
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Tossing in the Dark: Practical Bit-Flipping
on Gray-box Deep Neural Networks

for Runtime Trojan Injection
Zihao Wang, Di Tang, and XiaoFeng Wang, Indiana University Bloomington;

Wei He, Zhaoyang Geng, and Wenhao Wang, SKLOIS, Institute of
Information Engineering, Chinese Academy of Sciences

https://www.usenix.org/conference/usenixsecurity24/presentation/wang-zihao-tossing

Tossing in the Dark: Practical Bit-Flipping on Gray-box Deep Neural Networks for
Runtime Trojan Injection∗

Zihao Wang1, Di Tang1�, XiaoFeng Wang1, Wei He2, Zhaoyang Geng2, Wenhao Wang2�

1Indiana University Bloomington
2SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences

{zwa2, tangd}@iu.edu, xw7@indiana.edu, {hewei, gengzhaoyang, wangwenhao}@iie.ac.cn

Abstract
Although Trojan attacks on deep neural networks (DNNs)
have been extensively studied, the threat of run-time Trojan
injection has only recently been brought to attention. Unlike
data poisoning attacks that target the training stage of a DNN
model, a run-time attack executes an exploit such as Rowham-
mer on memory to flip the bits of the target model and thereby
implant a Trojan. This threat is stealthier but more challeng-
ing, as it requires flipping a set of bits in the target model to
introduce an effective Trojan without noticeably downgrading
the model’s accuracy. This has been achieved only under the
less realistic assumption that the target model is fully shared
with the adversary through memory, thus enabling them to
flip bits across all model layers, including the last few layers.

For the first time, we have investigated run-time Trojan
Injection under a more realistic gray-box scenario. In this
scenario, a model is perceived in an encoder-decoder man-
ner: the encoder is public and shared through memory, while
the decoder is private and so considered to be black-box and
inaccessible to unauthorized parties. To address the unique
challenge posed by the black-box decoder to Trojan injection
in this scenario, we developed a suite of innovative techniques.
Using these techniques, we constructed our gray-box attack,
Groan, which stands out as both effective and stealthy. Our
experiments show that Groan is capable of injecting a highly
effective Trojan into the target model, while also largely pre-
serving its performance, even in the presence of state-of-the-
art memory protection.

1 Introduction

The advance of machine learning (ML) technologies also
comes with growing demands for ensuring their trustworthi-
ness in the presence of various emerging security and privacy
risks. Among the most prominent of these risks is the Trojan

∗Corresponding authors: Di Tang (Indiana University Bloomington) and
Wenhao Wang (SKLOIS, Institute of Information Engineering, Chinese
Academy of Sciences).

(aka. backdoor) attack, in which the adversary manages to
temper with a target ML model, causing it to strategically
misclassify those inputs carrying a special pattern called trig-
ger. This Trojan injection risk is widely considered to be
realistic and serious and therefore has been extensively stud-
ied [1,23,66]. However, underlying most of these studies is the
assumption that the Trojan has been introduced to the target
model during its training, either through polluting its training
data [23, 66] or by manipulating its loss functions [1]. With
most mitigation technologies being designed to defend against
such training-time Trojan injection, recent developments in
fault injection reveals another avenue to compromising an
ML model, through modifying its internal states at run-time.
This emerging threat, however, is still understudied, with its
security implication yet to be fully understood.
Run-time Trojan injection. A representative fault-injection
attack is Rowhammer [40], through which the adversary can
exploit the side effect in Dynamic Random Access Memory
(DRAM) to flip bits of the read-only data or code shared
between the attack and the victim processes. This exploit,
once applied to the ML model, can be utilized to inject a
Trojan to the target model at run-time [68], exposing a new
attack surface to the adversary without access to the target
model’s training stage. Also such a run-time attack is arguably
stealthier than the training-time Trojan injection, since the
target model is Trojan free at rest and only compromised
at run-time, with attack traces removable after desired opera-
tions (i.e., mislabelling specific inputs) executed (Section 3.1),
which renders today’s detection and unlearning ineffective.

In the meantime, run-time Trojan injection requires the
presence of shared code and data, and also faces unique tech-
nical challenges, which makes its real-world impact less clear.
Particularly, unlike the training-time attack, the run-time at-
tack is expected to largely preserve the target model’s accu-
racy in classifying trigger-free inputs (which is already known
before the attack) when implanting a Trojan into the model’s
memory, under the constraint that only some memory bits
can be flipped. This challenge has never been seriously ad-
dressed by prior studies: some assume that all memory bits

USENIX Association 33rd USENIX Security Symposium 1331

are flippable [10, 59] and all consider a white-box and fully
shared target ML model [10, 59, 68], with all its parameters
not only completely exposed to the adversary but also fully
shared with the attack process through memory at run-time.
Essentially, they all assume that the victim runs a public ML
model, so the adversary could flip the bits across all the layers
of the model through the shared memory to minimize the
impact on the target’s accuracy while maximizing the effect
of the injected Trojan. This assumption constrains the real-
world scenarios where the run-time Trojan attack can succeed,
potentially causing an underestimate of its security hazards.

The Groan attack. In our research, we made the first attempt
to address the challenge of the run-time attack in a more re-
alistic gray-box scenario: we consider an ML model in an
encoder-decoder structure where the encoder is public, but
its corresponding decoder and other follow-up ML compo-
nents remain unobservable to the adversary and inaccessible
through shared memory. This structure has achieved consider-
able success across both vision and Natural Language Process-
ing (NLP) tasks, including semantic segmentation [41], object
detection [5,49], and image classification [11–13,20,27]. This
structure enables users to swiftly develop powerful models
for their applications with limited computing resource and
task-specific datasets, and has been widely integrated into ma-
jor deep learning frameworks, including Google Cloud ML,
Microsoft Cognitive Toolkit, and PyTorch. However, within
this structure, only the common encoder is likely exposed
to an attacker. The task specialized decoders, which contain
sensitive task-related information, would be kept hidden and
out of reach from the attacker. We provide detailed real-world
examples in Section 2.3. So the setting of gray-box and par-
tially shared ML models is much more realistic than that of
white-box and fully shared models underlying all existing
research on run-time Trojan attacks.

Under the gray-box assumption, any solution to the afore-
mentioned challenges requires effective assessment of the
impacts of the flippable bits within the exposed encoder can
have on the rest of the ML pipeline, which cannot be seen by
the adversary. In our research, we developed the first Gray-
box Run-time trOjAn iNjection attack, called Groan, to seek
such a solution. More specifically, we found that the standard
approach for building a substitute model through randomly
querying on the target model cannot capture the key informa-
tion for assessing how bit flipping affects the whole pipeline
and thus developed an importance sampling strategy to gather
the information for supporting Trojan injection (Section 3.2).
Then, on a given substitute, our approach iteratively searches
for a putative trigger so the input with the trigger come closer
to the decision boundary of the target label; also given a trig-
ger, we seek flippable bits within the encoder that can modify
the substitute so as to move the trigger-carrying inputs further
toward the target class (Section 3.3). The convergence of this
iterative optimization process leads to the discovery of the bits
and the trigger that cause an effective Trojan to be injected,

with a minimal impact on the model’s accuracy in classifying
trigger-free inputs.

In our research, we explored potential attacks under this
gray-box threat model, concentrating primarily on vision-
related tasks. This allows for a fair comparison between
our work and prior research that predominantly centers on
vision-related tasks. Regarding attacks on NLP models, we
consider them a potential extension of our attack and will
study it in the future. Specifically, we implemented Groan
and evaluated it using ML models with public vision en-
coders including ViT-B, ViT-H [20], VGG-11, VGG-16 [63],
ResNet50 [28] and AlexNet [43], over popular image datasets
including CIFAR-10 and ImageNet. Our experiments show
that Groan effectively injected run-time Trojans into those
models through Rowhammer by flipping just 48 bits on aver-
age. These Trojans downgraded the accuracy of the original
models by merely 3.1%, while achieving an attack success
rate (ASR) of 89.9% on average. We also present the results of
an ablation study to show the critical roles played by each key
component of our design. Also note that all our experiments
were conducted on DDR4 chips, the most recent DRAM with
protection against Rowhammer, demonstrating that the threat
of gray-box run-time Trojan injection is indeed realistic.
Contributions. Our key contributions are outlined below:
•More realistic attack. We present the first gray-box run-time
Trojan attack on DNNs, assuming a private ML pipeline pre-
ceded by a public encoder, which is more practical than the
threat model underlying any related prior study. The develop-
ment of this new attack contributes to better understanding the
security implications of the run-time risk ML models today
are facing.
• New attack techniques. Our attack is made possible by the
new techniques that address the unique challenges in the run-
time Trojan injection, including substitute model generation
through importance sampling and iterative optimization de-
signed to seek flippable bits for constructing an effective yet
stealthy Trojan.
• Implementation and evaluation. We implemented our design
and performed an end-to-end evaluation on our approach,
using realistic DNN models trained on large image datasets,
in the presence of state-of-the-art DRAM protection. Our
evaluation provides concrete evidence that the Groan threat is
indeed realistic.

2 Background

2.1 Deep Neural Network

A DNN model can be described as a function that given an
input instance outputs a prediction. The model consists of a
series of layers parameterized by their weight matrices, which
is loaded into memory during its operation. A DNN today is
characterized by hundreds of megabytes or even gigabytes

1332 33rd USENIX Security Symposium USENIX Association

of parameters learnt from large datasets (e.g., ImageNet with
over 14 millions of images [17]), which entails an enormous
amount of computation. Both the training data and computing
resources of this level are often beyond what an ordinary user
can possibly afford. Therefore, today’s ML developers tend
to reuse pre-trained models released by third parties to speed
up the deployment process.

