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Abstract
Just-In-Time (JIT) compiler is a core component of

JavaScript engines, which takes a snippet of JavaScript code
as input and applies a series of optimization passes on it and
then transforms it to machine code. The optimization passes
often have some assumptions (e.g., variable types) on the
target JavaScript code, and therefore will yield vulnerabilities
if the assumptions do not hold. To discover such bugs, it is
essential to thoroughly test different optimization passes, but
previous work fails to do so and mainly focused on exploring
code coverage. In this paper, we present the first optimization
path guided fuzzing solution for JavaScript JIT compilers,
namely OptFuzz, which focuses on exploring optimization
path coverage. Specifically, we utilize an optimization trunk
path metric to approximate the optimization path coverage,
and use it as a feedback to guide seed preservation and seed
scheduling of the fuzzing process. We have implemented
a prototype of OptFuzz and evaluated it on 4 mainstream
JavaScript engines. On earlier versions of JavaScript engines,
OptFuzz found several times more bugs than baseline solu-
tions. On the latest JavaScript engines, OptFuzz discovered
36 unknown bugs, while baseline solutions found none.

1 Introduction

JavaScript engines are widely used in various applications,
including web browsers, PDF readers and React Native [35]
applications. To enhance execution efficiency, JIT compil-
ers are introduced to JavaScript engines, which dynamically
compile hot code during runtime to generate machine code.
However, JavaScript is a dynamically typed language, and
the variables’ types are determined during runtime and can
change as the code executes. This characteristic significantly
amplifies the intricacy of JIT compilers, rendering them sus-
ceptible areas for vulnerabilities within JavaScript engines.

Fuzz testing currently stands as a primary methodology for
uncovering vulnerabilities in software [31] [21] [29] [39]. For
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interpreters like JavaScript engines, there are a series of tai-
lored fuzzing solutions. Some approaches focus on generating
test cases satisfying JavaScript syntax checks, which involve
code generation based on syntax rules [36], mutation using ab-
stract syntax trees [20] [42], or a combination of both [41] [2].
Some other approaches focus on enhancing the validity and di-
versity of test case semantics, including [15] [32] [23] [8] [16].

In recent research, attention has been directed towards the
JIT compiler, i.e., a core component of JavaScript engines.
Some approaches focus on triggering more JIT compilation
operations. Fuzzilli [14] introduces customized generation
templates and mutation rules to trigger JIT, while FuzzJIT [43]
enhances this approach by embedding test cases into a loop,
further increasing the likelihood of triggering JIT compilation.
Some other approaches focus on discovering JIT-specific vul-
nerabilities. JIT-picking [3] and FuzzJIT incorporate differen-
tial testing between interpreted executions and JIT executions
to detect non-crash inconsistency bugs.

However, few of the these approaches could thoroughly
explore the program paths of JIT compilers, leaving potential
vulnerabilities uncovered. Generally, a JIT compiler has a
series of optimization passes, performing different kinds of
optimizations on the JavaScript code. As shown in Figure 1,
each optimization pass comprises of an outer loop that iterates
over instructions, basic blocks or loops of target JavaScript
code and a loop body that performs specific code transforma-
tion. The loop body follows different program paths (denoted
as optimization paths) to take different actions. In each opti-
mization path, it will check the pattern of the target instruc-
tion/basic block/loop and hold some assumptions, and then
apply specific optimizations to the code. The optimization
may fail to insert appropriate bailouts or eliminate bailouts
incorrectly, which will cause potential vulnerabilities. Thus,
it is crucial to thoroughly explore all the optimization paths.

Note that, existing fuzzers often utilize edge coverage to
explore target code, which could help explore some optimiza-
tion paths but are unable to thoroughly explore all paths as
discussed in [11,40]. Instead, after an in-depth analysis of JIT
compilers, we have made the following observations, which
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could help fuzzers better explore optimization paths.
Observation 1: Entering the optimization pass is not equiv-

alent to triggering the optimization (or the bugs in it). The
target optimization bugs could be triggered only if specific
conditions are met and certain optimization paths are exe-
cuted. So, only exploring high-level optimization passes is
not sufficient to uncover deep JIT bugs. Instead, the fuzzer
should cover as many optimization paths as possible.

Observation 2: Edge coverage-guided fuzzing is not effi-
cient at thoroughly exploring optimization paths. Note that,
a program/optimization path consists of multiple connected
edges. It is possible that, even if a fuzzer has covered all the
connected edges of a path, the path itself is still not covered.
In this case, the edge coverage guided fuzzer will skip any
following test cases that only cover these connected edges
(since they are not new), including test cases that cover the
target path, which would miss the optimization path and bugs
in it. So, the fuzzer should consider the optimization path
coverage.

Observation 3: Different optimization paths are tested
unevenly. Within an optimization pass, different optimization
paths have different preconditions. Optimization paths whose
preconditions are difficult to satisfy will be tested less in
regular fuzzing settings, and are more likely to have uncovered
bugs. So, we need a new fuzzer which allocates more testing
resources to the less-tested optimization paths.

In this paper, based on these three observations, we propose
the first optimization path guided fuzzing solution, named
OptFuzz, to efficiently discover bugs in JavaScript JIT com-
pilers. Specifically, we utilize optimization paths as feedback
to guide the fuzz testing. Note that, although the optimization
path is within the optimization pass’ outer loop, it could also
have inner loops, which will cause the number of optimization
paths exploding. To mitigate this issue, we introduce the con-
cept of Optimization Trunk Path (OptPath), which simplifies
the inner loops of optimization paths as if they will only be
iterated once, and use OptPath coverage to approximate the
optimization path coverage, and adjust the seed preservation
and scheduling strategies of fuzzing respectively. Specifically,
if a test case triggers a new OptPath, it will be preserved as a
seed for further testing. Further, if a seed explores an OptPath
that is less tested than other OptPaths, then this seed will be
prioritized to schedule during fuzzing, e.g., more computa-
tional resources will be allocated to test this seed.

To demonstrate the effectiveness of our approach, we im-
plemented a prototype of OptFuzz and evaluated it with four
mainstream JavaScript engines: JavaScriptCore, V8, Spider-
Monkey and Hermes. Our evaluation shows that OptFuzz is
effective in discovering new bugs and exploring optimization
paths. In terms of discovering bugs in the latest JavaScript
engines, OptFuzz has newly discovered 36 bugs and 26 of
the bugs have been confirmed or fixed with 3 CVEs assigned,
while existing baselines found none. In terms of discovering
bugs in earlier versions of JavaScript engines, we conducted

two groups of repetitive experiments. In the short-term base-
line comparison experiments, OptFuzz found 9×, 9×, 1.8×
and 4.5× more bugs than Superion, DIE, Fuzzilli and Fuz-
zJIT respectively. In the long-term baseline comparison ex-
periments, OptFuzz found 6.3×, 6.3×, 2.1× and 9.5× more
bugs than Superion, DIE, Fuzzilli and FuzzJIT respectively.
Besides, OptFuzz can explore more OptPaths than baselines
as well. Furthermore, ablation experiments have demonstrated
the effectiveness of individual designs in Optfuzz. The contri-
butions of this paper are outlined as follows:

• We present an in-depth analysis of the JavaScript JIT
compilers and highlight three observations that can help
fuzzers better test JIT compilers.

• We present the first optimization path guided fuzzing
solution OptFuzz, which utilizes the optimization trunk
path coverage as feedback to fine tune the seed preserva-
tion and seed scheduling strategy of the fuzzing process.

• We propose a strategy for extracting optimization trunk
paths from JavaScript engines. The extracted optimiza-
tion trunk paths can approximate the optimization paths
while mitigating the issue of path explosion.

• We have conducted thorough experiments and reported
36 new bugs in the latest JavaScript engines: 17 in
JavaScriptCore, 5 in SpiderMonkey, 1 in V8 and 13 in
Hermes. 26 of these bugs have been confirmed or fixed.

• The prototype system is made publicly accessible at
https://github.com/JimWongM/OptFuzz.

2 Background and Motivation

2.1 Optimizations in JavaScript Engines
During the execution of the JavaScript program in a JavaScript
engine, it goes through stages of parsing into an abstract syn-
tax tree, generating bytecode, and interpretation. The inter-
preter collects runtime information, such as type details and
function calls. When a code snippet or function is executed
multiple times and reaches a certain threshold, the JavaScript
engine invokes the JIT compiler for optimization, generating
machine code to accelerate execution speed.

The JIT compiler can apply various optimizations on the
optimized JavaScript code, such as common subexpression
elimination, constant folding, dead code elimination, loop-
invariant code motion, strength reduction and so on. Compiler
optimization is generally implemented using a sequence of
optimizing transformations which take a program and trans-
form it to produce a semantically equivalent output program
that uses fewer resources or executes faster [46]. As the gen-
erated machine code is based on type inference, the compiler
inserts guard codes, such as type checks or bound checks, to
bailout to the interpreter when the inference fails during a
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Table 1: Vulnerabilities in different optimizations.
Category Vulnerability Description

Instruction

CVE-2019-5857 Error in comparison of -0 and null.
CVE-2021-30598 Invalid right shift operation optimization.
CVE-2021-30599 Wrong optimization of bitfield checks.
CVE-2019-1366 Error in handle opcode Decr_A and Sub_A.

Loop

CVE-2019-8518 wrong hoisting GetByVal leading to OOB.
CVE-2019-8623 LICM leaves stack variable uninitialized.
CVE-2019-8671 LICM leaves object property access unguarded.
CVE-2020-0828 Type confusion when hoisting variable fails.

