
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

What Was Your Prompt?
A Remote Keylogging Attack on AI Assistants

Roy Weiss, Daniel Ayzenshteyn, Guy Amit, and Yisroel Mirsky,
Ben Gurion University of the Negev

https://www.usenix.org/conference/usenixsecurity24/presentation/weiss

What Was Your Prompt? A Remote Keylogging Attack on AI Assistants

Roy Weiss
Ben-Gurion University, Israel

Daniel Ayzenshteyn
Ben-Gurion University, Israel

Guy Amit
Ben-Gurion University, Israel

Yisroel Mirsky∗

Ben-Gurion University, Israel

Abstract
AI assistants are becoming an integral part of society, used

for asking advice or help in personal and confidential issues.

In this paper, we unveil a novel side-channel that can be

used to read encrypted responses from AI Assistants over the

web: the token-length side-channel. The side-channel reveals

the character-lengths of a response’s tokens (akin to word

lengths). We found that many vendors, including OpenAI and

Microsoft, had this side-channel prior to our disclosure.

However, inferring a response’s content with this side-

channel is challenging. This is because, even with knowl-

edge of token-lengths, a response can have hundreds of words

resulting in millions of grammatically correct sentences. In

this paper, we show how this can be overcome by (1) utiliz-

ing the power of a large language model (LLM) to translate

these token-length sequences, (2) providing the LLM with

inter-sentence context to narrow the search space and (3) per-

forming a known-plaintext attack by fine-tuning the model on

the target model’s writing style.

Using these methods, we were able to accurately recon-

struct 27% of an AI assistant’s responses and successfully

infer the topic from 53% of them. To demonstrate the threat,

we performed the attack on OpenAI’s ChatGPT-4 and Mi-

crosoft’s Copilot on both browser and API traffic.

1 Introduction

The proliferation of Large Language Models (LLMs) and

Chat-based AI services, such as ChatGPT, marks a significant

evolution in the digital landscape. These technologies have

not only captured the imagination of the public but have also

become integral to various aspects of society. Their utility

spans from answering simple queries to assisting in complex

decision-making processes, highlighting their importance and

the trust placed in them by users worldwide.

As the use of AI assistants becomes increasingly common-

place, so too does the sensitivity of the information shared

1Corresponding author

I have a rash, is it contagious?

I need more details about your rash.
Where is it, and what does it look like?

1
5
5
8
6
5
5
1
6
3
3
1
4
5
5
3
5
5
1

1
5
5
8
6
5
5
1

6
3
3
1
4
5
5
3
5
5
1

I need some details
about your rash.

Where is it, and what
does it feel like?

1. Packet Capture

Encrypted Conversation

2. Extract Token-Length Sequence

4. Predict with LLM

3. Parse with Heuristics

Attack

Figure 1: Overview of the attack. A packet capture of an

AI assistant’s real-time response reveals a token-length side-

channel. The side-channel is parsed to find text segments

which are then reconstructed using sentence-level context and

knowledge of the target LLM’s writing style.

with them. Users frequently turn to these assistants for dis-

cussions on personal matters, such as health and hygiene, or

for help with confidential tasks, including editing sensitive

emails or seeking business advice. This trend underscores

the critical need for robust security measures to protect the

privacy of these interactions [2, 35].

However, our research has uncovered a significant vul-

nerability in the way LLM services, including the popular

ChatGPT-4 [1], handle data transmission. LLMs generate and

send responses as a series of tokens (akin to words), with

each token transmitted from the server to the user as it is

generated. While this traffic is encrypted, the sequential token

USENIX Association 33rd USENIX Security Symposium 3367

transmission exposes a new side-channel: the token-length

side-channel. Despite encryption, the size of the packets can

reveal the character length of each token, potentially allowing

attackers on the network to infer sensitive and confidential

information shared in private AI assistant conversations. The

challenge for attackers in exploiting the token-length side-

channel lies in the inherent complexity of accurately inferring

text from a sequence of token-lengths. This difficulty is pri-

marily due to the fact that the tokens from a single sentence

can correspond to a multitude of grammatically correct sen-

tences. Moreover, this task becomes exponentially more chal-

lenging when the goal is to decipher entire paragraphs, vastly

increasing the potential combinations and interpretations.