Encoder-decoder architecture. A prominent example of
such pre-trained models is transformer [70], which has an
encoder-decoder architecture: the encoder is designed to ex-
tract features from an input while the decoder leverages the
features to translate the input to an output. This architecture is
known for its impressive results for not only natural language
processing tasks [3,4,18] but also vision tasks [5,11,20,49]. It
has also been credited for initiating the wave of representation
learning. Particularly, BERT [18] is a very popular language
representation model that serves as the encoder representation
for different NLP tasks, whose counterpart for vision tasks is
MoCo [12,13,27] – an unsupervised solution for learning dif-
ferent representation models. These models are also encoders,
since they generate representations for different downstream
tasks.

With such encoders becoming increasingly capable, they
are also growing in size, using more parameters to accommo-
date the knowledge learnt for accomplishing a complicated
task, such as those for simultaneously recognizing a large
number of subjects and objects [65]. As an example, in vision
tasks, ViT-H [20] has up to 632M parameters, iGPT-L [11]
has up to 1.362G parameters and iGPT-XL [11] has up to
6.801G parameters. Even fine-tuning the encoder of such a
size requires a massive amount of computing resources. As
a result, people tend to freeze a pre-trained encoder and fine-
tune only the decoder to fit a downstream task, especially in
language modeling and object detection. Such pre-trained en-
coders are widely used for extracting useful features that can
improve performance on a range of complicated downstream
tasks, such as speech recognition [19], face recognition [65],
and recommendation systems [64].

Weight quantization. Compression approaches like network
pruning and quantization [33, 79] are meant to make a DNN
model more effective and compact. Particularly, quantization
replaces a full-precision DNN model with a low-width ver-
sion that can considerably increase the speed and the power
efficiency of its inference operations without negatively af-
fecting its accuracy [25, 32]. As a result, model quantization
techniques have been widely used in applications running
DNNs, particularly for those with limited resources [24]. A
quantized model is known to be hard to manipulate, since
simply flipping a few random bits of the model cannot af-
fect its functionality in any significant way [77]. Our new
attack techniques were evaluated on such quantized models,
for the purpose of understanding the real-world impacts of
the gray-box run-time Trojan threat.

2.2 Trojan Attack

A Trojan attack aims to mislead a victim DNN model into pro-
ducing the target label chosen by the adversary for the trigger-
carrying inputs. Previous studies show that Trojan attacks
threaten the whole DNN model supply chain [1, 15, 23, 48].
Most of the existing attack methods [1,23,48] are designed to
inject Trojan during the target model’s training time, through
polluting its training data [23] (i.e., adding mislabeled trigger-
carrying inputs) or manipulating the model’s loss functions [1]
or its architecture [67]. Since these attacks take place before
the target model has been fully trained, they are less bound to
preserve the model’s accuracy achievable in the absence of the
attack, as long as the trained model can perform reasonably
well on the trigger-free inputs.

Run-time Trojan attack. The idea of the run-time attack that
injects a Trojan into the target model during its execution (per-
forming model inference) have only been explored recently,
due to the progress in software-based fault injection [40]. ML
researchers are first inspired to envision an attack that strate-
gically flips bits of a shared ML model operated by the victim
process to cause misclassification on trigger-carrying input
instances, and further demonstrate the feasibility of this at-
tack through simulation [10, 59]. Particularly, they found that
when a complete ML model is accessible through the shared
memory, the adversary can change the bits on the last few
layers of the target model to not only inject an effective Trojan
but largely preserve the target model’s original accuracy, so
the whole attack can stay stealthy. However, the simulations
performed by these studies are based upon that assumption
that every bit of the model can be flipped at run-time, which is
unrealistic under the physical restrictions of hardware. Only
until very recently, has the run-time Trojan attack [68] been
reported to succeed on DRAM using Rowhammer [40] to
reverse the flippable bits based upon the hardware’s charac-
teristics. Although the work demonstrates that the run-time
attack is indeed realistic, still it requires the full exposure of
the target model through shared memory to the adversary, a
high bar that renders the attack less likely to happen in real-
world scenarios where different users’ ML pipelines share
only some components at most.

The Rowhammer attack. Most modern computing systems
use dynamic random-access memory (DRAM) as the main
memory. Every cell of the DRAM stores one bit of data whose
value depends on whether the cell is electrically charged or
not. Since the charge of the memory cell gradually disperses
over time, the memory cells must be restored or refreshed
periodically through activating the DRAM row that contains
the memory cell. Otherwise, the data stored in the memory
cell will be corrupted.

The Rowhammer attack amplifies the disturbance errors
inherent in the electromagnetic interference between nearby
cells by activating memory regions in a specific way to ex-
acerbate the charge leak of the memory cells, thereby cor-

USENIX Association 33rd USENIX Security Symposium 1333

rupting the sensitive data stored in the cells. Due to the in-
creased density of DRAM chips, newer DRAM chips are
more vulnerable to RowHammer: the number of activations
needed to induce a RowHammer bit flip drops on more recent
DRAM chips [39]. Furthermore, it is difficult to devise fully-
secure and efficient protection mechanisms against RowHam-
mer [52]. Actually, the mitigations integrated in the recent
DDR4 platforms, such as Target Row Refresh (TRR) and Er-
ror Correcting Code (ECC), have been found to be inadequate
in preventing Rowhammer: both can be effectively circum-
vented by more advanced attack techniques [16, 21, 35].

Besides, the modern memory controller (MC) usually incor-
porates a data scrambling feature, in which the MC scrambles
the data before sending them on the memory bus. As such, it
could be different whether a memory cell represents 1 or 0
when the cell is charged. Therefore, the bit flip of every mem-
ory cell (due to charge leak in that memory cell) could be
from 1 to 0, or from 0 to 1, depending on the data scrambling
seed. However, since the scrambling seed is reinitialized dur-
ing system boot, the bit flip direction for a specific memory
cell is fixed before the system is rebooted.

2.3 Threat Model
The threat model presented in this paper aligns with the cur-
rent body of literature on Rowhammer [74] and the majority
of microarchitectural attack research [78], which necessitates
co-location of the attacker and victim within the same sys-
tem. Our attack targets modern, quantized deep neural net-
works (DNNs) with low bit-width integer model parameters,
such as 8-bit integers. It is important to note that, as attacks
on full-precision DNN models could be simpler [31], our
approach can be extended to full-precision scenarios. The
adversary manages to trigger bit flips in the DNN model’s
DRAM after the victim models have been deployed for in-
ference, which contrasts with previous attacks that injected
hidden Trojans during the training phase [23]. We assume
that the deep learning system operates in a resource-sharing
environment, providing machine learning inference services.

Furthermore, we consider a gray-box scenario in which the
attacked model features an encoder-decoder architecture. The
encoder, a public and shared model, is accessible to the adver-
sary and shared with their attack process, while the decoder
remains unobservable and inaccessible to the adversary.
Attack goal. The adversary intends to inject a run-time Tro-
jan into the target model to produce the target label chosen
for trigger-carrying inputs, through flipping bits of the tar-
get model’s parameters stored in memory cells, and also stay
stealthy at meantime.
Attacker’s knowledge. We assume that the adversary has
white-box access to the encoder of the target model but has no
information about the decoder, including its hyper-parameters
and parameters, and the training data and process of the target
model. Nor does he know the details of the target model’s

output (such as confidential scores) except the predicted la-
bel. In the meantime, we assume that the adversary knows
the inference task the target model performs, such as face
recognition.

We consider today’s DRAM chips that are vulnerable to
Rowhammer. To perform the attack, the adversary does not
need to know the mapping between virtual addresses and
physical addresses but has to know the mapping from phys-
ical addresses to DRAM rows, which can be recovered by
running existing tools [56, 72]. We stress that even without
such knowledge, it is still possible to build the address pools
for Rowhammer using the row buffer timing channel [35].
Attacker’s capability. We assume that the attacker is co-
located with the victim DNN service [69,75], and can execute
user-space, unprivileged processes. Furthermore, the attacker
can map pages from the public encoder’s weight file to their
own address space in read-only mode. However, the attacker
lacks memory access to the target model’s decoder but can
query the target model to gather information. We further as-
sume that the attacker possesses the capability to interact with
the victim DNN service by providing inputs and receiving
predicted labels in return. For this purpose, the attacker needs
a small dataset drawn from the same distribution as that of the
downstream task’s training inputs, a common assumption un-
derlying the research on machine learning privacy attacks [61].
This dataset is used for query generation.
Real-world examples. Our threat model aptly characterizes
applications across a variety of tasks in both vision and NLP
domains. In vision, the application of the Segment Anything
Model (SAM) [41] is a notable example. Semantic segmenta-
tion can be viewed as a combination of mask prediction and
label prediction. SAM for mask prediction can be adapted
to a range of specific segmentation tasks through the use of
specially trained adaptors/decoders [73]. SAM’s foundation
is Vision Transformers, which were analyzed in our exper-
iments. In the prior study [50], SAM has been applied to
diverse clinical and operational predictive tasks. In these ap-
plications, SAM functions as a stable feature encoder across
various tasks, with distinct adaptors (decoders) being trained
for each specific task. Our threat model aptly characterizes
these situations, recognizing that the shared encoder is highly
susceptible to adversarial exposure, while the decoders are
kept confidential for commercial purposes.

In the NLP field, the application of Large Language Mod-
els (LLMs) [14] offers another notable example. Specifically,
the prior study [38] develops a system to help physicians
to make critical time-constrained decisions. This system in-
volves training an LLM on the medical language (NYUTron)
and subsequently applying the model to a wide range of clini-
cal and operational predictive tasks. Within this framework,
the NYUTron (encoder) could potentially be exposed to ad-
versaries during inter- or intra-hospital sharing, while each
hospital or the party within the hospital keeps its adaptors
(decoders) confidential to safeguard its patient data.