Function

CVE-2018-4233 Type confusion caused by abstract interpreter.
CVE-2020-9802 Integer range optimization error caused by CSE.
Bug240720 The result of integer range analysis is incorrect.
CVE-2019-9810 Incorrect alias information leading to OOB.
CVE-2019-17026 Incorrect alias information leading to OOB.
CVE-2019-26950 UAF caused by wrong side-effect analysis.
CVE-2021-21230 Incorrect range information.

specific execution. To improve the efficiency of the generated
machine code, the compiler performs analysis on the code and
eliminates the guard codes when it is confident that a certain
inference will always hold. Some JavaScript engines also em-
ploy multiple levels of JIT optimizations, such as BaselineJIT,
DFG and FTL [34] in JavaScriptCore and O0, O1 and O2 in
Hermes. Higher optimization levels apply more aggressive
optimizations, resulting in more efficient generated code.

2.2 Optimization-related Vulnerabilities
A Just-In-Time (JIT) compiler encompasses various optimiza-
tion passes. The current landscape of compiler optimizations
is characterized by a multitude of techniques, each with its
own distinct focus. In this paper, we classify compiler opti-
mizations into three categories based on the granularity of
effect: instruction, loop and function as shown in Table 1.

Instruction Optimization. The essence of instruction op-
timization lies in the identification and replacement of spe-
cific instruction sequences to enhance the execution speed.
This optimization technique operates within a narrow scope,
typically targeting a small subset of instructions. Instruction
optimization can introduce potential bugs. Inaccurate instruc-
tion replacement can result in incorrect results of variable
values, leading to significant security vulnerabilities, such as
CVE-2019-5857, CVE-2021-30598 and CVE-2021-30599.

Loop Optimization. Loop invariant code motion (LICM)
is a prominent loop optimization technique, which aims to
hoist loop-invariant code outside the loop body, thereby min-
imizing the number of times instructions are executed. It is
crucial to note that when hoisting the code, the corresponding
checks associated with the hoisted code must be relocated.
Failure to do so may result in security vulnerabilities, such as
CVE-2019-8518, CVE-2019-8623 and CVE-2020-0828.

Function Optimization. Function optimization encom-
passes two key aspects: 1) optimizing based on the data
flow information, and 2) optimizing the control flow struc-
ture. Common subexpression elimination (CSE) is a typical
optimization based on data flow analysis. CSE replaces later
expressions with the result of earlier ones. It is necessary to

void convertToJump( BasicBlock* BB, BasicBlock* targetBB ) {
if ( CanMergeBlocks( BB, targetBB ) ) 

mergeBlocks( BB, targetBB ); //optimization
else

BB->replaceTerminal( Jump ); //optimization
}
void run( ) {

for ( BasicBlock* BB : graph ) {
if ( !BB )

continue;
switch ( BB>terminal( ) ) {

…
case Branch: 

…
if ( BB->successor( 0 ) == BB->successor( 1 ) ) {

convertToJump( BB, BB->successor( 0 ) );
break;

}
case Switch: 

for ( int i = 0; i < cases.size( ); i++ ) {
// Analyze the target of cases

}
if ( cases.isEmpty( ) ) {

convertToJump( BB, BB->fallThrough( ) );
break;

}
…

default:
break;

}
}

}
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Figure 1: CFGSimplification Optimization.

ensure that the two expressions are equivalent and can be
replaced with each other. Otherwise, incorrect replacements
can lead to security vulnerabilities, such as CVE-2020-9802.
Moreover, CVE-2017-7117 is a vulnerability related to con-
trol flow structure optimization.

2.3 Motivation
The aforementioned vulnerabilities shares a common cause:
the optimization is triggered and there is an error in the op-
timization. Edge coverage is the main feedback of current
fuzzers. The purpose of edge coverage-guided fuzzing is to
improve edge coverage and explore more code, with the ex-
pectation of discovering vulnerabilities in the newly explored
code. Through the analysis of the JIT compiler, we have found
that merely exploring new code is insufficient for uncovering
bugs in the JIT optimization passes.

3 Study of JIT Optimization

3.1 Optimization Path
In order to uncover vulnerabilities in the JIT compiler, we
conducted an in-depth analysis of each optimization pass. We
found that each optimization pass contains a large outer loop.
This outer loop traverses the intermediate representation (IR)
of the optimized JavaScript code at a specific granularity level
(e.g., loops, basic blocks, and instructions). Within each itera-
tion of the outer loop, the loop body code analyzes and pro-
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cesses the IR code. Figure 1 depicts a schematic diagram of
the CFGSimplification optimization in JavaScriptCore. Line
8 contains an outer loop that traverses each basic block of the
optimized JavaScript code and triggers the optimization if a
specific condition is met. The optimization being triggered
actually means that the optimization pass executes to the lo-
cation where a code transformation occurs (line 3 and line
5). In other words, the optimization pass executes a series
of code blocks within the outer loop in a particular iteration,
performing a code transformation on the optimized JavaScript
code. Therefore, this paper introduces the concept of Opti-
mization Path, which refers to a code execution path within
the outer loop of an optimization pass, leading to the location
where the code transformation occurs. The functionality of
the optimization pass in the JIT compiler is manifested in
these optimization paths within the outer loop, and different
optimization paths can produce varying or identical results
on the optimized JavaScript code.

The outer loop in line 8 generates paths of different lengths
for different numbers of iterations, but the length of the op-
timization path is not affected by the iterations of this outer
loop. In fact, if only the number of iterations of the outer loop
is increased, but no new optimization path is generated within
the loop, it is actually testing the same functionality in the
optimization pass. When conducting fuzz testing, we should
pay more attention to different optimization paths within the
outer loop to test different functionalities.

3.2 Enter Optimization ̸=Trigger Optimization

During JIT compilation, the JIT compiler performs a vari-
ety of optimizations on the intermediate representation of
JavaScript programs. Each optimization pass is executed.
However, not every executed optimization pass will actually
result in code transformation. In other words, the optimization
paths in an optimization pass are not necessarily executed.
Multiple prerequisites must be met for an optimization path to
be executed, as engine designers often design optimizations
specifically for certain patterns in the code.

For instance, consider the loop invariant code motion
(LICM) optimization in JavaScriptCore. To trigger the code
motion, the code must satisfy the following four prerequisites:
1) The presence of a loop preheader; 2) No write operation
exists in the hoisted code; 3) The read region of the hoisted
code cannot be modified by other code within the loop, and
4) The code itself is eligible for hoisting. If one of the prereq-
uisites is not satisfied, the optimization cannot be triggered.
Therefore, entering the optimization pass is not equivalent to
triggering the optimization. Failure to trigger an optimization
means that the true functionality of that optimization pass
remains untested, thereby potentially overlooking any bugs
present in that optimization pass.

We conducted fuzzing on JavaScriptCore using DIE [32]
and Fuzzilli [14], two edge coverage-guided fuzzers. The

experiment lasted for 72 hours. A total of 1370090 and
17406775 valid test cases were generated by DIE and Fuzzilli
respectively. Out of these, 721074 and 8266477 test cases
entered the LICM optimization pass. However, only 263908
and 3660644 test cases triggered LICM optimization, account-
ing for 36.6% and 44.3% of the test cases that entered the
optimization pass. The primary cause of vulnerabilities in the
JIT compiler is the triggering of incorrect optimizations. The
current fuzzers inadequately test the code that triggers the
optimization. Consequently, these approaches may overlook
the vulnerabilities in the JIT optimization passes.

3.3 Overlooked Optimization Path
When designing an optimization pass, the engine designer will
design different optimization techniques for different byte-
codes, operand types, built-in functions, control flow struc-
tures, and data flow relationships. The optimization pass in
Figure 1 incorporates specific optimization techniques to han-
dle different control flow nodes (such as branch and switch).
The code transformation occurs at line 3 and line 5. There
are four distinct optimization paths in the schematic diagram.
The code in line 20 has a loop. Different iterations of the loop
will produce different optimization paths, we consider these
optimization paths to be an optimization path in this section.

Different optimization paths within the same pass may
reuse code from each other. The execution of some
optimization paths (e.g. line 11→15→16→2→3, line
11→15→16→2→4→5 and line 11→23→24→2→3) will po-
tentially cover all edges of other optimization paths (e.g. line
11→23→24→2→4→5). Consequently, in edge coverage-
guided fuzz testing, even if a specific test case triggers a new
optimization path, it may not be preserved as a seed due to its
failure to reach new edges.

In order to explore the seed preservation for current fuzz
testing, we manually identify the start and end of the optimiza-
tion paths and mark them in the source code. We conducted
fuzzing on JavaScriptCore using Fuzzilli and pay close at-
tention to the execution of optimization paths for each test
case. If a test case executes a new optimization path but is not
preserved as a seed, then we consider that this optimization
path has been missed. Over the fuzzing of 72 hours, a total
of 10880237 valid test cases have been generated. These test
cases covered 1520 optimization paths, but missed 180 opti-
mization paths, thereby limiting the opportunity for thorough
testing on those specific optimization paths and potentially
overlooking underlying vulnerabilities.

3.4 Imbalanced Testing for Optimization Path
There are various optimization paths in an optimization pass,
some of which have easily satisfied conditions, while others
have more challenging conditions. Taking the optimization in
Figure 1 as an illustration, in order to execute to line 13, the

868    33rd USENIX Security Symposium USENIX Association



JavaScript program must encompass syntactical structures,
such as if statements, for loops,while loops, or other con-
structs capable of generating the intermediate representation
Branch. Similarly, to execute to line 19, the JavaScript input
program must contain a switch case syntax structure. To in-
voke convertToJump at line 16, it is imperative for the two
successor blocks of the IR Branch to be identical, thereby
facilitating the transformation of Branch into Jump. Further-
more, to invoke convertToJump at line 24, the cases of the
switch must be empty. These optimization paths have differ-
ent preconditions, leading to different extents of being tested.

Edge coverage-guided fuzzing still enables partial testing
of optimization paths. However, experimental results reveal an
imbalance in the testing of these paths using Fuzzilli. During
72-hour fuzzing, the number of tests conducted for the four
optimization paths in Figure 1 is 11, 1, 83, and 0 respectively.
It is observed that optimization paths with easily satisfied
conditions undergo more testing, while those with challenging
conditions are tested less. From a vulnerability discovery
perspective, fuzz testing should prioritize the testing of the
less-tested optimization paths.

