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Abstract

Generative models have served as the backbone of versatile
tools with a wide range of applications across various fields
in recent years. However, it has been demonstrated that pri-
vacy concerns, such as membership information leakage of
the training dataset, exist for generative models. In this paper,
we perform property existence inference against generative
models as a new type of information leakage, which aims
to infer whether any samples with a given property are con-
tained in the training set. For example, to infer if any images
(i.e., samples) of a specific brand of cars (i.e., property) are
used to train the target model. We focus on the leakage of
existence information of properties with very low proportions
in the training set, which has been overlooked in previous
works. We leverage the feature-level consistency of the gen-
erated data with the training data to launch inferences and
validate the property existence information leakage across
diverse architectures of generative models. We have exam-
ined various factors influencing the property existence infer-
ence and investigated how generated samples leak property
existence information. In our conclusion, most generative
models are vulnerable to property existence inferences. Ad-
ditionally, we have validated our attack in Stable Diffusion
which is a large-scale open-source generative model in real-
world scenarios, and demonstrated its risk of property exis-
tence information leakage. The source code is available at
https://github.com/wljLlla/PEI_Code.

1 Introduction

Remarkable progress has been made in generative models
with numerous new models outperforming previous models
in terms of fidelity and scalability. The development of gener-
ative models has driven their use in commercial applications.
Generative models like Stable Diffusion [36] and Imagen [37]

* Corresponding author

provide interfaces for receiving user-input captions (descrip-
tions of the desired generated data), allowing users to generate
data with a payment. Many previous studies [3,5,17,41,44,58]
have indicated that generative models can leak sensitive pri-
vate information of their training sets. Existing information
leakages of the training sets include the membership informa-
tion leakage in GANS [5, 14, 17] and Diffusion Models [58],
the property information leakage in GANs [57], and the du-
plication phenomena between the generated images and the
training images of Diffusion Models and GANs [3,44]. These
leakages can be classified into two types based on the object
of the information: leakage of the global information of the
training set and the leakage of the information of specific
samples in the training set.

Many inference attacks emerge to obtain sensitive infor-
mation from the training set. Among these, the most popular
inference attacks against generative models are the property
inference and the membership inference. For the leakage of
global information, the property inference is proposed to infer
the proportion of global properties of the training set, such
as the proportion of a gender in a facial generative model.
For the leakage of the information of specific samples, the
membership inference is proposed to infer whether a specific
sample exists in the training set, such as the existence of a
specific facial image in a facial generative model.

In this paper, we focus on an inference attack against gener-
ative models called property existence inference, which aims
to infer whether any samples with the target property are
used to train the target model. Compared to property infer-
ence, property existence inference focuses on the leakage of
more personal and personalized privacy. For example, while
property inference will choose property such as gender in
the inference of facial generative models, property existence
inference focuses on more personally sensitive properties,
such as individual identities. Compared to membership infer-
ence, property existence inference is evaluated under a more
practical setting where no samples in the training set can be
obtained by the adversary. The property existence inference
carries potential privacy risks. With the property existence
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inference, personal and personalized information can be in-
ferred from the generative model that trainers may not want to
share, such as whether specific individuals’ images have been
used to train the target model. Property existence inference
can also be used to determine the presence of unauthorized
data in the training set. For instance, if a vehicle manufacturer
does not want images of their cars to be used for generating
similar-model images, they can perform property existence
inference to safeguard copyright.

We perform the property existence inference under the
most practical black-box setting and design the method with
the motivation that generative models will generate data with
features related to the properties existing in the training set.
For example, an image generated by a facial generative model
may not depict the face of a specific person from the training
set, but it may be similar in features like eyes to individuals in
the training set. Therefore, we perform property existence in-
ference through similarity comparisons between the generated
images and the images with the target property. Specifically,
we do the similarity comparison in the embedding space based
on a well-trained property extractor which learns to distin-
guish features from different properties. During this stage,
we mitigate data-induced uncertainties in similarity scores.
We finally train shadow models to simulate the behavior of
the target model and obtain the similarity score distributions
of properties existing and not existing in the training set, to
select a threshold for making the final decision.

We conduct comprehensive evaluations and find that gen-
erative models used in the evaluations including Stable Dif-
fusion [36], the largest open-source diffusion model, exhibit
the potential risk of property existence information leakage.
Our method effectively determines whether the target prop-
erties exist in the training set. For example, we obtain AUCs
for determining the existence of the target properties above
0.81 and 0.95 in generative models trained on ImageNet and
CompCars respectively. Based on our evaluations of state-of-
the-art generative models, it can be concluded that most of
the generative models we evaluated suffer from property exis-
tence information leakage. To gain a deeper understanding of
property existence inference, we further investigate the ele-
ments that impact the effectiveness of the property existence
inference such as the size of the training sets, the adversary
knowledge and the granularity of properties. Our evaluations
further reveal that there is an increased risk of property exis-
tence information leakage for a generated image that closely
resembles a larger number of samples that share the same
properties as those in the training set.

Contributions. We summarize our contributions in the fol-
lowing.

* To the best of our knowledge, we are the first to per-
form the property existence inference against generative
models and emphasize that property existence inference
should focus on properties with very low proportions.

* We propose a method to perform the property existence
inference by exploiting the differences in similarities be-
tween the generated samples and samples with the target
property, based on whether or not the target property is
present in the training set.

* We have conducted comprehensive evaluations on the
state-of-the-art generative models including large-scale
models like Stable Diffusion to study the effectiveness
of our method and explored which generated samples
are most likely to be utilized to extract information.

Roadmap. In Section 2, we introduce the generative models
and the property inferences. In Section 3, we formally define
the property existence inference and clarify the threat model.
In Section 4, we detail the method to perform the property
existence inferences. In Section 5, we analyze the effective-
ness of property existence inference under different generative
models and the factors that affect the attack effectiveness. In
Section 6, we discuss the related work. In Section 7, we dis-
cuss the cost and effectiveness of our method. In Section &,
we conclude our work.

2 Background

2.1 Generative Models

We focus on three types of generative models: generative
adversarial networks (GANSs) [12], Variational Auto-Encoder
(VAEs) [24] and Diffusion Models [8, 18,34-37,47].
GANSs. GAN [12] consists of a generator G and a discrim-
inator D. The generator is trained to learn the underlying
distribution of the real data pgaa by minimizing the diver-
gence between the distribution pg,, and the distribution of
the generated data p,, while the discriminator is trained to dis-
tinguish the two distributions pga and p,. The generator and
the discriminator are trained simultaneously in an adversarial
manner using the objective function below:

mén mgx V(D,G) =Ey ®) [log D(x)]
+E.p.(2)[log(1 = D(G(2)))]

where z is the input of the generator sampled from p,(z).
VAEs. As another broadly used generative model, VAE [24]
maximizes the lower bound of the log-likelihood log p(x) of
all observed real data x. The lower bound is quantified as the
evidence lower bound (ELBO) and can be derived as the left
term of the following equation:

m] =By (el) [log pe(x | )]

—Dxr (90(z | %) || p(2))

where ¢¢(z | x) is the approximated posterior parameter-
ized by ¢, and log pe(x | z) denotes the deterministic func-

E,. (z1x) |10
99(2lx) [ g (1
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tion parameterized by 6 that converts a given latent vari-
ables z into an observation x. As Equation | shows, ELBO
can be derived as the difference between the reconstruction
term E, o(2l%) [log pe(x | z)] and the prior KL divergence term
D (9o(z | ) [|p(2))-

VAE uses an encoder parameterized by ¢ to approximate
the posterior distribution and a decoder parameterized by 0
to generate the data from latent variables z. Therefore, VAE
maximizes ELBO by optimizing parameters ¢ and 6.
Diffusion Models. The training of diffusion models involves
two Markovian procedures: the forward diffusion process
and the backward denoising process. In the forward diffusion
process, Gaussian noise is added to the input data xp in T
steps until xq is transformed into a standard Gaussian noise
xr. Transitions g(x;|x,—1) of each step 7 € [1,T] can be seen
as: Xy = /0ux;—1 ++/1 — 0;€. where ¢ is used to control the
diffusion velocity and € ~ A (0,1). In the backward denois-
ing process, the original data x( is obtained by sequentially
removing the added noise from xr. Transitions of remov-
ing steps is denoted as p (x,—1 | x;),¢ € [1,T]. po(xi—1 | x;)
parameterized by 0 is learned to approximate p (x;—1 | x;).