Previous studies on remote keyloggers have leveraged ad-

ditional side-channels, such as keystroke timings, to reveal

information on which characters have been typed. However,

such approaches are not applicable in our setting because

LLMs generate whole words at a time and therefore do not

leak any character-level information. This presents a unique

challenge to traditional side-channel analysis. A complete

discussion of related works can be found in section 8.

To overcome this challenge, we propose a token inference
attack that is extremely effective at deciphering responses in

encrypted traffic. The approach is to train a state-of-the-art

LLM to translate a token-length sequences back into legible

sentences. Furthermore, by providing the LLM with the con-

text of previously inferred sentences, the LLM can narrow

down the possible sentences further, thereby reducing the

entropy involved in inferring entire paragraphs. Finally, we

show how an adversary can exploit the predictable response

style and phrase repetition of LLMs like ChatGPT to refine

the model’s accuracy even further. This is achieved by train-

ing the attack model with sample chats from the target AI

assistant, effectively creating a known-plaintext attack sce-

nario that enhances the model’s ability to infer the sequence

of tokens. These sample chats can be readily obtained from

public repositories (e.g., [8]) or by accessing the AI assistant

service directly as a paying user.

Our investigation into the network traffic of several promi-

nent AI assistant services uncovered this vulnerability across

multiple platforms, including Microsoft Bing AI (Copilot)

and OpenAI’s ChatGPT-4. We conducted a thorough evalua-

tion of our inference attack on GPT-4 and validated the attack

by successfully deciphering responses from four different

services from OpenAI and Microsoft.

In summary, the contributions of our paper are as follows:

• Novel side-channel: We identify a novel side-channel

inherent in all LLM models, affecting any LLM-based

service that sends responses in real-time.

• Token Extraction Method: We provide framework for

extracting token-length sequences from encrypted LLM

response traffic, and identifying text segments (e.g., sen-

tences) within the sequences.

• Single Sentence token inference Attack: We propose

the first ever token inference attack. We train an LLM to

translate token-length sequences into plaintext sentences.

To the best of our knowledge, this is the first work that

uses generative AI to perform a side-channel attack.

• Multi-sentence token inference Attack: We introduce

a technique for inferring entire paragraphs by consider-

ing inter-sentence context. By doing so, we are able to

significantly narrow the scope of possible sentences and

enhance the accuracy of the inferred information.

• Known-Plaintext Attack on LLMs: We expose a novel

attack vector which can be used to improve token in-

ference attacks. By collecting and analyzing example

responses from the target LLM (i.e., AI assistant) we can

exploit the predictable style of LLMs, and tendency of

LLM’s to repeat training data, to better infer plaintexts.

• Exposure & Demonstration We identify several ma-

jor vendors vulnerable to this attack and demonstrate

the significance of the attack by demonstrating it on en-

crypted network traffic from OpenAI’s ChatGPT-4 and

Microsoft’s Copilot.

This paper not only sheds light on a critical security flaw

in current AI assistant services but also offers a comprehen-

sive framework for understanding and mitigating the risks

associated with the token-length side-channel.

2 Background

In this section, we outline the fundamental concepts needed to

understand the token-length side-channel. We start by defin-

ing tokens and the tokenization process. Next, we briefly

describe how Large Language Models (LLMs) use and gener-

ate token sequences. Finally, we examine the deployment of

LLMs in online AI assistants and chatbots, highlighting how

the streaming of tokens can expose their lengths to potential

eavesdroppers.

2.1 Tokens & Tokenizers
In Natural Language Processing (NLP), a token is the small-

est unit of text that carries meaning. The set of all tokens K is

predetermined based on the content being processed. When a

sentence is tokenized, it is divided into a series of tokens rep-

resented as S = (k1,k2, ...,kn), where S is the entire sentence,

and ki ∈K is an individual token.

For instance, consider the sentence “I have an itchy rash.”