4 Design

The goal of this paper is to test the optimization passes in
the JIT compilers. The analysis above indicates that when
performing fuzz testing on the JIT optimization passes, it is
crucial to not only test up to the optimization pass, but also to
comprehensively test the optimization paths within that pass.

4.1 Optimization Trunk Path
To further explore the optimization paths, we can employ them
as feedback to guide the seed preservation and scheduling
process of fuzz testing. Nonetheless, nested inner loops persist
within the optimization paths, and different iterations of these
nested loops will result in different optimization paths. Thus,
utilizing the optimization paths as feedback for fuzzing still
poses the challenge of explosion in the number of seeds.

We conducted a statistical analysis of 29 optimization
passes in JavaScriptCore, revealing that their inner loops ex-
hibit a branch count ranging from approximately 0 to 6, with
86% of them having no more than 2 branches. The logic of
these inner loops is simple, often traversing information such
as operands, metadata, and use points of the intermediate rep-
resentation. In fuzz testing, even without specifically targeting
the testing of branches within the inner loop, these branches
will be adequately tested. Our experiments show that 64.4%
of the branches are tested more than 1,000 times, and 88.5%
of the branches are tested more than 100 times during the 72-
hour fuzz testing. Longer tests lead to more testing of these
branches. While multiple iterations do not significantly aid in
exploring new combinations of code blocks within the inner
loop, they do create paths of varying lengths and exacerbate

the path explosion issue. Consequently, this paper excludes
nested loops in the optimization paths.

Based on the above analysis, this paper introduces the con-
cept of Optimization Trunk Path (OptPath) and utilizes Opt-
Path to approximate the optimization path. Trunk means the
main woody stem of a tree as distinct from its branches and
roots. The OptPath in this paper represents a path within
the outer loop, which ignores the nested inner loop. The
starting point of OptPath is the entry point of one itera-
tion of the outer loop, and the end point is the tail code
of the same iteration. For example, the sequence of line
9→11→19→23→24→2→3→30→31 in Figure 1 is an Opt-
Path where we ignore the inner loop of line 20. Notably, the
sequence of line 9→10→31 is also an OptPath. Unlike the
optimization path, this particular OptPath does not trigger the
optimization; instead, it proceeds to the branch that results in
an early exit. We will discuss this in subsection 4.4.

4.2 Seed Preservation

During fuzz testing, OptFuzz records the OptPaths that the
test case executes, and if a test case triggers a new OptPath, it
is preserved as a seed. When the JavaScript engine executes
to the start of an OptPath, it starts recording the path. When
execution reaches the end point of an OptPath, it stops record-
ing the path and performs a hash operation on each basic
block of the recorded path to obtain a hash value. Different
OptPaths will result in different sequences of basic blocks,
which will generate different hash values without accounting
for hash collisions. After the execution of a test case, OptFuzz
can determine whether new OptPaths have been reached by
examining the presence of new hash values.

Numerous research studies [4,11,14,32,40,42] have demon-
strated the significance of incorporating edge coverage feed-
back into fuzz testing to explore new code in the target pro-
gram. In this paper, we propose an approach that combines
edge coverage and OptPaths to comprehensively explore new
code through edge coverage, thereby traversing different opti-
mization passes. Additionally, we leverage OptPaths feedback
to test optimization paths within the optimization pass. We
maintain separate seed corpus for edge coverage and OptPaths.
Initially, the seeds are mostly preserved by edge coverage, and
in order to explore more code quickly, the seeds preserved by
edge coverage are mainly used for mutation at this time. As
the fuzz test progresses, the proportion of seeds preserved by
the OptPaths gradually increases. Once the number of seeds
preserved by the OptPaths surpasses a certain threshold, the
seeds preserved by the OptPaths are enabled. Subsequently,
the fuzz testing alternates between seeds preserved by edge
coverage and seeds preserved by OptPaths.

The interesting test cases may include code that is not
related to the new edge or the new OptPath. To minimize the
impact of such code, we employ test case trimming techniques.
This involves reducing the test cases while ensuring they
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still reach the new edge or the new OptPath. If a test case
reaches both the new edge and the new OptPaths in different
optimization passes, we generate n distinct seeds based on
different trimming criteria. Specifically, we trim out a seed
based on the new edge, and trim out different seeds for the
new OptPaths in different optimization passes. These seeds
are then placed into separate seed queues. In this way, we
maintain a seed queue for edge coverage and also maintain
respective seed queues for different optimization passes.

4.3 Seed Scheduling
In the process of fuzz testing, some OptPaths whose precon-
ditions are easy to satisfy are given more opportunities to be
tested, while OptPaths whose preconditions are difficult to
satisfy are given much less opportunities to be tested. Seed
scheduling based on OptPaths aims to make those OptPaths
which are tested less get more chance to be tested. To identify
the OptPaths that require more testing, we keep track of the
cumulative number of times each path is tested.

We designed a two-tier seed queue for seed scheduling.
When a test case executes a new OptPath, the test case is pre-
served as a seed, which is trimmed and put into the primary
queue. We maintain a primary queue for each optimization
pass. The secondary queue is utilized to store the prioritized
seeds. This is achieved by selecting a number of seeds from
each primary queue in ascending order of the number of times
the OptPath has been tested. These selected seeds are then
stored in the secondary queue. Subsequently, seeds are ex-
tracted from the secondary queue one by one for mutation.
Once all the seeds from the secondary queue have been mu-
tated, seeds are again selected from each primary queue.

4.4 Discussion
Early Exit Branches in OptPaths. In this paper, we em-
ploy OptPaths as an approximation of the optimization paths.
OptPaths and optimization paths are not entirely equivalent.
There are some exit branches before an optimization is trig-
gered. The OptPath also records these exit branches. The
analysis in subsection 3.2 emphasizes that the triggering of
an optimization requires the fulfillment of various conditions.
It is not an easy task to execute an optimization path, but
easier to encounter an early exit branch. Furthermore, early
exit branches are more likely to be tested during fuzz testing.
In this paper, we propose a seed scheduling strategy based on
OptPaths. This strategy favors scheduling OptPaths that have
been tested less frequently, while exit branches that have been
tested more frequently are not selected for mutation. As the
testing progresses, these OptPaths containing exit branches
do not excessively consume computational resources. On
the other hand, individual vulnerabilities, such as CVE-2019-
8623 [37], also require execution of the exit branch before
incorrect optimizations are triggered. Hence, exit branches do
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Figure 2: Workflow of our prototype system.

not contradict our objective of testing the optimization path.
In fact, the execution of early exit branches can even aid in
finding potential vulnerabilities in specific scenarios.
Ignored Inner Loops. The OptPath ignores the nested inner
loops. Generally, the number of iterations within inner loops
exceeds that of outer loops by 1-2 orders of magnitude, and
the control flow structure in inner loops is relatively simple
with fewer branches. Consequently, when outer loops undergo
frequent testing, a majority of paths within inner loops also
receive more comprehensive testing. There may be a few
under-tested paths in the inner loops that require a more fine-
grained feedback for enhancement, but implementing such
feedback could introduce additional overhead that we will
investigate in future work.
The Order of Edges in OptPaths. To record the path,
AFLFast [4] performs hashing on the set of visited edges
without considering the order of the edges. For OptPath, in
tandem with its definition, different sets of visited edges are
likely to represent different edge orders, so hashing the set
of visited edges may be adequate. However, considering the
order when recording the paths tends to yield more accurate
results. This is because two test cases with the same set of
visited edges may execute edges in different orders. Hashing
the set of visited edges will miss some interesting test cases.
Therefore, OptPath takes into account the order of edges and
records the entire path.

5 Implementation

5.1 Workflow
Figure 2 shows the workflow of our fuzzing system. The
system consists of two parts: instrumentation and fuzzing.
The instrumentation module identifies the OptPaths and in-
struments the JIT compiler. The fuzzing module is built on
Fuzzilli [14]. We have enhanced Fuzzilli’s evaluation module
to incorporate a dedicated evaluation feature for OptPaths.
Additionally, we have integrated a trimming strategy specifi-
cally targeting OptPaths into Fuzzilli’s trimming module. To
implement seed scheduling based on OptPaths, we have intro-
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duced a two-tier seed queue within Fuzzilli’s Corpus module.
We reuse Fuzzilli’s mutation module and execution module.
Table 2 presents the lines of code (LoC) of each component.

Table 2: The lines of code of each component.
Module Component LoC Language

Instrumentation Path Identification 1281 C++
Instrumented Code 209 C++

Fuzzing
Seed Preservation 155 Swift, C
Seed Scheduling 342 Swift
Trimming 419 Swift

5.2 Instrumentation Module
This module inserts code into the JavaScript engine to col-
lect information on edge coverage and OptPaths. We have
established two bitmaps, namely EdgeMap and PathMap, to
record the edge coverage and OptPaths information during
the execution of test cases. The insertion process consists of
two steps. The first step is to identify the various types of
basic blocks in the OptPath. We implement an LLVM [25]
Pass named OptPathAnalysis. The LoopInfoWrapperPass is
able to analyze all the loop information in the target program,
from which OptPathAnalysis obtains the structure of each
loop as well as the loop nesting relationships in the optimiza-
tion passes. We mark the header [26] of an outer loop as the
starting point of an OptPath, the latch basic block [26] of a
outer loop as the end point of an OptPath, and the basic blocks
between the header and latch as the OptPath basic blocks. We
exclude the basic blocks inside the nested loops.

