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Abstract

Streaming graphs have seen wide adoption in diverse sce-
narios due to their superior ability to capture temporal in-
teractions among entities. With the proliferation of cloud
computing, it has become increasingly common to utilize the
cloud for storing and querying streaming graphs. Among oth-
ers, streaming graphs-based time-constrained pattern detec-
tion, which aims to continuously detect subgraphs matching
a given query pattern within a sliding time window, benefits
various applications such as credit card fraud detection and
cyber-attack detection. Deploying such services on the cloud,
however, entails severe security and privacy risks. This paper
presents GraphGuard, the first system for privacy-preserving
outsourcing of time-constrained pattern detection over stream-
ing graphs. GraphGuard is constructed from a customized
synergy of insights on graph modeling, lightweight secret shar-
ing, edge differential privacy, and data encoding and padding,
safeguarding the confidentiality of edge/vertex labels and
the connections between vertices in the streaming graph and
query patterns. We implement and evaluate GraphGuard on
several real-world graph datasets. The evaluation results show
that GraphGuard takes only a few seconds to securely pro-
cess an encrypted query pattern over an encrypted snapshot
of streaming graphs within a time window of size 50,000.
Compared to a baseline built on generic secure multiparty
computation, GraphGuard achieves up to 60× improvement
in query latency and up to 98% savings in communication.

1 Introduction

Streaming graphs are constantly evolving graphs, where the
vertices and edges of the graphs change over time. The use
of streaming graphs has seen great popularity in various sce-
narios (e.g., social media, computer networks, and financial
transactions [27]), because of its excellent ability to charac-
terize the complex temporal interactions among entities. Due
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Figure 1: An example credit card fraud pattern.

to the well-understood benefits of cloud computing [23], uti-
lizing the cloud to store and query streaming graph databases
has become increasingly common (e.g., [1, 34]). However,
such service outsourcing can put the privacy of information-
rich streaming graph data at risk [37, 44]. It is thus crucial
to bring privacy assurance into such cloud-empowered ser-
vice paradigm from the beginning, protecting the outsourced
streaming graphs, the queries, and the query results.

As one of the most popular streaming graph search func-
tionalities, time-constrained pattern detection, which is the
focus in this paper, aims to continuously detect subgraphs over
streaming graph data that are isomorphic to a given query pat-
tern and whose edge occurrence orders adhere to the timing
order constraints specified by the query pattern [27]. Note that
as the subgraph isomorphism problem is NP-complete [12],
plaintext-domain algorithms [27, 35] typically perform the
detection on the edges/vertices falling within the most recent
time units (as specified by a sliding time window), so as to
make the problem solvable in a reasonable time. In this paper,
we also adhere to this practice. Time-constrained pattern de-
tection can benefit various applications, e.g., credit card fraud
detection [35] and cyber-attack detection [11]. The following
example demonstrates its practical usefulness.

Example 1. Fig. 1 illustrates a credit card fraud pattern.
Here, a criminal launches a scheme involving a merchant and
a series of middleman accounts under its control to unlaw-
fully withdraw funds [35]. Utilizing fake IDs, the criminal
may obtain a credit from the bank. The criminal tries to ille-
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gally cash out money by faking a purchase with the help of a
merchant at time t1. Upon receiving payment from the bank
at time t2, the merchant tries to send the money back to the
criminal via a series of middleman accounts from time t3 to
time t4. This particular pattern is characterized by the specific
order of transactions w.r.t. time (t1 < t2 < t3 < t4), and it can
be conveniently modeled as a query pattern with timing order
constraints. If the system can detect the pattern timely, it then
becomes possible to thwart such fraudulent activities.

In the literature, considerable efforts have been invested
in privacy-preserving query processing over graphs. How-
ever, previous works primarily focus on privately querying
static graphs, such as private subgraph matching [39, 42], pri-
vate shortest path search [17, 19], and private breadth-first
search [4, 7]. To the best of our knowledge, no prior studies
have explored privacy-preserving time-constrained pattern
detection over outsourced streaming graphs.

In this paper, we design, implement, and evaluate Graph-
Guard, a new system enabling privacy-preserving outsourc-
ing of time-constrained pattern detection over streaming
graphs. GraphGuard aims to allow the cloud to obliviously
manage a constantly evolving streaming graph and provide
time-constrained pattern detection services. Following the
emerging trend of leveraging distributed trust in security de-
signs [6, 16, 38] as well as in industrial applications [2, 31],
GraphGuard employs a three-server secure computation ar-
chitecture, where three cloud servers hosted by independent
service providers work collaboratively to empower the secure
service. We then build GraphGuard from a customized syn-
ergy of insights on graph modeling, lightweight secure com-
putation [3], edge differential privacy [22], and data encoding
and padding strategies. GraphGuard protects the confiden-
tiality of labels of edges/vertices and hides the connections
between vertices in the streaming graph and query patterns.

Below we describe the challenges that arise in designing
GraphGuard and our key ideas in developing the solutions.
Challenge 1: How to model the streaming graph to en-
able secure updates and graph isomorphism check at
the cloud? Unlike secure outsourced computation for static
graphs, where the graph owner can conceal vertex connec-
tions locally, the dynamic nature of streaming graphs means
that updates, if not treated carefully, can easily leak vertex
connections. For example, if the cloud servers observe that the
numbers of neighboring vertices for both vertices v1 and v2
increase by 1 simultaneously, they can infer that a new edge
emerges between them. To address this challenge, we de-
part from the commonly employed posting list structure [14]
for graph modeling and instead resort to the edge list struc-
ture [32]. Consequently, individual encryption of each edge
is performed in GraphGuard, facilitating the secure addition
(resp. removal) of a new (resp. outdated) edge. In addition, to
enable efficient secure graph isomorphism check, we propose
the concept of “endpoint adjacency matrix (EAM)” to model
the graph structure. With EAM, checking the isomorphism

between two graphs can be simplified as the comparison be-
tween their EAMs, which only needs basic XOR and AND
operations. This greatly facilitates the efficient realization of
graph isomorphism checking in the ciphertext domain.
Challenge 2: How to enable the cloud servers to efficiently
and obliviously obtain the matched edges? To detect the
subgraphs in the streaming graph that are isomorphic to the
query pattern, the cloud servers first need to obtain the edges
(i.e., matched edges) whose labels are identical to those in
the query pattern. The generic secure multiparty computa-
tion (MPC)-based secure equality test protocols (e.g., [33]
and [9]) are natural tools. However, these protocols typically
require substantial online communication and offline prepara-
tion, both of which scale linearly with the number of secure
equality tests. We instead propose to layer one-hot data en-
coding with replicated secret sharing [3], and devise a custom
mechanism for securely producing the encrypted equality test
result, which eliminates the need for any online communica-
tion or offline preparation. We further propose an oblivious
dummy edges padding protocol to obfuscate the locations of
the true edges, so as to enable the cloud servers to obliviously
obtain the matched edges.
Challenge 3: How to enable the cloud servers to efficiently
and securely process encrypted timing order constraints
specified by the query pattern? Different from subgraph
matching over static graphs, time-constrained pattern detec-
tion is much more challenging as it requires that the (dynamic)
subgraphs isomorphic to the query pattern must also comply
with specific timing order constraints. To securely evaluate the
temporal order consistency of edges, the generic MPC-based
secure comparison protocols (e.g., [30] and [8]) are natural
tools. However, these protocols also require substantial on-
line communication and offline preparation, both of which
scale linearly with the number of secure comparisons. Our
insight is to first decompose the query pattern into several
timing-connected subquery patterns [27]. Then we design a
tailored mechanism for modeling and encrypting the timing
order constraints, which enables the cloud servers to securely
evaluate the temporal order consistency of edges without the
need for any online communication or offline preparation.
Contributions. We highlight our contributions below:
•We initiate the first study on privacy-preserving outsourcing
of time-constrained pattern detection over streaming graphs,
and design a tailored secure system GraphGuard.
• We propose a new data structure EAM and show how to
model and encrypt the streaming graph and time-constrained
query patterns to facilitate secure time-constrained pattern
detection over streaming graphs.
• On the basis of custom modeling and encryption strate-
gies, we develop techniques to support secure partial matches
detection and secure partial matches compatibility checking.
• We provide formal security analysis, make a GPU-
accelerated prototype implementation, and conduct extensive
experiments over real-world graph datasets. The results show
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that GraphGuard takes only a few seconds to securely per-
form one graph pattern detection, under a window size of
50,000. Compared with a baseline simply using the generic
and popular MPC framework MP-SPDZ [24], GraphGuard
achieves up to 60× improvement in query latency and up to
98% savings in communication cost.

2 Preliminaries

2.1 Time-Constrained Pattern Detection
Definition 1. (Streaming graph [27]). A streaming graph
G is a dynamic (monotonically increasing) set of directed
and labeled edges {ex}x∈[X ], where X represents the total
count of edges that have emerged over time. Each edge
ex = (sidx,eidx, lx, tx), which indicates that ex appears at time
tx (named as timestamp) and is an edge with label lx that con-
nects the vertex with ID sidx to the vertex with ID eidx. Two
edges are deemed connected if they share common vertices.

In this paper, we write [S] for the set {1,2, · · · ,S}, use {ai}i∈[S]
to represent the set {a1, · · · ,aS}, and omit the subscript i∈ [S]
when the context is clear. We refer to the pair of vertices
that an edge connects as the edge’s endpoints. Additionally,
the labels of vertices can be implicitly indicated by the edge
labels. For example, in a financial transaction network, we
can use “001” to label the transactions (i.e., edges) with type
“credit pay” from an entity (i.e., vertex) with type “credit card”
to an entity with type “restaurant”, and use “002” to label the
transactions with type “credit pay” from an entity with type
“credit card” to an entity with type “supermarket”. Graph
pattern detection over a streaming graph operates on each
snapshot individually, which can be defined as follows.

Definition 2. (Snapshot [27]). Given the time window size W
and the current time point t, the current snapshot Gt of the
streaming graph G is a subgraph of G that includes edges
with timestamps falling within time interval (t−W, t] and the
vertices that are adjacent to these edges.

Definition 3. (Query pattern [27]). A query pattern Q is
defined by the query graph {σy}y∈[Y ] and the timing order
constraints {σm ≺ σn}. Here, Y represents the number of
edges in Q, and σy = (sidy,eidy, ly) is an edge with label ly
that connects the vertex with ID sidy to the vertex with ID
eidy. σm ≺ σn means that in a match g for Q where edge ei
matches edge σm and edge e j matches edge σn (ei,e j ∈ g), ei
should not appear before e j (denoted as ei ≺ e j).