Based on these two Markovian procedures, diffusion mod-
els maximize the lower bound of the log-likelihood log p(x)
which can be derived from the following inequality:

log p(x) >, |x) [log po (x0 | x1)] — DxL (¢ (xr | x0) || (x1))

T
=Y By [PKL (g (11 | x1,%0) [l po (i1 | x1))]
=
2)

The first term in the right equation E |, [log pe (xo | x1)]
can be regarded as a reconstruction term. The second term
Dxy (g (x7 | x0) ||p (xr)) which equals to zero in assumption.
The third term can be considered as the mean difference
between the cumulative equivalent of noise at each step and
the predicted noise [18]. During the generation phase, the
diffusion model generates data by gradually removing the
predicted noise from x7.

2.2 Property Inference Attacks

Property inference attacks aim to extract the overall (global)
information about the training set from the target model. Prop-
erty inference attacks against machine learning models are
first introduced by [1] and formally defined by [48]: given
two hypotheses (Hy, #;) about the distribution of the training
set, the adversary is asked to determine which hypothesis is
more consistent with the distribution of the training set of the
target model. The hypotheses are widely adopted in previous
studies as the description of the proportion of the samples
with target property P as follows:

* Hy: The proportion of samples with target property IP in
the training set of the target model is .

 7,: The proportion of samples with target property PP in
the training set of the target model is #;.

Previous studies commonly use a binary meta-classifier
trained under numerous shadow models of #; and %, to make
the final decision [1,11,31,56]. [4,31] assume the adversary
could poison the training set to perform property inference
attacks. [57] first introduces the property inference attack into
the GANs. Different from typical property inference attacks,
it aims to directly infer the proportion of the samples with
target property. In this paper, we focus on the property exis-
tence inference which can be regarded as an extension of the
property inference to determine whether any samples with
target property are used to train the target model.

3 Problem Statement and Threat Model

In this section, we present the formulation of property exis-
tence inference, the significance of investigating this problem,
and the clarity of our threat model.

3.1 Property Existence Inference

We follow the points of [4] and formally define the property
existence inference as follows:

Definition 1 (Property Existence Inference). given a target
model and two hypotheses (Hy, H, ) about the distribution of
the training set, the adversary is asked to determine which
hypothesis is true. Each pair of hypotheses is defined as:

o Hy: The proportion of samples with target property P in
the training set of the target model is O.

o i: The proportion of samples with target property P is
larger than 0.

According to the definition of the property inference in Sec-
tion 2.2, if we set 7y in #; as 0 and change the condition of #,
to t; > 0, the property inference is turned into our property
existence inference.

3.2 Significance of Property Existence Infer-
ence

The property existence inference considers more personal
and personalized privacy such as personal unauthorized train-
ing data while proposing a more practical setting where the
adversary cannot obtain any samples in the training set.

As an extension of the property inference, property exis-
tence inference is very similar to the property inference in
their forms of definitions. However, the proportion of target
properties differs depending on the target of the adversary.
Previous studies of the property inference usually focus on
properties (e.g., gender) that account for more than 10% of
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the samples in the training set [1, 11,56, 57]. Therefore, the
property inference usually serves as a fairness auditor of the
training set to assess the sensitive global properties by predict-
ing the absolute proportion of the properties [57]. By setting
one of the proportion of samples with target property in hy-
potheses to 0, the property existence inference does not focus
on the absolute proportion of the target property. Whatever
the proportion, it only infers the existence of the target prop-
erty. It might be meaningless to infer the existence of certain
properties that account for a large proportion of the training
set, such as inferring whether there are women in the world.
However, for those properties that account for only a small
proportion (e.g. person’s identities and styles of painting), the
existence of that property can leak personal and personalized
privacy, which has not ever been considered by the previous
works of the property inference.

Another well-known attack to infer the existence of sam-
ples in the training set is the membership inference [2,20, 21,
26,29,33,46,52,54,55]. Though sharing a similar purpose of
existential judgment, the property existence inference differs
from the membership inference. Membership inference fo-
cuses on samples identical to (e.g., same objects in the same
environment) those in the training set and ignores samples
that share the same property (e.g., the same type of objects
in different environments) with the training set which is con-
sidered in our property existence inference. The adversary
who performs property existence inference can hardly obtain
the exact data used to train the target model. Therefore, in
our evaluations, the property existence inference considers
a more practical setting where samples exactly the same as
the training set cannot be obtained, which has never been
considered in the membership inference.

3.3 Threat Model

We consider an adversary A4 interacting with a generative
model based on the neural network fy. The goal of the adver-
sary A4 is to infer whether any samples of the given property
PP are used to train the target generative model. For the sake of
expediency in exposition, if there are samples with this prop-
erty present in the training set of the target model, we refer to
this property as in-property; otherwise, we call it out-property.
Adversary’s Knowledge. In this paper, we focus on the prac-
tically and commonly utilized black-box setting where the
adversary can only query the target model with a certain input
prompt and get its corresponding output images. For genera-
tive models, the adversary is limited to passively getting a gen-
erated dataset Dy, of the target model without any knowledge
of its parameters and structures. In particular, the adversary
can specify the additional information such as captions for
conditional generative models which generate corresponding
outputs by accepting specific inputs from the user. However,
the adversary has no way of specifying them for unconditional
generative models which only use random noise as input.

We follow the assumption widely adopted in the research
of privacy-preserving machine learning that the adversary can
access the overall dataset that is used to collect the training set
of the target model. Therefore, the adversary can sample data
from the overall dataset to assist in conducting the inference. It
is further assumed that the overall dataset is sufficiently large,
thereby rendering it impossible for the adversary to access
the samples with the same properties as those in the training
set. Under this assumption, the adversary is always able to
collect a dataset D,,, with completely different properties
from the training set. For each target property P, we allow the
adversary to collect a dataset D4, where each sample in this
dataset contains the target property.

4 Attack Methodology

In this section, we start by providing the overall attack pro-
cedure and then detail how to conduct the property existence
inference against generative models.

4.1 Overall Attack Procedure

The procedure of our property existence inference consists
of three stages: property extractor training, similarity com-
putation, and threshold selection. Firstly, we train a property
extractor to map the data of Dy and D, into the embedding
space based on different properties. Secondly, we assign the
target property a score by computing the similarities between
the embedding obtained from the data of D4 and Dy, Finally,
we train the shadow models to select a threshold to make the
final decision.