The tokenization of this sentence could be represented as

S = (k1,k2,k3,k4,k5), where the tokens are k1 = I, k2 = have,

k3 = an, k4 = itchy, and k5 = rash. In some cases, particularly

with complex words, tokenization might result in a word being

divided into multiple tokens. For example, the word “tokenize”

3368 33rd USENIX Security Symposium USENIX Association

could be tokenized as S = (k1,k2) with k1 = token and k2 =
ize. Furthermore, spaces and punctuation in tokenization are

handled distinctively. Spaces are often included in the token,

while punctuation like commas and periods are typically sepa-

rate tokens. For example, consider the text “Oh no! I’m sorry
to hear that. Try applying some cream.” The tokenizer of

GPT-3.5 and 4 would tokenize it as

Oh no! I’m sorry to hear that. Try applying some cream.

and the tokenizer of LLAMA-1 and 2 would tokenize it as

Oh no! I’m sorry to hear that. Try applying some cream.

Note how the apostrophe and the letter following it can some-

times form a separate token, and that spaces are added as

prefixes to words. Tokenizers used by different LLM models

are fundamentally similar as they all follow the principle of

breaking down text into manageable units. Also, it is impor-

tant to note that major vendors do not keep their tokenizers

secret since they are an important part of their API services.

In summary, although tokens are akin to words, they do not

have a one-to-one mapping. They also include spacing and

reserve tokens for punctuation.

2.2 LLMs in AI Assistants
AI chatbots, like ChatGPT, are sophisticated LLMs designed

for engaging in human language interactions. Key to their

functionality are prompts and responses:

Prompt (P): A prompt is the user’s input, typically a ques-

tion or statement, initiating interaction with the LLM.

It is represented as a token sequence P = [p1, p2, ..., pm]
for pi ∈K.

Response (R): In reply to the prompt, the LLM generates

a response, also a sequence of tokens, denoted as R =
[r1,r2, ...,rn] for ri ∈K.

Chat-based LLMs manage conversations through these al-

ternating prompts and responses, maintaining context to en-

sure relevance and coherence. The model tracks the dialogue’s

history, allowing it to contextualize each response within the

ongoing conversation.

LLMs use tokens both in training and execution. They are

trained on vast datasets of tokenized text (e.g. The Pile [10])

to learn the probability of a token following a given sequence,

which enables them to predict the next token in a response.

During execution, the LLM generates response tokens

sequentially. Starting from the prompt, it predicts each

subsequent token ri based on both the prompt and the

preceding response tokens [r1,r2, ...,ri−1]. This method,

p(ri∣P,r1,r2, ...,ri−1), allows the LLM to produce contextu-

ally relevant and coherent responses, considering the entire

conversational history.

LLM Model Protocol Extraction Tokens

Vendor Service V
u
ln

er
ab

le
G

P
T

-4
C

la
u
d
e

P
al

m
2

G
P

T
-3

.5

H
T

T
P

2
W

eb
so

ck
et

Q
U

IC
T

L
S

T
C

P
U

D
P

∣m
i∣−
∣m

i−
1
∣

∣pa
ck

et
i∣−

h

B
u
ff

er
ed

P
ai

re
d

S
in

g
le

OpenAI ChatGPT ● ● ● ● ● ● ● ●
OpenAI Marketplace ● ● ● ● ● ● ●
OpenAI API ● ● ● ● ● ●

Microsoft Copilot ● ● ● ● ● ● ●
Writesonic Chatsonic ● ● ● ● ● ● ●
Anthropic Claude AI ● ● ● ● ● ● ●

Notion AI Copilot ● ● ● ● ● ●
ClickUp AI Brain ● ● ● ● ● ●

TextCortex TextCortex AI ● ● ● ● ● ●
CKSoruce CKEditor ● ● ● ● ● ●

Quora Poe ○ ● ● ● ● ● ● ● ●
Perplexity AI Perplexity AI ○ ● ● ● ● ● ● ● ●

CopyAI CopyAI ○ ● ● ● ● ●
Google Bard ● ● ● ●
Github Copilot ● ● ●

Table 1: AI Assistants and their vulnerability to the side chan-

nel attack, as of the time of writing. (● =yes ○ =maybe). The

right most column relates to whether or not tokens are grouped

during transport and how (detailed in section 5.3).