1334 33rd USENIX Security Symposium USENIX Association

3 The Groan Attack

3.1 Overview

Groan is designed for Trojan injection at run-time with gray-
box access to the target model, that is, white-box access to
the encoder but no information about and memory access to
the decoder. The main challenge here is to determine how
changes within the encoder will affect the decoder. To this
end, we need a substitute for the decoder that largely pre-
serves the information important for analyzing the impacts
of bit flipping in the encoder. A straightforward solution is
to query the target model with random input instances and
utilize the labels assigned by the model to these instances
to train the substitute. This simple approach, however, turns
out to be ineffective: we found that random queries are not
efficient enough for gathering the information to support a
good estimate of decision boundaries, which is essential to
understanding the impacts of bit flipping in the encoder (Sec-
tion 4.3). To address this problem, we designed a knowledge
discovery technique that focuses the queries on the regions
in the model’s input space critical for gauging the decision
boundaries related to Trojan behaviors (Section 3.2). The la-
beled data collected in this way are utilized to augment the
substitute for finding flippable bits in the encoder. Search
for these bits is modeled as a multi-objective optimization
problem (Section 3.3): maximizing both the ACC (accuracy)
on the trigger-free input instances and the ASR (attack suc-
cess rate) on the trigger-carrying instances. This problem is
addressed using an iterative algorithm. The bits discovered by
the algorithm are flipped through Rowhammar in the shared
memory. Following we describe these individual stages at a
high level.

Knowledge discovery. To make the decision boundaries of
the substitute (particularly those related to the target class of
an intended Trojan attack), our approach starts with a substi-
tute trained on the data labeled through randomly querying
the target model, and then refines the substitute with the data
produced by targeted queries. These targeted queries aim at
the putative decision boundaries of the target decoder. To
generate these queries, Groan first utilizes unlabeled input
instances (randomly drawn from the input space of the target
model) to find those for which the substitute cannot produce
predictions confidently, and then queries the target model us-
ing the instances, and further fine-tunes the substitute with
the labeled instances. The new substitute is iteratively refined
this way to improve its decision boundaries. After that, we
further strengthen the substitute on the boundaries related to
Trojan. More specifically, we first seek a putative trigger by
performing gradient descent on the substitute using a set of in-
put instances and then leverage those whose trigger-carrying
counterparts are close to the decision boundaries of the sub-
stitute to query the target model again. The predictions made
by the model on these instances are again used to fine-tune

the substitute. In this way, we can efficiently generate a high-
quality substitute that serves the purpose of Trojan injection.
Bit identification. Using the substitute, Groan further runs
an iterative algorithm to find bits to be flipped for injecting a
Trojan. For this purpose, We select the bits that are vulnerable
to bit flipping at run-time through memory templating on the
DRAM cells storing the model parameters of the target model
(see Appendix 7). Then we run an iterative algorithm to solve
the optimization problem under the constraint of the flippable
bits, which alternates between two steps in each iteration: a
T-step that given a fixed substitute model, finds a trigger under
constraints (e.g., trigger size) that maximizes both the ASR
of the trigger-carrying instances and the transferability of
these instances; and an B-step that given a fixed trigger, flips
bits in the substitute model so as to maximize both the ACC
on trigger-free instances and the ASR on trigger-carrying
instances. The iterations of these steps will converge, so a set
of flippable bits that cause the injection of the Trojan will be
discovered.
Bit flipping. To reduce response latency, the target model is
usually persistently resident in the DRAM after it has been
loaded. At this point, the Rowhammer attack can be initiated.
Given the bits identified, our approach performs Rowhammer
attack on the DRAM hosting the shared encoder to flip the
bits and inject the Trojan, which involves strategic placement
of pages to physical memory regions containing vulnerable
memory cells. The attack’s effects persist until the model is
reloaded. Fig. 1 illustrates the overall mechanism of Groan.
The rest of the section elaborates on these attack stages.

3.2 Knowledge Discovery
As mentioned earlier, the substitute model trained on the data
randomly queried from the target model is found ineffective
for Trojan injection (Section 4.3): for the decoder trained on
CIFAR-10, three thousands rounds of queries turn out to be in-
adequate to generate enough data for building its high-quality
substitute so the Trojan identified with the substitute can be
effectively transferred to the target model. Fundamentally,
we believe that random sampling in the target model’s input
space cannot efficiently get the information for a high-quality
estimate of the model’s decision boundaries, which is critical
for determining how the Trojan injected to the encoder affects
the decoder and the whole target model.

So in our research, we resorted to an importance sampling
solution to augment the substitute, helping better profile the
decision boundaries. Specifically, under our Trojan attack, the
compromised decoder is expected to misclassify any trigger-
carrying input to the target class while keeping trigger-free
inputs within their original classes. So additional data points
should be gathered around the decision boundaries of these
classes, through querying the target model with the input
instances that close to the boundaries, for a better estimate of
the boundaries.

USENIX Association 33rd USENIX Security Symposium 1335

Figure 1: Overview of Groan. The three dotted boxes represent the three stages of Groan. The red arrow represents the actual
attack applied on the target model.

Initialization. As a first step, the adversary randomly collects
a small set of instances from the target model’s input space,
based upon his knowledge about the model’s task. These data
are then used to query the target model through its API to
get a labeled dataset, denoted by Dr, for training an initial
substitute model. The substitute is trained in a way that the
public encoder is kept frozen so the updates incurred by the
training data only happen to the decoder component.

Substitute augmentation. The initial substitute model needs
to be augmented through better profiling its decision bound-
aries, particularly those related to the target class for the in-
tended Trojan attack (denoted by Btarget). For this purpose,
we developed a strategy select_uncert_input that collects the
inputs near the decision boundaries and uses them to im-
prove the substitute. Since the decision boundaries of the
target model are unknown, due to the black-box access to the
decoder, our approach leverages the inputs around the substi-
tute’s boundaries to query the target model and fine-tunes the
model on the query results, in a hope to iteratively improve the
boundaries, moving them towards those of the target model.
Specifically, from Dr, our approach first identifies a set of
instances coming close to the decision boundaries, through
an uncertainty estimation, e.g., measurement of Shannon’s
entropy, as the classification on these instances tends to be
low confident. These data, once labeled by the target model
through queries, form a new dataset Dclean

uncert , for fine-tuning
the substitute. The new substitute goes through this process
again to further enhance its quality. This iteration is repeated
for multiple rounds, as determined by the adversary, each
producing a new Dclean

uncert .

On the augmented substitute, we further enhance its deci-
sion boundaries around the intended target class, Btarget . To

this end, we generate a trigger pattern that maximizes the
ASR for the instances in D (see line-12 in Algorithm 1), and
among all the trigger-carrying instances, find those close to
Btarget based upon the uncertainty estimation. These trigger-
carrying instances are then run against the target model to
get a labeled set Dtrigger

uncert , which again are used to fine-tune
the substitute. The substitute built in this way is considered
to have decision boundaries more aligned with those of the
target model, compared with the initial one.

Data preparation. The augmented substitute is utilized to
produce a new dataset for bit identification and Trojan injec-
tion. Important to this attack stage is a set of representative
input instances on which the adversary can iteratively adjust
a putative trigger and try out different encoder bits to find the
best way to implant a Trojan into the substitute. Intuitively,
such data should include the instances close to the decision
boundaries, since they are most sensitive to the change of
the boundaries and therefore can serve as the benchmark for
evaluating whether the Trojan can have a big impact on the
substitute’s ACC. Such data are included in the set Dclean

uncert
produced at the final round of the substitute’s iterative updates.
Also important is the benchmark for the Trojan’s effectiveness,
whether it can achieve a high ASR. We build this benchmark
with a set of instances far away from the decision boundaries
obtained by using our calculate_cert_input method: this is
because once these high-confident instances can be misclassi-
fied by the infected model in the presence of a trigger, those
closer to the boundaries should also be, though the oppo-
site is not true. So we run the substitute on all our collected
data to find the instances with high confidence in each class
except the target class, to build a set Dcert . In addition, the
adversary uses the all the labeled instance as the ground-truth,

1336 33rd USENIX Security Symposium USENIX Association

which helps the bit search algorithm (Algorithm 2) to measure
whether the Trojan injected can already achieve the expected
ACC and ASR.

Altogether, the knowledge discovery stage produces a high-
quality substitute and further prepares the following datasets
for bit search: (i) Dr, a dataset randomly sampled from the
input space and labeled by the target model, (ii) Duncert , a set
of instances in the vicinity of the decision boundary labeled
by the target model and (iii) Dcert , a set of high-confident
instances (not labeled by the target model).

Algorithm 1: Knowledge discovery algorithm.
Input: Target model f , target class t, number of queries per

iteration q, and maximum number of queries Q.
Output: A substitute model f̃ and a labeled datasets Dl .

1: Xr← random sample q inputs
2: Dr←{(x, f (x)) : x ∈ Xr}
3: Initialize f̃ by training it on Dr
4: D← Dr, Nq← q
5: while Nq < Q do
6: Xclean← select_uncert_input(f̃ ,D,q)
7: Dclean

uncert ←{(x, f (x)) : x ∈ Xclean}
8: Update f̃ by fine-tuning it on Dclean

uncert
9: D← D∪Dclean

uncert
10: Nq+= q
11: end while
12: Get a trigger Ǎ on D for f̃
13: Xtrigger← select_uncert_input(f̃ , Ǎ(D),q)
14: Dtrigger

uncert ←{(x, f (x)) : x ∈ Xtrigger}
15: Update f̃ by fine-tuning it on Dtrigger

uncert
16: Duncert ← Dclean

uncert ∪Dtrigger
uncert

17: Xcert ← calculate_cert_input(f̃ ,D∪Dtrigger
uncert ,2q)

18: Dcert ←{(x, f̃ (x)) : x ∈ Xcert}
19: Dl ← Duncert ∪Dcert
20: return f̃ , Dl

The algorithm. Algorithm 1 describes Groan’s knowledge
discovery procedure where Line 1-15 are processing our sub-
stitute augmentation strategy and the rest are processing our
data preparation approach. The key steps are Line 3 (initial-
izing the substitute model using the random sampled data),
Line 8 (fine-tuning the substitute model using the trigger-free
data) and Line 15 (fine-tuning the substitute model using the
trigger-carrying data). Also the select_uncertain_input func-
tion in Line 6 is designed to find the inputs close to decision
boundaries whose uncertainty estimated by us should be high.
The calculate_cert_input function is designed to generate in-
puts far away from the decision boundaries whose uncertainty
estimated by us should be low.