Time-constrained pattern detection aims to identify all time-
constrained matches of a query pattern over each snapshot. A
time-constrained match can be defined as follows.

Definition 4. (Time-constrained match [27]). Given query
pattern Q and snapshot Gt , a subgraph g ∈ Gt is a time-
constrained match of Q if there exists a bijective function
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Figure 2: Illustration of time-constrained pattern detection
over a streaming graph under the time window of size 9.

f (·) from Q’s vertices V (Q) to g’s vertices V (g) such that the
following conditions hold: (1) isomorphism: the label of the
edge between each pair of connected vertices vi,v j ∈V (Q) is
identical to that between f (vi), f (v j) ∈V (g), and vice versa;
(2) timing order consistency: considering each timing order
constraint σm≺σn and given that edges ei,e j ∈ g respectively
match edges σm and σn, ei ≺ e j holds.

Example 2. For clarity, we illustrate in Fig. 2 a stream-
ing graph G along with its snapshots G9 and G10 under
a time window of size 9, a query pattern Q, and its time-
constrained match. G contains edges with 7 different la-
bels: {001, · · · ,007}. At time point t = 10, edge e1 expires
and edge e10 arrives since the time window W is (1,10],
which forms a new snapshot G10. In the figure, the expired
edge is shown in dotted line while the newly arrived edge
is shown in blue line. Q consists of four edges with labels
{σ1 : 005,σ2 : 006,σ3 : 001,σ4 : 004} and timing order set
{σ1 ≺ σ4 ≺ σ2;σ3 ≺ σ2}. The single time-constrained match
of Q formed by edges {e1,e7,e4,e5} in G9, where e1 matches
σ1, e7 matches σ2, e4 matches σ3, and e5 matches σ4.

For clarity, we give the plaintext-domain graph pattern de-
tection process underlying the security design of GraphGuard
in Appendix A.

2.2 Replicated Secret Sharing
Replicated secret sharing (RSS) [3] divides a private value x
in the ring Z2l into three shares ⟨x⟩1,⟨x⟩2,⟨x⟩3 ∈ Z2l , where
x = ⟨x⟩1 + ⟨x⟩2 + ⟨x⟩3. Three pairs of shares (⟨x⟩1,⟨x⟩2),
(⟨x⟩2,⟨x⟩3) and (⟨x⟩3,⟨x⟩1) are then distributed to three par-
ties P1, P2 and P3, respectively1. If l = 1, the secret sharing
is called binary sharing, and otherwise arithmetic sharing.
In this paper, we use J·K to represent an encrypted entity.
For the sake of presentation, we use i± 1 to indicate the
next(+)/previous(-) party (or secret share) with wrap around,
i.e., P3+1 indicates P1, P1−1 indicates P3, ⟨x⟩3+1 indicates ⟨x⟩1,
and ⟨x⟩1−1 indicates ⟨x⟩3. With this, we can use (⟨x⟩i,⟨x⟩i+1)
to denote the shares held by Pi, i∈ {1,2,3}. In the binary RSS

1In this paper, we refer to the secret sharing process as “encryption”.
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domain, the basic operations are as follows (all operations are
within the ring Z2). (1) To compute JhK = Jx⊕ yK given two
secret-shared values JxK and JyK, each party Pi, i ∈ {1,2,3}
computes ⟨h⟩i = ⟨x⟩i⊕⟨y⟩i and ⟨h⟩i+1 = ⟨x⟩i+1⊕⟨y⟩i+1 lo-
cally. (2) To compute JzK = Jx⊗ yK given two secret-shared
values JxK and JyK, each party Pi, i ∈ {1,2,3} first computes
⟨z⟩i = ⟨x⟩i⊗⟨y⟩i⊕⟨x⟩i⊗⟨y⟩i+1⊕⟨x⟩i+1⊗⟨y⟩i locally. How-
ever, this produces z in 3-out-of-3 additive secret sharing (i.e.,
each Pi holds ⟨z⟩i and z = ⟨z⟩1⊕⟨z⟩2⊕⟨z⟩3) instead of 2-out-
of-3 RSS. To facilitate subsequent computations in the RSS
domain, a re-sharing operation is required.

2.3 Differential Privacy for Graphs
Differential privacy (DP) [18] guarantees that the outcomes
or insights derived from the analysis conducted on two neigh-
boring datasets, which differ by the inclusion or exclusion of
a single individual’s data, are nearly indistinguishable. When
applying DP to the domain of graph analysis, it becomes nec-
essary to establish a notion of “neighboring graphs”. Previous
research [22, 43] in this field commonly considers two graphs
to be neighboring if they differ by the presence or absence of
a single edge. In other words, given a graph G, its neighboring
graph G′ can be obtained by adding or deleting a single edge
from G. This definition is known as edge DP [22]. The formal
definition of edge DP is as follows.

Definition 5. (Edge DP [22]). A randomized mechanism M
with domain G provides (ε,δ)-edge DP, if and only if for any
two neighboring graphs G,G′ ∈ G that differ in one edge:

∀Ĝ∈ Range(M ),Pr[M (G) = Ĝ]≤ eε ·Pr[M (G′) = Ĝ]+δ,

where Range(M ) denotes the set of all possible outputs of
M , ε is the privacy budget, and δ is a privacy parameter.

Discrete Laplace distribution is widely used to draw dis-
crete noises for providing DP, which is defined as follows [20].

Definition 6. (Discrete Laplace distribution [20]). A discrete
random variable x ∈Z2l follows discrete Laplace distribution
Lap(ε,δ,∆) if its probability mass function is

Pr[x] =
e

ε

∆ −1

e
ε

∆ +1
· e
−ε·|x−µ|

∆ ,∀x ∈ Z2l ,

where µ is the mean of the distribution and ∆ is the sensitivity.

In the context of graph, a query Q’s sensitivity ∆ is the maxi-
mum L1 norm between Q’s outputs on any two neighboring
graphs G and G′:

∆ = max
G,G′
∥Q(G)−Q(G′)∥1

This measures the maximum impact that any individual edge
in the input graph can have on the output of query Q.
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Figure 3: The system architecture of GraphGuard.

3 Problem Statement
3.1 System Architecture
Fig. 3 shows GraphGuard’s system architecture, which con-
sists of three types of entities: the user, the on-premise service
front-end (denoted as FE) dedicatedly maintained by the reg-
ulator, and the cloud server. The regulator, such as a bank
or a cybersecurity center, aims to continuously detect spe-
cific time-constrained subgraph patterns over the constantly
evolving streaming graph that its users generate via the FE.

The regulator is attracted by the benefits of cloud comput-
ing, such as scalability and flexibility, cost savings, ubiquitous
and on-demand network access, and relief of the burden for
storage management [23]. Therefore, it wants to leverage the
power of cloud computing to manage the streaming graph
and alert it when the specified patterns occur in the stream-
ing graph2. In practice, such cloud-based service paradigm
has been widely adopted in various streaming graph search
systems (e.g., [1, 34]). However, due to privacy concerns re-
garding the proprietary streaming graph and query patterns,
it is essential to embed security in such outsourced services
from the very beginning to protect the streaming graph, the
query patterns, and the detection results.

GraphGuard adopts a distributed trust architecture, where
the power of the cloud providing the secure graph pattern
detection service is split into three servers (denoted as S123 =
{S1,S2,S3}) which can be operated by independent commer-
cial cloud service providers in practice. Such distributed trust
architecture has been widely adopted in other security de-
signs [6, 16, 38, 40] as well as in industry [2, 31].

3.2 Threat Model and Security Guarantees
Threat model. Similar to prior works that adopt the multi-
server setting for security designs [6, 38, 40], we consider a
semi-honest and non-colluding adversary model where each
of S123 honestly follows our protocol, but may individually
try to deduce the private information during providing pattern

2We provide evaluation in Appendix B to demonstrate the computational
benefit for the regulator from such graph service outsourcing.
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detection services. Besides, with the focus on protecting the
privacy of the streaming graph and query pattern against the
cloud servers, we consider that the regulator, FE, and users
are trustworthy parties since the regulator can be an official
institution (e.g. a bank) and FE is dedicatedly maintained by
the regulator [26], which can examine the users’ behaviors.
Security guarantees. Under the aforementioned adversary
model, GraphGuard guarantees that each cloud server only
learns the following information and nothing more. (1) The
differentially private frequency of distinct edge labels in each
snapshot. (2) The occurrence of a pattern match in the stream-
ing graph. This requirement is inherent for servers to provide
the (secure) service (i.e., securely detecting pattern matches to
alert the regulator); otherwise, the service would be rendered
useless. (3) The count of edges in the streaming graph and
query patterns, as well as the timestamp associated with each
edge. Here we consider the timestamps as public because the
cloud servers can infer them based on each edge’s upload time.
As for the count of edges, we are not aware of any concrete
harm from revealing such size information. We discuss how
to mitigate these leakages in Appendix C.

4 The Design of GraphGuard

Overview. GraphGuard consists of four phases: (1) streaming
graph encryption (Section 4.1), (2) query pattern encryption
(Section 4.2), (3) secure partial matches detection (Section
4.3), and (4) secure partial matches compatibility checking
(Section 4.4). In phase (1), FE continuously encrypts the
edges generated by the users, and uploads the resulting ci-
phertext to S123. In phase (2), FE encrypts the query pattern
and uploads the resulting ciphertext to S123. Afterwards, S123
continuously perform secure time-constrained pattern detec-
tion on the encrypted streaming graph. Specifically, in phase
(3), S123 securely detect time-constrained partial matches of
the query pattern over the encrypted edges in the sliding
window. In phase (4), S123 securely combine the compatible
partial matches to produce the final encrypted matches. If any
matches are detected, they are returned to the regulator for
decryption. It is noted that similar to the plaintext-domain
works [27, 35], the current design of GraphGuard assumes
that the streaming graph monotonically increases. We discuss
how to securely handle vertex/edge deletion in Appendix D.

4.1 Streaming Graph Encryption
We first introduce how a newly generated edge is encrypted
in GraphGuard. In order to facilitate secure updates of the en-
crypted streaming graph, we adopt the edge list structure [32]
to model the streaming graph. Specifically, a newly generated
edge is modeled as ex = (sidx,eidx, lx, tx) as definition 1. Only
sidx, eidx, and lx need to be encrypted, as the timestamp tx is
considered public. To allow lightweight encryption as well as
support subsequent secure computation, GraphGuard has FE

apply the RSS technique [3] over each private value. Through
a detailed analysis of time-constrained subgraph pattern de-
tection [27], we observe that equality test plays a key role,
and thus the performance of its secure realization is crucial.
In order to support efficient secure equality test, GraphGuard
does not directly use arithmetic RSS to encrypt each value.

