod-
els to the local approximation, as mentioned in Section 3.2.
(1) Linear model. For each x and its local instances, we fol-
low LIME [56] to train a Ridge regression model for the
approximation. (2) Non-linear model. Similarly, we follow
LEMNA [22] to train a Gaussian mixture model.

Metrics. As mentioned in Section 3.2, given a function x,
Explainer computes the importance scores of each feature.
Rather than showing explanation results for each function in
sequence, we evaluate overall results based on two metrics.
First, we compute the average importance score of each
feature. The average score of feature i is defined as sum(xi)

num(x) ,
where sum(xi) is the sum score of feature i across all func-
tions, and num(x) is the number of functions. Second, we
compute the top-1 rate of semantic features and CFG fea-
tures, which are considered as the most important features.
The top-1 rate of semantic features is defined as: num(semantics)

num(x) ,
where num(semantics) is the number of functions whose high-
est scores are acquired by one of the semantic features. The
top-1 rate of CFG features is defined as: 1− num(semantics)

num(x) .
Results. Overall, the results of average importance score

and top-1 rate indicate CFG features are much more important
than semantic features on most solutions. Thus, we conclude
most of them heavily rely on CFG features. In detail, Ta-
ble 2 shows average importance score. On most ML-BFSD
solutions, both LIME and LEMNA yield the highest scores
for CFG features. For example, in DEXTER, according to
LIME, Graph-Sim acquires the highest score 0.163, while
the importance scores of Call, Jump, Arith, Data-Tran, and
Other are just 0.117, 0.126, 0.109, 0.108, and 0.116. Figure 2
and 3 present the results of top-1 rate for LIME and LEMNA,
and we find that on most ML-BFSD solutions, CFG features
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Table 2: Evaluation results of average importance scores on each similarity detection solution.

Explanation
Method BFSD Solutions

Average Score
CFG features

score the highest?Semantic Features CFG Features
Call Jump Arith Data-Tran Other Nodes Edges Graph-Sim

LIME

Genius 0.071 0.098 0.032 0.051 0.073 0.127 0.119 0.144 Yes
Asm2Vec 0.063 0.088 0.046 0.055 0.085 0.116 0.124 0.216 Yes
Gemini 0.056 0.109 0.054 0.050 0.065 0.142 0.143 0.381 Yes
GMN 0.058 0.062 0.074 0.067 0.062 0.156 0.138 0.384 Yes

GraphEmb 0.079 0.107 0.073 0.072 0.113 0.155 0.121 0.278 Yes
OrderMatters 0.095 0.074 0.110 0.083 0.093 0.171 0.141 0.234 Yes

XBA 0.154 0.118 0.100 0.103 0.108 0.119 0.108 0.190 Yes
DEXTER 0.117 0.126 0.109 0.108 0.116 0.152 0.119 0.163 Yes

SAFE 0.102 0.119 0.149 0.115 0.152 0.129 0.095 0.140 No
Trex 0.115 0.118 0.128 0.122 0.136 0.130 0.122 0.130 No

jTrans 0.127 0.171 0.108 0.124 0.129 0.117 0.106 0.126 No

LEMNA

Genius 0.088 0.096 0.074 0.082 0.088 0.118 0.109 0.179 Yes
Asm2Vec 0.085 0.104 0.085 0.112 0.088 0.121 0.114 0.182 Yes
Gemini 0.080 0.146 0.079 0.070 0.097 0.111 0.125 0.291 Yes
GMN 0.090 0.097 0.113 0.109 0.102 0.152 0.104 0.233 Yes

GraphEmb 0.108 0.147 0.102 0.103 0.155 0.111 0.100 0.174 Yes
OrderMatters 0.061 0.105 0.072 0.080 0.093 0.168 0.143 0.223 Yes

XBA 0.147 0.131 0.110 0.113 0.121 0.108 0.124 0.186 Yes
DEXTER 0.120 0.124 0.113 0.114 0.122 0.146 0.123 0.152 Yes

SAFE 0.108 0.126 0.158 0.124 0.169 0.103 0.091 0.121 No
Trex 0.118 0.121 0.131 0.126 0.133 0.127 0.121 0.123 No

jTrans 0.132 0.162 0.112 0.127 0.136 0.110 0.103 0.118 No

achieve a significantly higher top-1 rate than semantic fea-
tures. This indicates CFG features have the greatest influence
on most solutions, confirming the importance of CFGs in
model decisions. Taking DEXTER as an example, accord-
ing to LIME, the top-1 rate of CFG features is 2.9× higher
than that of semantic features. We analyze the reason behind
such over-reliance in Section 5.3. SAFE, Trex, and jTrans
don’t show a strong dependence on CFGs, which aligns with
their non-utilization of CFGs. This alignment underscores
Explainer’s capability to effectively assess the importance
of CFG features.

Figure 2: LIME shows the top-1 rate of semantic and CFG
features. On most ML-BFSD solutions, CFG features outper-
form semantic features.

4 δCFG: Assessing the Impact of CFGs

After Explainer reveals the importance of CFG features, we
aim to explore the impacts of CFGs on decisions of ML-BFSD

Figure 3: LEMNA shows the top-1 rate of semantic and CFG
features. On most ML-BFSD solutions, the top-1 rate of CFG
features is higher than that of semantic features.

solutions. We note that CFGs have a dynamic nature. Activi-
ties such as code refactoring [19] introduce changes in CFGs,
mirroring the fluidity and evolution of software codebase.
For instance, common refactoring techniques like method
extraction, loop simplification, and dead code removal can
substantially alter a CFG without changing function seman-
tics. These changes are organic and are part of the life cycle of
software development, aiming at improving code readability,
maintainability, and performance. However, since ML-BFSD
solutions heavily rely on CFG features, such changes might
considerably affect model decisions.

We hope to explore the impact of CFG changes by manipu-
lating CFGs of a given pair of functions to make them identi-
cal or different, without changing function semantics. In detail,
(1) given an ML-BFSD solution model F , a pair of randomly
selected functions <x, y> with different CFGs, we manipulate
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their CFGs to make them identical. The modified functions
are denoted as <x′, y′>, and they have identical CFGs. We then
investigate the impact of the modification on their similarity
score, by comparing D(F(x′),F(y′)) and D(F(x),F(y)). (2)
Conversely, given a randomly selected function x2, which
has identical CFG as x, x′ has different CFG from x2. We
compare D(F(x′),F(x2)) and D(F(x),F(x2)) to assess the
impact when CFGs become different.