4.2 Property Extractor Training

Since we aim to utilize the influence of target properties on
the generated images, we need to train a property extractor
to distinguish features from different properties. We design
the property extractor as a network trained with the triplet
loss function [40]. It utilizes a triplet dataset containing three
images for each data point: a base image with a specific prop-
erty, a positive image with the same property, and a negative
image with a different property. Samples used to train the
target property extractor are labeled according to the same
classification criteria as the target property. For instance, if
we consider "identity = Alice" as the target property, then the
properties we use to train the network are the identities of
different people.

During the training stage, the siamese network architec-
ture is employed with shared weights to embed these images
into an embedding space. We train the network to minimize
the cosine distance between the base and the positive em-
bedding while maximizing the cosine distance between the
base and the negative embedding. Evidently, the utilization of
data with target property for training the network would yield
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Figure 1: The frequency distribution of the similarity score
on CelebA-HQ and Imagenet among all data generated by
DDPMs. Scores computed with similarity score smoothing
and likelihood calibration of properties absent in the training
set (in orange) shown by the second row are further to those
of properties present (in blue) compared with the pure cosine
similarity scores in the first row.

better results. Nonetheless, our evaluations indicate that, even
in cases where the target property is not explicitly a label in
the training set of the property extractor, it can generalize its
discriminating capabilities to the target property. This fact
permits adversaries to leverage pre-trained models as property
extractors for initiating attacks, thereby substantially reduc-
ing the associated attack costs while achieving a reasonable
degree of attack effectiveness.

4.3 Similarity Computation

In this stage, we compute the similarity between the data
with the target property and the generated data to determine
whether the target property is used to train the target model.
The process of computing similarity scores is detailed in Algo-
rithm 1. Specifically, for each image with the target property
collected by the adversary which is referred to as the anchor
image, we compare its cosine similarity with all generated
images after property extraction (Lines 12-14 in Algorithm 1).
Subsequently, the summation of the K-largest computed sim-
ilarity scores among all generated images is designated as
the similarity score for that anchor image (Lines 11-23 in
Algorithm 1). The chosen K-largest values (top K) represent
generated images most likely to be influenced by the corre-
sponding target property. Similarity scores of each anchor
image in the entire dataset D4 collectively constitutes the

Algorithm 1: Compute Similarity Score.

Input: Generative model f, property extractor 7,
anchor images set Dy, reference dataset Dy,
hyperparameters o, K

Output: Similarity Score of the target property A

1 Doy < frha <= T (Da),hgen < T (Dgen), hour <
T (D()Mf)

2 A=0u={},0’={}

3 for cgep in hge, do

4 | h={}
5 for c,; in hyy do
6 ‘ h = hUCosine(cour, Cgen)
7 end
8 u=uUmean(h)
9 | o®>=c?Uvar(h)
10 end

11 for c4 in hy do
12 for cge, in hge, do

13 score = {}

14 score = score\J Cosine(ca, Cgen)

15 end

16 enhance_score = {}

17 for i in |score| do

18 enhance_score = enhance_score U
—p (scoreli] | 2 (ui), 0211

19 end

20 score = SoftMax(score)

21 enhance_score = score + 0. x enhance_score

22 A=A+ Y ropK(enhance_score)

23 end

24 return A

derived similarity score for the given target property. During
the computation of property similarity scores, we employ two
operations, namely similarity score smoothing and likelihood
calibration, to mitigate uncertainties arising from anchor im-
ages and generated images.

Similarity Score Smoothing. During our evaluations, we
found that some anchor images tend to have fairly high (or
low) similarities with all generated images. According to re-
cent studies [3], memorized images tend to have abnormally
high similarities among the whole similarity distribution. In-
spired by this, we further adopt a smoothing method to polish
our similarity scores (Line 20 in Algorithm 1). In contrast to a
mere similarity comparison, a more effective indicator of the
property’s presence within a training set is the discernible pat-
tern where a specific anchor image exhibits markedly higher
similarity to a limited set of generated images as opposed to
the rest. This indicates that the anchor image has evidently
captured distinctive property characteristics within these con-
spicuously generated images with high similarity. Therefore,
to mitigate the uncertainty of anchor images, we initially sub-
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ject all resultant values to a softmax smoothing operation,
followed by selecting the K-largest values.

Likelihood Calibration. Without a well-crafted input from
the adversary to control the generating process, images ran-
domly generated from a pre-defined latent space [12, 18] also
exhibit comparable uncertainty of diverse similarity score
distributions with images in the overall dataset. In order to
mitigate this uncertainty, we introduce a likelihood test to
calibrate the similarity score by approximating the similarity
distribution. Rather than the whole similarity distribution of
the overall dataset, we focus on the reference out-distribution
which is the distribution of similarity scores between certain
generated images and the D,,, as mentioned in section 3.3.

The reference out-distribution indicates a general level of
similarity for data with the out-properties and helps to mit-
igate the bias of the similarity introduced by the individual
characteristics of generated images. For each generated im-
age specially, we calculate the cosine similarity between the
generated image and the data from the D,,,. It is assumed that
the reference out-distribution follows a Gaussian distribution
and the data sampled from D,,, is used to calculate its mean
and variance (Lines 2-10 in Algorithm 1). For each anchor
image, we calculate the corresponding probabilities under
the reference out-distributions of all generated images (Lines
16-19 in Algorithm 1) and add them up when calculating the
similarity score (Lines 21-22 in Algorithm 1). Aiming for a
higher probability of the existing image with the target prop-
erty present in the training set, we take the negative of the
likelihood as likelihood calibration. We use a hyperparame-
ter o to balance the weight of the original similarity and the
likelihood calibration.

Figure | plots the frequency distribution histogram of the
similarity scores of the properties present (blue) and absent
(orange) in the training set of CelebA-HQ [22] and Ima-
geNet [7], respectively. The first line illustrates the results
obtained without utilizing similarity score smooth and like-
lihood calibration, whereas the second line showcases the
results under these methods. It can be noticed that the gap
between the two distributions of similarity scores in the sec-
ond row is larger than that in the first row, indicating the
effectiveness of reducing uncertainty.

4.4 Distinguishing Test

After obtaining the similarity scores for the target property, we
select a threshold to decide the result. If the similarity score
exceeds the threshold, we predict the samples with the target
property as used to train the target model; otherwise, we pre-
dict it as not used. In this stage, we first train shadow models
with the training set sampled from D,,,. Next, we select the
properties used for training and those not used to obtain their
corresponding similarity scores. We model the scores of these
two types of properties as Gaussian distributions A((uo,63)
and A (u ,G%). The adversary can choose thresholds based on

different false positive rate requirements. In our evaluations,
we adopt the method of [4] to set the threshold as one of the
following to minimize both two test errors:

2
(100% 103) 201001 (432 + (05 - o tog ()

22
01—0p

T=

3)
We setthe T = @ when 6y = 0.

In this paper, we do not require the adversary to possess
any prior knowledge about the model structure or training
algorithm of the target model. In our evaluation, we note that
the optimal T obtained on different models is similar and does
not have a significant impact on the effectiveness. We keep
the proportion of samples with different properties fixed at
0.05% when training the shadow models and we demonstrate
that when the proportion of the target property is larger than
we expected (even larger than 10%), the attack effect will
not worsen. In fact, the higher the proportion of property,
the better the resulting effect. We provide detailed proof and
explanation in the Appendix A.2.