2.3 The Deployment of AI Assistants
AI assistants are typically deployed in cloud-based environ-

ments. This setup allows for scalable and efficient access to

the computational resources required to run these sophisti-

cated models. A user session with an AI assistant generally

follows a straightforward process:

1. Connection: The user connects to a server hosted in the

cloud via a web app in a browser or via an API (e.g.,

using a 3rd-party app). The user starts or resumes a chat

session (conversation) to set the context of the prompts.

2. Prompting: The user submits a prompt P (a query or

statement) and it is transmitted to the server as a single

message. The server forwards the prompt to an instance

of the LLM model for processing.

3. Response Generation: The LLM generates a response

R to the prompt and the response tokens are sent back

as text to the user sequentially and in real time for

visualizing the response as it’s created. This operational

approach enhances user experience by allowing users

to see the AI’s responses form in real-time, ensuring a

dynamic and engaging conversation. This is especially

important given that state-of-the-art LLMs are slow due

to their complexity.

We observed that most vendors use either the QUIC proto-

col over UDP or web sockets over TCP to transmit responses.

As of the time of writing, these vendors do not pad, compress,

or encode the traffic before it is encrypted. For more details,

see Table 1.

USENIX Association 33rd USENIX Security Symposium 3369

3 Side-channel Definition & Attack Model

3.1 Token-length side-channel
In a real-time communication setting, AI services transmit the

next token ri as text immediately after it is generated. Our ob-

servations of several AI assistant services (referenced in Table

1) indicate that the token ri is sent either as an individual mes-

sage or as part of a cumulative message (e.g., [r1,r2, ...,ri]).
Crucially, in both scenarios, the packet’s payload length is

directly correlated to the number of characters in ri’s text. In

the case of cumulative messages, the length of each token can

be inferred by calculating the difference in payload length

between successive packets. Consequently, for each response

message, it is possible to discern the lengths of every single

token, even when the traffic is encrypted.

Let the token-length sequence for a response be denoted as

T = [t1,t2, ...,tn], where ti represents the character length of

the token ri’s text. The relationship between the token ri and

its character length ti can be expressed as ti = ∣ri∣.
This token-length sequence L can be exploited to infer the

original tokens, thereby breaching the privacy of the conversa-

tion by revealing every AI response. These responses can also

be used to deduce the prompts themselves, either indirectly

through context or directly in cases where the AI repeats the

question before proceeding.

3.2 Attack Model
In our scenario, we have three entities: Bob, the user; Alice,

the AI assistant; and Eve, the attacker. Bob interacts with

Alice for various tasks such as seeking personal advice, look-

ing up facts, or editing documents. Alice, the AI assistant,

responds to Bob’s prompts over an encrypted communication

channel. We assume that all plaintext messages exchanged

are in English and that no additional padding is added to these

messages, as is common practice with several major vendors

(see Table 1).

Eve, positioned as the adversary in this model, aims to read

the encrypted responses sent by Alice. She is capable of ob-

serving the encrypted network packets, either within the Local

Area Network (LAN) of Bob or somewhere in the internet

infrastructure between Alice and Bob. By monitoring these

packets, Eve intends to extract the token-length sequence T
from each response and use it to infer the original plaintext

R. With R, Eve can access not only private and personal infor-

mation about Bob but also potentially sensitive data related to

the company Bob works for. For instance, this could occur if

Bob asks Alice for assistance in editing a work-related email.

It is important to note that Eve cannot use Alice’s model to

perform the inference attack using next-token probabilities.

This is because AI assistant vendors, such as OpenAI and

Microsoft, do not provide their model’s next token probabili-

ties in their chat services. We also assume that Alice has no

knowledge of the prompt that elicited the response since the

prompt is usually sent as one single encrypted message. Al-

though we don’t require it, we assume that Eve has access to

publicly available datasets of example prompts and responses

from the target AI service, or that she can register as a free or

paid user to create her own dataset.

3.3 Problem Statement
The fundamental challenge for the attacker in this scenario

is to accurately reconstruct the original response R from the

observed token-length sequence T .