Instead, GraphGuard introduces a preprocessing step in
which each private value is encoded as a one-hot vector of
length equal to the number of all possible values for the
private value. In a one-hot vector, all elements are set to
“0”, except for the element at the location corresponding to
the value, which is set to “1”. To simplify presentation, we
abuse the symbol ρ to represent the length of all one-hot
vectors in this paper. GraphGuard applies binary RSS to en-
crypt these one-hot vectors. So an edge ex is encrypted into
JexK = (JsidxK,JeidxK,JlxK, tx), where a one-hot vector is writ-
ten in bold. How this can benefit efficient secure equality test
in the RSS domain will be clear later in Section 4.3.1. FE
continuously sends the encrypted edges to S123, who hold the
encrypted graph as JGK = {JexK}x∈[X ].

4.2 Query Pattern Encryption
Modeling the structure. We start with considering how to
model the structure of the query pattern. Note that the essen-
tial step of graph pattern detection is to check the isomor-
phism between the query pattern and a candidate subgraph in
a snapshot. To realize this, a common strategy adopted in the
plaintext-domain works is to find the bijective match function
(as per Definition 4) by constructing the search tree along the
connections between vertices [29]. However, for secure graph
pattern detection, information about the vertex connections
must be kept private. This makes it difficult to directly fol-
low the above strategy in the ciphertext domain. We instead
propose a new data structure - endpoint adjacency matrix
(EAM) - to model vertex connections. With EAM, checking
the isomorphism between the query pattern and a candidate
subgraph can be simplified as the comparison between their
EAMs, consisting of only basic ⊕ and ⊗ operations. Such
modeling greatly facilitates the efficient realization of graph
isomorphism checking in the ciphertext domain.

Definition 7. (Endpoint adjacency matrix). Given a graph
structure {ey = (sidy,eidy)}y∈[Y ], its EAM is a 4-bit matrix
M ∈ {0000,1000,0100,1100,0010,0001,0011}Y×Y . Each
row/column of M corresponds to an edge, and each element
M[i, j], i, j ∈ [Y ], i ̸= j indicates whether the edges ei and e j
share the endpoints. Specifically, the first bit of M[i, j] is equal
to 1 if and only if sidi = sid j; the second bit is equal to 1 if
and only if eidi = eid j; the third bit is equal to 1 if and only
if eidi = sid j; and the fourth bit is equal to 1 if and only if
sidi = eid j. In addition, M[i, i] = 0000, i ∈ [Y ].

For clarity, the structure of the given two edges ei,e j corre-
sponding to different values of M[i, j] is illustrated as follows.
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(1) 0000:
ei

e j

; (2) 1000:
ei

e j
; (3) 0100:

ei

e j
;

(4) 1100: e j

ei

; (5) 0010:
ei

e j
; (6) 0001:

ei

e j
;

(7) 0011:
ei

e j

.

Example 3. Consider the query Q in Fig. 2, its EAM is
0000 0100 0000 0010

0100 0000 1000 0010

0000 1000 0000 0100

0001 0001 0100 0000

 .

With EAM, we can simplify the isomorphism checking
between the query pattern and a subgraph as follows.

Proposition 1. Given a query pattern Q= {σi}i∈[n] and its
EAM M1; a candidate match P = {ei}i∈[n] and its EAM M2,
where edge ei matches edge σi, i ∈ [n]. If M1 = M2, P is
isomorphic to Q; if M1 ̸= M2, P is not isomorphic to Q.

Proposition 1 holds because M1 = M2 means that ∀i, j ∈ [n],
M1[i, j] = M2[i, j]. This indicates that ∀i, j ∈ [n], the con-
nection relationship between (σi,σ j) in Q is identical to
that between (ei,e j) in P. Instead, M1 ̸= M2 means that
∃i, j ∈ [n],M1[i, j] ̸= M2[i, j]. This indicates that ∃i, j ∈ [n],
the connection relationship between (σi,σ j) is different from
that between (ei,e j). Note that with Proposition 1, the sub-
graph isomorphism checking can be simplified as comparing
the EAMs of graphs. The comparison of two EAMs M1 and
M2 can be completed using ⊕ and ⊗ operations:

ω =
n∨

i=1

n∨
j=1

4∨
s=1

M1[i, j][s]⊕M2[i, j][s], (1)

where M[i, j][s],s ∈ [4] denotes the s-th bit of M[i, j]. The
OR (∨) operation on two bits b1 and b2 can be realized by
b1∨b2 = b1⊗b2⊕b1⊕b2. Here, the bit ω = 0 indicates that
M1 = M2, and ω = 1 indicates that M1 ̸= M2.
Representing the timing order constraints. We now intro-
duce the method for representing the timing order constraints
of the query. FE first decomposes query Q into several timing-
connected subquery patterns [27] (referred to as TC-subquery
pattern) Q := {Qd}d∈[D].

Definition 8. (TC-subquery pattern [27]). A subquery pat-
tern of κ edges is a TC-subquery pattern, if there exists a
permutation of all the edges such that σ1 ≺ ·· · ≺ σκ.

The decompositions of Q can be represented as Y =
{yd}d∈[D]. Each yd is a list used to represent the indexes
of edges in a TC-subquery pattern Qd . More specifically,

Query pattern Q

σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2

005
006

001

σσ4
004

σσ3

σσ2

σσ1

Two TC-subquery patterns:

005
006

σσ4
004

σσ2

σσ1 σσ3001Q1: Q2:

Compatibility order constraint: (3, 2, 1)

Figure 4: An example of query pattern decomposition.

Qd = {σyd [i]}i∈[κd ] where σyd [1] ≺ ·· · ≺ σyd [κd ] and κd is yd’s
length. Note that the decompositions may vary in length, and
the decompositions of a query pattern are not unique. In addi-
tion, it is possible for timing order constraints to exist among
the edges belonging to different TC-subquery patterns. These
constraints are named as compatibility order constraints and
denoted as O = {oc}c∈[C], where C is their count. A compati-
bility order constraint oc = (y1,y2,θ) indicates the presence
of a timing order constraint between edges σy1 and σy2 that be-
long to different TC-subquery patterns. Here, θ = 1 signifies
σy1 ≺ σy2 , while θ = 0 signifies σy2 ≺ σy1 .

Example 4. Fig. 4 illustrates how the query pattern Q shown
in Fig. 2 can be decomposed. In this case, Q is decomposed
into two TC-subquery patterns: Q1 = {σ1,σ4,σ2} and Q2 =
{σ3} (with corresponding decompositions y1 = [1,4,2] and
y2 = [3]). Besides, there is a compatibility order constraint
between them: (3,2,1), i.e., σ3 ≺ σ2.

Encrypting the query pattern. FE then encrypts the pri-
vate information contained in the query pattern Q as follows.
Firstly, FE encrypts each bit of Q’s EAM M by binary RSS,
producing JMK. Secondly, FE encodes Q’s each edge label
ly,y ∈ [Y ] into a one-hot vector ly, and then encrypts these
one-hot vectors by binary RSS, producing JLK = {JlyK}y∈[Y ].
Thirdly, FE encrypts the compatibility order constraints as
JOK = {JocK}c∈[C], where JocK = (y1,y2,JθK). Note that FE
does not encrypt the edge indexes y1,y2 of each oc since
they only reveal the existence of timing order constraints
between the edges σy1 ,σy2 , but do not reveal the exact tim-
ing order constraint. In addition, FE also does not encrypt
the decompositions Y , as they only reflect the edge indexes
that are not relevant to the private information of Q. Specifi-
cally, since FE has the freedom to assign indexes to the edges
in Q and the security of RSS [3] guarantees that the secret
shares of each encrypted edge are indistinguishable from
uniformly random values, Y do not reveal any private infor-
mation about Q. Finally, the ciphertext of Q is represented as
JQK = (JMK,JLK,JOK,Y ).

4.3 Secure Partial Matches Detection
Overview. Upon receiving the encrypted query pattern from
FE, S123 continuously detect encrypted time-constrained
matches of the query pattern over each encrypted snapshot
(denoted as JGtK). Note that S123 can retrieve the encrypted
snapshot from the encrypted streaming graph by checking
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Subroutine 1 Oblivious Dummy Edges Padding
Input: A snapshot JGtK; privacy budget ε and parameter δ.
Output: Encrypted snapshot JĜtK after oblivious padding.

1: S1: Ê1← /0. //Initialize the dummy edge set.
2: for each possible edge label l do
3: S1: nl ←max(Lap(ε,δ,1),0).
4: for all x ∈ [nl ] do
5: S1: tx← randTime().
6: S1: Ê1.add((−1,−1, l, tx)).
7: end for
8: end for
9: S1:JÊ1K←secShare(Ê1). //Secretly share with S23.

10: S2: Construct dummy edge set Ê2 by the same process.
11: S2:JÊ2K←secShare(Ê2).//Secretly share with S13.
12: S123: Integrate JÊ1K and JÊ2K into JGtK.
13: S123: Convert true edges’ timestamps to the RSS format.
14: S123: JĜtK← olivSort(JGtK,{JtxK}).
15: return Encrypted snapshot JĜtK after oblivious padding.

the public timestamp of each edge. Before performing the
secure detection, S123 first perform a Pre-processing step to
decompose the encrypted query pattern into encrypted TC-
subquery patterns. Then the process of secure detection over
an encrypted snapshot proceeds as follows. Firstly, given an
encrypted TC-subquery pattern, S123 securely detect its en-
crypted matches (i.e., partial matches of the complete query
pattern), which involves the components of secure candidate
partial matches fetching (Section 4.3.1) and secure candi-
date partial matches filtering (Section 4.3.2). We will show
how S123 can securely construct the final encrypted detection
results based on the encrypted partial matches in Section 4.4.
Pre-processing. Recall that each decomposition yd ∈ Y
consists of the indexes of edges of the corresponding TC-
subquery pattern Qd . Therefore, S123 can easily obtain each
encrypted TC-subquery pattern JQdK= (JLdK,JMdK),d ∈ [D]
by: (1) JLdK = {JlyK|JlyK ∈ JLK,y ∈ yd}; (2) JMd [i, j]K =
JM[yd [i],yd [ j]]K, i, j ∈ [κd ]. Here, JMdK is a permutation sub-
matrix of JMK, comprised of the elements located at the inter-
section of rows yd and columns yd of JMK.

Example 5. Referring to Example 4, since the decompo-
sitions y1 = [1,4,2] and y2 = [3], JQK is decomposed into
JQ1K=(JL1K,JM1K) and JQ2K=(JL2K,JM2K). Here, JL1K=

{Jl1K,Jl4K,Jl2K} and JM1K =

J0000K J0010K J0100K

J0001K J0000K J0001K

J0100K J0010K J0000K

;

JL2K = {Jl3K} and JM2K = /0.