Furthermore, based on the manipulated functions, we can
explore errors caused by the over-reliance on CFG features,
which indicates that CFG changes in real-world software de-
velopment can threaten ML-BFSD solutions. For example, we
compare the similarity scores of the function pairs that have
the same CFGs but different semantics against those with
different CFGs but the same semantics. More specifically,
we re-sample function pair <x, y> that has different seman-
tics, and function pair <x, x2> that has identical semantics
(e.g., x2 is a compilation variant of x). Then, after manipu-
lation, if the similarity score D(F(x′),F(y′)) is higher than
D(F(x′),F(x2)), it indicates an error in the model, since the
former with different semantics is claimed more similar than
the latter with identical semantics. Such errors can jeopardize
downstream tasks that use ML-BFSD solutions. Taking mal-
ware clustering as an example, the analysts adopt ML-BFSD
solutions to identify common functions across different mal-
ware samples according to their similarity [1,30]. In this case,
the wrong behaviors of ML-BFSD solutions could introduce
irrelevant functions, compromising the accuracy of clustering.

4.1 Methodology

We propose δCFG to manipulate function CFGs to be identical
or different. The main challenge lies in automating the manip-
ulation while preserving function semantics: (1) the manipu-
lation should be automated, since comprehensive evaluation
and exploring model errors requires manipulating abundant
function pairs. The cost of human intervention is unaccept-
able. (2) As δCFG needs to verify the importance of CFGs, the
manipulation should preserve the original semantics, which
avoids introducing altered semantics that affect model deci-
sions. Once the manipulation of CFGs is made, any change
in model decisions can be attributed to CFGs.

We note that obfuscation techniques [5,31] can also modify
CFGs without altering semantics. However, these techniques
are not appropriate in our scenario. Firstly, they introduce
drastic code changes that are not common in software evolu-
tion. Secondly, they typically make CFGs different, and it is
challenging to make CFGs identical.

To address the above challenge, we propose a solution
δCFG. We show the basic idea in Figure 4, and the detailed
workflow in Algorithm 1. δCFG contains two algorithms: the
basic block match algorithm, and the edge match algorithm.
Using these two algorithms enables δCFG to automatically
manipulate CFGs of function pairs, and make them identical,

without disturbing the semantics. Moreover, these algorithms
can also manipulate CFGs to be different. Consider a pair <x,
x2> that has identical CFGs. If we select another function y
with a distinct CFG and apply our algorithms, we obtain a pair
<x′, y′> with identical CFGs. This inherently makes CFGs
of x′ and x2 different. To this end, we primarily introduce
how to make the CFGs of function pairs identical, with the
divergence of CFGs emerging as an inherent consequence.
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Figure 4: Basic idea of δCFG. Red edges and blue basic blocks
are introduced by δCFG.

In this context, V represents the set of basic blocks, and E
denotes the set of edges. To generate identical CFGs for x and
y, we essentially establish two mappings between their modi-
fied counterparts, x′ and y′. The first is a basic block mapping,
fv :Vx′ →Vy′ . That is, there is a one-to-one correspondence be-
tween each basic block in Vx′ and each basic block in Vy′ . We
use the basic block match algorithm to establish this mapping.
The second is an edge mapping, fe : Ex′ → Ey′ . We establish
the one-to-one correspondence between each edge in Ex′ and
each edge in Ey′ , by using the edge match algorithm.

Basic block match algorithm. To establish the basic block
mapping, we match each basic block of x with that of y, result-
ing in a one-to-one correspondence. Overall, we first match
the entry block of x with that of y. Then, using these two entry
blocks as starting points, we use a breadth-first search (BFS)
strategy to match the remaining blocks across both functions.

Given that CFGs are directed graphs, when matching ba-
sic blocks, it is logical to match blocks at similar depths
within the two CFGs. Thus, we employ BFS, which enables
match progress from earlier depths to later depths within the
CFGs. Our BFS-driven algorithm begins by matching the en-
try blocks bentry and uentry (b ∈ x and u ∈ y). As BFS unfolds,
we match the direct successors of each previously matched
pair, aiming to match blocks at similar depths in their respec-
tive CFGs.

In detail, for each pair (bi,ui) that has been matched during
BFS traversal, we identify their direct successor sets as Sbi and
Sui . We remove basic blocks from Sbi and Sui that are already
matched, resulting in refined sets Mbi and Mui . The question
left is how to match basic blocks within these two sets. We
leverage the principle that basic blocks with similar connec-
tivity patterns within CFGs should match. That is, blocks with
a larger number of direct successors should be matched with
each other, and vice versa. To this end, the basic blocks in Mbi
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and Mui are sorted in descending order based on their number
of direct successors and matched accordingly. When blocks
have identical direct successor counts, we count their paths
toward the final block in CFGs and prioritize matching blocks
with more paths. If the number of paths is equal, we randomly
match blocks. We also recognize size disparities between Mbi

and Mui can occur. That is |Mbi | ̸= |Mui |. To solve this prob-
lem, we introduce k = |Mbi |−|Mui | empty basic blocks to y if
k > 0, or infuse −k empty blocks to x if k < 0. This strategy
ensures that each block from x and y is matched with a cor-
responding counterpart, whether it is a genuine basic block
or an introduced empty one. This iterative process proceeds
until all blocks within both x and y find their counterpart.

Upon completing block mapping, the algorithm introduces
empty basic blocks, transitioning the block sets for functions
x and y from Vx and Vy to Vx′ and Vy′ respectively. Now, both
Vx′ and Vy′ contain an identical number of blocks. Assuming
each now consists of m blocks, we can represent them as
Vx′ = {b1,b2, . . . ,bm} and Vy′ = {u1,u2, . . . ,um}. Here, bi in
Vx′ corresponds directly to ui in Vy′ . The block mapping will
be used when establishing the following edge mapping.

Edge match algorithm. We design this algorithm to estab-
lish the edge mapping. The basic idea is to conduct a bijection
between edges of x and y. We iterate through each edge in
x, and if its corresponding edge is absent in y, we add the
required edge to y. This process is then reciprocated for y.