3.3 Bit Identification
On the target model, Groan performs a search for most suit-
able bits within the encoder to inject a Trojan. This problem

can be modeled as a multi-objective optimization problem.
Specifically, our objectives include finding a set of bits mbit to
flip and an amending trigger function A(·) so as to maximize
the attack success rate (ASR) of the Trojan and meanwhile
preserving as much as possible the target model’s accuracy
on trigger-free inputs. Formally, the Groan attack is designed
to minimize the following objective function:

Lce(fmbit (A(x)), t)+Lce(fmbit (x),y), (1)

The first term in the equation is related to the ASR and the
second is related to the ACC. Here, x is an input without
the trigger and y is its ground-truth label, A(x) represents a
trigger-carrying input and t is the target label selected by the
adversary, Lce is the cross-entropy loss function, and fmbit

is the model derived from the target model f with mbits in
its encoder being flipped. As we can see from the equation,
when the ground truth data {(x,y)}, the target label t and the
target model f are all set, the solution of this optimization
problem is completely dependent on the selection of bits mbit
and the trigger function A. So we can seek the solution to
the multivariate optimization problem by using an iterative
strategy [62], which alternatively finds A to optimize the ob-
jective function given a fixed m̂bit (called T-step) and selects
mbit given a fixed Â (called B-step).

T-step. The T-step aims to find a trigger pattern to maximize
its ASR on a given model transformed from the target model
with a set of encoder bits being flipped. This can be achieved
by minimizing Lce(fm̂bit (A(x)), t), where fm̂bit is the target
model whose m̂bit have been flipped. However, under our
threat model, the adversary does not have direct access to the
decoder and instead can only work on the substitute model
f̃ to minimize Lce(f̃m̂bit (A(x)), t) where f̃m̂bit is the substitute
with bits m̂bit flipped. The problem is that the trigger pattern
discovered in this way may not be effectively transferred to
the target model: that is, the trigger applied to the inputs to
fm̂bit may not maximize their misclassification rate (ASR), due
to the difference between the model and its substitute counter-
part. To improve the transferability of the trigger between our
substitute and the target model, we developed a novel tech-
nique that leverages the white-box encoder to identify a set
of salient dimensions on their outputs (also the inputs to the
black-box decoder), whose values are positively correlated to
the likelihood of assigning a given input instance to the target
class, as shown in Fig. 2.

These salient dimensions can be identified by training a
linear model (such as a one-layer neural network with one
fully connected layer) hlinear(·) that learns to predict the tar-
get model’s output labels from the inputs of the black-box
decoder. Given hlinear(·), we consider the salient dimensions
to be those having the top-k gradients among all input dimen-
sions: for the dimension i on the input vector x, its gradient
is calculated as ∂hlinear(x)t/∂xi, where t is the target label of
the Trojan attack.

USENIX Association 33rd USENIX Security Symposium 1337

Figure 2: Overview of Groan’s trigger generation strategy.
The red arrows represent the outputs expected to be amplified.

Formally, supposing the salient dimensions are mdim, our
approach searches for the trigger that minimizes the following
function:

Lce(f̃m̂bit (A(x)), t)−λ Σ
i∈mdim

encm̂bit (A(x))i,

where f̃m̂bit (A(x)) = ˜dec◦ encm̂bit (A(x)).
(2)

Here, λ is a parameter to manage the trade-off between two
optimization objectives: maximizing the ASR on the substi-
tute (the first term) and maximizing the transferability through
the salient dimensions (the second term), and our substitute is
the composition of two functions: encm̂bit (·), the white-box en-
coder with bits m̂bit flipped, and ˜dec(·), the simulated decoder
in our substitute.

Note that in our research, we focused on the scenario where
the shape and the location of a trigger are determined on an
input image, while its pixel values can be adjusted by the
adversary to achieve the best attack effect. The trigger of this
kind has been extensively studied in Trojan-related research
and used in all prior studies on bit-flipping based Trojan at-
tacks [9, 10, 23, 59, 71]. So our optimization of Equation 2 is
performed under this constraint.
B-step. The B-step aims to search for a set of bits mbit under
a given trigger Â(·) so that once these bits are flipped in
the target model, a Trojan can be introduced to achieve best
possible effectiveness and stealthiness. Specifically, we intend
to find mbit that minimizes the following function, using the
substitute f̃ to simulate the target model f :

Lce(f̃mbit (Â(x)), t)+αLce(f̃mbit (Â(x)),y), (3)

where α is used to balance between the ASR (the first term)
and the ACC (the second term) of our substitute.

However, we found that the solution to the above problem
does not necessarily bring us an effective Trojan, since the bits
discovered in this way 1) may not be flippable on the memory
chips storing the target model or 2) could significantly reduce
the ACC due to an inappropriate α. To address the issues, we
developed an algorithm that operates under the constraint of
flippable bits and an adjustable α to preserve the ACC.

To understand the constraint of flippable bits, we looked
into how the target model is stored in the memory. As men-

tioned earlier, our research focuses on the target model quan-
tized to an 8-bit quantization level: that is, each weight of the
target model requires 8-bit memory space to store. Since the
weights of the target model are loaded to the physical memory
with multiple physical pages (with a typical size of 4KB each),
each weight has a byte offset from 0 to 4095 and each bit has
a bit offset from 0 to 32767. For each physical page, only bits
at certain offsets are flippable and they can only be flipped in
one direction (either 1→0 or 0→1). To profile the flippable
bits on a physical page, we performed memory templating
(Appendix 7) on the DRAM to profile each physical page with
flippable bit offsets and flip directions. Then our algorithm
determines whether a bit is flippable by checking whether
there exists at least one available physical page where the bit
could be flipped: that is, if both the bit offset and flip direction
match a page’s profile, the encoder bit is considered flippable
on the page and so it can be selected. Otherwise, the encode
bit will not be chosen at the B-step. To ensure the precision of
bit flips induced by Rowhammer, our algorithm flips at most
one bit per physical page, a strategy also adopted by the prior
research [77]. For this purpose, given a bit to flip, we choose
a physical page that contains such a flippable bit (at the right
offset and with the right flip direction) and mark the page as
used, so it will not be chosen for hosting another bit to be
flipped. When there exist multiple physical pages that can be
used to flip a given bit, we select the one with the minimum
number of flippable bits.

Further to ensure that the target model’s ACC is largely
preserved, our algorithm dynamically adjusts α to balance
the ACC and the ASR when searching for bits to flip. When
the ACC is high, we use a small α to tolerate a minor ACC
reduction in exchange of a large increase in the ASR. When
the ACC drops quickly, we set a large α in favor of boosting
it. Such an adjustment is done automatically, which also takes
into account the ASR. In our implementation, we set α =
γ(ASR/ACC)2 where γ is chosen manually and the ACC and
the ASR are measured on the current substitute.

To solve the optimization problem in Eq. 3 (that is, each
iteration searches for a bit minimizing the loss in Eq. 3), we
adopt a bit search process similar to BFA [58]. Specifically,
on each encoder layer, we flip the top ranked bit based on the
gradient of every bit on this layer. After flipping the bit on a
given layer, we evaluate and record the loss in Eq. 3, and then
restore the flipped bit. In this way, a loss profile is generated
for each layer. Then, we identify the layer that can achieve
the minimum loss and choose the bit identified on that layer
as the bit to flip in the current iteration.
The algorithm. Algorithm 2 presents the whole bit-
identification procedure. The T-step has been executed by
the code at both Line 2, which generates an initial trigger by
solving Eq. 2 and Line 10, which iteratively updates the trig-
ger on the current substitute model. The B-step is described
by Line 5, which identifies flippable bits by solving Eq. 3.
Line 8 causes the selected bit to be flipped, which leads to the

1338 33rd USENIX Security Symposium USENIX Association

update of the substitute. However, this operation (including
the selected bit to m̂bit) is only performed when the current
ACC is above a threshold, for the purpose of avoiding a sharp
drop in the target model’s accuracy. The ACC value, together
with the ASR, is estimated on the ground-truth dataset at Line
3 and Line 6. Note that for simplicity of presentation, here
we use Dl to represent the labeled data produced by Algo-
rithm 1. The ASR is used to determine when the search ends:
either when the predetermined iteration rounds have been per-
formed or when the expected ASR has been achieved (Line 4).
Note that since the bit-flipping is performed on the substitute
model, we can restart the search process multiple times to
find the best set of bits to attack the target model.

Algorithm 2: Bit identification algorithm
Input: Substitute model f̃ , labeled datasets Dl , target class t,

ACC threshold thrACC, ASR threshold thrASR, and
maximum iterations Tmax.

Output: The optimal set of bits m̂bit and its associated
trigger amending function Â.

1: m̂bit = {}
2: Initialize Â by solving Eq. 2
3: ASR,ACC← evaluate(f̃ , m̂bit , Â,Dl)
4: while iter < Tmax and ASR < thrASR do
5: b← identi f y_vuln_bit(f̃ , m̂bit , Â,Dl) (Eq. 3)
6: ASR,ACC← evaluate(f̃ , m̂bit ∪{b}, Â,Dl)
7: if ACC ≥ thrACC then
8: m̂bit ← m̂bit ∪{b}
9: end if

10: update Â by solving Eq. 2
11: iter+= 1
12: end while
13: return m̂bit , Â

3.4 Trojan Injection

Given a set of bits identified by our bit detection algorithm,
Groan executes Rowhammer to flip them in the DRAM stor-
ing the shared target encoder. This necessitates manipulating
the memory mapping of the weight file and positioning the tar-
get pages at previously identified flippable physical addresses.
To control memory mapping, we leverage the per-cpu page
frame cache. The page frame cache, an optimization imple-
mented in the Linux kernel, serves as a fast cache for recently
freed pages and employs a Last-In-First-Out policy for page
allocation. Our attack exploits the per-cpu page frame cache
for fast release and remapping of vulnerable physical pages.
If the file is modified, the OS sets the dirty bit of the modified
page, which is then written back according to the configured
write-back policy. Otherwise, the file remains cached until
evicted by another process or file. Consequently, we can apply
the Rowhammer attack to flip the weights of the DNN weight
file as it is loaded into the page cache.