4.3.1 Secure Candidate Partial Matches Fetching

Design rationale. At a high level, the phase consists of two
steps: (1) S123 obliviously fetch from JGtK encrypted edges
that have label JlyK∈ JLdK. These edges are named as matched
edges and the set of matched edges for JlyK is denoted as JEyK.

[[e2]][[e2]]
[[e3]][[e3]]
[[e4]][[e4]]
[[e5]][[e5]]
[[e6]][[e6]]
[[e7]][[e7]]
[[e8]][[e8]]
[[e9]][[e9]]

[[2]][[2]]
[[3]][[3]]
[[4]][[4]]
[[5]][[5]]
[[6]][[6]]
[[7]][[7]]
[[8]][[8]]
[[9]][[9]]

[[e11]][[e11]]
[[e12]][[e12]]
[[e13]][[e13]]
[[e14]][[e14]]
[[e15]][[e15]]

Dummy edges
padded by S1

Oblivious sorting

True edges

Timestamps

[[4]][[4]]
[[6]][[6]]
[[1]][[1]]
[[8]][[8]]
[[7]][[7]]

Dummy edges
padded by S2

[[e13]][[e13]] [[1]][[1]]
[[e2]][[e2]] [[2]][[2]]
[[e3]][[e3]] [[3]][[3]]
[[e4]][[e4]] [[4]][[4]]
[[e11]][[e11]] [[4]][[4]]
[[e5]][[e5]] [[5]][[5]]
[[e6]][[e6]] [[6]][[6]]
[[e12]][[e12]] [[6]][[6]]
[[e7]][[e7]] [[7]][[7]]
[[e15]][[e15]] [[7]][[7]]
[[e8]][[e8]] [[8]][[8]]
[[e14]][[e14]] [[8]][[8]]
[[e9]][[e9]] [[9]][[9]]

[[𝔾10]][[𝔾10]] [[�̂�10]][[�̂�10]] Timestamps

Random
timestamps

[[e10]][[e10]] [[10]][[10]]

[[e10]][[e10]] [[10]][[10]]

Figure 5: An example of oblivious dummy edges padding.

(2) S123 construct candidate partial matches by the edges
from different sets JEyK,y ∈ yd that obey JQdK’s timing order
constraints. For step (1), we let S123 first perform a secure
equality test over JlyK ∈ JLdK and the encrypted label JlxK of
each edge in the snapshot. To identify the matched edges,
simply revealing the equality test results would leak which
edges in the snapshot are matched edges (thereby leaking the
access pattern [15]). Also, this would expose the frequency of
distinct edge labels in the snapshot, which could be exploited
by potential attacks [25]. Our insight is to let S123 obliviously
pad encrypted dummy edges into the snapshot. This allows
secure revelation of the test results while preventing S123 from
learning the access pattern and the frequency of edge labels.

For step (2), our solution is based on the fact that Qd is a
TC-subquery pattern. If S123 can preserve the arrangement of
true edges in the snapshot even after the oblivious padding of
dummy edges, they can determine the (non-private) timing
orders of all matched edges. As a result, S123 can trivially
construct the encrypted candidate partial matches using the
encrypted matched edges based on their clear timing orders
and the clear timing order constraints of JQdK.
Oblivious dummy edges padding (Subroutine 1: olivPad).
We first let S1 and S2 independently pad a specific number of
encrypted dummy edges with different labels into JGtK, while
ensuring that S123 are oblivious to the count and placement of
dummy edges with each label. Specifically, given each possi-
ble edge label l, S1 first locally generates dummy edges in the
form of {(−1,−1, l, tx)} (lines 3-7), where {tx} are random
timestamps. The IDs of each dummy edge’s two endpoints are
set to -1, which distinguishes them from true vertices and pre-
vents them from affecting the detection accuracy. S1 encodes
−1,−1, l into one-hot vectors, and secret-shares all dummy
edges with S2 and S3 to produce {(J−1K,J−1K,JlK,JtxK)}
(line 9). The timestamps are also encrypted. Similarly, S2 per-
forms the above process (lines 10 and 11). S123 then integrate
these encrypted dummy edges into the encrypted snapshot
(line 12). Note that neither S1 nor S2 can learn the number
of dummy edges with each label padded by the other party
because the edge labels are encrypted.

However, S123 can still identify which edges in the padded
snapshot are dummy, as they are aware of the edges recently
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Subroutine 2 Secure Equality Test
Input: Two encrypted one-hot vectors JaK and JbK.
Output: The encrypted test result JωK between JaK and JbK.

// Sα∈{1,2,3} locally performs the following:
1: for all i ∈ [ρ] do
2: ⟨ωi⟩α← ⟨a[i]⟩α⊗⟨b[i]⟩α⊕⟨a[i]⟩α⊗⟨b[i]⟩α+1

⊕⟨a[i]⟩α+1⊗⟨b[i]⟩α.
3: end for
4: ⟨ω⟩α←

⊕ρ

i=1⟨ωi⟩α.
5: return 3-out-of-3 additive secret sharing of ω, where

Sα∈{1,2,3} holds ⟨ω⟩α and ω = ⟨ω⟩1⊕⟨ω⟩2⊕⟨ω⟩3.

shared by other cloud servers. Hence, the challenge we must
address is to enable S123 to rearrange the edges in the padded
snapshot while ensuring that S123 remain unaware of the new
locations of each dummy and true edge. Additionally, it is
essential to preserve the temporal order of the true edges. To
accomplish both objectives, GraphGuard has S123 conduct
oblivious sorting on the edges of the padded snapshot based
on their encrypted timestamps (line 14). As the timestamps
of dummy edges are randomized and encrypted, S123 cannot
determine the new locations of dummy and true edges in the
padded snapshot after oblivious sorting (denoted as JĜtK),
and thus the access pattern is hidden.

Here what we need is an oblivious sorting protocol that
allows parties holding the secret-shared key-value pairs
{(JvalK,JkeyK)} to jointly sort {JvalK} based on {JkeyK},
while no party can learn the ranking of each encrypted value.
We identify that the state-of-the-art protocol (denoted as
olivSort(·, ·)) from [5] is well-suited for our purpose, as it
enables fast oblivious stable sorting in the RSS domain.

Example 6. Consider G10 shown in Fig. 2, with the corre-
sponding oblivious dummy edge padding depicted in Fig. 5.
Following oblivious sorting on G10, the dummy edges are
repositioned based on their random timestamps. It is evident
that the temporal order of the true edges is preserved.

The remaining challenge is how to appropriately set the
number of dummy edges for each edge label to delicately
balance the trade-off between efficiency and privacy. More
dummy edges will lead higher performance overhead, while
fewer dummy edges will result in weaker privacy guarantees.
Our key idea is to rely on edge DP [22] so as to make the
leakage about the frequency of edge labels in the snapshot dif-
ferentially private. Below, we present how S1 determines the
number of dummy edges, and S2 follows the same approach.

Given each possible edge label l, S1 first draws a noise
nl from the discrete Laplace distribution Lap(ε,δ,∆), which
is set as the number of dummy edges for l (line 3). Here,
the sensitivity ∆ is set to 1 as the addition or removal of
a single edge is limited to changing the frequency of the
edge labels by at most 1. However, the drawn noise cloud be
negative, which means that S1 needs to delete some true edges

Subroutine 3 Candidate Partial Matches Construction
Input: Encrypted matched edges JEyK,y ∈ yd .
Output: Encrypted candidate partial match set JCP dK.

// S123 locally perform the following:
1: JCP dK← /0. // Candidate partial match set.
2: JC K←{JPlK = {JeiK}i∈[κd ]|{JeiK ∈ JEyd [i]K, i ∈ [κd ]}}.
3: for all JPlK ∈ JC K do
4: if JPlK : Je1K≺ ·· · ≺ Jeκd K then
5: JCP dK.add(JPlK). // JPlK is a candidate.
6: end if
7: end for
8: return Encrypted candidate partial match set JCP dK.

from the snapshot. Obliviously, this will seriously degrade the
accuracy of the subsequent computation. To address this issue,
GraphGuard lets S1 truncate the drawn noise to 0, inspired by
[20], i.e., nl ←max(Lap(ε,δ,1),0). However, one challenge
that still needs to be addressed is how to set the mean µ of
Lap(ε,δ,1) such that the truncated noise can still offer DP.
We propose to set µ as

µ =− ln[(eε +1) · (1−δ)]

ε
. (2)

In Section 5, we prove that with the setting of µ, the drawn
noises can still offer DP, even if they may be truncated to 0.
Secure equality test (Subroutine 2: secTest). We now
present how S123 efficiently and securely perform secure
equality tests on two encrypted one-hot vectors JaK and JbK,
outputting secret-shared ω = 1 if a = b, and ω = 0 otherwise.
We use a bitwise AND operation to be carried out initially on
JaK and JbK, after which the XOR operation is utilized on the
result of the AND operation to produce JωK, i.e.,

JωK =
ρ⊕

i=1

Ja[i]K⊗ Jb[i]K. (3)

The solution is correct because there is only one “1” in both
a and b, and ω = 1 only if the positions of “1” in a and b
are identical, i.e., a = b. As Eq. 3 involves a “dot product”
calculation, the re-sharing operation at the end of each ⊗ op-
eration is no longer necessary. Specifically, S123 can locally
perform ⊕ (line 4) over the 3-out-of-3 additive secret sharing
of a[i]⊗b[i], i ∈ [ρ] (line 2) to produce the 3-out-of-3 additive
secret sharing of ω. As a result, Eq. 3 enables an efficient se-
cure equality test without the need for online communication
among the parties and offline preparation.

S123 then reveal the test result to determine whether an
encrypted edge is a matched edge. As S123 remain oblivious
to the new locations of true edges and the frequency of true
edge labels in the snapshot, the revelation of test results does
not reveal the access pattern or the frequency of edge labels.
Candidate partial matches construction (Subroutine 3:
Constr). After obliviously fetching matched edges for each
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Subroutine 4 Secure Candidate Partial Matches Filtering
Input: JQdK’s candidate partial matches JCP dK and JMdK.
Output: Encrypted partial match set JPdK.