To traverse each edge in x, we iterate through each basic
block in Vx′ = {b1,b2, . . . ,bm}, and record the direct succes-
sors of each basic block with a corpus Sx′ = {Sb1 ,Sb2 , ...,Sbm}.
Each Sbi ∈ Sx′ denotes direct successors of bi, indicating there
are directed edges from bi to each basic block in Sbi . These
directed edges should all have corresponding edges in y. Re-
calling the basic block mapping, we note that bi matches ui,
and all basic blocks in Sbi also match the basic blocks in Vy′ ,
denoted as Sui . To this end, for each ui ∈ Vy′ , we check if
there are directed edges from ui to each basic block in Sui one
by one. If certain edges are missing, they are appended to y.
After traversing each edge in x, we reciprocate the process
for Vy′ . After performing the bidirectional matching on both x
and y, the edge match algorithm completes a comprehensive
mapping for all edges between the two functions.

After adopting the two match algorithms, δCFG results in
x′ and y′. The CFGs of them become identical, as shown in
Figure 4. We note that δCFG introduces empty basic blocks,
which do not compromise the semantics. However, the intro-
duced edges might perturb original control flows and compro-
mise original semantics. To solve this problem, we manipulate
branch conditions, such as setting corresponding conditions to
be always true. This guarantees functions maintain their orig-
inal control flows, steering clear of the newly added branches,
and thus preserving original semantics. We introduce details
in Section 4.2. Additionally, observing the characteristics of
the two algorithms, we can discern the CFG change on x (or
y) depends on the CFG of y (or x). As long as we select target

Algorithm 1: The workflow of δCFG
Input: x = (Vx,Ex), y = (Vy,Ey);
Output: the manipulated functions x′ = (Vx′ ,Ex′ ), y′ = (Vy′ ,Ey′ );
Function δCFG:

Vx′ = Vx, Vy′ = Vy, Ex′ = Ex, Ey′ = Ey;
fv = Basic-block-match(Vx′ , Vy′);
Edge-match( fv, Vx′ , Vy′ , Ex′ , Ey′);
return x′ = (Vx′ ,Ex′ ), y′ = (Vy′ ,Ey′ );

Function Basic-block-match(Vx′ , Vy′):
fv = {}; // basic block mapping
fv[bentry] = uentry;// match entry blocks of x and y
Q = Queue().push((bentry, uentry));// first in first out queue
BFS(Q, fv, Vis, Vx′ , Vy′);
return fv;

Function BFS(Q, fv, Vx′ , Vy′):
if Q.isempty() then

return;
bi,ui =Q.pop();
Vis.append((bi,ui));
Nb = [], Nu = []; // empty list to record the number of

direct successors
Mbi , Mui = Remove(GetSuccessors(bi, ui));// remove

successors that have been matched
for b in Mbi do

Nb.append(|GetSuccessors(b)|);
Sort all basic blocks in Mbi in descending order based on Nb;
for u in Mui do

Nu.append(|GetSuccessors(u)|);
Sort all basic blocks in Mui in descending order based on Nu;
k = |Mbi |− |Mui |;
if k > 0 then

for j = 1 to |Mui | do
fv[Mbi [ j]] = Mui [ j];
Q.push((Mbi [ j], Mui [ j]));

for j = |Mui |+1 to |Mui |+ k do
uempty = CreateBasicblock() ;
Vy′ = Vy′ ∪ uempty;
fv[Mbi [ j]] = uempty;
Q.push((Mbi [ j], uempty));

else
for j = 1 to |Mbi | do

fv[Mbi [ j]] = Mui [ j];
Q.push((Mbi [ j], Mui [ j]));

for j = |Mbi |+1 to |Mbi |− k do
uempty = CreateBasicblock() ;
Vx′ = Vx′ ∪ uempty;
fv[uempty] = Mui [ j];
Q.push((uempty, Mui [ j]));

BFS(Q, fv, Vx′ , Vy′);

Function Edge-match( fv,Vx′ ,Vy′ ,Ex′ ,Ey′):
for b in Vx′ do

u = fv[b];
for s in GetSuccessors(b) do

s′ = fv[s];
Ey′ = Ey′ ∪ (u, s′);

for u in Vy′ do
b = fv[u];
for s in GetSuccessors(u) do

s′ = fv[s];
Ex′ = Ex′ ∪ (b, s′);

functions with diverse CFGs, we can achieve diverse CFG
changes. This implies that our δCFG can simulate a wide vari-
ety of CFG changes that occur during software development.
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4.2 Implementation

δCFG requires source code of functions, which is easily avail-
able. δCFG manipulates CFGs on LLVM intermediate rep-
resentation (IR) [35]. After δCFG changes CFGs on IR, we
use clang to compile the IR to binary. Here, we introduce
key implementation details. For the basic block match and
edge match algorithms, they need to create basic blocks, deter-
mine successors of basic blocks, and add edges. LLVM offers
functions to implement all these operations. More specifi-
cally, we apply Create to create empty basic blocks, and
getSuccessor to determine successors of basic blocks. The
crux is how to add edges.

Edge addition. Given a basic block bi ∈Vx′ with |Sbi | direct
successors before edge addition, we suppose the number of
direct successors increases to M after the addition (|Sbi | <
M). (1) When M = 1, it is an indication of a situation that
requires the addition of a single edge. To facilitate this, we
directly employ the CreateBr function to create this edge.
(2) When M = 2, it signifies a conditional jump situation, i.e.,
two edges need to be added. This scenario requires the use of
the CreateCondBr function to introduce the two edges. (3)
When M > 2, this implies a switch case scenario (our analysis
reveals that at the IR level, a switch case would uniquely
result in more than two branches). For adding multiple edges
in such a scenario, we utilize function SwitchInst::Create
to introduce a switch-case construct.

Semantics preservation amid edge addition. When a ba-
sic block already has direct successors, i.e., |Sbi | ≥ 1, the addi-
tion of edges implies replacing the previous branch instruction
with a new one, and introducing new branches, which may
compromise function semantics.