To flip all the identified bits, the attacker releases the cor-
responding physical pages and remaps the target page. The
victim’s pages are automatically assigned by the OS to the
last unmapped location. Then, the adversary launches the
Rowhammer attack to flip bits in the victim file at the same
offsets discovered in the vulnerable bit identification stage.
Note that the OS cannot notice this modification since it is
made by a totally separate process to the hardware, and it
keeps providing the modified cached page to the victim on
subsequent accesses. Thus the attack remains stealthy.

4 Evaluation

4.1 Experimental Setup
We assess our gray-box attack, Groan, focusing on vision-
related tasks. This is to ensure a fair comparison with previous
studies, which mainly concentrates on vision-related tasks.
Extending Groan to NLP tasks is part of our future work. Our
evaluation not only demonstrates Groan’s efficacy but also
highlights the real risks our attack poses to vital vision-based
applications, including healthcare and autonomous vehicles.
Datasets. We conducted our experiments on CIFAR-10 [42]
and ImageNet [17] datasets. CIFAR-10 has 50K training im-
ages and 10K test images covering 10 classes, with input
dimensions of 32 × 32 × 3. ImageNet is a large dataset with
1.2M training images and 50K test images covering 1000
classes. Its input dimensions are 224 × 224 × 3. For all exper-
iments on CIFAR-10, we selected a random set of 2K images
from the test dataset as the original unlabeled images that
the attacker owns, and the remaining 8K of the test dataset to
evaluate the ACC and ASR achieved by the attacker. For all
experiments on ImageNet, we randomly chose 10K images
from the test dataset as the original unlabeled images that the
attacker owns, and measured the ACC and ASR on the remain-
ing 40K test images. We further augmented these selected
image sets (2K images from CIFAR-10 and 10K images from
ImageNet) by applying image corruption techniques [30].
Following the data preparation methodology described in
Section 3.2, we selected 3K images for CIFAR-10 and 15K
images for ImageNet. These images were then used to query
the target models.
Software settings. Our deep learning platform is Pytorch
1.6.0, which supports CUDA 10.2. On CIFAR-10, we evalu-
ated VGG-11, VGG-16 [63] and AlexNet [43]. To perform a
classification task on ImageNet, we deployed ResNet-50 [28],
ViT-B [20], and ViT-H [20]. In all these experiments, we quan-
tized the DNNs involved to the 8-bit quantization level. Note
that we regard the architecture comprising a CNN embedder
followed by an MLP classifier as an encoder-decoder struc-
ture, which encompasses cases such as employing the first
13 CNN layers of VGG16 as the encoder and the final three
fully-connected layers as the decoder. This setting has become
increasingly popular due to the success of MoCo [12, 13, 27],

USENIX Association 33rd USENIX Security Symposium 1339

which trains the encoder/embedder using unsupervised vi-
sual representation learning without simultaneously training
a decoder/classifier. Consequently, we evaluated these CNN
models as well. Additionally, we also evaluated ViT-B and
ViT-H, which are of classic encoder-decoder architecture for
image classification.
Hardware settings. Our DNN models were trained and an-
alyzed on a NVIDIA Tesla V100 32GB GPU and an In-
tel Xeon Gold 6248 CPU. The Rowhammer experiments
were conducted on 8GB DDR4 DRAM (Kingston 99P5701-
005.A00G).
Groan configuration. For the knowledge discovery stage,
we set the default parameters to t =2, q =1K, Q =2K for
the CIFAR-10 experiments, t =2, q =5K, Q =10K for the
ImageNet experiments: that is, Dtrigger

uncert , Dclean
uncert and Dr each

contains 1K images for the CIFAR-10 experiments and 5K
images for the ImageNet experiments. For the gray-box bit
search (Algorithm 2), we set the default parameters to t =2,
T =1k in all the experiments. thrACC is set to 0.8 for CIFAR-
10 and 0.7 for ImageNet. thrASR is set to ACC, which is deter-
mined by the substitute model’s ACC measured on Dr. For
the T-step, the trigger mask is initialized as a black square
on the right bottom corner of a clean image with the size of
10x10 (TAP = 9.76%) and 73x73 (10.62%) on CIFAR-10 and
ImageNet respectively. The hyper-parameter λ in Eq. 2 is set
to 1 and the optimization problem was solved through back-
propagation. For the B-step, α (in Eq. 3) is set to (ASR/ACC)2

with an upper bound 1 and a lower bound 0.01, where the ASR
and the ACC are estimated by the substitute model f̃ upon
the queried data Dl . In the memory templating phase (Ap-
pendix 7), we observed an average of 3.5 bit flips per second
using 3-sided Rowhammering. We identified a total of 80,048
flippable bits, which served as constraints for the subsequent
bit search.

4.2 Effectiveness and Performance
In this section, we report our evaluation of the achievable
ASR of Groan without significantly affecting the ACC of the
original tasks. Table 1 presents our experimental results. In
the experiment, we ran Groan to inject Trojans into models
spanning 6 distinct architectures and trained on the CIFAR-
10 and ImageNet datasets. From the table, we observe that
Groan successfully injects the Trojan to all these architectures
by flipping no more than 136 bits, achieving a high ASR (≥
84.67%) while preserving the accuracy (ACC drop ≤ 4.64%)
across all models. Particularly, the Trojan introduced to the
ViT-H model (with 632M parameters) trained on ImageNet
has an ASR of 91.60% and in the meantime, only causes the
ACC of the target model to drop by 3.89%. This demonstrates
that our approach indeed generalizes well to large data sets
and models.

From the Table, we also observe that the larger the model,
the more bits needed to be flipped by Groan. Specifically, for

Figure 3: Demonstration of the trigger patterns. The top three
are trigger-stamped images on CIFAR-10. The below two are
trigger-stamped images on ImageNet.

ImageNet dataset, Groan requires flipping 85 bits to inject
a Trojan into a ViT-B model with 86M parameters. This is
about three times the 27 bits required to embed a Trojan into a
ResNet-50 model which contains 23M parameters, indicating
a nearly linear relationship with model size. However, this
linearity does not hold for even larger models. Specifically,
ViT-H is more than seven times larger than ViT-B, yet the
number of bits required to be flipped is less than twice that
of ViT-B. This suggests that the rate at which Groan needs to
flip bits does not go up as rapidly as the growth in model size,
and further demonstrates the efficacy of Groan against large
models.

4.3 Ablation Study

In addition to the end-to-end evaluation on Groan, we further
studied the role played by its individual components, both
in the knowledge discovery stage (Section 3.2) and the bit
identification stage (Section 3.3). Specifically, we analyzed
the effects of the three components – knowledge discovery,
and the T-step and the B-step of bit identification, by running
experiments on the models in three different architectures
trained on CIFAR-10. In each of these experiments, we kept
the total number of queries to 3K for fairness of comparison.
Our experimental results are presented in Table 2 where the
fourth and fifth columns show the ACC and the ASR of the
substitute model and the sixth and seventh columns show the
ACC and the ASR of the target model after the Groan attack.
Effect of knowledge discovery. Our knowledge discovery
algorithm strategically queries the target model and trains a
substitute based on the querying results. To understand the
impact of our discovery algorithm on Groan’s performance,
we compare the substitute it produces with that trained over
the outcomes of random queries on the target model (called
Groan-Random model). The experimental results are pre-
sented in the - Random rows of Table 2. As we can see

1340 33rd USENIX Security Symposium USENIX Association

Table 1: Summary of Groan’s performance.

Dataset Architecture Network
Parameters

ACC. before
Attack (%)

ACC. after
Attack (%)

Attack Success
Rate (%)

of
Bit Flips

CIFAR-10
AlexNet 61M 87.70 86.74 89.27 11
VGG-11 132M 88.14 83.50 93.13 20
VGG-16 138M 88.35 84.51 91.44 14

ImageNet
ResNet-50 23M 76.03 72.53 84.67 27

ViT-B 86M 78.89 76.63 89.37 85
ViT-H 632M 79.93 76.04 91.60 136

from the table, the Trojan injected using the Groan-Random
model vastly underperform its counterpart supported by the
enhanced substitute model: the target model infected by the
former is found to have much lower ASR (≤ 66.68%) than
the model infected by the latter (≥ 89.27%); also the Groan-
Random model reduces the ACC of the target model signif-
icantly (from ≥ 87.70% to ≤ 77.10%) while the enhanced
substitute helps largely preserve its accuracy (ACC reduction
is less than 5%).

Further the advantage of our enhanced substitute over the
Groan-Random model can also be observed from the Trojan’s
transferability to the target model. To measure the Trojan’s
transferability across all model structures used in our research,
we introduce the following two metrics:

Trans(ACC) =
∑

arch
ACC(target)

∑
arch

ACC(sub) , and Trans(ASR) =
∑

arch
ASR(target)

∑
arch

ASR(sub)

Trans(ACC) measures how much the ACC of the substitute
can be transferred to the target model and the Trans(ASR)
measures the transferability of the ASR. Using the met-
rics, we found that Groan with the knowledge discovery
achieves Trans(ACC) = 1.02 and Trans(ASR) = 0.98, much
higher than those attainable with the Groan-Random model:
Trans(ACC) = 0.84 and Trans(ASR) = 0.65. This indicates
that our effort to improve the quality of the substitute model
is indeed necessary.
Effect of the T-step. Our T-step is designed to seek the trigger
that maximizes the ASR on input instances given a substitute
model, and can also be effectively transferred to the target
model. To study the effect of the T-step, we replace the step
with TBT [59], a state-of-the-art technique to find the trigger
from the substitute, and compare the effectiveness of the new
attack (Groan-TBT) with Groan. Our experimental results
are presented in the - TBT rows of Table 2. Groan-TBT also
largely keeps the ACC of the target model but only gets a
50.34% ASR, significantly lower than 89.27% achieved by
Groan. This difference is mainly caused by the former’s lack
of transferability: its Trans(ASR) = 0.51, much lower than
Trans(ASR) = 0.98 of Groan. This finding demonstrates that
the T-step, particularly the effort to maximize the salient out-

put dimensions of the encoder to ensure transferability, is
indeed important to the success of the Groan attack.