In the second step, we instrument the JavaScript engine
by leveraging Clang Sanitizer Coverage [6] to insert calls to
the function trace_pc_guard(uint32* guard, int flag) before
each basic block. The first argument of this function, guard,
receives the unique ID of the basic block. The second pa-
rameter flag indicates the attribute information of the basic
block analyzed by OptPathAnalysis. The Pseudo code of this
function is shown as Algorithm 1.

start is a global variable that is initially false, indicating
that the start of an OptPath has not yet been encountered.
path is used to record the OptPath. After entering the func-
tion trace_pc_guard, the initial action involves indexing the
Edgemap bitmap according to the basic block ID and sub-
sequently setting the corresponding unit. Next, according to
the attribute flag of the basic block, the OptPath information
is collected. If flag of the current basic block is 1, it means
that the current basic block is the start point of an OptPath,
so start is set to true, and the ID of the currently executed
basic block is recorded into path. If flag is 0 and start is true,
the basic block is added to path. If flag is 2, it means that the
current basic block is the end point of an OptPath, then the ID
of the current basic block is added to path, and a hash value is
calculated for all the basic blocks in path. Then, based on the
hash value, the bitmap PathMap is updated. After that, start
is set to false and path is cleared.

Algorithm 1 trace_pc_guard
Input: guard: ID of the basic block
Input: flag: attribute information of the basic block

1: UpdateEdgeMap( guard )
2: if flag == 0 and start then
3: path← RecordPath( guard )
4: end if
5: if flag == 1 then
6: start← true
7: path← RecordPath( guard )
8: end if
9: if flag == 2 then

10: path← RecordPath( guard )
11: hash← ComputeHash( path )
12: UpdatePathMap( hash )
13: start← false
14: end if

5.3 Fuzzing Module

The fuzzing module includes sub-modules for mutation, exe-
cution, seed preservation, trimming, and seed scheduling. The
mutation submodule adopts mutation strategies from Fuzzilli.
The execution module initiates the instrumented JavaScript
engine and provides it with test cases. Throughout the exe-
cution process, the JavaScript engine dynamically updates
the Edgemap and PathMap. The seed preservation submod-
ule updates CountMap based on PathMap to accumulate the
test number for each OptPath, and determines whether the
test case is interesting based on Edgemap and PathMap. If
a test case executes to new edges or unexplored OptPaths,
the test case is interesting, and the relationship between the
new OptPath and the test case is recorded into SeedMap. The
trimming submodule removes redundant statements from in-
teresting test cases. After trimming, the test cases that still
trigger new edges are added to Edge Corpus, while those that
lead to new OptPaths are added to Path Corpus. In Path Cor-
pus, we maintain a seed queue for each optimization pass. In
seed scheduling submodule, seeds in Path Corpus are selected
based on CountMap and SeedMap to prioritize the testing of
OptPaths that are currently tested less often while seeds in
Edge Corpus are randomly selected.

Previous work such as FuzzJIT and JIT-picker detects non-
crash bugs in JavaScript engines through differential testing.
In this paper, we also develop a similar sanitizer named DiT-
ing. DiTing captures bugs by comparing the results of vari-
ables executed in the interpreter and each optimization level.

6 Evaluation

To validate the effectiveness of our approach, this section
evaluates OptFuzz and answers the following four questions:

Q1. Can OptFuzz find bugs in the JavaScript JIT compil-
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ers? How does OptFuzz perform in terms of bug findings
comparing to the state-of-the-art fuzzers? (subsection 6.2)

Q2. What is the distribution of OptPaths across optimiza-
tions? Can our approach explore more OptPaths against state-
of-the-art fuzzers? (subsection 6.3)

Q3. What is the impact of individual designs in OptFuzz on
bug finding? Do these designs make sense? (subsection 6.4)

Q4. How does OptFuzz perform in terms of code coverage
against the state-of-the-art fuzzers? (subsection 6.5)

6.1 Experiment Setup

Baseline: We compare OptFuzz with four state-of-the-art
fuzzers including Superion [42], DIE [32], Fuzzilli [14], and
FuzzJIT [43]. JIT-Picker [3] and SoFi [16] are not compared
for the following reasons. JIT-Picker contribute to the detec-
tion of non-crash bugs in the engines using differential testing,
which is orthogonal to our work. SoFi focuses on improving
the validity and diversity of test cases and is not open source.

Initial Seed Corpus: Fuzzilli does not require an initial seed
corpus at startup. Fuzzilli first enters the generation mode
at runtime, and uses the developer-defined JavaScript code
generators to generate test cases. If a test case executes to
new edges, it will be preserved as a seed. If Fuzzilli generates
100 consecutive test cases that cannot execute to new edges,
it switches to the mutation mode. OptFuzz and FuzzJIT are
built upon Fuzzilli and hence do not necessitate an initial seed
corpus. In contrast, DIE and Superion do require an initial
seed corpus. We utilize the seeds generated by Fuzzilli in the
generation mode as the initial corpus for Superion and DIE.

Test Target: We choose four JavaScript engines, namely
V8 [13] in Google Chrome, JavaScriptCore [1] in Apple Sa-
fari, SpiderMonkey [28] in Mozilla Firefox, and Hermes [10],
developed by Facebook. These engines are the current main-
stream JavaScript engines and have been tested in depth by
security researchers and OSS-Fuzz [12]. It is worth noting
that Hermes is a lightweight JavaScript engine that does not
have a JIT compiler, but there are numerous optimization
passes in Hermes which can be tested by OptFuzz.

Environment: We performed our experiments on Intel Xeon
Gold 5218 2.30GHz (32 cores) machines with 132GB RAM.
The OS version is Ubuntu 20.04.3. Each campaign is assigned
10 cores.

Parameter Settings: In the early stages of fuzzing, we use
seeds preserved by edge coverage to explore more code. We
limit the use of seeds preserved by OptPaths only after the
number of seeds in the Path Corpus reaches a certain thresh-
old. After multiple experiments in subsection 6.4, we set this
threshold to 300 for JavaScriptCore and V8, 200 for Spider-
Monkey, and 20 for Hermes.

6.2 Bug Finding Ability
To answer Q1, we utilized OptFuzz to test four latest versions
of JavaScript engines for six months and record the num-
ber of bugs found by OptFuzz. The results are presented in
subsubsection 6.2.1. To demonstrate OptFuzz’s superiority
in bug finding, we compared the number of bugs found in
earlier versions of JavaScript engines with baselines in subsub-
section 6.2.2. The comparison experiments are divided into
short-term (72 hours) and long-term (45 days) experiments.

6.2.1 Results of Real-word Bugs

To explore the bug finding ability of OptFuzz, we deployed
OptFuzz on four servers and tested four engines for six
months. Eventually, we discovered 36 new bugs, 26 of which
were confirmed by the vendor with 4 security-sensitive bugs
including 3 CVEs assigned. In V8, OptFuzz found 1 new bug
and 3 known bugs. In JavaScriptCore, OptFuzz found 17 new
bugs (including 2 security-sensitive bugs) and 1 known bug.
In SpiderMonkey, OptFuzz found 5 new bugs. In Hermes, Opt-
Fuzz found 13 new bugs, including 2 security-sensitive bugs.
The detailed descriptions of the bugs are shown in Table 19.

OptFuzz mainly found vulnerabilities due to JIT optimiza-
tion errors, including integer range overflow (e.g. CVE-2023-
38595 ), OOB (e.g. Issue 256022), UAF (e.g. CVE-2023-
38542), and uninitialized memory (e.g. CVE-2023-46140).
With differential testing system DiTing, OptFuzz was able to
find some semantic bugs, e.g. Issue 257949, Issue 263647, and
Issue 1200. Out of the 41 identified bugs, 31 are JIT-related,
while some have root causes unrelated to JIT, such as Issue
256507 and Issue 263954. Despite extensive long-term and
numerous short-term fuzz tests, Fuzzilli did not identify the
aforementioned bugs. Upon analysis, we find that the trig-
gering test cases for these bugs are generated through the
mutation of seeds in Path Corpus. Only the test cases that
trigger the new OptPaths are included in Path Corpus. In other
words, OptFuzz preserved the parent seeds of Issue 256507
and Issue 263954 by OptPaths. Then, OptFuzz mutates the
parent seeds to produce test cases that trigger Issue 256507
and Issue 263954.

6.2.2 Comparison with Baselines

To demonstrate OptFuzz’s superiority in bug finding, we com-
pared the number of bugs found with baselines in earlier
versions of JavaScript engines. We conducted a two week-
long fuzz testing on the latest version of JavaScript engines
using Superion, DIE, Fuzzilli and FuzzJIT with DiTing sys-
tem. However, they did not uncover any bugs. These fuzzers
has previously identified a significant number of bugs and
security vulnerabilities over the past few years. To ensure a
fair comparison with baselines, we opt to use earlier versions
of the engines for our comparison experiments. The versions
of each engine are detailed in Table 3.
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For JavaScriptCore, V8 and Hermes, we connect our own
differential testing system DiTing to Superion, DIE, Fuzzilli,
and OptFuzz, and for SpiderMonkey, we use SpiderMonkey’s
own differential testing system. FuzzJIT has its own differen-
tial testing system which does not support testing of Hermes.

Table 3: Versions for different engines.
JavaScript Engine Commit ID Time Code Lines
JavaScriptCore 7e4859 2020.1.31 629591
SpiderMonkey 1b9955 2022.1.10 1511250
V8 ed0a85 2021.11.5 1245655
Hermes 2d8c88 2023.8.30 303928

Table 4: Number of bugs found by each fuzzer in 72 hours.
Data in the parentheses indicate Mann-Whitney U Test results
p-value. A value less than 0.05 indicates the result is statisti-
cally different between OptFuzz and the selected fuzzer.