5 Evaluation

5.1 Evaluation on Generative Models

Datasets and Property Extractors. We adopt the following
three datasets to investigate the property existence inference
and clarify the property extractor used for each dataset.

CelebA-HQ [22] The CelebA-HQ dataset is a CelebFaces
Attributes dataset which contains 30,000 face images. CelebA-
HQ is the high-resolution version of the CelebA [28] which
consists of more than 200,000 RGB face images. In our eval-
uations, we employ the CelebA-HQ dataset with a resolution
of 256 x 256 to train the target generative models and use
the identity as target properties. In our evaluations, we ran-
domly select a group of 1,500 individuals from CelebA-HQ
as in-properties and another set of 1,500 individuals from
CelebA but not in CelebA-HQ as out-properties. For each
property, we randomly sample three images with this property
from CelebA as anchor images to create D4. We also collect
an extra 4,500 images from CelebA to form the D,,;. Fur-
thermore, we assume that the attacker could generate 10,000
images from target models trained on CelebA-HQ to conduct
their attack. For all generated and original images, we employ
pre-trained facenet [40] as our property extractor to generate
embeddings.

ImageNet [7] ImageNet is a large-scale visual dataset con-
sisting of 14,197,122 annotated images according to the Word-
Net hierarchy used for the Large Scale Visual Recognition
Challenge (ILSVRC). We use the version of ImageNet2012
containing 1,000 classes to train target models and Ima-
geNet2010 as the extended dataset to select out-properties. In

2428 33rd USENIX Security Symposium

USENIX Association



10° 10°

H
3

L
-
2

ImageNet DiT ROC (auc = 0.98)

True Positive Rate
True Positive Rate

1072 _,_,—"— ImageNet Guided(uncond) ROC (auc = 0.81)
_'_l'

—— CompCars DDPM ROC (auc = 0.97)
_-—— CompCars DDIM ROC (auc = 0.96)

,»© —— CelebA-HQ DDPM ROC (auc = 0.64)
—— CelebA-HQ LDM ROC (auc = 0.63)

—— ImageNet StyleGAN-xI ROC (auc = 0.98)

ImageNet VQGAN ROC (auc = 0.94)
—— CompCars StyleGAN3 ROC (auc = 0.96)
.7 —— CompCars Projected GAN ROC (auc = 0.97)
“" —— CelebA-HQ StyleGAN3 ROC (auc = 0.64)
—— CelebA-HQ VQGAN ROC (auc = 0.64)

10°

H
2

—— ImageNet RQVAE ROC (auc = 0.96)
ImageNet Latent-VAE ROC (auc = 0.96)

True Positive Rate

—— CompCars Efficient-VDVAE ROC (auc = 0.95)
_ —— CompCars Softintro VAE ROC (auc = 0.96)
L+~ —— CelebA-HQ NVAE ROC (auc = 0.62)

—— CelebA-HQ Efficient-VDVAE ROC (auc = 0.63)

False Positive Rate

(a) Diffsuion Models (DMs).

1073 1072 107! 10° 1073 1072
False Positive Rate

(b) GANSs.

107! 10° 1073 1072 107! 10°
False Positive Rate

(c) VAEs.

Figure 2: The ROC curve plot for DMs, GANs, and VAEs showcases a pair of models for both CompCars, ImageNet, and

CelebA-HQ in each individual graph.

our evaluations, we randomly select 300 classes from Ima-
geNet2012 to serve as in-properties and another 300 classes
from the class difference between ImageNet2012 and Ima-
geNet2010 as out-properties. We sample 5 images for each
property to compose D4. Moreover, we sample 46,000 im-
ages from the rest classes of ImageNet2010 to compose Dy
and resize all the data of ImageNet to 256 x 256. To extract
embeddings, we use the clip fine-tuned on Laion2B'.
CompCars [53] CompCars is a widely utilized benchmark
in computer vision research for tasks of fine-grained object
recognition and retrieval. It comprises diverse images of cars
captured from various angles, lighting conditions, and occlu-
sions. The dataset includes annotations for car make, model,
and year. In our evaluations, we adopt the attributes of models
as target properties and select 50,000 images with the res-
olution of 256 x 256 to train the target generative models.
For in/out-properties, we randomly select 200 models of cars
each, ensuring that the data with any selected in-properties
constitute no more than 0.1% of the training dataset. We sam-
ple 5 images to create D4 for each model of cars and sample
10,000 images from CompCars to obtain D,,;. We train the
property extractor with the network backbone of [19] under
VGG16 [43] which has been demonstrated to perform well
on fine-grained classification tasks.
Target Models. Among state-of-the-art generative models
for each dataset, we select two models as target models for
each of the three types of models, e.g., DMs, GANs, and
VAEs. For DMs, we adopt the DDPM [18] and LDM [36]
trained on CelebA-HQ, DIT [34] and Guided Diffusion [8]
trained on ImageNet, DDPM [18] and DDIM [45] trained
on CompCars as the target models. For GANs, we adopt the
styleGAN3 [23] and VQGAN [10] trained on CelebA-HQ,
styleGAN-xI1 [39] and VQGAN [10] trained on ImageNet,
Projected Gan [38] and styleGan3 [23] trained on CompCars

Uhttps://mmpretrain.readthedocs.io/en/latest/papers/clip.html

as the target models. For VAEs, we adopt the NVAE [51]
and Efficient-VDVAE [15] trained on CelebA-HQ, Latent
VAE [30] and RQVAE [25] trained on ImagNet, Efficient-
VDVAE [15] and Softintro Vae [6] trained on CompCars as
the target models. We use the pre-trained models mentioned
above for CelebA-HQ and ImageNet, and we train the target
models of CompCars by ourselves.

Metrics. The property existence inference can be regarded as
a binary classification task to distinguish whether the target
property is an in- or out-property. Therefore, we measure
the property existence inference with the metrics of Area
under the ROC Curve (AUC) and Accuracy (ACC), which
are widely used for the evaluation of binary classification
tasks. We also use the True Positive Rate (TPR) at 1% False
Positive Rate (FPR) to focus on the in-properties that can
be confidently inferred. The larger the metrics mentioned
above, the better the property existence inference performs.
To measure the quality of the generated images, we use the
Fréchet Inception Distance (FID) metric [16], where a lower
FID indicates better quality of the generated images.
Baseline. Since we consider property existence inference as
an extension of property inference, we added the method
of [57] as a baseline in our evaluations. [57] predicts the
proportion of images with a target property in the training
set by evaluating the proportion of generated images that
have the target property. We slightly modified this method
to align with the goals of property existence inference: for
each generated image, we classify it into a specific property
category. The number of images classified under the target
property is considered as the score for that property. We use
those scores to calculate the metrics.

Results. For various models of corresponding datasets under
the property existence inference, we show metrics of AUC,
ACC, and TPR achieved at 1% FPR in Table 1. We depict the
ROC curves in Figure 2, from left to right denoting models of
DMs, GANSs, and VAEs. Horizontally, there is no particularly
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Table 1: The AUCs, ACCs and TPRs achieved at 1% FPR for the effectiveness of property existence inference obtained from

our method (PEI) and the baseline method [57] (PIA).