For |Sbi |= 1, it indicates bi originally has a direct successor,
and the existing branch instruction is a direct jump instruction.
Given the fact that M > |Sbi |, when M = 2, we need to substi-
tute the existing branch instruction with a conditional jump.
To maintain semantics, we ensure the path from bi to b j is
consistently executed by setting the corresponding condition
to be always true. When M > 2, we substitute the existing
branch instruction with a switch-case construct. Then, we
designate the preferred path (bi to b j) as the default. By ma-
nipulating the corresponding switch condition, we ensure that
the default branch is invariably taken.

For |Sbi |= 2, it indicates bi originally has two direct succes-
sors, and the existing branch instruction is a conditional jump
instruction. Given that M > |Sbi |= 2, we substitute the branch
instruction with a switch-case construct. Recognizing that the
condition of the original branch evaluates to boolean values
true or false, we employ the CreateZExt to map true to 1 and
false to 0. These mapped values then serve as switch variables
for the switch-case construct. Specifically, the original path
taken when the condition is true is now associated with case 1
in the switch-case construct. Similarly, the original path taken
when the condition is false is associated with case 0. Any

other branches in the switch-case construct are designed not
to be taken, thus preserving the original semantics.

For |Sbi | > 2, it implies bi has multiple direct successors,
and the existing branch instruction is a switch-case construct.
Accordingly, we add M−|Sbi | branches by introducing new
cases to a switch-case construct. We employ the addCase
for this purpose. By carefully setting case values, we ensure
that these new branches remain untaken, thereby maintaining
the original semantics. Here, how to set case values is the
crux. More specifically, assuming Sbi contains n basic blocks
(|Sbi |= n), given a switch variable var, there are n case values,
represented as C = {C0,C1, ...,Cn−1}. Each case value C j cor-
responds to a basic block b′j in Sbi = {b′0,b

′
1, ...,b

′
n−1}. During

each execution, the switch variable var will take on one of
the case values, subsequently executing the corresponding
basic block. To maintain the original semantics, when adding
M−n new cases, it’s essential to ascertain that these new case
values do not overlap with the existing ones in C. Thus, these
new case values will never equal var and the newly added
branches will never be executed. This approach maintains the
original semantics.

The question left is how to ensure that the newly added
case values do not overlap with C. The main challenge
lies in ensuring that the newly added case values do not
overlap with C. It’s noteworthy that each function may
have a unique set of C. To automate the addition of non-
overlapping case values, we replace all existing case val-
ues in C with a continuous sequence C̃ ranging from 0 to
n−1, i.e., C̃ = {0,1, ...,n−1}. That is, now each case value
C̃ j corresponds to basic block b′j. Concurrently, we adjust
the switch variable var to match this new sequence, yield-
ing varnew. The adjustment is realized through the opera-
tion: varnew =

∨
1≤ j≤n−1 CreateSExt(var ==C j)∧ j, where

LLVM function CreateSExt extends a signed value to 32
bits. To this end, when var =C j, varnew equals to C̃ j, and b′j
will be executed. Thus, the case value replacement will not
compromise the original semantics. With this replacement in
place, when new case values arise, we can straightforwardly
set their values greater than n−1, automating the addition of
case values. As the new case values exceed n−1, they do not
overlap with C̃, without compromising the original semantics.

5 Evaluation on δCFG

We adopt δCFG to answer four research questions (RQs):

• RQ1: What is the impact on model decisions when a
pair of functions with identical CFGs are modified to
have different CFGs? (Section 5.1)

• RQ2: What is the impact on model decisions when a
pair of functions with different CFGs are modified to
have identical CFGs? (Section 5.2)
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• RQ3: How come these ML-BFSD solutions rely heavily
on CFGs? (Section 5.3)

• RQ4: Can our δCFG be utilized to mitigate the over-
reliance and enhance the performance of ML-BFSD so-
lutions? (Section 5.4)

5.1 Change Identical CFGs to Be Different

Overall, results reveal that for the majority of the ML-BFSD
solutions, the similarity scores for function pairs with identi-
cal CFGs experience a substantial decrease when their CFGs
become different. More importantly, these changes in CFGs
could result in model errors. That is, functions that are seman-
tically identical might be incorrectly identified as dissimilar.

Experimental setup. For each ML-BFSD solution F, we
randomly select 5,000 function pairs with identical CFGs and
semantics to investigate the impact of modifying CFGs. Dur-
ing the selection of each function x, we traverse all possible
combinations of compilation variants, such as (O0, O1) and
(O0, O2), until we identify a pair of variants whose CFGs are
identical. If no such pair is found, the function is not selected.
Ultimately, we collect 5,000 function pairs with identical
CFGs and semantics, each denoted by <x, x2>.

Evaluation metrics. We use decrease ratio and error rate
(ER) to evaluate the impact when CFGs become different. (1)
Similarity scores will decrease when CFGs of pairs change
from being identical to different. We evaluate the decrease
in their similarity score by decrease ratio: F(x,x2)−F(x′,x2)

F(x,x2)
. (2)

We further measure ER caused by CFG changes. Recalling
scenarios where ML-BFSD solutions are used, given a x, the
task is to identify the closest counterpart x2 from a pool of
candidate functions. We mimic real-world scenarios where
x has been changed to x′ due to CFG changes such as code
refactoring, and test whether F can still identify x2 as the most
similar function despite the CFG changes.

For each function x, we create four function pools with
sizes of 16, 32, 64 and 128, respectively, with functions ran-
domly selected from open-source projects. We guarantee that,
within each pool, the similarity score between x and x2 ranks
at the top. Subsequently, upon computing similarity scores
between x′ and all functions in the pool (including x2) using
F, we rank all functions based on these scores. We evaluate
whether the pair <x′, x2> maintains its top rank despite the
CFG changes. Any deviation from the top rank is deemed an
error. Thus, ER = num(error)

num(all) , where num(error) is the number
of errors, and num(all) is the total number of function pairs,
i.e., 5,000, declared in our setup.

Results. Figure 5 shows the decrease ratios observed. ML-
BFSD solutions that rely on CFGs are sensitive to CFG
changes, reflecting high decrease ratios with many function
pairs experiencing a decline in similarity scores by 40% ∼
60% or more than 60%. Taking OrderMatters as an example,

Figure 5: Evaluation results of decrease ratios. In non-CFG
dependent solutions, most function pairs exhibit decrease ra-
tios within the 0 ∼ 20% interval (represented by the green
bars).