Superion DIE Fuzzilli FuzzJIT OptFuzz
JavaScriptCore 0 (0.002) 1 (0.029) 2 (0.016) 1 (0.007) 4
SpiderMonkey 0 (1.000) 0 (1.000) 0 (1.000) 0 (1.000) 0
V8 1 (0.067) 1 (1.000) 1 (1.000) 1 (1.000) 1
Hermes 0 (0.001) 0 (0.001) 2 (0.002) – 4
Total Num 1 2 5 2 9

Short-term Experiments. In the short-term experiment,
each fuzz testing trial lasts 72 hours and is repeated five
times. The results of the short-term experiments are depicted
in Table 4. OptFuzz demonstrates a clear advantage over
JavaScriptCore and Hermes. In particular, Optfuzz found 2×
more than Fuzzilli on JavaScriptCore and Hermes. The per-
formance of each fuzzer does not vary on SpiderMonkey and
V8. This is probably because 72 hours of testing time is not
be sufficient for SpiderMonkey and V8.

Long-term Experiments. The long-term experiment lasts
for 45 days. The results are illustrated in Table 5, showing that
OptFuzz is capable of discovering more bugs than other base-
lines. In V8, both Fuzzilli and OptFuzz discover two bugs.
They identify one common bug, while each find a distinct
second bug. The bug uncovered by Fuzzilli pertain to the Ar-
rayBuffer maxByteLength and is unrelated to the JIT compiler,
whereas the bug uncovered by OptFuzz is associated with
the JIT compiler’s verifier [22]. In long-term experiments,
OptFuzz found 6.3×, 6.3×, 2.1× and 9.5× more bugs than
Superion, DIE, Fuzzilli and FuzzJIT respectively. Most of the
bugs found in earlier versions of the engines have been fixed
in the latest version. Therefore, we do not report these bugs
to the engine vendors and omit them from Table 19. However,
OptFuzz still found a bug in the earlier version that still exists
in the new version, which is Issue 265978.

Table 5: Number of bugs for each fuzzer in 45 days.
Superion DIE Fuzzilli FuzzJIT OptFuzz

JavaScriptCore 0 2 2 1 6
SpiderMonkey 0 0 1 0 4
V8 1 1 2 1 2
Hermes 2 0 4 – 7
Total Num 3 3 9 2 19

Table 6: The number of OptPaths explored by OptFuzz for
optimization passes in JavaScriptCore within 24 hours.

Optimization Pass NP STD ANT MNT
ConstantFolding 173 19.9 7740 83
ObjectAllocationSink 118 3.2 468 96
IntegerRangeAnalysis 32 3.3 2717 227
TypeCheckHoist 20 0.7 26170 884
CFGSimplification 16 0.4 11896 501
StrengthReduction 136 12.4 7106 129
ArgumentsElimination 64 3.6 333 89
IntegerCheckComb 14 0.8 4892 255
ValueRepReduction 2 1.0 18 131
VarargsForwarding 25 2.8 1065 158
CSE 52 1.7 4126 105
OSRAvailabilityAnalysis 46 5.9 12713 475
B3ReduceDoubleToFloat 56 17.9 176 74
NP indicates the number of OptPaths in an optimization.
STD denotes the standard deviation of NP.
ANT indicates the average number of times each OptPath is tested.
MNT indicates the median number of times each OptPath is tested.

6.3 Exploration of OptPaths

6.3.1 Number of OptPaths in Different Optimizations

To evaluate OptFuzz’s exploration of OptPaths, we ran Opt-
Fuzz on JavaScriptCore, V8, SpiderMonkey, and Hermes.
During fuzzing, we record the number of OptPaths explored
by OptFuzz in different optimization passes. Each trial lasted
24 hours and was repeated 5 times. Table 6 gives the number
of OptPaths explored by OptFuzz in JavaScriptCore within
24 hours. Table 17 and Table 18 give the number of OptPaths
explored in V8, SpiderMonkey and Hermes respectively. NP
indicates the number of OptPaths explored in an optimization
pass. The results of five trials are averaged to obtain NP. STD
denotes the standard deviation of NP. ANT indicates the aver-
age number of times each OptPath is tested. MNT indicates
the median number of times each OptPath is tested. For each
trial, the median is calculated first. The medians of five trials
are averaged to obtain MNT.

The experimental results show that there is no explosion
in the number of OptPaths. Furthermore, it is observed that
the number of OptPaths varies across various optimization
passes. Some optimization passes are designed with different
optimization techniques for different instruction opcodes and
operands, data flow relationships, and control flow structures,
so the number of OptPaths in these optimization passes is high.
Take StrengthReduction optimization pass as an example. The
optimization pass designs different optimization techniques
based on different operators (Add, Sub, And, etc.) and operand
types (Int32, Int64, String, etc.). While some optimization
passes, for example, ValueRepReduction only optimizes for
specific intermediate representation ValueRep and DoubleRep,
so the number of OptPaths is low.
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Figure 3: The number of OptPaths explored by Superion, DIE,
Fuzzilli, FuzzJIT and OptFuzz in JavaScriptCore (JSC) and
SpiderMonkey (SM) within 24 hours.

6.3.2 Comparison with Baselines

To demonstrate the advantages of OptFuzz in exploring Opt-
Paths, we ran OptFuzz, Superion, DIE, Fuzzilli, and FuzzJIT
on JavaScriptCore and SpiderMonkey respectively. Each trial
lasted 24 hours and was repeated 5 times. To collect the num-
ber of OptPaths explored by DIE, Superion, Fuzzilli, and Fuz-
zJIT, we modified these fuzzers to incorporate a new bitmap to
dynamically record the number of OptPaths explored. This is
analogous to capturing all test cases generated by the fuzzers.
Figure 3 gives the number of OptPaths explored by different
fuzzers in the Arguments Elimination and Object Allocation
Sinking pass of JavaScriptCore and Range Analysis and Scalar
Replacement pass of SpiderMonkey. The solid lines represent
mean and the shades around lines are confidence intervals.

Compared to OptFuzz, Superion, DIE, Fuzzilli and FuzzJIT
were able to explore 38.6%, 67.5%, 86.0% and 81.9% of the
OptPaths, respectively. OptFuzz can explore more OptPaths
than other fuzzers. This is because different OptPaths within
the same optimization pass have varying conditions but share
significant similarities. Seeds in Path Corpus can keep new
OptPaths intact. By mutating these seeds, it becomes easier
to generate test cases that trigger more new OptPaths in the
same optimization pass.

DIE and Superion explore fewer OptPaths compared to
Fuzzilli. This is because Fuzzilli is designed with templates
and mutation rules specifically aimed at triggering JIT, en-
abling faster execution into the optimization pass. Superion
explores fewer OptPaths than DIE due to its trimming strat-
egy, which retains the code that triggers new edges but prunes

the code that triggers new OptPaths. DIE does not perform
syntax-valid trimming, allowing the code related to triggering
OptPaths to remain. This provides more opportunities to gen-
erate test cases that trigger different OptPaths. Fuzzilli and
FuzzJIT explore a similar number of OptPaths, which is be-
cause FuzzJIT is implemented based on Fuzzilli. In the early
stages of fuzz testing, FuzzJIT explores faster, this is because
FuzzJIT designs a template where each test case is embedded
in a loop, resulting in a higher probability of triggering JIT.

6.4 Ablation Experiment

To answer Q3, this section performs ablation experiments to
illustrate the effectiveness of our design. The experiment eval-
uates OptFuzz on JavaScriptCore in four parts including seed
preservation, seed scheduling, trimming strategy and thresh-
old. We will discuss switching strategy in subsection A.3.
Table 7 shows the number of bugs discovered by different
designs. Each trial lasted 72 hours and was repeated 5 times.

6.4.1 Seed Preservation

To evaluate the seed preservation strategy of OptFuzz, we
additionally implemented five seed preservation strategies
including countpath, n2, n4, n8 and looppath. AFL [30] not
only evaluates whether a test case triggers a new edge but
also takes into account the number of times an edge has been
executed when assessing whether a test case is interesting.
We have incorporated a similar mechanism, named countpath,
into OptFuzz. Furthermore, we have introduced n2,n4, and n8
paths [40], representing paths comprising 2/4/8 consecutive
edges, respectively, and utilize these paths for seed preserva-
tion instead of OptPaths. looppath denotes optimization paths
that do not ignore nested loops. Fuzzilli indicates that only
edge coverage is used for seed preservation.

The experimental results detailed in Table 7 demonstrate
that OptPath-based seed preservation strategy can uncover
more bugs. Additionally, Figure 4 depicts the quantity of seeds
preserved by the various seed preservation strategies as well as
the number of paths explored. It is evident that both looppath
and n8 suffer from the path explosion problem. looppath kept
10 million new paths in 72 hours. Path explosion makes the
number of seeds grow rapidly, causing looppath and n8 to
waste most of their testing resources on unproductive seeds,
thereby diminishing their bug-finding capabilities. Despite n4
having a lower number of seeds than n8, it suffers from the
same problem.