PEI (Ours) PIA (Baseline)
Dataset Model FID
AUC ACC TPR@1%FPR AUC ACC TPR@I1%FPR
DM DiT 227 098 0.92 53.7% 0.81 0.79 4.6%
S
guided 459 0.81 0.78 27.3% 0.67 0.68 0%
styleGAN-x1 230 098 0.92 43.3% 0.82 0.79 2.4%
ImageNet  GANs
VQGAN 5.2 094 0.88 41.3% 0.76  0.73 3.0%
VAE Latent VAE 934 096 091 51.0% 0.72  0.69 0.7%
S
RQVAE 445 096 090 41.7% 0.78 0.79 1.7%
DM DDPM 9.75 097 095 89.0% 0.87 0.86 64.7%
S
DDIM 12.85 0.96 0.92 80.0% 0.81  0.77 19.0%
StyleGAN3 28.87 096 0.92 17.0% 0.66 0.63 19.4%
CompCars  GANs )
Projected GAN 847 097 094 60.0% 0.86  0.80 30.0%
VAE Efficient-VDVAE 78.12 095 0.91 75.0% 0.72 0.71 34.7%
S
Softintro VAE 75.81 096 0.90 64.0% 0.77 0.74 25.4%
DM DDPM 20.25 0.64 0.61 2.9% 0.59 0.58 2.2%
S
LDM 19.82  0.63 0.60 2.3% 0.54 0.54 3.2%
StyleGAN3 15.68 0.64 0.60 2.8% 0.58 0.57 2.4%
CelebA-HQ GANSs
VQGAN 1932 0.64 0.60 2.7% 0.59 0.57 2.4%
VAE NVAE 4431 0.62 0.59 3.7% 0.53 0.53 1.3%
S
Efficient-VDVAE 23.55 0.63  0.60 3.1% 0.54 0.54 2.3%

large difference in the performance of different generative
models under inferences on the same dataset. In specific, the
three aforementioned metrics are consistently close among all
models such as for CelebA-HQ, with only a 0.01 fluctuation
for AUC, and a 0.02 fluctuation for ACC and TPR achieved
at 1% FPR. Vertically for a single model, the property ex-
istence inference can get advantages in the three datasets
with ImageNet and CompCars considerably high compared
to CelebA-HQ, which indicates that ImageNet and Comp-
Cars are more susceptible to the property existence inference.
For instance, the ROC curves of ImageNet and CompCars
with almost all AUCs around 0.95 located far above those of
CelebA-HQ whose AUCs fall within a lower range of 0.63 to
0.64. Compared to the baseline, our method outperforms it in
almost all metrics on each dataset, except for two values of
metric TPR achieved at 1% FPR. Our method demonstrates
significant improvement over the baseline in terms of AUC
and ACC metrics. For example, our method improves the av-
erage AUC by 0.18, 0.18, and 0.07 on ImageNet, CompCars,
and CelebA-HQ, while the average ACC improves by 0.14,
0.17, and 0.02, respectively.

Summary I: Most of the generative models we evaluated
are vulnerable to the property existence inference and prop-

erty existence inferences perform similarly against generative
models trained on the same dataset.

5.2 Effect of Training Datasize

As mentioned in previous works, the size of the training set is
a critical factor in determining the performance of inference
attacks [5, 27, 41]. The size of a training set has a direct
impact on how a model overfits it. In general, overfitting is
reduced as the training set size increases. We also investigate
effectiveness of property existence inference with different
sizes of training sets.

Setup. We select DMs (DDPMs), GANSs (styleGAN3s), and
VAEs (Efficient-VDVAES) as the target models to be trained
with different sizes of training sets. We randomly selected
5k, 10k, 15k, 20k, and 30k samples from the CelebA-HQ
dataset to train the target generative models, and subsequently
conduct property existence inferences in those models. For
each model, we randomly select 1,500 in-properties and 1,500
out-properties based on different identities and sample three
images with each property to compose Dy4. In addition, we
generate 10,000 images from each target model to carry out
the inferences. To ensure evaluation fairness, we train all
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Figure 3: The bar charts of AUC (blue), ACC (yellow), and TPR achieved at 1% FPR (red) for Diffusion models, GANs, and
VAEs trained on the CelebA-HQ dataset with training set sizes of 5k, 10k, 15k, 20k, and 30k.

models within a certain type with similar FID values.
Results. Figure 3 shows the changes of AUC, ACC, and TPR
achieved at 1% FPR across the different sizes of training sets
in DMs, GANs, and VAEs respectively. With the exception of
the attacks in DDPMs, which exhibit a slight decrease in AUC
(i.e., from 0.69 to 0.64) when the training data size increases,
attacks in GANs and VAEs do not show significant changes in
AUC and ACC as the size of training set increases. In contrast
to the general conclusion regarding MIAs [27,42,58], it is sur-
prising that the effectiveness of property existence inferences
seems to be insensitive to the change of sizes of the training
set. When analyzing the uniqueness of DDPMs, we find that
the increase in the replication behavior of DDPMs towards
the training set, as the size of the training set decreases, results
in an additional advantage for attacks.

Summary II: The primary reason for the effectiveness of the
property existence inference is not overfitting, and increasing
the size of the training set is not an effective way to prevent
property existence inference.

5.3 Effect of Adversary Knowledge

AUC/ACC
>
S
%
“TPR@1%FPR

“ TPR@1%FPR

~e~ CompCars AUC
CompCars ACC
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Figure 4: The changes in AUC (blue), ACC (yellow), and TPR
achieved at 1% FPR (red) obtained from conducting property
existence inferences on the DDIM vary with the increase in
the number of the generated images (left), and the number of
the data with target property (right).

In our attack scenario, we assume that the adversary can (1)
generate a certain amount of images from the target model,
(2) choose the target property and collect a specific number of
images with the target property as anchor images to conduct
property existence inferences. In this section, we evaluate the
effect of the amount of both the generated images and the
anchor images used by the adversary.

Setup. We investigate the effect of the adversary knowledge
by performing property existence inferences against the diffu-
sion model (DDIM) on the CompCars. In our basic settings,
we randomly select 200 in-properties and 200 out-properties
in CompCars based on the model of cars. To conduct the in-
ference, the adversary samples 5 images for each property as
anchor images and generates 10,000 images from the target
model. We change these basic settings from two aspects while
keeping other settings constant to evaluate the effect of the
adversary knowledge. To evaluate the effect of the amount of
the generated images, we let the adversary to generate images
in the range of 0.1k to 30k from the target model. To evaluate
the effect of the amount of the anchor images, we increase
the number of the anchor images every 5 from 1 to 50.

Results. Figure 4 illustrates the changing trend of inference
performance metrics on DDIM as the adversary knowledge
changes. We show the trend of AUC, ACC, and TPR achieved
at 1% FPR with a growing number of generated images and
anchor images used by the adversary respectively on the left
and right of Figure 4. It’s clear that with a growing size of
generated images and anchor images, the attack metrics will
grow until they reach a threshold.

To further simulate real-world scenarios, we conducted the
evaluations on CelebA-HQ by supplementing it with anchor
images from social media, which are potential sources for
adversaries to collect anchor images. The result is attached
in the Appendix A.l. We get the same results as CompCars
when the number of the generated images increases. However,
we find a peak in metrics as the number of the anchor images
increases. The peak in the figure signifies that as the number
of the anchor images with target property increases, the gap
in similarity scores between in-properties and out-properties
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Figure 5: ROC curves for the fine-grained evaluations. “con’
and “uncon” stands for the different types of the target models.

rapidly increases until reaching the optimum and finally de-
creases. Hence, we suggest the adversary train shadow models
to select the appropriate number of anchor images for per-
forming property existence inferences.