This can be formally stated as follows:

Given a sequence of token-lengths T = [t1,t2, ...,tn] ex-
tracted from encrypted traffic, infer the original token se-
quence R = [r1,r2, ...,rn] from T , where ti = ∣ri∣ represents the
length of token ri.

Solving this problem is non-trivial due to the absence of

additional character-level information that can help narrow

down the options for each word. This lack of information

significantly increases the number of possible grammatically

correct sentences for even a single sentence structure.

For example, consider the sentence "She has a ___ and a

___," with blanks to be filled by 4-letter and 5-letter nouns

respectively. There are at least 880 nouns with 4 letters and

905 nouns with 5 letters, so the total number of grammatically

correct solutions for the sentence is 880×905 = 795,600. This

example shows that even with just two unknown tokens, brute-

forcing all possible correct sentences that can be mapped to

T leads to too many results for the attacker to consider. This

issue is compounded when considering entire paragraphs.

However, there are at least two sources that can be used

to reduce the entropy of this task: long-distance language

structure across sentences and paragraphs, and style-specific

language structure exhibited by AI assistants. Therefore, we

address this challenge by combining three strategies:

1. Inference with Modern LLMs: We harness the capabil-

ities of state-of-the-art language models. By fine-tuning

a pre-trained LLM for our task, we can capitalize on the

common language structures and patterns prevalent in

the English language to reduce sentence entropy. Un-

like previous works that relied on Markovian models for

exploiting similar side-channels (e.g., [21]), LLMs are

more adept at this task due to their proficiency in consid-

ering long-distance relationships between tokens [31].

Additionally, we employ self-supervised learning for

fine-tuning, which greatly simplifies dataset curation by

eliminating the need for manual labeling.

2. Forward Context: Inferring the content of a token se-

quence is much easier if we know what the previous

response was. For example, if Ri−1 is a sentence about

‘how to apply itch cream,’ it’s likely that Ri will pertain

to the application of itch cream. Formally, p(Ri∣Ti, R̂i−1)

3370 33rd USENIX Security Symposium USENIX Association

Figure 2: An overview of the attack framework: (1) Encrypted traffic is intercepted and then (2) the start of the response is

identified. Then (3) the token-length sequence T is extracted and (4) a heuristic is used to partition T into ordered segments

(T0,T1, ...). Finally, (5) each segment is used to infer the text of the response. This is done by (A) using two specialized LLMs to

predict each segment sequentially based on prior outputs, (B) generating multiple options for each segment and selecting the best

(most confident) result, and (C) resolving the predicted response R̂ by concatenating the best segments together.

where R̂i−1 is the inferred response from Ti−1. There-

fore, by providing the adversary’s LLM with R̂i−1 we

can greatly reduce paragraph entropy.

Solving for T is hard. However, if T is part of a long

sequence (i.e., a sentence in a paragraph) then the context

of the prior resolved sentence can help us infer the words

in the current sentence better. For example, if the last

sentence was about ‘how to apply itch cream,’ then the

next sentence may be about ‘how often to use it.’ This

context can help an LLM model reduce paragraphs even

further.

3. Known-plaintext Attack: We observed that LLMs used

in AI assistant services exhibit distinct writing styles

and sometimes repeat phrases from their training data, a

notion echoed by other researchers as well [4,23]. Recog-

nizing this characteristic enables us to conduct an attack

similar to a known-plaintext attack. The method involves

compiling a dataset of responses from the target LLM

using public datasets or via sending prompts as a paid

user. The dataset can then be used to further fine-tune

the inference model. As a result, the inference model is

able to reduce entropy significantly, and sometimes even

predict the response R from T perfectly, word for word.

4 Token Inference Attack

In this section, we describe how we implement the token
inference attack that exploits the token-length side-channel
exhibited by major vendors. Our attack is structured into a

series of steps, as depicted in Fig. 2:

1. Traffic Interception: The first step involves intercept-

ing the encrypted traffic between the user and the AI

assistant. This can be done by eavesdropping on the traf-

fic sent through public networks or by malicious actors

within an internet service provider (ISP).