Path explosion does not occur in n2. Fuzzilli’s edge cover-
age is approximated using basic block coverage. n2 is actually
a path consisting of two consecutive basic blocks, which is
actually an edge. n2 and Fuzzilli employ a similar seed preser-
vation method, thereby yielding comparable bug discovery
capabilities. n2 has fewer seeds than Fuzzilli because we limit
n2 to optimization passes rather than the whole JavaScript
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Table 7: The number of bugs found for different designs.
Seed Preservation Seed Scheduling Threshold Switching Strategy

Fuzzer Bug p-value Fuzzer Bug p-value Fuzzer Bug p-value Fuzzer Bug p-value
countpath 1 0.007 OptFuzz_RandomSelect 1 0.032 OptFuzz_10 0 0.009 OptFuzz_RandomSwitch 2 1.000
n2 2 0.030 OptFuzz_PowerSchedule 1 0.032 OptFuzz_50 1 0.027 OptFuzz_AIMD 1 0.256
n4 0 0.002 OptFuzz_RarenessSchedule 3 1.000 OptFuzz_100 2 0.134 OptFuzz_NoSwitch 0 0.067
n8 0 0.002 Trimming OptFuzz_200 3 0.106 OptFuzz_Wind 2 0.349
looppath 0 0.002 OptFuzz_oneseed 1 0.027 OptFuzz_300 4 1.000
Fuzzilli 2 0.016 OptFuzz_twoseed 0 0.009 OptFuzz_500 0 0.009
OptFuzz 4 1.000 OptFuzz_nseed 3 1.000 OptFuzz_800 2 0.027
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Figure 4: (a)The number of seeds preserved by different seed
preservation strategies. (b)The number of paths explored by
different seed preservation strategies.

engine. Consequently, if a test case executes to new edges in
the code that is not related to optimization (e.g., interpreter),
Fuzzilli can preserve it as a seed, but n2 cannot. Moreover, the
number of seeds in Fuzzilli first increases and then gradually
decreases due to the inclusion of seed cleanup in Fuzzilli’s
corpus. Fuzzilli’s corpus performs a seed cleanup every 30
minutes and removes the seeds that have been selected more
than 25 times. If the corpus has less than 1000 seeds, no
cleanup is performed. The number of seeds for countpath is
slightly higher than that of OptFuzz due to the consideration
of multiple executions of an OptPath in countpath as distinct
seeds. In fact, countpath comes to the similar number of Opt-
Paths as OptFuzz in Figure 4(b). countpath does not perform
well in bug discovery, probably because countpath does not
fit well with our scheduling strategy. Our scheduling strategy
prioritizes the paths that are currently less tested. If countpath
itself considers the number of executions per path, the paths
chosen by the scheduling strategy may not be the paths that
are currently less tested.

In conjunction with the aforementioned analysis, the seed
preservation strategy based on OptPaths can avoid the path
explosion problem. Among the various strategies, the Opt-
Paths yield the fewest number of seeds but can find the most
number of bugs, which demonstrates the high quality of seeds
preserved based on the OptPaths.

6.4.2 Seed Scheduling

To evaluate the seed scheduling strategy of OptFuzz, we addi-
tionally implemented two scheduling strategies, RandomSe-

lect and PowerSchedule. RandomSelect denotes the random
selection of seeds for mutation. PowerSchedule denotes the
implementation of seed power scheduling based on OptPaths.
PowerSchedule determines the number of test cases mutated
from each seed. If an OptPath is tested less, the corresponding
seed can be mutated to produce more test cases.

The results in Table 7 show that our scheduling strategy out-
performs RandomSelect as well as PowerSchedule. In contrast
to RandomSelect, our scheduling strategy focuses on testing
the OptPaths that are currently tested less often and tests them
in a more targeted manner. Power schedule is a commonly
used method for fuzz testing in seed scheduling. However this
method does not perform well in OptFuzz. PowerSchedule
uses random selection to decide the order in which the seeds
are selected, which can avoid the local optimum problem, but
it also suffers from the drawbacks of RandomSelect, which
spreads the test targets too thinly when the number of seeds is
large, and does not adequately test the OptPaths that actually
trigger the optimization.

The OptPath proposed in this paper may contain some
branches that exit early without triggering the optimization.
In subsection 4.4, we point that the impact of these extrane-
ous paths can be alleviated using a rareness-based scheduling
approach. To evaluate the performance of RarenessSched-
ule strategy, we randomly selecte a number of optimization
passes from different optimization levels (DFG, FTL, B3) of
JavaScriptCore, and manually analyze these optimizations by
marking the code locations that actually trigger the optimiza-
tion. If an OptPath executes to the marked code location, it is
considered that the OptPath really triggers the optimization.
Table 8 shows how OptPaths are tested in a 72-hour fuzz
testing. The second column of Table 8 records the number
of OptPaths that OptFuzz explored in different optimization
passes, with the data in parentheses indicating the percentage
of OptPaths that actually trigger the optimization. For exam-
ple, OptFuzz explores a total of 156 OptPaths in Strength-
Reduction, of which 28% actually trigger the optimization.
The third column of Table 8 records the number of times
OptFuzz selects OptPaths, and the data in parentheses indi-
cates the percentage of OptPaths that trigger the optimization
among the OptPaths selected. For example, OptFuzz selects
19,015 OptPaths from StrengthReduction over 72 hours, and
ultimately, the percentage of selected OptPaths that trigger
the optimization remains stable at 42%.
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Optimization OptPath OptPathselected ↑
StrengthReduction 156 (28%) 19015 (42%) ↑ 14%
TypeCheckHoisting 21 (48%) 3389 (92%) ↑ 44%
ConstantFolding 234 (45%) 24569 (57%) ↑ 12%
StoreBarrierInsertion 116 (28%) 15562 (41%) ↑ 13%
IntegerCheckCom 18 (50%) 2882 (84%) ↑ 34%
IntegerRangeAnalysis 37 (30%) 5358 (63%) ↑ 33%
B3FoldPathConstants 26 (12%) 4043 (32%) ↑ 20%
B3LowerMacros 12 (50%) 2666 (96%) ↑ 46%

Table 8: Percentage of OptPaths that actually trigger the opti-
mization and the scheduling of OptPaths by RarenessSchedule
in different optimizations.
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Figure 5: The percentage of OptPaths that actually trigger the
optimization over time among the selected OptPaths.

Among the eight optimization passes, only 35% of the
OptPaths can really trigger the optimization. The percentage
increases to 53% with RarenessSchedule strategy and in some
of the optimization passes, the percentage of OptPaths that
can trigger the optimization is more than 90%. The exper-
imental results demonstrate that even though the OptPaths
contain some branches that do not trigger the optimization
or exit early, the utilization of RarenessSchedule mitigates
the impact of these extraneous paths, enabling more computa-
tional resources to be allocated for testing the OptPaths that
actually trigger the optimization.

Figure 5 illustrates the percentage of OptPaths that actu-
ally trigger the optimization over time among the selected
OptPaths (the third column in Table 8). The orange hor-
izontal line indicates the baseline percentage of OptPaths
that actually trigger the optimization (the second column in
Table 8). As shown in Figure 5, the proportion of selected
OptPaths that really trigger the optimization is not constant
during the scheduling process. At the beginning of the fuzz
testing, the number of OptPaths is small, and the OptPaths that
have been tested a small number of times are not necessarily
the ones that really trigger the optimization, resulting in a
relatively low proportion of OptPaths that actually trigger the
optimization in the selected OptPaths. As the test proceeds,
the branches that exit early are tested more often, RarenessS-
chedule is able to select more OptPaths that really trigger the
optimization, leading to a gradual rise in the percentage of
OptPaths that actually trigger the optimization. Eventually,
the percentage stabilize at 63% in IntegerRangeAnalysis and
96% in B3LowerMacros.
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Figure 6: (a)Execution speed of fuzz testing with different
trimming strategies. (b)Number of OptPaths in StrengthRe-
duction explored by OptFuzz at different thresholds.

6.4.3 Trimming

To evaluate the trimming strategy of OptFuzz, we compare
three trimming strategies including nseed, twoseed and one-
seed. nseed is the trimming strategy used in this paper. nseed
produces distinct seeds for the newly executed OptPaths in
each optimization pass. twoseed generates a maximum of
two seeds for an interesting test case. One seed preserves new
edges, while the other preserves all new OptPaths, without dis-
tinguishing between specific optimization passes. Conversely,
oneseed only generates a single seed for a test case, which
preserves both new edges and new OptPaths.

The results in Table 7 show that nseed can find more bugs.
nseed outperforms twoseed and oneseed for two main reasons.
(1) The trimming with edges and OptPaths in different opti-
mization passes as the trimming standard ensures that each
seed is as small as possible, which results in a faster execution
of the program. Figure 6(a) shows the execution speed re-
sults of OptFuzz running on JavaScriptCore for 72 hours with
different trimming standards. The solid lines represent mean
and the shades around lines are confidence intervals for five
runs. (2) Another reason is that a test case generates seeds for
different optimization passes separately, the rareness schedul-
ing strategy will select the OptPaths in each optimization
pass that are currently being tested less for testing, which
not only ensures that different OptPaths in an optimization
pass are tested more evenly, but also ensures that different
optimization passes are tested more evenly.

6.4.4 Threshold

This section evaluates the impact of different thresholds. The
threshold in OptFuzz determines when to start selecting seeds
from Path Corpus. If the threshold is too low, the fuzz test-
ing does not explore the code sufficiently. The edge cover-
age feedback should be advantageous upfront. Conversely,
a threshold set too high delays or negates the role of path
feedback, thereby impacting the exploration of OptPaths.

In our experiments, we employ seven thresholds, with the
results indicating that threshold 300 leads to the discovery
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Trial Bug1_exec Bug2_bind Bug3_in Bug4_super
Trial 1 ! - ! -
Trial 2 - ! - -
Trial 3 - ! - -
Trial 4 - - - -
Trial 5 - - ! !

Table 9: Distribution of bugs found by OptFuzz across fuzzing
trials when threshold is 300.!means a bug was found during
a fuzzing trial.

of more bugs in Table 7. Table 9 shows the distribution of
bugs across fuzzing trials when threshold is 300. Upon further
analysis of the bugs identified, we found that OptFuzz_300 is
able to find Bug1 that cannot be found with any other thresh-
old, and the bug is related to StrengthReduction optimization
pass. Figure 6(b) illustrates the exploration of OptPaths in
the StrengthReduction optimization by OptFuzz for different
thresholds. The results show that after 30h, Optfuzz_300 ex-
plored a higher number of OptPaths compared to the other
thresholds, which is probably why OptFuzz_300 found Bug1.

6.5 Code Coverage
To answer Q4, this section compares code coverage with
Fuzzilli and FuzzJIT. We ran Fuzzilli, FuzzJIT and OptFuzz
on JavaScriptCore, SpiderMonkey and Hermes. Each Trial
lasted 72 hours and was repeated five times. We use llvm-
cov [27] to count the coverage results. Table 10 shows the
overall code coverage as well as the JIT compiler code cov-
erage obtained by Fuzzilli, FuzzJIT and OptFuzz for testing
JavaScriptCore, SpiderMonkey and Hermes. The results in the
table are the average of five runs. The corresponding standard
deviations are shown in Table 16.