Summary III: 1) For the same training dataset, the adversary
will get better performance of the property existence inference
when the number of the generated images and anchor images
increases. 2) For different training datasets, there exists an
optimal quantity of anchor images that maximizes the attack
performance.

5.4 Effect of Property Granularity

As we rely on manual labeling to determine the properties,
samples can be classified into properties at different levels
of granularity. For instance, an image of a canary may be
classified as a fine-grained canary, a coarse-grained bird, or
even a coarser-grained animal. In this section, we investigate
the effectiveness of the property existence inference under
different property granularities. It is worth mentioning that in
the previous overall evaluations, we have adopted “identity”,
“models of cars”, and the original label class in ImageNet
as target properties, which may differ in granularities across
different datasets. To better compare the effects of different
granularities for the same dataset, we further conduct the prop-
erty existence inference of ImageNet based on classification
criteria under WordNet, a hierarchical tree-like structure with
basic relations of synsets and hypernyms for fine-grained cate-
gorization. For instance, the synset "animal" is a hypernym of
"dog" and the synset "dog" is further a hypernym of more fine-
grained synsets such as "poodle"”, "labrador" and "bulldog",
representing the "is-a" relationship.

Setup. To study the effectiveness of the property existence
inference with different property granularities, we collect orig-
inal synsets with hypernyms of birds and dogs from Ima-
geNet2012 respectively as our in-properties and extract the
other synsets from ImageNet as out-properties under the same

hypernyms, ensuring that the in- and out-properties are not
hypernyms of each other in the WordNet. In brief, we find
out other children as out-properties sharing the same father
as in-properties but not in one branch with in-properties. For
birds and dogs, we use 100 and 300 classes of in-/out- proper-
ties respectively, and samples D,,,, from the rest classes. We
use the Guided Diffusion [9] trained on ImageNet2012 as the
target models and use the EfficientNet-b1 [50] pre-trained by
torchvision as our property extractor.

Results. As shown in Figure 5, the ROC curves of the birds lie
above those of the dogs under conditional and unconditional
Guided Diffusions. In the conditional model, we get AUCs
of 0.95 and 0.67 for birds and dogs respectively while in the
unconditional model, we get AUCs of 0.68 and 0.66 respec-
tively, which indicates that there still exists property existence
information leakage in the fine-grained properties. Compared
to attacks at a coarse level (e.g., ImageNet) in Figure 2 with
AUCs of 0.81 and 0.98 at conditional and unconditional diffu-
sion models, we can conclude that the finer the granularity of
the properties, the harder it is to infer their existence informa-
tion. Between the two fine-grained properties, it’s observed
that the bird species are relatively easier to infer, due to the
larger intra-class diversity of birds. Though the overall AUCs
between conditional and unconditional models differ a lot, we
observe close TPR at 1% FPR of 0.25 and 0.22 for birds eval-
uations. This indicates that there are indeed some properties
whose features are more easily manifested in the generated
images, regardless of whether it is in conditional or uncondi-
tional models.

Summary IV: Property existence inferences prove effective
in the context of fine-grained datasets, and selecting properties
at a finer granularity level results in higher inference difficulty.

5.5 Why Our Attacks Work

In previous sections, we present the effectiveness of our ap-
proach to perform the property existence inference under
various settings from different generative models, different
datasets to different granularities. To gain a deeper under-
standing of property existence inference, we further investi-
gate which type of generated data contributes to the leakage
of the property existence information.

How generated samples leak the property existence in-
formation. On left of the Figure 6, we display the perfor-
mance of our attacks under DDPM trained on CelebA-HQ.
According to Algorithm 1, we mainly focus on those gener-
ated samples most similar to each anchor image of target prop-
erties, since they are used to calculate the similarity scores
during the attack. Specifically, we collect the top 20 generated
samples with the highest similarity scores corresponding to
each anchor image. In brief, we call these samples as chosen
generated samples and the anchor image as their correspond-
ing anchor image. Each chosen generated sample can have
many corresponding anchor images and each anchor image
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Figure 6: Figure in the left plots the top 20 generated samples collected with the highest similarity scores corresponding to each
anchor image. The right side displays generated images of three chosen points representing generated data with high risks, low
risks, and nearly no risks of property existence information leakage. For each chosen point, the corresponding anchor images
with the highest similarity scores are plotted on the right. Below each anchor image marks their similarity scores (x 1,000). For
each chosen generated sample (blue dots), the x-axis and y-axis indicate the total number of their corresponding anchor images
with in- and out-properties respectively. Most points with the lowest similarity scores (yellow stars) lie above the gray line
while those with the highest scores (red stars) lie below, indicating that generated samples prone to leaking property existence
information are more similar to relatively large amounts of anchor images with in-properties. From the bottom up, the difference
in similarity scores between corresponding anchors with in- and out-properties and the chosen generated sample gradually

decreases, indicating the weakened ability of the generated sample to distinguish in- and out-properties.

corresponds to 20 chosen generated samples. By intuition,
it’s considered that the riskiest generated sample should share
markedly high similarities with more anchor images of in-
properties compared with those of out-properties. So we fur-
ther analyze the statistical difference between corresponding
anchor images of in-properties and out-properties for each
chosen generated image from the following two dimensions.

¢ Quantity: The relative number of anchor images with
in- and out-properties.

* Value: The absolute value of similarity scores with an-
chor images of in- and out-properties.

To explore the dimension of Quantity, we count the num-
ber of corresponding anchor images with in-properties and
out-properties respectively for each chosen generated sample.
The result is displayed in Figure 6 where each blue point
denotes a certain chosen generated sample. Among all corre-
sponding anchor images of that sample, the total number of
anchor images with in-properties is shown in the x-axis and
that with out-properties is shown in the y-axis. The points on
the grey line which separates the figure into two parts repre-
sent those chosen generated samples with an equal number of
corresponding anchor images between in- and out-properties.
To find generated samples that are easier and harder to leak
property existence information, we mark chosen generated

samples with the highest similarity scores in red stars and
those with the lowest similarity scores in yellow stars. It’s
interesting to notice that most chosen generated samples with
the lowest similarity scores lie above the gray line while
those with the highest similarity scores lie below. Statistically
speaking, it indicates that generated samples more prone to
leaking property existence information tend to have more
corresponding anchors of in-properties than out-properties.
To explore another dimension of Value, we choose three
points in each representative area in the left figure and display
the chosen generated samples along with their corresponding
anchor images of in/out-properties with the highest similar-
ity scores in the right of Figure 6. Below each anchor image
marks its similarity score with the leftest chosen generated
sample. From the bottom up, the similarity scores of the corre-
sponding anchor images with out-properties remain the same
but those of corresponding anchors with in-properties grad-
ually decrease. It indicates that the difference in similarity
scores between corresponding anchor images with in- and
out-properties of the chosen generated sample gradually de-
creases and converges to 0. Moreover, it illustrates that the
chosen generated sample gradually loses the ability to dis-
tinguish anchor images of in-properties and out-properties
from the bottom up. From this point, we can say that the three
points from the bottom up respectively represent generated
samples with the highest risks, low risks, and nearly no risks

USENIX Association

33rd USENIX Security Symposium 2433



Origin Inpainting Mask

In-
Property

Out-
Property

Figure 7: The visualized strategies of the inpainting evalua-
tion. The first row belongs to the evaluation of image with
in-property and the second row belongs to the evaluation of
image with out-property generated by applying style trans-
form to image in ImageNet2012. We apply the mask in the
third column to the original image in the first column and
inpaint the masked part with Stable Diffusion to acquire the
inpainting image in the second column.

of property existence information leakage. Consequently, gen-
erated samples with high risks of leaking property existence
information tend to have abnormally high similarity scores
with anchor images of in-properties.