// S123 perform the following:
1: JPdK← /0. //Initialize the partial match set.
2: for all JPlK ∈ JCP dK do
3: Construct JPlK’s encrypted EAM JMlK by Eq. 4.
4: Compute JωK based on JMdK and JMlK by Eq. 5.
5: Safely open JωK; if ω = 0, JPdK.add(JPlK).
6: end for
7: return Encrypted partial match set JPdK.

edge label of JQdK, S123 perform step (2): constructing candi-
date partial matches by the edges from different matched edge
sets that obey the timing order constraints of JQdK. As the
edges in JĜtK are arranged based on their timestamps, S123
can determine the timing orders of all matched edges. Since
Qd is a TC-subquery pattern, S123 can trivially construct can-
didate partial matches by the matched edges based on their
clear timing orders.

More specifically, S123 first construct the set JC K (line
2), which includes all combinations of edges from different
JEyK,y ∈ yd . S123 then examine the timing orders of edges
within each combination JPlK ∈ JC K (lines 3-7). Specifically,
given JPlK, if Je1K≺ ·· · ≺ Jeκd K holds, JPlK is a candidate.

Example 7. Consider G9 in Fig. 2 and Q1 in Fig. 4 as an
example (without considering encryption and dummy edges
for simplicity). Q1 consists of three edges {σ1,σ4,σ2}, where
σ1 ≺ σ4 ≺ σ2. In G9, σ1’s matched edges (with label “005”)
are E1 = {e1,e6}; σ4’s matched edge (with label “004”) is
E4 = {e5}; σ2’s matched edge (with label “006”) is E2 =
{e7}. Therefore, all combinations of edges from E1,E4,E2
are C = {P1 = {e1,e5,e7},P2 = {e6,e5,e7}}. Since e6≺ e5≺
e7 does not hold, P2 is not a candidate. The final candidate
partial match is P1 = {e1,e5,e7} as e1 ≺ e5 ≺ e7 holds.

4.3.2 Secure Candidate Partial Matches Filtering

Design rationale. The candidate partial matches are extracted
by considering only the edge labels and timing order con-
straints. We now introduce the method (Subroutine 4: secFlt)
for securely filtering out the candidates whose structures are
inconsistent with that of JQdK, to obtain the encrypted par-
tial matches. As per Proposition 1, the structural consistency
checking on subgraphs can be simplified to comparing their
EAMs. Given that S123 have obtained the encrypted EAM
JMdK of JQdK during the Pre-processing phase, we next in-
troduce how S123 obliviously construct the encrypted EAM
for each encrypted candidate partial match. After that, we will
detail how S123 securely compare the encrypted EAMs.
Oblivious encrypted EAMs construction. To construct the
encrypted EAM JMlK for an encrypted candidate partial
match, S123 need to perform secure equality test secTest over

Algorithm 1 Secure Partial Matches Detection
Input: A snapshot JGtK and JQdK = (JLdK,JMdK).
Output: The partial match set JPdK with respect to JQdK.

1: JĜtK← olivPad(JGtK). //Subroutine 1.
2: for all JlyK ∈ JLdK do
3: JEyK← /0. // Initialize the matched edge set.
4: for all JexK ∈ JĜtK do
5: JωK← secTest(JlxK,JlyK). //JlxK in JexK; Subrou. 2.
6: Safely open JωK; if ω = 1, JEyK.add(JexK).
7: end for
8: end for
9: JCP dK← Constr({JEyK}). //Subroutine 3.

10: JPdK← secFlt(JCP dK,JMdK). //Subroutine 4.
11: return The partial match set JPdK with respect to JQdK.

the endpoint IDs of each pair of edges JeiK,Je jK in the can-
didate partial match. Specifically, given JeiK’s endpoint IDs
(JsidiK,JeidiK) and Je jK’s endpoint IDs (Jsid jK,Jeid jK), S123
perform:

Jb1K=secTest(JsidiK,Jsid jK);Jb2K=secTest(JeidiK,Jeid jK);
Jb3K=secTest(JeidiK,Jsid jK);Jb4K=secTest(JsidiK,Jeid jK);
JMl [i, j]K = Jb1K∥Jb2K∥Jb3K∥Jb4K, i, j ∈ [κd ], i ̸= j, (4)

where JMl [i, i]K= J0K∥J0K∥J0K∥J0K, i∈ [κd ]; “||” denotes con-
catenation. To enable the subsequent computation in RSS
domain, a re-sharing operation is required for each test result.
Secure structural consistency checking. Note that the edges
of JQdK have a one-to-one matching relationship with the
edges in the encrypted candidate partial match. Therefore,
based on Proposition 1, to check their structural consistency,
S123 can evaluate whether Md = Ml holds. Specifically, S123
compute Eq. 1 on JMdK and JMlK in the RSS domain:

JωK =
κd∨
i=1

κd∨
j=1

4∨
s=1

JMd [i, j][s]K⊕ JMl [i, j][s]K, (5)

where ω = 1 indicates Md ̸= Ml and ω = 0 indicates Md =
Ml . Finally, S123 open JωK to determine whether adding the
candidate partial match into the partial match set (line 5).

Algorithm 1 provides a complete construction for secure
partial matches detection.

4.4 Secure Partial Matches Compatibility
Checking

After obtaining the encrypted partial match sets, S123 then
combine partial matches from different sets into the final en-
crypted detection result JR K. However, simply combining
partial matches can lead to incorrect matches because the
timing orders of edges and the structures of partial matches
from different sets may not be compatible with each other.
Hence, in this section we introduce how S123 securely check
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the compatibility among encrypted partial matches to produce
the final detection result JR K (given in Algorithm 2). The pro-
cess involves examining all possible combinations of partial
matches (named as candidate matches). Specifically, given an
encrypted candidate match JRK, S123 first check if the timing
orders of its edges adhere to the timing order constraints of
JQK (Section 4.4.1). S123 then check whether the structure
of JRK is consistent with that of JQK (Section 4.4.2). If the
combination passes these checks, S123 add JRK into JR K.

4.4.1 Secure Timing Orders Compatibility Checking

Recall from the end of Section 4.3.1 that the edges in each
partial match already obey the timing order constraints of
the corresponding TC-subquery pattern. Therefore, S123 only
need to check whether the timing orders of edges from differ-
ent partial matches in JRK obey the encrypted compatibility
order constraints. Specifically, given each encrypted compati-
bility order constraint JocK = (y1,y2,JθK), S123 first retrieve
the two edges (denoted as Je1K and Je2K) from JRK that match
the edges σy1 and σy2 of Q, respectively. Since S123 have ac-
cess to the mappings between the edges in JRK and the edges
in JQK, the retrieval can be done easily.
S123 then check whether the timing orders of Je1K and Je2K

comply with JocK. The checking process is formalized as

JϕcK = (Je2K
?
≺ Je1K)⊕ JθK (line 6 of Algorithm 2), where

the expression (Je2K
?
≺ Je1K) evaluates to 1 if Je1K comes af-

ter Je2K in JĜtK, and 0 otherwise. Since S123 have access
to the rankings of Je1K and Je2K in JĜtK, this expression

(Je2K
?
≺ Je1K) can be evaluated in plaintext. Here, ϕc = 1

indicates that the timing order between Je1K and Je2K com-
plies with JocK, while ϕc = 0 indicates the opposite. Since the
secret-shared “⊕” operation does not require online communi-
cation and offline preparation, the checking process proceeds
without the need for online communication and offline prepa-
ration. Finally, S123 combine JϕcK for all compatibility order
constraints to obtain the check result ϕ (line 8 of Algorithm
2), where ϕ = 1 means that the timing orders of edges in JRK
comply with all timing order constraints of JQK, and ϕ = 0
means the opposite.

Example 8. Recalling Fig. 2, Fig. 4, and Example 7, the
partial match for Q1 = {σ1,σ4,σ2} is {e1,e5,e7}, the partial
matches for Q2 = {σ3} are {e4} and {e9}, and the compat-
ibility order constraint between Q1 and Q2 is (3,2,θ = 1),
i.e., σ3 ≺ σ2. Firstly, we examine the compatibility of tim-
ing orders of {e1,e5,e7}∪{e4}, where e4 matches σ3 and e7

matches σ2. Since (e7
?
≺ e4) = 0, ϕ = 0⊕1 = 1. This result

indicates that e4 ≺ e7 ≈ σ3 ≺ σ2, namely the timing orders of
{e1,e5,e7}∪{e4} comply with the timing order constraints
of Q. This conclusion is further supported by Fig. 2. Next, we
evaluate {e1,e5,e7}∪{e9}. In this case, e9 matches σ3 and e7

matches σ2. With (e7
?
≺ e9) = 1, we have ϕ = 1⊕1 = 0. This

Algorithm 2 Secure Partial Matches Compatibility Checking
Input: {JocK}c∈[C] and JMK; partial matches JPdK,d ∈ [D].
Output: The encrypted detection result set JR K.

1: JR K← /0. // Initialize detection result set.
2: JC K←{JRK =

⋃
d∈[D]JPdK|{JPdK ∈ JPdK,d ∈ [D]}}.

3: for all JRK ∈ JC K do
4: for all JocK ∈ {JocK}c∈[C] do
5: Retrieve edges Je1K and Je2K from JRK that match

the edges σy1 and σy2 of JQK, respectively.

6: JϕcK← (Je2K
?
≺ Je1K)⊕ JθK.

7: end for
8: JϕK←

⊗C
c=1JϕcK. //Check the timing orders.

9: Construct JRK’s encrypted EAM JMRK by Eq. 4.
10: Compute JωK based on JMK and JMRK by Eq. 5.
11: JχK← JϕK⊗ J¬ωK. //Aggregate the results.
12: Safely open JχK, if χ = 1, JR K.add(JRK).
13: end for
14: return The encrypted detection result set JR K.

result indicates that the timing orders of {e1,e5,e7}∪{e9}
do not comply with the timing order constraints of Q.

4.4.2 Secure Structural Compatibility Checking

S123 then need to check whether the structure of JRK is con-
sistent with that of JQK. To check the structural consistency,
similar to Section 4.3.2, S123 first construct JRK’s encrypted
EAM JMRK by Eq. 4 (line 9 of Algorithm 2), and then evalu-
ate Eq. 5 over JMRK and JQK’s encrypted EAM JMK to output
JωK (line 10 of Algorithm 2). Here, ω = 0 indicates that the
structures of JRK and JQK are consistent, while ω= 1 indicates
the opposite. Note that S123 need to construct JMRK based
on the mappings between edges in JRK and edges in JQK to
ensure that evaluating Eq. 5 on JMRK and JMK outputs the
correct result. Additionally, evaluating Eq. 5 on the EAM of
matches containing dummy edges will always output ω = 1,
as dummy edges are not connected to any true edges. In other
words, the dummy edges will not compromise the detection
accuracy (as analyzed in Appendix E). We use the following
example to illustrate the process.