23.1% function pairs witness a decrease of 40% ∼ 60%, and
27.5% experience a decrease exceeding 60%.

In contrast, in non-CFG dependent solutions, namely SAFE,
Trex, and jTrans, a significant majority of function pairs ex-
hibit decrease ratios within the 0 ∼ 20% interval, while only
a minor fraction of function pairs show higher decrease ratios.
Such results indicate these solutions are insensitive to CFG
changes. For instance, in jTrans, 97.4% of function pairs show
decrease ratios within 20%, while only 2.6% of function pairs
exceed 20%.

The ER results in Table 3 highlight that a majority of solu-
tions demonstrate a substantial ER, even at the smallest pool
size of 16. This suggests that when CFGs of function pairs
differ, many models often misjudge them as dissimilar, de-
spite their identical semantics. To elaborate, with a pool size
of 16, most solutions’ ER is still above 40%. As we increase
the pool size from 16 to 128, the ER for the majority further
escalates significantly.

Summary. Most solutions exhibit high decrease ratios and
ER due to the over-reliance on CFGs, revealing a notable
model limitation. In contrast, SAFE, Trex, and jTrans diverge
in performance compared to others, displaying much lower
ratios and ER. This aligns with our explanation results that
these three do not heavily rely on CFGs.

5.2 Change Different CFGs to Be Identical

We further consider scenarios where function pairs with dif-
ferent CFGs are changed to have identical CFGs. On most
ML-BFSD solutions, we observe that such changes induce a
significant similarity score increase, despite different function
semantics. Furthermore, a considerable number of function
pairs are misjudged as similar, with similarity scores rising to
the top position.

4274    33rd USENIX Security Symposium USENIX Association



Table 3: Evaluation of ER when CFGs become different.

BFSD
Solutions

ER (%)
pool size = 16 pool size = 32 pool size = 64 pool size = 128

Genius 62.7 67.9 73.3 75.1
Asm2Vec 31.7 37.4 43.8 48.0
Gemini 40.1 49.2 57.4 65.3
GMN 42.2 47.6 54.7 64.1

GraphEmb 38.7 45.6 52.1 60.2
OrderMatters 57.8 65.1 70.7 75.2

XBA 52.0 62.5 70.6 76.0
DEXTER 46.5 56.3 63.7 70.6

SAFE 1.4 1.8 2.0 2.5
Trex 1.3 1.5 2.2 4.1

jTrans 1.1 1.5 2.4 3.0

Experimental setup. For each solution F, we randomly
select 5,000 function pairs with different semantics from open-
source projects. Each function pair <x, y> is chosen such that
F(x,y), their similarity score, is lower than the score between
x and its compilation variants, ensuring that the semantics of
<x, y> are different and can be correctly distinguished by F.
Then, δCFG manipulates each pair <x, y> into <x′, y′>. Here,
x′ and y′ have identical CFGs but different semantics.

Evaluation metrics for RQ2. We use increase ratio, error
rate (ER), and top-1 rate to evaluate for the evaluation. When
function pair CFGs are changed to be identical, (1) we as-
sess the improvement of their similarity scores by measuring
increase ratio: F(x′,y′)−F(x,y)

F(x,y) . (2) Following the ER metric de-
fined in Section 5.1, we construct four function pools of sizes
16, 32, 64, and 128 in a similar way. Each pool encompasses
a randomly selected compilation variant of x, denoted as x̃.
Additionally, each pool includes y′ to emulate a scenario in
which the CFG of x is modified to be identical to a function
(i.e., y′) in pools. We ensure that, prior to the modification,
the similarity score between x and its compilation variant x̃
is the highest within the pool. After the CFG modification,
we compute similarity scores between x′ and all functions in
the pool (including x̃), and rank all functions based on these
scores. If the similarity score between x′ and x̃ no longer
holds the top rank, we regard it as an error. Then, we calculate
the ER in the same manner as described in Section 5.1. (3)
We further underscore the extent to which identical CFGs can
contribute to misjudging functions as similar. We measure the
proportion of pairs that, when modified to possess identical
CFGs, achieve the top-1 position in terms of similarity scores
within their respective pools. To this end, we introduce the
metric top-1 rate: num(top-1)

num(all) . Here, num(top-1) represents the
count of pairs for which the similarity score of x′ and y′ ranks
first within the pool. Meanwhile, num(all) signifies the total
number of function pairs investigated.

Results. Figure 6 presents the results of increase ratios. For
the majority of solutions, manipulating CFGs to be identical
leads to significant increases in similarity scores for func-
tion pairs with different semantics. Specifically, over 56.9%
of function pairs (100%−43.1% on OrderMatters) register

increase ratios above 40%, with at least 42.4% surpassing
60%. Table 4 further underscores a major shortcoming in ML-
BFSD solutions when evaluating function pairs with identical
CFGs. These models frequently misidentify them as similar, a
clear discrepancy from their true different semantics. Remark-
ably, the ER for a bulk of solutions breaches the 50% mark at
a modest pool size of 16, and this exceeds 70% when the pool
size extends to 128. Moreover, Table 5 shows that consider-
able function pairs, upon becoming identical CFGs, achieve
the top-1 similarity scores within their respective function
pools. On most solutions, the top-1 rate remains above 20%
even as the pool size increases to 128.

Summary. Except for SAFE, Trex and jTrans that do not
rely on CFGs, other solutions show pronounced increase ra-
tios, ER, and top-1 rate. Such results illuminate the stark chal-
lenges these models grapple with when tasked with recogniz-
ing semantic dissimilarities amidst identical CFGs, validating
the pitfalls of over-reliance on CFGs.

Figure 6: Evaluation results of increase ratios.

Table 4: Evaluation of ER when CFGs become identical.