Effect of the B-step. In the B-step, to achieve a high ASR
while preserving ACC of the target model, our algorithm
automatically adjusts the parameter α (in Eq. 3) to balance
these two optimization objectives. To understand how this
search strategy (Section 3.3) contributes to the success of the
attack, we set α = 1, which is widely-used in prior studies [10,
59,68], and then compare this Groan version with our original
attack. The results of the experiments are presented in the -
Fix. rows of Table 2. As we can see from the table, the attack
with the fixed α results in an exceedingly low ASR. This
is because the bits identified with a fixed α always leads to
a lower ACC than the threshold so the search cannot make
progress due to the ACC check at Line 6 in Algorithm 2.
As a result, the approach with the fixed α can only raise the
ASR up to 2.23% across all the architectures. Note that if we
remove the ACC check in Algorithm 2, the ASR could go up
but the ACC will drop significantly.

Fundamentally, the balance between ACC and ASR cannot
be achieved statically. At the beginning of the optimization
process, a few bits being flipped will quickly raise the ASR
but also significantly degrade the ACC. At this stage, a small
α should be chosen to preserve the ACC. With the ASR
going up, it becomes increasingly hard to improve further.
In this case, we will prefer a larger α to move the focus of
optimization to the ASR.

Note that this balance can be easily achieved in white-box
run-time Trojan injection by seeking the flippable bits mainly
on the last layer [10, 59]: (i) flipping the bits on the last layer
has the most direct impact on the output, which helps get a
high ASR; (ii) the impact of such modification will not spread
over to other layers, which helps preserve the ACC. However,
in the gray-box attack, since the adversary only has black-box
access to the decoder and therefore cannot temper with the
weights of the last layer, changes to the model can only take
place in the encoder, which will propagate from the flipped
bits to other layers. As a result, to preserve the ACC in the
gray-box attack, we need a more delicate balance between the
ACC and the ASR, which is achieved in our attack through
dynamically adjusting α.

USENIX Association 33rd USENIX Security Symposium 1341

Table 2: The results of ablation study of Groan on CIFAR-10

Architecture ACC. before
Attack (%) Method ACC. on

Sub. (%)
ASR on
Sub. (%)

ACC. on
Target (%)

ASR on
Target (%)

of
Bit Flips

AlexNet 87.70

Groan 85.1 89.0 86.74 89.27 11
- Random 86.5 95.7 77.10 62.14 7

- TBT 86.7 94.2 86.55 50.34 3
- Fix 84.8 2.1 85.85 0.03 1

VGG-11 88.14

Groan 81.8 93.2 83.50 93.13 20
- Random 82.7 93.1 60.68 54.49 23

- TBT 82.1 85.3 82.04 47.72 6
- Fix 81.8 0.1 83.46 0.08 1

VGG-16 88.35

Groan 81.5 94.6 84.51 91.44 14
- Random 84.0 91.5 74.89 66.68 8

- TBT 84.4 91.1 86.02 41.06 5
- Fix 81.6 1.4 87.36 2.23 2

5 Discussion

Limitations. Groan needs to trigger bit flips in the DRAM
chips storing the target model at run-time. Since the charge
leaks in the memory cell is uni-directional, those flipped bits
are hard to be flipped back and could only be refreshed by
triggering a reload to the memory from the model file. Thus,
there is a chance to detect Trojan injected by Groan through
checking the DRAM’s integrity. However, since the model
is usually large, checking the integrity of DRAM at run-time
will produce additional overhead.

Besides, Groan requires a little more bits to be flipped
in target model for Trojan injection compared with those
alternatives evaluated in Section 4.3. For instance, on AlexNet
models, Groan requires flipping 11 bits while alternatives
require flipping ≤ 7 bits. However, we argue that this minor
overhead is acceptable, since this will neither increase the
difficulty to flip those bits nor reduce the stealthiness of Trojan
injected by Groan (Groan has preserved the ACC much better
than those alternatives as shown in Table 2).

Future works. Groan is designed for working in the gray-box
scenarios. It could be improved to be adaptive to the black-
box scenarios, through cooperating with a more powerful
knowledge discovery strategy that can not only reveal the
decision boundaries but also some weights of the target model,
and an improved method to place the target model bits to the
flippable DRAM locations without sharing anything with
the victim process hosting the target model. One potential
way is to cooperate with the model extraction attack and
the access-free Rowhammer attack. Model extraction attack
enables an adversary to gain model parameters [7, 34, 57] in
the black-box scenarios. Access-free Rowhammer attack [6]
gives an solution to flip the target bits in memory without the
need of access permission to the target model. More possible
approaches deserve future studies.

Moreover, the stealthiness of the Trojan injected by Groan

through flipping bits could be improved by cooperating with
a method to revoke those flipped bits. Revoking the flipped
bits enables the adversary to activate the Trojan only when
necessary and “turn off” it after using it. This is possible if
the adversary can force the victim pages (storing the target
model) to be evicted from the page cache. Once the page is
evicted, the follow-up references to the data (model weights)
will be loaded from the local file again, restoring those flipped
bits to their original values. For this purpose, the adversary
can leverage the existing techniques for page cache eviction
whose effectiveness has been demonstrated in the page cache
attacks [22]. We will also expand our Groan to NLP related
tasks in future research.

5.1 Mitigation

Detection. A natural idea to detect Trojan at run-time is to
apply Trojan detection approaches very frequently. e.g., ap-
plying them every minute. By doing so, methods [8,48,71] for
detecting Trojans at training time could be adapted to work at
run-time. However, detecting in this manner has a very high
overhead, rendering it impractical in reality. There are several
methods that have been proposed to detect Trojan at run-time.
Liu et al. [47] proposed to check whether the encoded weights
are different from the stored values that have been calculated
before the model’s run. This approach will add extra over-
head, especially for large networks, and could be bypassed by
adding the weights encoding constraint to the bit searching
step. Li et al. [44] proposed RADAR, a checksum-based de-
tection method during the inference time. It divides the weight
parameters into several groups and gets the checksum of the
most significant bits within the parameters of each group. Sim-
ilarly, the detection could be bypassed if the adversary added
a new constraint when doing bit search to avoid flipping the
most significant bits. Li et al. [46] proposed DeepDyve, a dy-
namic verification method to detect run-time Trojan attacks.

1342 33rd USENIX Security Symposium USENIX Association

DeepDyve first generates a compressed version of the tar-
get model as the benchmark model. Then, it checks whether
the outputs of the current target model are the same as the
outputs of the benchmark model for some inputs. However,
this method brings not only computation but also memory
overhead.

Prevention. A number of methods have been proposed
to mitigate the Rowhammer vulnerability at the DRAM
level [51,54,76]. However, the most recent attacks [26,36,55]
demonstrate that the threat from Rowhammer will still ex-
ist in the near future [52, 53]. Preventing Trojan injection
through Rowhammer could be achieved by compressing
model weights into low-bits representation. In the extreme
case, we could compress the target model into a binarized
model. However, compressing the model brings the cost of its
performance on benign inputs [29]. How to trade-off between
the security and the effectiveness of the model are left to be
studied in the future.

6 Related Works

Run-time attacks. Groan injects Trojan at run-time. The
possibility of doing that is demonstrated by Hong et al. [31]
who have shown that deep neural networks are vulnerable to
run-time attacks such as the Rowhammer attack. This is due
to the fact that bit flipping can cause a significant change in
the model’s outputs if the model weights are represented by
floating variables with high precision, resulting in a significant
drop in the ACC and possibly even the ASR. Later on, Yao
et al. [77] and Rakin et al. [58] showed that even a quantized
DNN is vulnerable to run-time Trojan attacks. The ACC of
quantized DNN can also be reduced by flipping a set of bits.
After that, Rakin et al. proposed Targeted Bit-Flip Attack
(T-BFA), which forces the quantized DNNs misclassify the
inputs as belonging to the target class. However, all these
attacks damage the DNNs in a permanent way, and thus could
be detected afterwards. Recently, Rakin et al. [59] and Chen
et al. [10] show that run-time Trojan attacks could be induced
by flipping only a small number of bits in quantized DNNs.
Both attacks assume that all the bits in the DNNs are flippable,
which is unrealistic in the real hardware. On the other hand,
Tol et al. [68] achieved the run-time Trojan attack in DDR3
DRAM chips using Rowhammer attack. However, all the
previous attacks assume the adversary has white-box access
to the whole DNN model, unlike Groan which injects Trojan
under gray-box settings.
Trojan attacks on encoder-decoder architecture. Groan
injects Trojan into the target model with encoder-decoder ar-
chitecture. For achieving this, Jia et al. [37] proposed BadEn-
coder attack that injects Trojan into the encoder during the
training period. They aim to make all the downstream classi-
fiers built on the Trojan infected encoder for different down-

stream tasks simultaneously contain the Trojan. They showed
that BadEncoder can achieve high ASR while preserving the
ACC for the downstream tasks. Comparing with BadEncoder,
our Groan achieved similar attack performance, but, under
more strict constraints brought by the hardware. Specifically,
our Groan is constrained by that only a small set of bits that
are flippable in the real hardware could be modified to inject
the Trojan, while BadEncoder could modify all the bits to
do that. Moreover, the decoder of the target model cannot be
changed by the Groan (in the gray-box setting), which brings
much more difficulties in keeping the ACC of the target model
and obtaining a high ASR, while BadEncoder can fine-tune
the decoder after injecting the Trojan into the encoder for
better ACC and ASR. Finally, the Groan, a run-time Trojan
attack, is stealthier than the BadEncoder, since the Groan in-
fected model might only be detected at run-time, while the
BadEncoder infected model could be detected both during the
training period and at run-time.