2. Message Identification: Once the traffic is intercepted,

the next step is to extract the message sizes. A message

m is a communication that contains the latest token and

other metadata. To do this, we must first identify the first

message packet. This involves (1) removing all packets

that do not contain messages and (2) combining packets

that were split because they were too long. The result is

a sequence of message sizes.

3. Sequence Extraction: With the sequence of message

sizes, the token-length sequence T is extracted by ob-

serving the change of the stream’s message sizes over

time. Depending on the server’s approach to token trans-

mission — whether it includes all preceding tokens with

each new token or not — two distinct strategies can be

employed to extract the token-length sequence T .

4. Sequence Segmentation: The extracted token-length

sequence T is then partitioned into ordered segments

T0,T1, ... , where Ti roughly corresponds to a sentence.

This is accomplished by using a heuristic that exploits

the tokenizer’s behavior.

5. Response Inference: The sequence of segments is then

passed to a model consisting of two LLMs (LLMA and

LLMB) which are used to infer the text of R. LLMA is

designed to reconstruct the first segment from T0 and

USENIX Association 33rd USENIX Security Symposium 3371

LLMB is designed to reconstruct the subsequent seg-

ments from T1, T2, and so on using the inferred text of

the preceding segment as context. We employ two LLMs

because the initial sentence of an AI assistant’s response

typically follows a unique distribution. By tailoring a

dedicated model specifically for these first sentences, we

enhance the accuracy at the paragraph’s outset, which in

turn significantly improves the inference quality for all

subsequent sentences within the paragraph.

Given the stochastic nature of LLM outputs, for each Ti,

we generate multiple outputs and select the most prob-

able one as the predicted response segment R̂i. These

segments, R̂0, R̂1, ..., are then concatenated to construct

the complete inferred response R̂.

We will now provide more details on each of these steps.

4.1 Traffic Interception
The initial step of the attack involves eavesdropping on en-

crypted communications, as detailed in Section 3.2. The ad-

versary can be positioned within the same LAN, connected

to the same WiFi, or anywhere on the internet, provided they

can observe the packets. Moreover, there exist techniques that

allow traffic to be rerouted through the adversary for obser-

vation, even if they are not directly on the communication

path [6], enhancing the feasibility of eavesdropping.

To perform the attack, we must find the response. To ac-

complish this, we filter the traffic based on (1) the server’s

known IP addresses and (2) the protocol used by the vendor.

For example, to target ChatGPT, we search for UDP traffic car-

rying QUIC, and for Bing Copilot we search for TCP traffic

carrying TLS.

4.2 Message Identification
As mentioned in section 3.1, the server sends the client token

ri in a message mi containing all previous tokens r1,r2, ...,ri
along with fixed length session metadata. Our goal here is

to extract message sizes from traffic. We start by identifying

the first and last packets of a response and then extract the

message lengths.

To detect the first and last packets, we analyze bandwidth

patterns from the server to the client. The start and end of a

response have a deterministic pattern specific to the service

(e.g., OpenAI-GPT vs Microsoft-Copilot). This can be done

by: (1) connecting to the service and observing the plaintext

with our own TLS key, (2) sending a prompt to the service

and recording the response traffic, and (3) creating rules that

capture the bandwidth patterns for the start and end of the

response. For instance, OpenAI’s ChatGPT uses a fixed-size

preamble of 4200 bytes and a jump in message size of 71

bytes at the end.

0

500

1000

1500

2000

0 200 400 600
Packet Number

Q
U

IC
 P

ay
lo

ad
 S

iz
e

[B
]

Before

0

500

1000

1500

2000

0 200 400 600
Message Number

M
es

sa
ge

 S
iz

e
[B

]

After

Figure 3: An example showing the trends in the encrypted traf-

fic traffic before and after performing message identification.

This example is taken from a response sent from OpenAI’s

ChatGPT-4 web app. Red bars indicate the start and end of

the messages.

To extract message lengths, we use a straightforward

method: since a given mi typically fits into one packet, the se-

quence of ∣R∣ packets will have payload sizes that are strictly

increasing (see Fig. 3). To find the first packet (containing

m0), we look for this trend and then backtrack. The length

of m0 is the size of that packet, excluding the header length.