Example 9. Recalling the combination {e1,e5,e7} ∪ {e4}
from Example 8, the edges e1, e5, e7, and e4 match edges σ1,
σ4, σ2, and σ3 of Q, respectively. Therefore, in the EAM of
{e1,e5,e7} ∪ {e4}, e1 corresponds to the first row/column,
e5 corresponds to the fourth row/column, e7 corresponds
to the second row/column, and e4 corresponds to the third
row/column. Based on the structure of G9 in Fig. 2,

the EAM of {e1,e5,e7}∪ {e4} is


0000 0100 0000 0010

0100 0000 1000 0010

0000 1000 0000 0100

0001 0001 0100 0000

,

which matches the EAM of Q (as shown in Example 3).
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S123 AND JϕK and J¬ωK to obtain the check result (line 11
of Algorithm 2). Then S123 open JχK, where χ = 1 indicates
that ϕ = 1 and ω = 0, i.e., JRK is a time-constrained match of
JQK, while χ = 0 indicates the opposite. Here, “¬” represents
the “NOT” operation in the binary domain, which can be
realized by having two of S123 locally flip the share they
jointly hold. Finally, if JR K is not empty, S123 return it to FE,
which decrypts JR K and alerts the regulator.

5 Privacy Analysis

Proposition 2. GraphGuard provides (2ε,2δ)-edge DP for
the frequency of edge labels in each snapshot based on Defi-
nition 5.

We prove Proposition 2 in Appendix F.
Remark. Proposition 2 indicates that the strength of DP pro-
tection for the frequency of edge labels in each snapshot is
tunable and dependent on the privacy parameters ε and δ. Note
that to our best knowledge, there is no deterministic theoreti-
cal formulas for determining the number of repeated queries
needed to exploit the DP leakages for data reconstruction.

6 Security Analysis

We use the simulation paradigm [28] to analyze the security
of GraphGuard. Establishing security under the simulation
paradigm requiring formalizing two worlds: the real world,
where the protocol is executed by honest parties, and an ideal
world, where an ideal functionality F receives inputs from the
parties and directly outputs the result to the relevant parties.
We consider a probabilistic polynomial time (PPT) adversary
A who statically corrupts one of S123. We need to define
a PPT simulator S who only accesses the leakage of F as
claimed by our protocols, and “simulates” messages that re-
semble what the honest parties send to the corrupted server
in the real world. If A cannot distinguish between the two
worlds, then we consider our protocols to be secure.
Ideal functionality F . Recall that the system of GraphGuard
consists of the users, the FE dedicatedly maintained by the
regulator, and the cloud servers. As FE does not have input
and output, and solely serves as a proxy facilitating interaction
between the users and the regulator with the cloud servers,
we do not explicitly reference it in F .

1. Setup: The regulator sends the public parameters Para,
and the query pattern Q to F , where Para consists of the
spaces of vertex ID and edge label, and the window size.
F executes the setup process with Para and Q.

2. Append: A user sends a newly generated edge ex =
(sidx,eidx, lx, tx) to F , where sidx and eidx are the IDs of
ex’s two endpoints, lx is ex’s label, and tx is ex’s times-
tamp. F appends the edge ex to the current graph.

3. Detection: F performs time-constrained pattern detec-
tion for Q on each snapshot of the streaming graph {ex}.

4. Output: If any time-constrained match(es) R is detected,
F outputs R to the regulator. Otherwise, F outputs
nothing (i.e., ⊥) to the regulator.

Note that F outputs nothing to the servers and the users.
However, we allow F to leak L(F (Q)) = ({tx},Num,{ f̂})
to the servers. Here, Num= (|Q|, |G|, |CP |, |P |, |R |), where
|Q| is the number of edges in Q, |G| is the number of edges in
the streaming graph, |CP | is the number of candidate partial
matches, |P | is the number of partial matches, and |R | is the
number of detection results. { f̂} are the noisy frequencies of
edge labels in each snapshot.

Definition 9. Let ∏ denote the protocol for privacy-
preserving time-constrained graph pattern detection, wherein
the regulator provides the query pattern Q as input. Let A be
an adversary who statically corrupts one of the servers S123,
and let View∏(Q)

Real be the view of the corrupted server during
the protocol run. In the ideal world, a simulator S generates
a simulated view View

S ,L(F (Q))
Ideal given only the leakage of F .

We say that ∏ is secure, if there exists a PPT simulator S such
that ViewS ,L(F (Q))

Ideal is indistinguishable from View∏(Q)
Real .

Proposition 3. Based on Definition 9, GraphGuard securely
realizes F with the leakage L(F (Q)).

We prove Proposition 3 in Appendix G. In addition, we ex-
plicitly analyze how GraphGuard hides search access patterns
in Appendix H. Here, the search pattern implies whether a
new query pattern has been issued before, while the access
pattern reveals which vertices/edges of the streaming graph
are matched with that of the query pattern.
Remark. While the focus of GraphGuard is on privacy pro-
tection for the streaming graph formed by edges contributed
by users, another concern upon practical deployment might
be collusion between any of the semi-honest servers and some
users. In such case, the privacy of the edges generated by hon-
est users still holds. This is because in GraphGuard users only
generate edges for the streaming graph and do not receive
any messages during the protocol execution. Meanwhile, the
nature of secret sharing ensures that any of the servers alone
learns no information about the data being secret-shared.

7 Performance Evaluation

7.1 Setup
We make a prototype implementation of GraphGuard using
a combination of Python and C++. All experiments are con-
ducted on a workstation equipped with 24 Intel Xeon Gold
6240R CPU cores, a NVIDIA RTX A6000 GPU, 128 GB of
RAM, and 2 TB of external SSD storage, running Ubuntu
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20.04.3 LTS. The server-side communication on the work-
station is emulated by the loopback filesystem with 10 ms
network delay. Furthermore, we utilize a MacBook Air with 8
GB of RAM to act as the FE to encrypt and upload the query
patterns and graph edges to the workstation. δ is set to 10−5.
GPU-based protocol instantiation. We note that the design
of GraphGuard lends itself well to parallelization, allowing
us to leverage the power of GPUs for efficient parallel pro-
cessing and performance enhancement. In GraphGuard, all
private information from the streaming graph and query pat-
tern is encoded as one-hot vectors and encrypted by binary
RSS. The primary operations in GraphGuard involve addi-
tion and multiplication of (one-hot) vectors. To facilitate ef-
ficient processing on the GPU, we store the ciphertext of
the streaming graph and query patterns as bit-strings using
the Numpy library. We implement GraphGuard by utilizing
optimized NVIDIA’s Python-based CUDA kernels. We em-
pirically observe that the GPU-based instantiation of secTest
can perform one million secure equality tests on secret-shared
one-hot vectors with a length of 10000, in just 1 s. We com-
pare secTest with two commonly used secure equality test
protocols: the bit decomposition-based protocol [24] and the
distributed point function (DPF)-based protocol [9]. Using the
same GPU hardware, performing one million secure equal-
ity tests on secret-shared values in the ring Z216 via the bit
decomposition-based protocol [24] takes about 14 s3, while
the DPF-based protocol [9] takes about 3 s4. Besides, our
secTest securely produces the secret-shared equality test re-
sult without requiring any online communication or offline
preparation. In contrast, the bit decomposition-based proto-
col [24] needs 154.5 MB of online communication, while the
DPF-based protocol [9] requires the cloud servers to receive
offline one million pairs of DPF keys (with a size of about
520 MB) and needs 3.8 MB of online communication.
Datasets. We conduct experiments mainly using three real-
world graph datasets: (1) MOOC user action: https://
snap.stanford.edu/data/act-mooc.html. This dataset
is a small and dense network, consisting of 7,143 ver-
tices and 411,749 temporal edges. (2) Reddit hyper-
link network: https://snap.stanford.edu/data/soc-
RedditHyperlinks.html. This dataset is a medium size and
sparse network containing 55,863 vertices and 858,490 tempo-
ral edges. (3) com-DBLP: https://snap.stanford.edu/
data/com-DBLP.html. This dataset is a large and sparse net-
work containing 317,080 vertices and 1,049,866 edges.
Query pattern sets. We generate each query pattern ran-
domly, considering the statistics of the corresponding dataset.
The process involves randomly generating a query pattern of
size |Q|, while considering the average degree and edge label
distribution of the dataset. In addition, we randomly assign
timing order constraint for each pair of edges in the query
pattern with a probability of 1/|Q|. For each experiment, we

3We use the public source code from [24].
4We implement the protocol of [9], with the security parameter λ = 128.
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Figure 6: Running time and output ciphertext size due to
encrypting streaming graphs, varying the number of edges.

use 10 random query patterns.
Baseline. To our best knowledge there is no prior work solv-
ing the same problem targeted by us. Hence, we have to
construct a baseline simply using generic MPC framework
for direct secure computation of time-constrained graph pat-
tern detection over streaming graphs. Under this we are able
to fairly demonstrate the effectiveness of our custom designs.
We construct our baseline using the generic and popular MPC
framework MP-SPDZ [24], as it has been widely used for con-
structing baselines in recent works [16,36,41] and is well doc-
umented. In the baseline, identical to GraphGuard, we adopt
the edge list structure [32] to represent the streaming graph.
In addition, we use the same system model as GraphGuard,
i.e., three servers with an honest majority and operating under
a semi-honest threat model. We use the following basic se-
cure protocols of MP-SPDZ: get_random(·), add(·), mul(·),
reveal_to(·), secure_shuffle(·), LessThanZero(·), equal(·) to
construct the baseline. It is noted that since the baseline di-
rectly secures the computation required by plaintext graph
pattern detection, it needs to work with a large ring Z232 , as
opposed to Z2 used in GraphGuard due to our custom design
of data encoding method and secure components. In addi-
tion, to provide the baseline with an advantage, we use the
computational capabilities of GPUs for parallel processing.

7.2 Evaluation on Encryption
Fig. 6 compares the cost of encrypting streaming graphs be-
tween GraphGuard and the baseline. Since GraphGuard uti-
lizes custom data encoding and encryption mechanisms (e.g.,
one-hot encoding), it results in higher computational cost for
encryption and larger ciphertext size compared to the baseline.
However, as will be shown shortly, our custom design allows
GraphGuard to support significantly faster online graph pat-
tern detection. Additionally, we point out that in GraphGuard
the servers only need to use the encrypted edges within the
sliding window for secure pattern detection, following the
processing logic in plaintext domain (e.g., [27, 35]). Hence,
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Figure 7: Query latency of GraphGuard and the baseline on
different datasets with (a) |Q|= 12 and W ∈ [1×104,5×104];
(b) W = 3×104 and |Q| ∈ {6,9,12,15,18}.

secFet secFlt secCHK

MOOC MP-SPDZ 66.8 54.33 8.32
GraphGuard 2.19 1.96 0.3

Reddit MP-SPDZ 131.75 114.58 6.51
GraphGuard 2.61 2.09 0.46

DBLP MP-SPDZ 221.91 130.36 27.76
GraphGuard 3.26 2.23 0.74

Table 1: Breakdown of query latency for the comparison
between GraphGuard and the baseline on different datasets
(with |Q|= 12 and W = 5×104).

in such case the memory cost is relatively small compared to
maintaining the complete graph, e.g., not exceeding 1 GB on
the MOOC dataset with a window size of 5×104.