5.6 Case Study: Stable Diffusion

In order to investigate the effectiveness of the property exis-
tence inference in generative models for real-world scenarios,
we perform attack on the open-source model Stable Diffu-
sion [36] which is trained on LAION [41] with 5.85 billion
CLIP-filtered image-text pairs.

Setup Attack Goal. As a means of distinguishing in/out-
properties, we utilize the artistic style of works and assess
whether any given artist’s pieces are present in LAION.
Datasets. We use the WikiArt * dataset which included 195
artists to select the in-properties. Inspired by the research of
the Memorization about the diffusion models [3], we consider
that the property of an artist’s style is an in-property when
the style of the generated images with their names mentioned
in the prompt is very close to that of their real paintings. We
finally found 100 in-properties under this method. As for the
out-properties, the large data scale of LAION and the possibil-
ity that images obtained from the internet may not be labeled
with artists’ names make it infeasible to determine that none
of an artist’s pieces are present in LAION. Therefore, We
seek a substitute method to acquire the out-properties, which
applies style transformation [59] to real-world images (i.e.,
ImageNet in our evaluation) and produces the oil-painting
style images. Then we apply clustering algorithms to divide
the generated oil paintings, which are pre-processed by a

Zhttps://www.wikiart.org/
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Figure 8: (Left) The ROC curve for attacks on Stable Dif-
fusion. (Right) The frequency distribution histogram of the
similarity scores for in-properties (blue) and out-properties
(yellow).

property extractor trained on WikiArt to differentiate between
different artistic styles, into distinct properties which are used
as the out-properties to evaluate the performance of attacks in
this evaluation.

Attack procedure. Because the out-properties lack clear in-
formation about the artists used in the prompts to query Stable
Diffusion, we adopt the inpainting method to obtain the gen-
erative samples. Specifically, we randomly crop 3/4 part (i.e.,
384 x 384) of the images with the target property of origi-
nal size 512 x 512 and use the Stable Diffusion to inpaint
such cropped part. Similar to our previous assumption about
the generative models, we expect that Stable Diffusion will
have a better reconstruction performance on the images with
in-properties. Therefore, We calculate the sum of cosine simi-
larity of the embedding vectors of the before-cropped images
with the target property and the after-inpainted images as the
score of this property. Then we predict that properties that
achieve scores greater than the set threshold are in-properties.
In Figure 7, we visualized evaluations on the image with
in/out-property separately. We observed that the style of the
inpainted image with in-property is more similar to the origi-
nal image compared to images with out-property.

Results. On the left of Figure 8, we depict the ROC curves of
the inference against the Stable Diffusion, with an AUC score
of 0.75. We also depict the frequency distribution histogram
of the scores for those two types of properties in the right.
It can be observed that the distribution of the scores of in-
properties is more concentrated towards the right compared
to out-properties. The results indicate that Stable Diffusion
indeed memorizes some properties included in the training set
and generates images based on those properties. The results
of the evaluation also demonstrate that property existence in-
ference is effective for models trained on large-scale training
sets in real-world scenarios.

6 Related Work

Property Existence Inference. In the literature, there are
already several studies investigating the topics related to the
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property existence inference. [13] proposes distributional
membership inferences that aim to determine whether a given
party with a specific distribution contributes to the training
set of classification models and conducts evaluations on the
synthetic dataset. [32,49] aim to determine if samples with
the target property emerge in the training set under the set-
ting of collaborative learning. [4] conducts property existence
inferences on the classification models through poisoning.
Compared to the aforementioned works, the target model in
this paper focuses on image generative models rather than
classifiers. Additionally, this paper assumes that the adversary
cannot intervene in the training process of the target model
nor manipulate the training set of the target model.
Inferences against Generative Models. Multiple studies
have demonstrated the potential for extracting information
from the training sets of generative models. [5, 14, 17, 58]
focus on the membership inference which aims to deter-
mine whether a specific sample is used to train the target
model. [57] aims to extract the overall distribution informa-
tion of the training set, i.e., estimate the proportion of the data
with target property in the training set. [3,44] investigate the
duplication phenomena about the diffusion models that the
model directly generates the data in the training set. The focus
of this paper differs from the aforementioned works. It does
not center around specific samples or the overall distribution
of the training set, but rather on the existence of samples with
specific properties within the training set.

Property Inference against Discriminative Models. [ 1] first
introduced property inference as a binary classification task
on Hidden Markov Models and Support Vector Machines
to extract the global information of the training set distribu-
tion. Subsequent works primarily focus on property inference
against neural networks [11,56]. These works launch infer-
ences by training a binary classifier to distinguish the behavior
of discriminative models trained on training sets with different
property proportions. Recent works increase the behavioral
gap of models trained on properties with different proportions
through poisoning [4,31]. In this paper, we focus on the infor-
mation of more personalized properties and selects generative
models as the target models.

7 Discussion

In this section, we discuss the possibility of less costly prop-
erty existence inference under a partial black-box setting and
analyze potential reasons for the performance on CelebA-HQ.

For unconditional generative models, obtaining specific
outputs corresponding to particular inputs is unfeasible so
the only viable approach to perform property existence in-
ference is generating a substantial volume of data under our
black-box setting. In Section 5.3, 15,000 generative images
are needed to achieve the best performance of CompCars. Un-
der the partial black-box setting, [57] reduces the number of
required generated images by modifying the latent variables

as inputs of GANs to obtain outputs with the target property
through gradient descent. However, we observed that gener-
ative models (e.g., DDPM) with more powerful generative
capabilities are able to produce images remarkably similar to
specific properties. Moreover, the computational overhead in-
curred by gradient propagation is extremely high for diffusion
models. Therefore, modifying the latent variables to reduce
the number of generated images for all types of generative
models is not feasible. We leave the challenge to reduce the
required number of generated images under different settings
from [57] as future work.

In Section 5.1, it can be observed that the effectiveness of
our method on the CelebA-HQ is significantly inferior to that
on ImageNet and CompCars. We analyze this difference and
conclude that it may be caused by the following two reasons:

 Higher similarity between properties of CelebA-HQ: for
CelebA-HQ, we choose identities as target properties,
which may result in smaller gaps between different prop-
erties in evaluations compared to ImageNet (use different
classes of the dataset) and CompCars (use different mod-
els of cars). We utilize CLIP to extract features from
images with different properties in all datasets and com-
pute the average differences between the two properties
which are 9.94 in CelebA-HQ, 13.09 in ImageNet, and
10.30 in CompCars. Therefore, the selected properties
in the CelebA-HQ appear to be the most similar.

Limitations of the adversary knowledge: the number
of anchor images corresponding to each property in
CelebA-HQ is less than the others. Appendix A.l shows
that increasing the number of anchor images leads to an
improved AUC value exceeding 0.74 for CelebA-HQ.