BFSD
Solutions

ER (%)
pool size = 16 pool size = 32 pool size = 64 pool size = 128

Genius 72.1 82.1 85.3 88.4
Asm2Vec 51.0 53.5 56.1 59.1
Gemini 52.5 58.6 63.1 71.2
GMN 50.8 61.6 67.1 71.9

GraphEmb 43.5 49.8 55.2 62.2
OrderMatters 69.2 74.3 78.1 81.3

XBA 59.8 69.1 76.5 79.6
DEXTER 58.9 64.3 68.6 74.0

SAFE 2.0 3.2 3.4 4.4
Trex 1.6 2.1 2.4 3.1

jTrans 1.5 1.7 2.6 3.1

5.3 Interpreting CFG Over-reliance

After validating ML-BFSD solutions heavily relying on CFG
features, we conclude two potential reasons that cause the
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Table 5: Evaluation results of top-1 rate.

BFSD
Solutions

Top-1 rate (%)
pool size = 16 pool size = 32 pool size = 64 pool size = 128

Genius 39.1 35.8 30.5 25.6
Asm2Vec 29.2 27.5 23.2 20.8
Gemini 37.4 34.8 31.6 28.6
GMN 38.5 34.6 33.5 31.7

GraphEmb 24.5 23.7 22.2 21.0
OrderMatters 36.2 31.3 26.4 22.0

XBA 23.2 20.7 18.8 18.0
DEXTER 34.6 29.2 24.0 21.7

SAFE 5.5 4.2 3.5 2.3
Trex 4.6 2.3 1.9 1.7

jTrans 2.0 1.9 1.6 1.5

over-reliance: (1) Many ML-BFSD solutions suffer from de-
sign flaws that compromise the learning of semantics. (2) The
training set has a bias. Based on the above analysis, we clarify
the reasoning between semantics and CFG features.

Design flaw analysis. We find that these ML-BFSD solu-
tions have design flaws that undermine the learning of seman-
tics, resulting in the over-reliance on CFG features.

First, some methods [16, 50, 67] manually specify features,
potentially resulting in information loss. For instance, both
Gemini and DEXTER neglect the order of instructions when
defining manual features, which leads to information loss.
Second, instruction relationships are not well captured by
many ML-BFSD solutions. Genius learns intra-block seman-
tics but not inter-block relations. Asm2Vec only partially
learns relationships through a random walk, which covers
a small number of basic blocks. In ML-BFSD solutions uti-
lizing GNNs [33, 38, 46, 67, 72] , GNNs assign instructions to
various graph nodes based on control dependencies depicted
by CFGs, where each node corresponds to a basic block. How-
ever, GNNs typically excel at learning relationships between
instructions within basic blocks that are directly connected.
For instructions located in distant blocks that are not directly
connected, it is generally less effective for GNNs to capture
relationships between them. This implies that learning based
on CFGs could limit models’ understanding of instruction
context. We note that Pei et al. [51] explore the potential
of utilizing large language models (LLMs) for representa-
tion. Given their exceptional representation capabilities, using
LLMs for representation may become a future trend.

Bias of training set. We note many solutions use a biased
training set, resulting in over-reliance on CFGs. These so-
lutions aim to train models to identify function pairs with
identical semantics as similar (denoted as ⟨x, x̃⟩) and function
pairs with different semantics as dissimilar (denoted as ⟨x,y⟩).
Here x and y are semantically distinct functions taken from
the function set constructed by the ML-BFSD solutions, and
x̃ is a compilation variant of x. However, the distribution of
function pairs has a bias, and thus causes models to heavily
rely on CFGs. Specifically, function pairs can be generally
categorized into four types. (1) Type 1: different CFGs and
different semantics. (2) Type 2: different CFGs but same se-

mantics. (3) Type 3: same CFGs and same semantics. (4)
Type 4: same CFGs but different semantics. We find that nu-
merous pairs belong to types 1-3, while only a small amount
of them belong to type 4. Note that, only function pairs in
types 3 and 4 have the same CFGs. However, type 3 is much
more common than type 4, which can cause models to tend
to identify functions with the same CFGs as similar, namely,
over-reliance on CFG features.

Table 6: The proportion of four types of function pairs.

Repetition Count
Proportion (%)

Type 1 Type 2 Type 3 Type 4
Repetition #1 49.71 40.49 9.51 0.29
Repetition #2 49.73 42.46 7.54 0.27
Repetition #3 49.75 39.39 10.61 0.25
Repetition #4 49.72 40.31 9.69 0.28
Repetition #5 49.68 39.33 10.67 0.32

Specifically, these solutions use the BinaryCorp-3M train-
ing set from jTrans [64], which compiles tens of thousands of
open-source projects and establishes this uniform and large-
scale dataset containing approximately 3,000,000 functions.
We randomly select 400,000 function pairs from the training
set, and observe the proportion of the four types of function
pairs. We repeat each experiment five times. Table 6 presents
the proportion of the four types of function pairs, and the
proportion of type 4 is much lower than that of others. Only
function pairs in types 3 and 4 have identical CFGs, but type
3 is 27.9 ∼ 42.4× more than type 4, which leads to overfit-
ting and over-reliance on CFGs. That is, models are prone to
identify function pairs with the same CFGs as semantically
equivalent.

Reasoning between semantics and CFG features. Se-
mantics are determined by both instructions themselves and
their contexts, i.e., relationships between instructions. Thus,
ML-BFSD solutions need to learn not only the instructions
but also their contexts. However, CFGs can only aid models in
learning a portion of (not all) the context of instructions and
may even limit the model’s learning of instruction context. On
the other hand, modeling the full context, i.e., an instruction
sequence, may yield different embeddings by different ML-
BFSD solutions. But this is not an issue. Their embeddings
differ because they reside in different latent spaces. These
differing latent spaces can be aligned through projection.

5.4 Model Performance Improvement
After analyzing the reasons behind the over-reliance on CFGs,
we find δCFG can be used to mitigate this issue by alleviat-
ing training set bias. Consequently, δCFG helps ML-BFSD
solutions better learn function semantics, improving model
performance. We use δCFG to manipulate function CFGs, thus
increasing the number of function pairs with identical CFGs
but different semantics. Subsequently, we use the manipulated
functions generated by δCFG, as well as the original training
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Table 7: Comparison of improvement in MRR after fine-tuning with and without augmented data (denoted as clean), expressed
as ∆ MRR. The results validate the effectiveness of using δCFG for fine-tuning the models.