7.3 Evaluation on Query Latency
Fig. 7 shows the comparison of query latency between Graph-
Guard and the baseline under different window sizes W and
query pattern sizes |Q|. Note that we do not vary the privacy
budget ε in this comparison (ε = 0.6 for the results of Graph-
Guard) since the baseline is fully built on RSS technique.
The results clearly demonstrate that GraphGuard consistently
outperforms the baseline, achieving a substantial speedup
ranging from 29× to 60×. Additionally, the query latency
gap between GraphGuard and the baseline increases signifi-
cantly as W and |Q| increase. The results show the superior
scalability of GraphGuard compared to the baseline.

To better demonstrate the advantages of GraphGuard over
the baseline, we provide a breakdown of the query latency
performance in Table 1. Here, we divide the overall secure
processing pipeline into three common subroutines: secure
candidate partial matches fetching (denoted as secFet), se-
cure candidate partial matches filtering (denoted as secFlt),
and secure partial matches compatibility checking (denoted as
secCHK). Note that secFet and secFlt together support secure

MP-SPDZ GraphGuard

3.17

12.57
17.25

33.64 36.81

0.10
0.25 0.44 0.64 0.94

C
om

m
un

ic
at

io
n 

co
st

 (G
B)

0.1

1

10

Window size W (×104)
1 2 3 4 5

MOOC (a)

20.78
45.45

76.35
113.17

183.08

0.65
1.42

2.31 3.33 4.47

C
om

m
un

ic
at

io
n 

co
st

 (G
B)

1

101

102

Window size W (×104)
1 2 3 4 5

Reddit (a)

114.30

340.97
615.85

889.14

1030.95

3.57 7.75
12.08 17.43 21.48

C
om

m
un

ic
at

io
n 

co
st

 (G
B)

101

102

103

Window size W (×104)
1 2 3 4 5

DBLP (a)

11.00 13.96 17.25 18.50 22.19

0.33 0.39 0.44 0.45
0.62

C
om

m
un

ic
at

io
n 

co
st

 (G
B)

1

10

Query pattern size |ℚ|
6 9 12 15 18

MOOC (b)

57.10 66.31 76.35 83.81 93.46

2.04 2.14 2.31 2.39 2.67

C
om

m
un

ic
at

io
n 

co
st

 (G
B)

101

102

Query pattern size |ℚ|
6 9 12 15 18

Reddit (b)

349.10
484.16 615.85 686.01

766.68

10.58 10.76 12.08 12.78 13.60

C
om

m
un

ic
at

io
n 

co
st

 (G
B)

101

102

103

Query pattern size |ℚ|
6 9 12 15 18

DBLP (b)

Figure 8: Communication cost of GraphGuard and the base-
line on different datasets with (a) |Q| = 12 and W ∈ [1×
104,5×104]; (b) W = 3×104 and |Q| ∈ {6,9,12,15,18}.

secFet secFlt secCHK

MOOC MP-SPDZ 18.4 15.33 3.08
GraphGuard 0.45 0.37 0.12

Reddit MP-SPDZ 81.48 73.45 28.15
GraphGuard 1.94 1.76 0.76

DBLP MP-SPDZ 502.31 405.19 123.45
GraphGuard 10.3 7.77 3.41

Table 2: Breakdown of communication cost for the com-
parison between GraphGuard and the baseline on different
datasets (with |Q|= 12 and W = 5×104).

partial matches detection. We can observe that GraphGuard
consistently outperforms the baseline in all subroutines. The
advantage of GraphGuard in secFet stems from our oblivious
dummy edges padding protocol, which enables the secure
revelation of equality test results on encrypted edge labels,
thereby significantly reducing the subsequent unnecessary
overhead on unmatched edges. In secFlt and secCHK, it is
our proposed data structure EAM that enables S123 to effi-
ciently and securely check the structural consistency between
encrypted candidate matches and the query pattern.

7.4 Evaluation on the Server-Side Communi-
cation Cost

Fig. 8 shows the comparison of the server-side communica-
tion cost between GraphGuard and the baseline under differ-
ent window sizes W and query pattern sizes |Q|. The results
demonstrate that GraphGuard consistently outperforms the
baseline, achieving substantial communication cost savings
ranging from 96% to 98%. Furthermore, the communication
cost savings of GraphGuard compared to the baseline increase
significantly as the values of W and |Q| increase.

In Table 2, we provide a breakdown of the communication
cost for more detailed comparison between GraphGuard and
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Figure 9: Query latency and communication cost of Graph-
Guard on the CAIDA dataset with (a) ε = 0.6, |Q| = 12,
and W ∈ [1× 104,5× 104]; (b) ε = 0.6, W = 3× 104, and
|Q| ∈ {6,9,12,15,18}; and (c) W = 3× 104, |Q| = 12, and
ε ∈ {0.2,0.4,0.6,0.8,1.0}.

the baseline. We can observe that GraphGuard outperforms
the baseline in all subroutines. The advantage of GraphGuard
in secFet and secFlt primarily comes from our efficient secure
equality test protocol, which eliminates the need for online
communication among the parties. In secCHK, the advantage
of GraphGuard largely comes from our specialized secure
edge temporal order comparison method, which also elimi-
nates the need for online communication.

7.5 Scalability of GraphGuard

To demonstrate the scalability of GraphGuard, we further
conduct experiments on a much larger dataset “CAIDA
Anonymized Internet Traces 2015” obtained from https:
//catalog.caida.org/dataset/passive_2015_pcap. It
contains 445,440,480 communication records (edges) involv-
ing 2,601,005 different IP addresses (vertices), with each edge
associated with a timestamp indicating the communication
time. This dataset is also the largest real-world streaming
graph dataset used in the state-of-the-art plaintext work [27].
We model the dataset as an edge-labeled streaming graph, as
described in [27]. Fig. 9 shows the results. Note that with the
same snapshot size, a larger number of vertices in the dataset
will result in higher query latency due to the impact on the
length of the one-hot encoded vertex ID. The results demon-
strate GraphGuard’s scalability: on an encrypted snapshot of
size of 5× 104, the query latency only increases from 6.23
seconds on the DBLP dataset (comprising 317,080 vertices)
to 19.69 seconds on the CAIDA dataset.

8 Related Work

Recently, significant efforts have been made towards devel-
oping techniques for searching encrypted outsourced graphs.
Some works [17, 19] focus on privacy-preserving shortest

path search, which aims to identify a path between two given
vertices in an encrypted graph that minimizes the sum of
the edge weights in the path. Some works [4, 7] focus on
privacy-preserving breadth-first search, which aims to iden-
tify a graph structure from an encrypted graph that satisfies
a given property. Other works [39, 42] focus on privacy-
preserving subgraph matching, with the objective of iden-
tifying subgraphs isomorphic to a given small query graph
from a large encrypted graph. However, it is important to
note that the works [39, 42] focus on subgraph matching over
static graphs, instead of time-constrained pattern detection
over streaming graphs targeted by this paper, which is much
more complicated as it additionally handles streaming graphs
and considers the timing orders of the edges in graphs. In
independent work, a design SGPM [21] is claimed to sup-
port secure time-constrained graph pattern matching. But it
indeed addresses a different and simplified problem. In its
scenario, the cloud holds each encrypted edge of a streaming
graph independently without considering/protecting the graph
structure, the client provides an encrypted time constraint as
the query (instead of a query graph pattern), and the cloud
obtains and returns the plaintext edge IDs as the query result.

In short, no previous studies have explored the same prob-
lem of privacy-preserving outsourcing of time-constrained
pattern detection over streaming graphs as we do in this paper.

9 Conclusion

We present GraphGuard, the first system that enables privacy-
preserving outsourcing of time-constrained pattern detec-
tion over streaming graphs. Through a synergistic approach
bridging graph modeling, lightweight secret sharing, edge DP,
and data encoding and padding, GraphGuard enables cloud-
empowered time-constrained pattern detection over streaming
graph while preserving the privacy of the streaming graph,
the query patterns, and the detection results. The evaluation
results on several real-world datasets demonstrate that com-
pared with the generic MPC baseline, GraphGuard achieves
up to 60× improvement in query latency and up to 98% sav-
ings in communication cost. We believe that our initial re-
search effort lays a good foundation for advancing research
on privacy-preserving query processing on dynamic graphs.
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A The Underlying Plaintext Algorithm

Algorithm 3 gives the plaintext graph pattern detection pro-
cess underlying the security design of GraphGuard, which is
built on the framework of the state-of-the-art scheme [27].

B Computational Benefit from Outsourcing

To demonstrate the computational benefit of outsourcing,
we compare the running time of the regulator in Graph-
Guard with that under the case of local graph pattern de-
tection over plaintext streaming graph. Here, we construct
the plaintext baseline based on the state-of-the-art work [27].
We use the CAIDA dataset, with varying query pattern size
|Q| ∈ {6,9,12,15,18} and a window size of 5× 104. The
time taken by the decomposition and encryption of a query
pattern in GraphGuard varies in {0.29,0.44,0.72,0.83,1.27}
seconds accordingly. Note that such cost is one-off. Besides,
when a new edge emerges, the local encryption time is not
more than 1 millisecond on average. In comparison, in the
non-outsourcing setting, the time requires by local detection
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Algorithm 3 Time-Constrained Graph Pattern Detection
Input: A snapshot Gt , TC-subquery patterns {Qd}d∈[D], and

compatibility order constraints {oc}c∈[C].
Output: The detection result set R .

1: for each TC-subquery pattern Qd ,d ∈ [D] do
2: for each edge label ly in Qd do
3: Ey← /0.// Initialize ly’s matched edge set.
4: for each edge ex in the snapshot Gt do
5: If ex’s label is identical to ly, then Ey.add(ex).
6: end for
7: end for
8: CP d← /0. // Initialize the candidate partial

match set.
9: for each set of edges from different Ey do

10: If the temporal order of the edges complies with
the timing order constraints specified by Qd , the
subgraph Pl formed by them is added to CP d .