Table 10: Final mean code coverage results

Engine Fuzzilli FuzzJIT OptFuzz
Line / Edge Line / Edge Line / Edge

JSC 55.5% / 40.3% 41.5% / 26.3% 55.3% / 38.8%
JSC JIT 79.9% / 63.0% 62.1% / 47.8% 80.5% / 63.7%
SM 48.7% / 32.4% 47.1% / 30.7% 45.0% / 29.2%
SM JIT 64.9% / 45.7% 65.5% / 46.3% 59.3% / 41.6%
Hermes 60.7% / 39.7% – / – 55.7% / 34.3%
Hermes Scalar 71.3% / 60.7% – / – 71.1% / 60.5%

Fuzzilli outperforms FuzzJIT and OptFuzz in terms of
overall JavaScript engine code coverage. However, different
fuzzing methods show varying performance on different JIT
compiler targets. OptFuzz achieves the highest code coverage
in JavaScriptCore’s JIT compiler, while in Hermes’ Scalar
optimization, the coverage was slightly lower than that of
Fuzzilli. Additionally, in SpiderMonkey’s JIT compiler, Opt-
Fuzz demonstrates the lowest edge coverage. Despite this,
OptFuzz found more bugs in the same amount of time. This
indicates that focusing on the testing of optimization paths
and using OptPaths for guidance is effective in discovering
bugs in JavaScript JIT compilers.

7 Related Work

Fuzzing for JavaScript Engines. JavaScript engines have
syntactic checks, which would prevent malformed test case
from execution. In order to pass these checks, jsfunfuzz gen-
erates JavaScript test cases based on manually implemented
syntax rules. Mozilla’s LangFuzz [20] uses a mutation-based
approach, where test cases are first parsed into a syntax tree,
and replace nodes in the syntax tree to complete the mutation
operation. Skyfire [41] and Superion [42] are both grammer-
based fuzzing methods. Skyfire focuses on seed generation by
replacing leaf nodes on syntax tree, while Superion focuses
on mutation and trimming based on edge coverage. Similar to
Superion, Nautilus [2] also performs trimming and mutation
on the abstract syntax tree. The difference is that Superion
requires a corpus to be prepared beforehand, while Nautilus
can generate seeds based on the grammar and mutate on the
abstract syntax tree of the seeds.

The following works focus on passing semantic checks.
CodeAlchemist [15] first disassembles PoC and regression
files into code fragments, and then reconstructs test cases
from code fragments using information collected by analyzer.
Similarly, Montage [23] mutates test cases based on regres-
sion test files fragments. Montage trains a neural network
language model (NNML) to predict the next fragment given
some sequence of fragments, and utilizes the model for muta-
tion. DIE [32] is also mutation-based fuzzing method. DIE
proposes a new mutation strategy that randomly preserves
structural and type information in the seeds. PolyGlot [5]
takes a further step to other languages. PolyGlot generates
test cases in different languages for different test objectives
based on their new intermediate representation. SoFi [16]
takes another perspective. They make use of the reflection
mechanism of the JavaScript language and come up with a
mutation strategy based on it.

In recent years, the focus of fuzz testing has shifted to
the JIT compiler. Fuzzilli [14] devises numerous generation
templates and mutation strategies to trigger JIT, and proposes
a set of bytecode-like intermediate representation languages
FuzzIL. JIT-Picking [3] compares the result of interpretation
and JIT compilation in the process of fuzzing to detect non-
crash bugs in the JavaScript JIT compilers. FuzzJIT [43] is
also a work that detects JIT compiler bugs through differential
testing. The authors designed a template for triggering a JIT
by embedding test cases into a for loop.

Seed Scheduling. Previous work in seed scheduling has pri-
oritized seeds based on edge coverage [4] [47], call graph [24]
and inter-procedural control flow graph (CFG) [38], as well as
more security-sensitive metrics like execution time [33], mem-
ory accesses [7] [45] [44]. AFLFast [4] prioritizes the edges
that are currently tested less often. Ecofuzz [47] proposed
a variant of the Adversarial Multi-Armed Bandit model and
used it for modeling the scheduling problem. Cerebro [24] pro-
poses a multi-objective optimization(MOO) model together
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with a nondominated sorting based algorithm to quickly cal-
culate the Pareto Frontier which decides the prioritized seed.
K-Scheduler [38] uses a graph centrality algorithm to evaluate
the probability of a seed being able to trigger edges that are
currently unvisited based on the inter-procedural CFG. Slow-
Fuzz [33] uses resource-usage-guided evolutionary search
techniques to find inputs that trigger worst-case algorithmic
behavior. Mem-fuzz [7] uses memory access instrumentation
to guide evolutionary fuzzing. It prioritizes the input that ac-
cesses previously unseen memory addresses. Memlock [45]
is a memory usage guided fuzzing technique for exposing un-
controlled memory consumption. It generates and prioritizes
the excessive memory consumption inputs. TortoiseFuzz [44]
proposes coverage counting, an approach for input prioritiza-
tion with metrics that evaluates edges in terms of the relevance
of memory corruption vulnerabilities.

8 Conclusion

By conducting an analysis on the JavaScript JIT compilers,
this paper summarizes three observations: 1) Entering the
optimization pass does not mean triggering the optimization;
2) Edge coverage-guided fuzzing will overlook test cases
that trigger new optimization paths; 3) Different optimiza-
tion paths are tested unevenly. This paper introduces a novel
fuzzing technique that leverages optimization trunk paths to
guide fuzz testing. Specifically, this technique preserves a
test case that triggers a new optimization trunk path as a seed
and prioritizes the testing of optimization trunk paths that are
infrequently tested. Through extensive testing, our proposed
method found 36 new bugs in JavaScriptCore, V8, Spider-
Monkey and Hermes. 26 of these bugs have already been
confirmed or fixed with 3 CVEs assigned. While our current
focus lies on JavaScript JIT compilers, we recognize broader
applicability of our method across other programming lan-
guages such as Java, Lua, among others. We will adapt our
technique to these alternative languages in the future work.
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A Appendix

A.1 p-value
This section shows the results of Mann-Whitney U Test and
the standard deviations for code coverage in Table 10.

Table 11: Mann-Whitney U Test results evaluated based on the
result presented in Figure 3. A value less than 0.05 indicates
the result is statistically different between OptFuzz and the
selected fuzzer.

Superion DIE Fuzzilli FuzzJIT OptFuzz
ArgumentsElimination < 0.001 < 0.001 < 0.001 < 0.001 1.000
ObjectAllocationSinking < 0.001 < 0.001 < 0.001 < 0.001 1.000
RangeAnalysis < 0.001 < 0.001 < 0.001 < 0.001 1.000
ScalarReplacement < 0.001 < 0.001 < 0.001 < 0.001 1.000

A.2 Case Study
CVE-2023-38542 is a UAF vulnerability related to func-
tion simplifySwitchInst and simplifyPhiInst in optimization

Table 12: Mann-Whitney U Test results evaluated based on
the result presented in Figure 6(a).

optfuzz_oneseed optfuzz_twoseed optfuzz_nseed
optfuzz_oneseed 1.000 < 0.001 < 0.001
optfuzz_twoseed < 0.001 1.000 < 0.001
optfuzz_nseed < 0.001 < 0.001 1.000

Table 13: Mann-Whitney U Test results evaluated based on
the result presented in Figure 6(b).

threshold 10 50 100 200 300 500 800
p-value < 0.001 < 0.001 < 0.001 < 0.001 1.000 < 0.001 < 0.001

Table 14: Mann-Whitney U Test results evaluated based on
the result presented in Figure 8(b).

RandomSwitch AIMD NoSwitch Wind
RandomSwitch 1.000 < 0.001 < 0.001 < 0.001
AIMD < 0.001 1.000 < 0.001 < 0.001
NoSwitch < 0.001 < 0.001 1.000 < 0.001
Wind < 0.001 < 0.001 < 0.001 1.000

Table 15: Mann-Whitney U Test results evaluated based on
the result presented in Figure 8(a).

RandomSwitch AIMD NoSwitch Wind
RandomSwitch 1.000 0.035 0.788 < 0.001
AIMD 0.035 1.000 0.082 < 0.001
NoSwitch 0.788 0.082 1.000 < 0.001
Wind < 0.001 < 0.001 < 0.001 1.000

Table 16: Standard deviations for code coverage in Table 10.

Engine Fuzzilli FuzzJIT OptFuzz
Line / Edge Line / Edge Line / Edge

JSC 0.25 / 0.38 1.20 / 0.75 0.10 / 0.63
JSC JIT 0.33 / 0.33 0.55 / 0.40 0.10 / 0.14
SM 0.39 / 0.32 0.04 / 0.07 0.29 / 0.24
SM JIT 0.46 / 0.29 0.11 / 0.12 0.25 / 0.18
Hermes 0.22 / 0.12 – / – 0.15 / 0.12
Hermes Scalar 0.00 / 0.10 – / – 0.00 / 0.06

pass simplifyInst of Hermes as shown in Figure 7. simpli-
fySwitchInst converts switch to branch based on the input of
switch and removes the corresponding child node of the phi
nodes in the unreachable basic block. simplifyPhi is designed
for phi with only one child node, replacing the phi node with
the child node. In order to trigger UAF, Hermes needs to trig-
ger the optimization in simplifySwitchInst and then trigger the
optimization on line 23 of simplifyPhi twice to produce an
intermediate representation of x = phi(x) and an intermediate
representation that uses x. Finally, the optimization at line
23 in simplifyPhi is triggered once more to eliminate x. At
this point, a reference to x still exists in the code, resulting in
Use-After-Free.