BFSD
Solutions

∆ MRR (%)
O0,O3 O1,O3 O2,O3 O0,Os O1,Os O2,Os Average

δCFG clean δCFG clean δCFG clean δCFG clean δCFG clean δCFG clean δCFG clean
Gemini 9.0 0.0 3.5 0.2 1.6 0.2 7.0 0.2 5.5 -0.1 4.8 0.0 5.2 0.1
GMN 10.1 0.3 5.0 0.2 1.4 0.2 9.8 0.1 4.0 -0.1 4.1 0.3 5.7 0.2

GraphEmb 3.7 -0.1 2.8 0.2 1.0 0.3 3.6 -0.1 2.9 0.1 3.1 0.1 2.9 0.1
OrderMatters 1.4 0.1 1.3 -0.1 0.9 0.1 3.1 0.1 1.3 -0.1 1.8 0.1 1.6 0.1

XBA 0.4 0.1 0.3 -0.1 0.2 0.1 1.1 0.1 0.8 0.1 0.4 0.1 0.5 0.1
DEXTER 1.4 -0.2 4.7 -0.1 1.9 0.2 2.0 0.3 4.5 0.1 1.4 0.3 2.7 0.1

Table 8: Comparison of improvement in Recall@1 after fine-tuning with and without augmented data (denoted as clean),
expressed as ∆ Recall@1. The results validate the effectiveness of δCFG.

BFSD
Solutions

∆ Recall@1 (%)
O0,O3 O1,O3 O2,O3 O0,Os O1,Os O2,Os Average

δCFG clean δCFG clean δCFG clean δCFG clean δCFG clean δCFG clean δCFG clean
Gemini 10.8 -0.1 4.4 0.2 1.9 0.1 9.3 0.0 6.7 0.1 5.6 0.1 6.5 0.1
GMN 12.7 0.3 7.1 -0.1 1.8 0.2 12.7 0.1 6.2 0.3 5.9 0.1 7.7 0.2

GraphEmb 5.2 0.1 4.3 0.2 1.5 0.3 5.4 0.2 4.2 0.3 4.3 0.2 4.2 0.3
OrderMatters 1.8 0.0 1.6 -0.1 1.2 0.1 3.5 0.2 1.7 0.1 2.5 0.0 2.1 0.1

XBA 0.6 0.0 0.4 -0.1 0.3 0.1 1.6 0.1 1.3 0.2 0.7 0.0 0.8 0.1
DEXTER 1.1 -0.3 7.0 0.2 3.4 -0.2 3.3 0.3 7.1 0.3 1.8 0.3 3.9 0.1

Table 9: Comparison of improvement in AUC after fine-tuning with and without augmented data (denoted as clean), expressed
as ∆ AUC.

BFSD
Solutions

∆ AUC (%)
O0,O3 O1,O3 O2,O3 O0,Os O1,Os O2,Os Average

δCFG clean δCFG clean δCFG clean δCFG clean δCFG clean δCFG clean δCFG clean
Gemini 1.0 0.0 0.6 0.1 0.4 0.0 0.5 0.0 0.5 0.0 0.4 -0.1 0.6 0.0
GMN 5.1 0.0 3.7 -0.1 2.8 0.0 2.9 0.0 2.7 0.0 2.5 0.0 3.3 0.0

GraphEmb 3.8 0.0 2.4 0.0 1.6 0.0 1.8 0.0 1.6 -0.1 1.7 0.0 2.2 0.0
OrderMatters 0.4 0.0 0.5 0.1 0.5 0.1 0.6 -0.1 0.4 0.0 0.6 0.0 0.5 0.0

XBA 0.2 0.0 0.2 0.0 0.1 -0.1 0.3 0.0 0.2 0.0 0.1 -0.1 0.2 0.0
DEXTER 0.4 0.0 0.7 0.1 0.1 0.0 0.6 0.0 0.3 0.0 0.3 0.0 0.4 0.0

Table 10: Comparison of improvement in F1 score after fine-tuning with and without augmented data (denoted as clean),
expressed as ∆ F1 score.

BFSD
Solutions

∆ F1 Score (%)
O0,O3 O1,O3 O2,O3 O0,Os O1,Os O2,Os Average

δCFG clean δCFG clean δCFG clean δCFG clean δCFG clean δCFG clean δCFG clean
Gemini 5.5 0.0 0.1 0.0 0.2 -0.1 5.6 0.1 0.3 0.0 0.2 0.1 2.0 0.0
GMN 27.2 0.0 10.8 -0.1 2.0 0.0 18.6 0.0 11.3 0.0 11.0 0.0 13.5 0.0

GraphEmb 3.7 0.1 5.0 0.1 1.1 0.0 4.0 0.1 5.1 0.0 4.7 0.0 3.9 0.1
OrderMatters 16.9 0.1 5.1 0.0 0.6 0.0 15.7 0.0 5.9 -0.1 5.0 0.0 8.2 0.0

XBA 0.2 0.0 0.2 0.0 0.1 0.0 0.2 0.0 0.1 0.0 0.2 0.0 0.2 0.0
DEXTER 14.9 0.2 8.9 0.0 1.2 -0.1 8.0 -0.2 8.5 0.0 4.0 0.2 7.6 0.0

set to fine-tune ML-BFSD solutions, enhancing ML-BFSD
solutions.

We use the training set from BinaryCorp-3M, and randomly
select 50,000 function pairs exhibiting differing semantics and
employ δCFG to generate manipulated pairs. Then, we curate
a fine-tuning dataset by integrating these manipulated pairs

(50,000) into the training set. Using this enhanced set, we fine-
tune the top six performing solutions with 5 epochs: Gemini,
GMN, GraphEmb, OrderMatters, XBA and DEXTER. Finally,
we evaluate model performance on the test set (no augmented
data) from BinaryCorp-3M, with pool size of 32.

Performance and semantics enhancement with δCFG.
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Table 11: Change in importance scores: increase for semantic features and decrease for CFG features in enhanced models.