11: end for
12: Pd ← /0. // Initialize the partial match set.
13: for each candidate partial match Pl ∈ CP d do
14: If Pl’s structure matches that of Qd , Pd .add(Pl).
15: end for
16: end for
17: C ← /0. // Initialize the candidate match set.
18: for each set of partial matches from Pd ,d ∈ [D] do
19: If the temporal order of the partial matches complies

with {oc}, the graph R formed by them is added to C .
20: end for
21: R ← /0. // Initialize the result set.
22: for each candidate match R ∈ C do
23: If R’s structure matches that of Q, then R .add(R).
24: end for
25: return The detection results R .

over a snapshot varies in {1.13,1.43,1.96,2.34,2.59} sec-
onds, when a new edge emerges and the window slides. Such
local cost indeed will grow with the increase in (1) the win-
dow size, (2) the query pattern size, and (3) the number of
timing order constraints in the query pattern. While the above
results showcase the computational benefit from outsourcing,
we emphasize that there are many other well-known benefits
that boosts the trend of graph service outsourcing.

C Leakage Mitigation

To mitigate the leakage of edge timestamps, FE can encrypt
the timestamps and upload encrypted new edges to S123 in a
batch fashion. With this, the timestamps of new edges will
be obfuscated in the view of the cloud servers. When the
timestamps are encrypted, the snapshot can be obliviously
retrieved as follows. Firstly, we can leverage the technique of
public interval query on secret-shared values [8] to obliviously
retrieve the encrypted edges whose timestamps fall within the
sliding window. Then, S123 can obliviously sort the encrypted

edges based on their encrypted timestamps, producing the
encrypted snapshot as desired. Additionally, GraphGuard can
be extended to protect the number of edges in the streaming
graph. Specifically, we can have users generate dummy edges
in the form of (J−1K,J−1K,JlxK, tx), similar to what the cloud
servers do during the oblivious dummy edges padding process
(as described in Section 4.3.1). The tailored format of dummy
edges ensures no accuracy degradation, as will be analyzed
in Appendix E.

D Securely Handling Vertex/Edge Deletion
GraphGuard can be extended to securely handle vertex/edge
deletion using Oblivious RAM (ORAM) techniques (e.g.,
[10]). In particular, the oblivious write operation can be uti-
lized, which allows the servers to obliviously write a secret-
shared value at a secret-shared index. To integrate the opera-
tion into GraphGuard for handling edge deletion, each edge
needs to be assigned a unique ID which is encrypted under
RSS. When the regulator intends to delete a specific edge
with ID i, it can let the servers obliviously write −1 to the
encrypted IDs of the endpoints of the edge with ID i. Since the
vertices with ID -1 do not connect with any other true vertex,
the updated edges will not contribute to any time-constrained
match and can be regarded as deleted. Similarly, to delete a
vertex with ID j, the regulator can let the servers obliviously
write -1 to the encrypted IDs of the endpoints of the edges
where one endpoint’s ID is j. In other words, the operation
deletes all edges related to the vertex with ID j, which is
equivalent to deleting the vertex with ID j.

E Accuracy Analysis
We emphasize that GraphGuard does not compromise the
accuracy of pattern detection. While S1 and S2 pad encrypted
dummy edges in each snapshot to obscure the true edges,
these dummy edges are specifically crafted in the form of
{(−1,−1, l, tx)} (as described in Section 4.3.1). This ensures
that the dummy edges are disconnected from any true edges,
as none of the true edges have endpoints with an ID of -1.
Therefore, the structure checking performed on any candidate
match involving dummy edges by Eq. 5, will necessarily yield
JωK = J1K. This is due to the fact that the dummy edges do
not connect with any other true edges. Therefore, there will
always be a discrepancy between the EAM of any subgraph
containing dummy edges and the EAM of the query pattern.
Therefore, the dummy edges do not compromise the accuracy.

F Proof of Proposition 2
We first prove that in the view of S2, GraphGuard can provide
(ε,δ)-edge DP for the frequency of edge labels. Let G and G′
be two neighboring graphs that differ in only one edge, specif-
ically the edge with label l. Let fl and f ′l be the frequencies of
edges labeled l in the snapshots Gt of G and G′t of G′, respec-
tively. We have | fl− f ′l | ≤ 1 as G and G′ are two neighboring
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graphs. If the noise nl drawn for edge label l by S1 (i.e., line
3 of Subroutine 1) is non-negative, the probability to output
the same noisy frequency f̂ from Gt and G′t is bounded by

Pr[ f̂ − fl ]

Pr[ f̂ − f ′l ]
=

e
−ε·| f̂− fl−µ|

1

e
−ε·| f̂− f ′l−µ|

1

= e
ε·(| f̂− f ′l−µ|−| f̂− fl−µ|)

1

≤ e
ε| f ′l− fl |

1 ≤ eε.

The probability of drawing a negative noise from Lap(ε,δ,1)
is [20]: Pr[x < 0] = ∑

−∞

x=−1
eε−1
eε+1 · e

−ε·(x−µ) = e−µ·ε
eε+1 . With

the setting for µ in Eq. 2, we have Pr[x < 0] =

e−(−
ln[(eε+1)·(1−δ)]

ε )·ε

eε+1 = 1− δ. Hence, with 1− δ, the probabil-
ity that S2 views the same noisy frequency f̂ from Gt ,G′t is
bounded by eε, which satisfies (ε,δ)-edge DP in Definition 5.

Since S2 performs the same process as S1, in the view
of S1, GraphGuard can also provide (ε,δ)-edge DP. Based
on the composition theorem of DP [18], in the view of S3,
GraphGuard can provide (2ε,2δ)-edge DP. Therefore, in the
view of S123, GraphGuard can provide (2ε,2δ)-edge DP.

G Proof of Proposition 3
Since the roles of S123 in GraphGuard are symmetric, except
that S3 receives the secret shares of dummy edges twice, it
suffices to prove the existence of simulator for S3. Note that
during the Setup and Append phases, S3 receives only the
secret shares of private values in the query pattern Q and the
streaming graph {ex}, along with the timestamps {tx}. So
we can trivially construct the simulator by invoking the RSS
simulator. The Detection is realized by Algorithm 1 (denoted
as secDET) and Algorithm 2 (denoted as secCHK). Since they
are invoked in order and their inputs/outputs are secret shares,
we analyze the existence of their simulators separately [13].
Simulator for secDET. secDET consists of four subcom-
ponents: oblivious dummy edges padding olivPad, secure
equality test secTest, candidate partial matches construction
Constr, and secure candidate partial matches filtering secFlt.
We analyze the existence of their simulators in turn.

-Simulator for olivPad. At the beginning of olivPad
(Subroutine 1), S3 holds {(⟨sidx⟩{3,1}, ⟨eidx⟩{3,1},
⟨lx⟩{3,1}, tx)},ε,δ. Later, S3 receives secret shares of
the dummy edges from S1 and S2 (lines 9 and 11), and
the simulator can be trivially constructed by invoking the
RSS simulator [3]. Then S3 receives secret shares during
the execution of oblivious sorting, and the simulator can be
constructed by invoking the simulator of oblivious sorting [5].

-Simulator for secTest. Note that throughout the execution
of secTest (Subroutine 2), S3 does not receive any informa-
tion. After each execution of secTest, S3 receives the secret
shares ⟨ω⟩1 and ⟨ω⟩2 from S1 and S2, respectively, to reveal
ω (line 6 of Algorithm 1). Based on the security of RSS [3],
⟨ω⟩1,⟨ω⟩2 are uniformly random in S3’s view. Additionally,
due to the padding of a random number of encrypted dummy

edges with random timestamps, the revealed bit-string {ω},
in S3’s view, is also uniformly random given { f̂}.

-Simulator for Constr. Note that in Constr’s execution
(Subroutine 3), S3 does not receive any information from
either S1 or S2. Therefore, the simulator exists.

-Simulator for secFlt. At the beginning of secFlt (Subrou-
tine 4), S3 holds ⟨CP d⟩{3,1} and ⟨Md⟩{3,1}. Later, S3 receives
secret shares during the execution of Eqs. 4 and 5. Since these
equations involve basic operations in the RSS domain, the
simulator can be constructed by invoking the RSS simula-
tor [3]. S3 then receives the shares ⟨ω⟩1,⟨ω⟩2 from S1 and
S2, respectively, to reveal ω (line 5 of Subroutine 4). The
simulator can simulate the revealed bit-string {ω} as follows.
Firstly, the simulator holds the number of candidate partial
matches |CP |, which corresponds to the size of {ω}. Since
the candidate partial matches are produced from JĜtK, which
is produced from JGtK after oblivious dummy edges padding,
the positions of 0s in {ω} are random. Therefore, the sim-
ulator can first generate an all-ones string with a length of
|CP |, and then randomly select |P | (i.e., the number of partial
matches) positions in the string to replace the 1s with 0s.
Simulator for secCHK. At the beginning of secCHK, S3
holds ⟨Pd⟩{3,1},d ∈ [D], ⟨Md⟩{3,1}, and {(y1,y2, ⟨θ⟩{3,1})}.
Later, S3 receives shares in the execution of lines 8-12. Note
that lines 8-11 involve basic operations in the RSS domain.
S3 then receives the shares ⟨χ⟩1 and ⟨χ⟩2 from S1 and S2,
respectively, to reveal χ (line 12). The simulator can simulate
{χ} by the same method as the simulator for secFlt described
above, and inputting the number of detection results |R |.

Since S3 does not view any information during the Output
phase, we do not need to simulate its view in this phase.

H Analysis of Hiding Search Access Patterns

Hiding the search pattern. Given an encrypted query pat-
tern JQK, Sα,α ∈ {1,2,3} only receives the secret shares
⟨M⟩{α,α+1}, ⟨L⟩{α,α+1},⟨θ⟩{α,α+1}. The security of RSS [3]
guarantees that even encrypting the same value multiple times
will result in different secret shares indistinguishable from
uniformly random values. Therefore, S123 cannot determine
whether a new query pattern has been issued before, except
by knowing whether the decompositions Y have been used
before. However, since FE has the freedom to assign indexes
to the edges in the query pattern and decompose it, S123 can-
not determine whether a new query pattern has been issued
before based on Y .
Hiding the access pattern. Recall that before S123 fetch the
matched edges {JEyK} from each snapshot JGtK, they first
obliviously sort JGtK (after padding dummy edges) based
on their timestamps. Since the timestamps of dummy edges
are random, S123 cannot determine which edges in JGtK after
padding and sorting are dummy. Hence, they cannot determine
which edges in the original snapshot JGtK are matched edges,
i.e., GraphGuard can hide the access pattern.
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