Some vendors use protocols that send bursts of control pack-

ets; we filter these by ensuring continuity in the increasing

payload lengths.

For vendors using QUIC, messages are split over multi-

ple packets when they exceed a certain size. For example,

ChatGPT-4’s web app has a maximum QUIC payload size

of 1200 bytes. When an HTTP3 packet exceeds this, it splits

into multiple QUIC packets, each with a 28-byte HTTP3

header, creating a ’saw tooth’ pattern in QUIC payload sizes

for messages over 1172 bytes. This pattern is deterministic: if

∣m∣ > 1172 bytes, there will be ⌊ ∣m∣
1172
⌋ packets with the maxi-

mum payload size and one packet with a payload size of ∣m∣
mod 1172+28 bytes.

4.3 Sequence Extraction
Now that we have extracted a sequence of message sizes, we

can derive the token-length sequence as follows:

T = {ti∣ ∣mi∣− ∣mi−1∣} (1)

This method is feasible because, as outlined in section 2.3,

vendors typically do not apply padding, compression, or en-

coding to tokens prior to encryption, enabling the straightfor-

ward extraction of T . It’s important to highlight that while all

major vendors currently transmit tokens in this manner, future

services might opt to send each token independently with-

out including the previous tokens. In such scenarios, one can

3372 33rd USENIX Security Symposium USENIX Association

deduce the overhead and calculate T as T = {ti∣∣packeti∣−h},
where h is the fixed-length message metadata. The value of h
can be determined either by connecting as a legitimate user

and inspecting the packets or heuristically by identifying the

smallest packet likely containing a single-character token.

We note that even if a vendor encodes or compresses the

data, it may not completely mitigate the side-channel, as

shown in [21].

4.4 Sequence Segmentation
The token-sequence T encapsulates one or more paragraphs

of text. Before we can use it with our model, we must seg-

ment it into meaningful chunks. Fortunately, it is possible

to identify punctuation marks within T . This is due to two

key observations: (1) tokenizers are designed not to include a

space character with a punctuation mark, and (2) the smallest

word, such as ‘a’, always comes with a leading space, making

it at least two characters long. Consequently, tokens of length

1 are almost certainly punctuation marks.

Naturally, for our model to effectively infer text, we aim

to segment T into units that closely resemble complete sen-

tences. However, distinguishing between different types of

punctuation marks (periods, commas, etc.) is not feasible di-

rectly. Thus, we employ a heuristic to approximate sentence

boundaries.

Segmentation Process. The process begins by splitting T
at every instance where ti = 1, which likely indicates a punc-

tuation mark. If a segment contains fewer than 10 tokens (∼7
words), it is merged with the following segment. This step

is iterated until we compile a list of token-length sequences

(T0,T1, ...), each approximating a sentence or meaningful tex-

tual segment. There are some edge cases that can also be

considered to refine the results. For example, responses that

contain an enumerated list always have the pattern “:\n\n1.”

which is the sequence (3,1,1) since the colon and newlines

are joined. Therefore, we add this sub-string to the start of the

next segment so that each item will start with its enumeration

token and reduce the chance of error on the former segment.

While our heuristic for segmentation is not flawless, the

model compensates for these inaccuracies by learning from

numerous examples during training. For the sake of repro-

ducibility, we have made our segmentation code, inclusive

of all its edge cases, and the entire model training pipeline

available online.1

4.5 Response Inference
Our attack model is predicated on the observation that the first

segment in a response from an AI assistant typically exhibits a

distinct format and style compared to its subsequent segments.

For instance, an initial response might begin with “Sure, I can
provide information on the legality of abortion in a particular

1https://github.com/royweiss1/GPT_Keylogger

state:...” or “Here are some common mindfulness practices for
managing stress:...” where an inner segment would be more

informational.

Given this intuition, our attack model optimizes effective-

ness by employing two separate Large Language Models

(LLMs) for generating complete paragraphs. The first model,

denoted as LLMA, is tasked with generating the initial seg-

ment using T0 without relying on any additional context. The

second model, LLMB, generates all following segments, uti-

lizing Ti and incorporating the context from the last predicted

segment’s text R̂i−1. This bifurcated approach allows us to

tailor the generation process to the unique characteristics of

both the opening and the inner segments of a response.