Explanation
Method BFSD Solutions

∆ Average Score
Semantic Features CFG Features

Call Jump Arith Data-Tran Other Nodes Edges Graph-Sim

LIME

Gemini 0.008 0.007 0.006 0.004 0.011 -0.005 -0.006 -0.083
GMN 0.041 0.049 0.032 0.038 0.047 -0.031 -0.008 -0.174

GraphEmb 0.022 0.019 0.021 0.026 0.009 -0.017 -0.003 -0.118
OrderMatters 0.014 0.007 0.002 0.005 0.008 -0.011 -0.008 -0.024

XBA 0.012 0.006 0.004 0.006 0.007 -0.008 -0.013 -0.035
DEXTER 0.016 0.005 0.008 0.009 0.017 -0.012 -0.010 -0.066

LEMNA

Gemini 0.011 0.010 0.008 0.004 0.003 -0.009 -0.001 -0.041
GMN 0.027 0.028 0.005 0.007 0.022 -0.018 -0.025 -0.096

GraphEmb 0.006 0.003 0.004 0.008 0.012 -0.005 -0.004 -0.019
OrderMatters 0.016 0.004 0.013 0.006 0.015 -0.011 -0.043 -0.093

XBA 0.015 0.003 0.012 0.004 0.012 -0.013 -0.026 -0.088
DEXTER 0.009 0.002 0.006 0.007 0.013 -0.008 -0.004 -0.012

We assess model performance using four metrics commonly
employed in previous literature [45, 46, 64]: MRR, Recall@1,
AUC, and F1 score. Table 7, 8, 9 and 10 highlight perfor-
mance enhancements across all models upon applying δCFG,
with the highest observed boosts of 10.1% in MRR, 12.7%
in Recall@1, 5.1% in AUC and 27.2% in F1 score. On av-
erage, MRR, Recall@1, AUC and F1 score experience an
uplift of 0.5% ∼ 5.7%, 0.8% ∼ 7.7%, 0.2% ∼ 3.3%, and
0.2% ∼ 13.5% respectively. Conversely, models fine-tuned
solely with the BinaryCorp-3M training set (denoted as clean)
often stagnate and even regress in performance. Further, we
use our Explainer to explain the enhanced models, revealing
that the importance of semantic features is improved. Accord-
ing to Table 11, the enhanced models exhibit increased im-
portance scores for semantic features and reduced scores for
CFG features, signifying a better understanding of function
semantics and reduced over-reliance on CFG features.

Robustness evaluation. The above results validate the en-
hancement of models through the application of δCFG. Such
enhancement enables models to generate new function repre-
sentations. To evaluate the robustness of new representations,
we increase instruction separation by augmenting the num-
ber of basic blocks between instructions. This methodology
allows us to assess models’ robustness to such changes and
validate their improved capability in learning relationships
between instructions in distinct basic blocks.

We employ the same set of function pairs as declared in
Section 5.1, each consisting of semantically equivalent func-
tions with identical CFGs, denoted as <x, x2>. For each pair,
we randomly select k basic blocks within x to split using
LLVM’s function splitBasicBlock, with k randomly cho-
sen from the set {1,2}. We then reconnect the divided basic
blocks with direct jump instructions to maintain the original
control flow. After the split, we introduce a stochastic element
by randomly determining whether to incorporate additional
branches between the newly formed basic blocks. For exam-
ple, if a basic block b is split into b1 and b2, with a direct

transition from b1 to b2, we randomly decide whether to in-
troduce a new successor node b3 to b1 and switch the direct
jump to a conditional jump. These modifications effectively
increase instruction separation.

We compare the performance of models enhanced by δCFG
against the original models without enhancements (denoted as
baseline). For comparisons, we use the decrease ratio and ER
metrics as defined in Section 5.1. Lower values in both metrics
indicate greater robustness, affirming models’ superior ability
to learn relationships between instructions.

Figure 7: Comparison of decrease ratios between enhanced
(-E) and baseline (-B) models.

Figure 7 and Table 12 show that function pairs analyzed
using enhanced models exhibit lower decrease ratios and ER
compared to those analyzed with baseline models. Such re-
sults validate the improved robustness of enhanced models.
In Figure 7, a greater proportion of function pairs evaluated
using enhanced models maintain decrease ratios within the
0 ∼ 20% interval. In contrast, function pairs analyzed with
baseline models more frequently fall into higher decrease ratio
intervals, namely 40% ∼ 60% and above 60%. For instance,
in GMN-E (enhanced GMN), only 11.8% function pairs show

4278    33rd USENIX Security Symposium USENIX Association



Table 12: Comparison of ER between enhanced and baseline
models.

BFSD
Solutions

ER (%)
pool size = 16 pool size = 32 pool size = 64 pool size = 128

δCFG baseline δCFG baseline δCFG baseline δCFG baseline
Gemini 30.6 36.0 36.8 42.8 40.9 47.4 46.1 51.6
GMN 23.0 33.5 26.4 37.3 29.2 41.7 32.8 46.1

GraphEmb 23.2 47.1 28.3 51.4 33.7 54.6 38.7 57.3
OrderMatters 13.5 29.6 18.6 35.5 24.2 43.3 28.8 50.5

XBA 47.6 51.5 53.9 57.4 58.8 61.5 62.0 65.2
DEXTER 40.4 49.3 43.2 55.5 47.9 60.1 53.1 62.8

decrease ratios exceeding 40%. In comparison, GMN-B (the
baseline) results in 29.6% function pairs experiencing de-
crease ratios above 40%. This indicates greater variability in
similarity scores when computed using the baseline model. In
Table 12, across all function pool sizes , enhanced models con-
sistently achieve lower ER. Overall, the above results indicate
that enhanced models are less affected by increased instruc-
tion separation, thereby affirming their better robustness and
improved ability to discern instruction relationships.

6 Conclusion

This work is the first to investigate the role of CFG features
in ML-based BFSD, serving as a robustness validator for
model developers. We first designed Explainer to explain 11
representative ML-BFSD solutions and reveal that CFG fea-
tures are overly relied on. Then, we designed δCFG to explore
the impact of CFG features on model decisions, and discov-
ered numerous errors in ML-BFSD solutions by manipulating
function CFGs. We further analyzed the reasons behind such
over-reliance on CFG features, and discovered design flaws
in solutions, as well as a serious bias in training data. In addi-
tion, we found that ML-BFSD solutions could also be used to
enhance model performance. We conducted fine-tuning with
δCFG on all ML-BFSD solutions studied by us, significantly
improving model performance as well as de-prioritizing the
over-reliance issue.
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