Hardware Attacks. Groan could be seen as a hardware attack.
One example of this kind of attacks is Adversarial Weight
Duplication (AWD) attack. AWD is a fault injection attack on
FPGA that takes advantage of the co-tenancy when multiple
tenants are on the FPGA [60]. It aims to destroy the function-
ality of the target model and could thus be easily detected
by performance checking. Breier et al. [2] proposed a laser-
based fault injection attack that hijacks the activation function
of neurons within the target model by using laser injection
technique on embedded systems. Clements et al. [15] and Li
et al. [45] inject Trojan into DNN by changing the circuit
functionality. In general, these hardware attacks all require
physical access to the target hardware to induce faults into it,
unlike our Groan which could be launched remotely.

7 Conclusion

In this paper, we proposed Groan, a gray-box run-time Trojan
attack that achieved a high attack success rate on trigger-
carrying inputs while preserving the prediction accuracy of
the target model on clean inputs. Multiple techniques were
devised to achieve the attack goal. We designed a knowledge
discovery strategy for efficiently generating a high-quality
substitute model. We further designed a novel gray-box bit
identification technique that seeks a set of bits for Trojan in-
jection together with a transferable trigger. We implemented
Groan with a Rowhammer-based fault injection method on
the real system and systematically evaluated its effectiveness
on a range of models, including those of a large scale. Our
evaluation shows that Groan can successfully inject Trojan
into various models by flipping only a small number of bits,
at the cost of only a slight drop in accuracy. Our work high-
lights the need to protect the deep neural networks at run-time,
which is originally thought to be the safest stage in the DNN
supply chain.

USENIX Association 33rd USENIX Security Symposium 1343

Acknowledgements

We sincerely thank our shepherd and the anonymous review-
ers for their valuable feedback. Authors from Indiana Uni-
versity were supported in part by IARPA W91NF-20-C-0034
(the TrojAI project) and NSF CNS-2207231.

References

[1] Eugene Bagdasaryan and Vitaly Shmatikov. Blind back-
doors in deep learning models. In 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021,
pages 1505–1521, 2021.

[2] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma,
Shivam Bhasin, and Yang Liu. Practical fault attack
on deep neural networks. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2204–2206, 2018.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learn-
ers. Advances in neural information processing systems,
33:1877–1901, 2020.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot
learners. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transform-
ers. In Computer Vision - ECCV 2020 - 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part I, pages 213–229, 2020.

[6] Anirban Chakraborty, Sarani Bhattacharya, Sayandeep
Saha, and Debdeep Mukhopadhyay. Explframe: Ex-
ploiting page frame cache for fault analysis of block
ciphers. In 2020 Design, Automation & Test in Europe
Conference & Exhibition, DATE 2020, Grenoble, France,
March 9-13, 2020, pages 1303–1306, 2020.

[7] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Gi-
acomelli, Somesh Jha, and Songbai Yan. Exploring
connections between active learning and model extrac-
tion. In 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 1309–1326,
2020.

[8] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian M.
Molloy, and Biplav Srivastava. Detecting backdoor at-
tacks on deep neural networks by activation clustering.
In Workshop on Artificial Intelligence Safety 2019 co-
located with the Thirty-Third AAAI Conference on Ar-
tificial Intelligence 2019 (AAAI-19), Honolulu, Hawaii,
January 27, 2019, 2019.

[9] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz
Koushanfar. Deepinspect: A black-box trojan detec-
tion and mitigation framework for deep neural net-
works. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, pages 4658–
4664, 2019.

[10] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz
Koushanfar. Proflip: Targeted trojan attack with pro-
gressive bit flips. In 2021 IEEE/CVF International
Conference on Computer Vision, ICCV 2021, Montreal,
QC, Canada, October 10-17, 2021, pages 7698–7707,
2021.

[11] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu,
Heewoo Jun, David Luan, and Ilya Sutskever. Genera-
tive pretraining from pixels. In Proceedings of the 37th
International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, pages 1691–1703,
2020.

[12] Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming
He. Improved baselines with momentum contrastive
learning. CoRR, abs/2003.04297, 2020.

[13] Xinlei Chen, Saining Xie, and Kaiming He. An empir-
ical study of training self-supervised vision transform-
ers. In 2021 IEEE/CVF International Conference on
Computer Vision, ICCV 2021, Montreal, QC, Canada,
October 10-17, 2021, pages 9620–9629, 2021.

[14] Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner
Pope, James Bradbury, Jacob Austin, Michael Isard, Guy
Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya,

1344 33rd USENIX Security Symposium USENIX Association

Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski,
Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fe-
dus, Denny Zhou, Daphne Ippolito, David Luan, Hyeon-
taek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sep-
assi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Re-
won Child, Oleksandr Polozov, Katherine Lee, Zong-
wei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and
Noah Fiedel. Palm: Scaling language modeling with
pathways. CoRR, abs/2204.02311, 2022.

[15] Joseph Clements and Yingjie Lao. Hardware trojan
attacks on neural networks. CoRR, abs/1806.05768,
2018.

[16] Finn de Ridder, Pietro Frigo, Emanuele Vannacci,
Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi.
SMASH: synchronized many-sided rowhammer attacks
from javascript. In 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021, pages 1001–
1018, 2021.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR 2009), 20-25 June 2009, Miami, Florida, USA,
pages 248–255, 2009.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[19] Linhao Dong, Shuang Xu, and Bo Xu. Speech-
transformer: a no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 5884–5888. IEEE, 2018.

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021,
2021.

[21] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor
van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert
Bos, and Kaveh Razavi. Trrespass: Exploiting the many
sides of target row refresh. In 2020 IEEE Symposium

on Security and Privacy, SP 2020, San Francisco, CA,
USA, May 18-21, 2020, pages 747–762, 2020.

[22] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael
Schwarz, Ari Trachtenberg, Jason Hennessey, Alex
Ionescu, and Anders Fogh. Page cache attacks. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2019, London,
UK, November 11-15, 2019, pages 167–180, 2019.

[23] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
Badnets: Identifying vulnerabilities in the machine
learning model supply chain. CoRR, abs/1708.06733,
2017.

[24] Seungyeop Han, Haichen Shen, Matthai Philipose,
Sharad Agarwal, Alec Wolman, and Arvind Krishna-
murthy. MCDNN: an approximation-based execution
framework for deep stream processing under resource
constraints. In Proceedings of the 14th Annual Interna-
tional Conference on Mobile Systems, Applications, and
Services, MobiSys 2016, Singapore, June 26-30, 2016,
pages 123–136, 2016.

[25] Song Han, Huizi Mao, and William J. Dally. Deep
compression: Compressing deep neural network with
pruning, trained quantization and huffman coding. In
4th International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016.

[26] Hasan Hassan, Yahya Can Tugrul, Jeremie S Kim, Vic-
tor Van der Veen, Kaveh Razavi, and Onur Mutlu. Un-
covering in-dram rowhammer protection mechanisms:
A new methodology, custom rowhammer patterns, and
implications. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
1198–1213, 2021.

[27] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. Momentum contrast for unsupervised
visual representation learning. In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages
9726–9735, 2020.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-
30, 2016, pages 770–778, 2016.

[29] Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali
Chakrabarti, and Deliang Fan. Defending and harness-
ing the bit-flip based adversarial weight attack. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 14083–14091, 2020.

USENIX Association 33rd USENIX Security Symposium 1345

[30] Dan Hendrycks and Thomas G. Dietterich. Benchmark-
ing neural network robustness to common corruptions
and perturbations. CoRR, abs/1807.01697, 2018.

[31] Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cristiano
Giuffrida, and Tudor Dumitras. Terminal brain damage:
Exposing the graceless degradation in deep neural net-
works under hardware fault attacks. In 28th USENIX Se-
curity Symposium, USENIX Security 2019, Santa Clara,
CA, USA, August 14-16, 2019, pages 497–514, 2019.

[32] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Quantized neural net-
works: Training neural networks with low precision
weights and activations. J. Mach. Learn. Res., 18:187:1–
187:30, 2017.

[33] Forrest N. Iandola, Matthew W. Moskewicz, Khalid
Ashraf, Song Han, William J. Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and <1mb model size. CoRR, abs/1602.07360,
2016.

[34] Matthew Jagielski, Nicholas Carlini, David Berthelot,
Alex Kurakin, and Nicolas Papernot. High accuracy
and high fidelity extraction of neural networks. In 29th
USENIX Security Symposium, USENIX Security 2020,
August 12-14, 2020, pages 1345–1362, 2020.

[35] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn
Gunter, and Kaveh Razavi. Blacksmith: Scalable
rowhammering in the frequency domain. In 2022 IEEE
Symposium on Security and Privacy (SP), volume 1,
2022.

[36] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn
Gunter, and Kaveh Razavi. Blacksmith: Scalable
rowhammering in the frequency domain. In 2022 IEEE
Symposium on Security and Privacy (SP), volume 1,
2022.

[37] Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong.
Badencoder: Backdoor attacks to pre-trained encoders
in self-supervised learning. In 43rd IEEE Symposium
on Security and Privacy, SP 2022, San Francisco, CA,
USA, May 22-26, 2022, pages 2043–2059, 2022.

[38] Lavender Yao Jiang, Xujin Chris Liu, Nima Pour Ne-
jatian, Mustafa Nasir-Moin, Duo Wang, Anas Abidin,
Kevin Eaton, Howard Antony Riina, Ilya Laufer, Paawan
Punjabi, et al. Health system-scale language models are
all-purpose prediction engines. Nature, pages 1–6, 2023.

[39] Jeremie S Kim, Minesh Patel, A Giray Yağlıkçı, Hasan
Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu.
Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques. In

2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 638–651.
IEEE, 2020.