In this paper, we propose a seed preservation strategy based
on OptPaths, which is able to select the test cases that trigger
simplifySwitchInst and simplifyPhi and keep the OptPaths
intact. The conditions in line 8 and 20 in Figure 7 are more
difficult to satisfy, and our scheduling strategy tests more
of the OptPaths for which such conditions are difficult to
satisfy. In this way, our approach generates the test case that
trigger both simplifySwitchInst and simplifyPhi, leading to the
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Value* simplifySwitchInst( SwitchInst *SI ) {
Value *input = SI->getInputValue( );
auto *litInput = dyn_cast<Literal>( input );
if ( !litInput ) {

return nullptr;
}
// Look for a case which matches input
auto* destination = …
// Rewrite all phi nodes that no longer have 
// incoming arrows from this block.
…
Return builder.createBranchInst( destination );

}
…
Value* simplifyPhiInst( PhiInst *P ) {

unsigned numEntries = P->getNumEntries();
if ( !numEntries ) {

return nullptr;
}
if ( 1 == numEntries ) {

auto E = P->getChild( 0 );
P->replaceAllUsesWith( E );
remove( P );
return nullptr;

}
…
}
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Figure 7: Hermes SimplifyInst Optimization.

discovery of the vulnerability in optimization InstSimplify. To
fix this vulnerability, Hermes updated three patches [17] [18]
[19] involving 105 additions and 58 deletions.

A.3 Switching Strategy
The switching strategy between exploration and exploitation
refers to OptFuzz’s decision of which corpus to use when se-
lecting seeds. During fuzz testing, OptFuzz switches to using
seeds in PathCorpus after the number of seeds in PathCorpus
exceeds a certain threshold. Subsequently, OptFuzz selects
seeds from EdgeCorpus and PathCorpus with equal probabil-
ity, corresponding to RandomSwitch in Table 7. To explore the
impact of the switching strategy, we additionally implemented
three switching strategies. NoSwitch indicates that after the
number of seeds in PathCorpus exceeds the threshold, only
the seeds in PathCorpus are selected. AIMD involves dynami-
cally adjusting the proportion of EdgeCorpus and PathCorpus
being selected. Initially, each is set at 50%; if a new OptPath
is discovered over a period of time, the proportion of PathCor-
pus grows by 10%, and if no new OptPaths are discovered,
the proportion of PathCorpus is halved. Wind represents the
switching strategy used by WindRanger [9], where OptFuzz
uses the seed in EdgeCorpus if no new OptPaths have been
discovered for a period of time, or the seed in PathCorpus if
new OptPaths have been explored.

The experimental results in Table 7 indicate that there is
no significant difference in the number of bugs found by Ran-
domSwitch, AIMD, and Wind. The number of OptPaths ex-
plored by different methods is also relatively close, as shown
in Figure 8(a). Table 15 demonstrates that RandomSwitch,
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Figure 8: Number of OptPaths and edge coverage explored
by OptFuzz with different switching strategies.

AIMD, and NoSwitch are not statistically significant. Given
that RandomSwitch has a higher edge coverage, it ensures the
exploration of more code regions while exploring OptPaths.
Therefore, OptFuzz ultimately adopts RandomSwitch strategy.

A.4 OptPath
Table 17 and Table 18 give the number of OptPaths explored
by OptFuzz in V8, SpiderMonkey and Hermes respectively
within 24 hours.

Table 17: The number of OptPaths explored in V8.
Optimization Pass NP STD ANT MNT
DCE 33 0.0 16598 5358
CheckpointElimination 1 0.0 122586 109791
CommonOperatorReducer 33 2.2 16370 1826
ContextSpecialization 17 0.5 2146 119
NativeContextSpecialization 254 3.9 1338 45
IntrinsicLowering 15 0.0 1241 580
LoopVariableOptimizer 6.0 0.0 116644 112485
CreateLowering 99 4.2 1471 46
ConstantFolding 6.0 0.5 30911 16911
SimplifiedOperator 43 0.5 3178 58
EscapeAnalysis 47 0.8 17156 596
LoopPeeling 3 0.0 93567 107266
GenericLowering 83 0.9 5204 876
ValueNumbering 4 0.5 46794 34706
MachineOperator 156 2.4 4785 132
EffectControlLinearizer 169 4.2 7573 525
BranchElimination 12 0.0 77738 93972
TypeNarrowing 2 0.0 63040 58588

NP indicates the number of OptPaths in an optimization.
STD denotes the standard deviation of NP.
ANT indicates the average number of times each OptPath is tested.
MNT indicates the median number of times each OptPath is tested.
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Table 18: The number of OptPaths explored by OptFuzz in SpiderMonkey and Hermes within 24 hours.
SpiderMonkey Hermes

Optimization Pass NP STD ANT MNT Optimization Pass NP STD ANT MNT
ScalarReplacement 92 4.1 772 68 CSE 4 0.0 158043 194962
ValueNumbering 12 0.0 6887 1912 CodeMotion 4 0.0 3794 5290
LICM 19 0.0 5962 2924 InstSimplify 21 0.0 40175 11664
RangeAnalysis 214 0.6 615 84 Mem2Reg 21 0.0 59761 24049
Sink 8 0.0 15785 7336 SimplifyCFG 11 0.0 50177 25456
FoldLinearArithConstants 8 0.4 8355 538 StackPromotion 7 0.0 49101 61088
EffectiveAddressAnalysis 8 1.1 5925 283 TDZDedup 3 0.0 101566 94024
EdgeCaseAnalysis 1 0.0 39764 54509
NP indicates the number of OptPaths in an optimization. STD denotes the standard deviation of NP.
ANT indicates the average number of times each OptPath is tested. MNT indicates the median number of times each OptPath is tested.

Table 19: Bugs found by OptFuzz in JavaScriptCore, SpiderMonkey, V8 and Hermes. (The Status column has four categories:
Fixed means the bug has been fixed, Confirmed means the bug has been confirmed by the vendor, but still not fixed, New means
the bug has not been confirmed and Duplicate means the bug is found and reported by someone else. We determine whether the
bug is confirmed or not based on the vendor’s response, not on the status of the bug submission page, e.g. Issue1835579.)

Engine ID Issue JIT Status Description

JavaScriptCore

1 CVE-2023-38595 * ! Fixed Integer overflow caused by multiplication optimization in b3
2 Issue 255512 ! Fixed StringConstructor function inlining is incorrect
3 crash ! Duplicate B3 values become orphaned values
4 Issue 256508 New Error.stackTraceLimit can not be updated correctly
5 Issue 256832 Fixed Assertion Failure: m_setOp == CharacterClassSetOp::Default
6 Issue 257949 ! Fixed JSC computes incorrectly in DFG
7 Issue 258559 ! Fixed regExpFuncExec throw different messages in LLint and DFG
8 Issue 256022 * ! Fixed OOB Reading caused by implementation of For-In in FTL
9 Issue 258518 ! New For-In in DFGSpeculativeJIT may destroy IndexGPR
10 Issue 258552 ! New iterator_next becomes undefined after bailout from DFG
11 Issue 263520 ! New AbstractInterpreter handles GetMyArgumentByVal incorrectly when callee is inlined
12 Issue 263647 ! Confirmed Function.caller returns null when callee is inlined into apply function
13 Issue 263954 Fixed JSC should throw an exception when BigUint64Array copy value from Int32Array
14 Issue 263881 ! New BitURShift is eliminated when toString has an effect
15 Issue 263882 ! New ValueMod is eliminated incorrectly
16 Issue 264034 ! Fixed Host function isPureNaN is inlined into true in handleIntrinsicCall
17 Issue 264078 ! New Abstract Interpreter computes wrong value for GetLocal
18 Issue 265978 ! New Error Object has more properties in DFG

SpiderMonkey

19 Issue 1830107 ! Fixed Assertion failure for unexpected range for value in LInt32ToIntPtr
20 Issue 1833133 ! Fixed IC stub for arguments.callee is used even if callee has been redefined
21 Issue 1833294 ! New Differential testing generates different values when target is Error
22 Issue 1834038 ! Fixed Assertion failure: cx_→ hadResourceExhaustion in JIT
23 Issue 1835579 ! Confirmed Differential testing generates different values when target is gcNumber

V8

24 Issue 14055 ! New v8 prints non-deterministic results for Worker with/without turbofan
25 crash Duplicate Check failed in src/handles/maybe-handles.h
26 crash Duplicate Check failed in src/objects/string-tq-inl.inc
27 crash Duplicate Debug check failed: (*p).ptr() != to_check_.ptr()

Hermes

28 Issue 1033 Confirmed Integer overflow for vector capacity in Hermes
29 CVE-2023-38542 * ! Fixed Use after free of hermes::PhiInst object in SimplifyInst
30 CVE-2023-46140 * ! Fixed Hermes accesses uninitialized memory in Symbol.toStringTag
31 Issue 1199 ! Fixed Hermes should throw an exception when implicitly convert Int to BigInt
32 Issue 1200 ! Fixed SimplifyBinOp in InstSimplify generates wrong result
33 Issue 1203 ! Fixed The generator function’s body is executed incorrectly when next() method is not called
34 Issue 1212 ! Fixed Hermes should throw an exception when BigInts use unsigned shift
35 Issue 1215 ! Confirmed SimplifySwitchInst in SimplifyCFG ignores negative zero
36 Issue 976 Confirmed Too many handles in recursive invocation of stringPrototypeReplace()
37 Issue 977 Fixed Hermes crashes when call AggreageError constructor.
38 Issue 988 Fixed Assertion failure when executing StartGenerator
39 Issue 1006 Fixed Assertion failed: hasNamedOrIndex failed
40 Issue 1015 Fixed Assertion failed: defineOwnProperty threw in _setOwnIndexedImpl

* in Issue column means this bug is security sensitive.
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