8 Conclusion

In this paper, we present property existence inference against
generative models to determine whether any samples with
target property are contained in the training set of the target
model. We launch the attack by exploiting the difference in
similarities between the generated images and anchor images
with the in/out-properties. Furthermore, we enhance the at-
tack performance by separately removing the uncertainties
of the generated images and the anchor images. We have
demonstrated through a comprehensive set of evaluations that
property existence inference can effectively extract property
existence information in generative models including large-
scale models like Stable Diffusion. We discovered that the
effectiveness of property existence inference is closely related
to the number of anchor images and generated images, as well
as the granularity of the target property. However, it is not
highly sensitive to the size of the training set. Our research
further reveals that there is an increased risk of property exis-
tence information leakage for the generated image that closely
resembles a larger number of anchor images.
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A Appendix
A.1 The Effect of the Adversary Knowledge in
Real-world scenarios

Figure 9 shows the change of the metrics of attacks when
changing the adversary knowledge.
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Figure 9: The change of attack performance with varying
adversary knowledge. Left: Effect change with increasing
generated images. Right: Effect change with increasing an-
chor images.

A.2 The Inference Effect when the Property
Proportion is Large

Table 2: The mean (u) and variance (6) of similarity scores
that obtained from the properties with different proportions.

proportion 1% 2% 5% 10%

u 0.102 0.102 0.112 0.115
cx107° 11.61 6.82 3.8l 3.71

In our attack procedure, we compute similarity scores for
each in/out-property and model the similarity score distribu-
tion as a Gaussian distribution. Table 2 shows that as the
proportion of in-properties in the training set increases, the
mean of the in-property similarity score distribution increases
and the variance decreases. Based on this finding, we will
demonstrate that using the same shadow model, the attack
effect increases as the proportion of in-property increases.
Optimal threshold chosen by the shadow model. We as-
sume that the similarity score distribution of in-properties
obtained by the shadow model follows the Gaussian distri-
bution X ~ N (&1,6) and the similarity score distribution of

out-properties follows distribution Xy ~ N (uo, 6). Therefore,
[t > up and 6 < G¢. The threshold T is chosen by minimizing
the sum of the probabilities of making Type-I and Type-II
errors which satisfies the condition as follows:

Claim 1. Given two Gaussian distributions Xo ~ N (uo,00)
and X ~ N (@1,8) such that j1 > oy, & < S0 and objective func-
tion J(T) = Pr[Xo > T) + Pr[X < T|, the threshold T that
minimizes J must satisfy:

T<i

Proof. On contradiction, assume the minimum value of J(T)
is taken under T > fi. Therefore, J(T) can be re-written as
follows:

J(T) =Pr[Xo > T]+Pr[X <T]
=1-Pr[Xo <T]+Pr[X <T]

T— T4
:1—q>( “°)+c1>< A“)
Op (o}

Consider a special point of J(T) when T takes fI, we can
express J(f1) as follows:

“

&)

To compare the value between J(T|t~;) and J(f1), we take
the difference D between Equation 4 and Equation 5:

(T o (T—wo
= ( 5 ) ‘D( % ) ©)

To consider the monotonicity of D, we compute the deriva-
tive of D with respect to T:

oD 1 (T—p\ 1 (T—p
w5 aer) o

Equation 7 can be regarded as the difference between the
X and X,. The intersection points x of these two PDFs can be
obtained as:

(Xfﬂ ) X—, 2
1 B 20'()02 — 1 ei ( 2;2)
V210 2n6
_m)? _-i?
=In(cge 20° )=In(6e 27 ) ®)
= ((52 - 602) 42 (Goz,fl - 62,“0) x+62py*
—60%i% —26¢°6In 5 =0

USENIX Association

33rd USENIX Security Symposium 2439



Therefore the two Gaussian function curves can have at
most two intersection points. We focus on the monotonicity
of DwhenT > fi.

NG AR
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1 T— [ 1 T—
() ()
T o0 T—+400 O o Op oo
¢
¢

D
ot

D
oT

Oo g
(6% —op)T?
1 T— -
— lim — U N )

T—+ O Op (e}

(10)
Similarly,
oD
T <0 (11)
T—o—oo

According to the intermediate zero theorem, there must
be two zero points located in intervals (—eo, fi) and (i1, +o0)
respectively.

Since 8 indicates that Equation 7 have at most two zero
points, there is exactly one zero point within (—eo, i) and
({1, +o0) respectively. We assume zero point 7 = x* in the in-
terval (u, 4-o0). Therefore, The value of D increases monoton-
ically in the interval T € (f1,x*) and decreases monotonically
in the interval T € (x*,+o0). Hence, at T — " or T — oo,
D reaches its minimum value when T > fi:

minD|rs = min(D|r_z+, Dl1 o)

{1 — 12
_min(o+,c1><“’“'°) _os)s0 P
Go
For all T > f1, we can obtain:
D =J(T)—J(@t) =2 minD >0 (13)

This contradicts with our assumption that there is the op-
timal solution of J(T) under T > f since that J({&1) is always
smaller. So the assumption is wrong. And the optimal thresh-
old value T we choose must satisfy 7" < f.

0

Increased proportion with decreased error. Using the same
shadow model means that the threshold T chosen by the ad-
versary remains unchanged and it has the property of T <
by Claim 1. We assume that the similarity score distribu-
tion of in-properties follows distribution X; ~ N (u;,07) and
the similarity score distribution of the out-properties follows
distribution Xo ~ N (1, 00). Another similarity score distri-
bution of in-properties with lower proportion such as that
of our shadow model follows distribution X ~ N (f1,6). So
the means and variances have the relationship: yo < fi < ui,
oo > 6 > 0. The attack effectiveness under property distri-
butions with different proportions can be measured by the
objective function J(X), the sum of probabilities of two types
of error, where X is a random variable of the similarity score.
With an increased proportion of in-properties, the attack error
decreases as follows:

Claim 2. Given three Gaussian distributions Xo ~ N (up,00),
Xi ~ N(ui,01) and X ~ N (f1,6) such that yy < jt < uj,
6o > 6 > oy and objective function J(X) = Pr[Xo > T] +
Pr[X <T],X ~ N(u,0) where T is a constant satisfying
T < ji, then the objective function of X and X\ must satisfy:

J(X) > (X))

Proof.
J(X)=Pr[Xo>T|+Pr[X <T]

— Pr[Xo >T]+c1>(TG;“)

As the proportion of in-property increases, the similarity
score distribution of out-property does not change. Therefore,
Pr[Xp > T] is a constant.

To compare J(X) and J(X; ), we compute the partial deriva-
tive of J(X) with respect to u and G respectively:

a;]__lq) T—u
ou © c

aJ  T—u 0 T—u
do o2 c
where éq) (%) denotes the PDF of X. Obviously, g—{l <

0. So as u increases, the probability of making two types
of errors decreases. Since T < I < uy, g—é > 0. So J(X) is
monotonically increasing with respect to G.

According to the relationship uy < ft < py, 69 > 6 > G4
and the monotonicity, there is J(X) > J(X;).

Hence, as the proportion of the target properties increases
in the training set, its variance decreases and its mean in-
creases. Using the same shadow model, the effectiveness of
the property existence inference will be improved.

O

Based on the above explanation, we conclude that with the
same shadow model to obtain the threshold, the larger the
proportion of the target property, the better the attack effect.
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