[40] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin,
Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of DRAM
disturbance errors. In ACM/IEEE 41st International
Symposium on Computer Architecture, ISCA 2014, Min-
neapolis, MN, USA, June 14-18, 2014, pages 361–372,
2014.

[41] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloé Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo,
Piotr Dollár, and Ross B. Girshick. Segment anything.
CoRR, abs/2304.02643, 2023.

[42] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
Cifar-10 (canadian institute for advanced research). URL
http://www. cs. toronto. edu/kriz/cifar. html, 2010.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural
networks. Commun. ACM, 60(6):84–90, 2017.

[44] Jingtao Li, Adnan Siraj Rakin, Zhezhi He, Deliang Fan,
and Chaitali Chakrabarti. RADAR: run-time adversar-
ial weight attack detection and accuracy recovery. In
Design, Automation & Test in Europe Conference & Ex-
hibition, DATE 2021, Grenoble, France, February 1-5,
2021, pages 790–795, 2021.

[45] Wenshuo Li, Jincheng Yu, Xuefei Ning, Pengjun Wang,
Qi Wei, Yu Wang, and Huazhong Yang. Hu-fu:
Hardware and software collaborative attack framework
against neural networks. In 2018 IEEE Computer So-
ciety Annual Symposium on VLSI, ISVLSI 2018, Hong
Kong, China, July 8-11, 2018, pages 482–487, 2018.

[46] Yu Li, Min Li, Bo Luo, Ye Tian, and Qiang Xu. Deep-
dyve: Dynamic verification for deep neural networks.
In CCS ’20: 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, Virtual Event, USA,
November 9-13, 2020, pages 101–112, 2020.

[47] Qi Liu, Wujie Wen, and Yanzhi Wang. Concurrent
weight encoding-based detection for bit-flip attack on
neural network accelerators. In IEEE/ACM Interna-
tional Conference On Computer Aided Design, ICCAD
2020, San Diego, CA, USA, November 2-5, 2020, pages
37:1–37:8, 2020.

[48] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan
Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
Trojaning attack on neural networks. In 25th Annual

1346 33rd USENIX Security Symposium USENIX Association

Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-
21, 2018, 2018.

[49] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using
shifted windows. In 2021 IEEE/CVF International Con-
ference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pages 9992–10002, 2021.

[50] Jun Ma and Bo Wang. Segment anything in medical
images. CoRR, abs/2304.12306, 2023.

[51] Michele Marazzi, Patrick Jattke, Flavien Solt, and Kaveh
Razavi. Protrr: Principled yet optimal in-dram target
row refresh. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 735–753. IEEE, 2022.

[52] Onur Mutlu, Ataberk Olgun, and A Giray Yağlıkçı.
Fundamentally understanding and solving rowhammer.
arXiv preprint arXiv:2211.07613, 2022.

[53] Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo,
Ataberk Olgun, Jisung Park, Hasan Hassan, Minesh Pa-
tel, Jeremie S Kim, and Onur Mutlu. A deeper look
into rowhammer’s sensitivities: Experimental analysis
of real dram chips and implications on future attacks
and defenses. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
1182–1197, 2021.

[54] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham,
Jung Ho Ahn, and Jae W Lee. Graphene: Strong yet
lightweight row hammer protection. In 2020 53rd An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–13. IEEE, 2020.

[55] Minesh Patel, Jeremie S Kim, Taha Shahroodi, Hasan
Hassan, and Onur Mutlu. Bit-exact ecc recovery (beer):
Determining dram on-die ecc functions by exploiting
dram data retention characteristics. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 282–297. IEEE, 2020.

[56] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. {DRAMA}: Exploit-
ing {DRAM} addressing for {Cross-CPU} attacks. In
25th USENIX security symposium (USENIX security
16), pages 565–581, 2016.

[57] Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan
Yao, and Deliang Fan. Deepsteal: Advanced model
extractions leveraging efficient weight stealing in mem-
ories. In 43rd IEEE Symposium on Security and Privacy,
SP 2022, San Francisco, CA, USA, May 22-26, 2022,
pages 1157–1174, 2022.

[58] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-
flip attack: Crushing neural network with progressive
bit search. In 2019 IEEE/CVF International Conference
on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019, pages 1211–1220, 2019.

[59] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. TBT:
targeted neural network attack with bit trojan. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 13195–13204. Computer Vision Foundation
/ IEEE, 2020.

[60] Adnan Siraj Rakin, Yukui Luo, Xiaolin Xu, and Deliang
Fan. Deep-dup: An adversarial weight duplication attack
framework to crush deep neural network in multi-tenant
FPGA. In 30th USENIX Security Symposium, USENIX
Security 2021, August 11-13, 2021, pages 1919–1936,
2021.

[61] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal
Berrang, Mario Fritz, and Michael Backes. Ml-leaks:
Model and data independent membership inference at-
tacks and defenses on machine learning models. In
26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019, 2019.

[62] Nita Shah and Poonam Mishra. Unconstrained Multi-
variable Optimization, pages 15–29. 11 2020.

[63] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[64] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,
Wenwu Ou, and Peng Jiang. Bert4rec: Sequential rec-
ommendation with bidirectional encoder representations
from transformer. In Proceedings of the 28th ACM in-
ternational conference on information and knowledge
management, pages 1441–1450, 2019.

[65] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and
Lior Wolf. Deepface: Closing the gap to human-level
performance in face verification. In 2014 IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2014, Columbus, OH, USA, June 23-28, 2014,
pages 1701–1708, 2014.

[66] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan
Zhang. Demon in the variant: Statistical analysis of
dnns for robust backdoor contamination detection. In
Michael Bailey and Rachel Greenstadt, editors, 30th
USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, pages 1541–1558. USENIX Asso-
ciation, 2021.

USENIX Association 33rd USENIX Security Symposium 1347

[67] Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang,
and Xia Hu. An embarrassingly simple approach for
trojan attack in deep neural networks. In KDD ’20: The
26th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, Virtual Event, CA, USA, August
23-27, 2020, pages 218–228, 2020.

[68] M. Caner Tol, Saad Islam, Berk Sunar, and Ziming
Zhang. Toward realistic backdoor injection attacks on
dnns using rowhammer, 2021.

[69] Venkatanathan Varadarajan, Yinqian Zhang, Thomas
Ristenpart, and Michael M. Swift. A placement vul-
nerability study in multi-tenant public clouds. In 24th
USENIX Security Symposium, USENIX Security 15,
Washington, D.C., USA, August 12-14, 2015, pages 913–
928, 2015.

[70] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 5998–6008, 2017.

[71] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao. Neu-
ral cleanse: Identifying and mitigating backdoor attacks
in neural networks. In 2019 IEEE Symposium on Se-
curity and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019, pages 707–723, 2019.

[72] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya
Nepal. Dramdig: A knowledge-assisted tool to uncover
dram address mapping. In 2020 57th ACM/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2020.

[73] Junde Wu, Rao Fu, Huihui Fang, Yuanpei Liu, Zhaowei
Wang, Yanwu Xu, Yueming Jin, and Tal Arbel. Medical
SAM adapter: Adapting segment anything model for
medical image segmentation. CoRR, abs/2304.12620,
2023.

[74] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu
Teodorescu. One bit flips, one cloud flops: Cross-
vm row hammer attacks and privilege escalation. In
25th USENIX Security Symposium, USENIX Security
16, Austin, TX, USA, August 10-12, 2016, pages 19–35,
2016.

[75] Zhang Xu, Haining Wang, and Zhenyu Wu. A measure-
ment study on co-residence threat inside the cloud. In
24th USENIX Security Symposium, USENIX Security
15, Washington, D.C., USA, August 12-14, 2015, pages
929–944, 2015.

[76] A Giray Yağlikçi, Minesh Patel, Jeremie S Kim, Rokn-
oddin Azizi, Ataberk Olgun, Lois Orosa, Hasan Has-
san, Jisung Park, Konstantinos Kanellopoulos, Taha
Shahroodi, et al. Blockhammer: Preventing rowham-
mer at low cost by blacklisting rapidly-accessed dram
rows. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages
345–358. IEEE, 2021.

[77] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. Deepham-
mer: Depleting the intelligence of deep neural networks
through targeted chain of bit flips. In 29th USENIX Secu-
rity Symposium, USENIX Security 2020, August 12-14,
2020, pages 1463–1480, 2020.

[78] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A high resolution, low noise, L3 cache side-channel
attack. In Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014,
pages 719–732, 2014.

[79] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin
Wu, and Yuheng Zou. Dorefa-net: Training low bitwidth
convolutional neural networks with low bitwidth gradi-
ents. CoRR, abs/1606.06160, 2016.

Appendix

A Memory templating

Memory templating aims to scan the memory for bit locations
that are vulnerable to bit flips in order to deterministically
induce bit flips in the target model. The attacker should first
comprehend the physical address to row mapping scheme in
order to perform the rowhammer. We reverse-engineer the
DRAM addressing schemes with a specific hardware config-
uration using techniques proposed in [56]. To profile on the
DDR4 memory which are protected from DDR3 double-sided
Rowhammer attacks, we basically follow the techniques in the
TRRespass tool [21], where multiple rows of DRAM are ac-
cessed sequentially resulting in flips on the memory. In detail,
a victim is produced above the attacker row, and an attacker
is formed above the new victim a variable number of times
rather than just one row above and below the victim row being
read. The normal operation of the underlying system will not
be unaffected because the profiling is done in the attacker’s
own memory space. A list of physical pages with their page
frame numbers, vulnerable bit offsets and flip directions are
generated during the memory templating phase.

1348 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Deep Neural Network
	Trojan Attack
	Threat Model

	The Groan Attack
	Overview
	Knowledge Discovery
	Bit Identification
	Trojan Injection

	Evaluation
	Experimental Setup
	Effectiveness and Performance
	Ablation Study

	Discussion
	Mitigation

	Related Works
	Conclusion
	Memory templating