Due to the inherently stochastic nature of LLM outputs, a

single execution of an LLM for a given input might not yield

the correct answer. To address this, we execute each LLM

multiple times for each input and employ the LLM’s confi-

dence scores across these samples to rank the results. We then

select the best outcome as the actual prediction, leveraging

the models’ ability to evaluate their own output.

Later in section 5.2, we explore the effectiveness of this

ranking mechanism and the performance of the LLMs.

Model Architecture. Our task of inferring R from T is

similar to the task of translation. LLMs are designed for this

task, thus making them excellent models for our purpose. In

particular, the base model which we build on is the pre-trained

T5 model [28]; a transformer-based encoder-decoder neural

network, trained to perform multiple sequence-to-sequence

tasks including translation.

As with other LLMs, the T5 models make use of a lan-

guage model (LM) head in their decoder, which contains a

final output layer consisting of the same output units as the

model’s vocabulary size, each representing the probability of

that token. When used to create a new segment (known as

generation), each new token is selected by sampling from the

perceived probability distribution consisting of all the output

units. The complete generation procedure operates in an auto-

regressive manner: tokens are sampled one at a time and are

appended to the input sequence.

New Vocabulary. Unfortunately, LLMs are trained to as-

sociate words with their corresponding lengths, and not to-

kens, which also include partial words and special signs. Thus

plainly prompting an LLM with a sequence of token lengths

(e.g., 2, 5, 4, 1, ...) will yield an inaccurate result. We have

confirmed this in our baseline evaluations where we show that

ChatGPT-4 is unable to perform our task effectively (see sec-

tion 5.2). Therefore, we decided to fine-tune the weights of the

T5 model with an expanded token vocabulary, as commonly

performed when adapting a pre-trained language for a specific

domain [18]. In this vocabulary, each new token represents

some ti; the length of a token. For example, tokens with 5

and 8 characters are represented in the models’ vocabulary by

the new tokens _5 and _8 respectively. As the tokens in the

expanded vocabulary are initialized from a natural starting

USENIX Association 33rd USENIX Security Symposium 3373

point, relearning the meaning of the original number tokens

is avoided, leading to an efficient training process.

Training. The training of T5 models mirrors the auto-

regressive generation process. During training, a sequence of

tokens is fed into the model, followed by a gradient update

step aimed at refining the model weights. The objective is

to adjust the LM head’s output distribution to maximize the

probability of correctly predicting the subsequent token in the

sequence.

The objective of LLMA is to predict p(Ri∣Ti) which can

be achieved through standard T5 model training using cross-

entropy loss. However, LLMB is slightly more complicated

since its objective it to predict p(Ri∣Ti,Ri−1) where Ri is the

corresponding response text for Ti. To add this secondary

input sequence, we employ a scheme commonly used in the

instruction tuning of language models [39]. The method is to

prompt the model to perform translation but to append both

the target tokens Ti and the context tokens Ri−1 to the prompt.

For example, a prompt to train LLMA on R0 = “I need more
details about your rash.” would be:

LLMA Training Prompt

Translate the Special Tokens to English.

Special Tokens: _1 _5 _5 _8 _6 _5 _5 _1

However, a prompt to train LLMB on R1 = “Where is it,
and what does it look like?” take the form of:

LLMB Training Prompt

Translate the Special Tokens to English, given the context.

Context: I need more details about your rash.

Special Tokens: _5 _3 _3 _1 _4 _5 _5 _3 _5 _5 _1

The models are trained with a self-supervised training pro-

cedure. First, a set of responses is collected as the ground

truth. Then, each response is segmented using the segmen-

tation algorithm in section 4.4. These segmented plaint-text

responses serve as the ground truth dataset Dy. Finally, we

generate the token-length sequences for each response seg-

ment inDy asDx. Model LLMA is trained on the first segment

for each response in (Dx,Dy) and LLMB is trained on all other
segments.

Ranking. During execution, an LLM (such as T5) will

make different predictions for each time it is executed. This

is because the model introduces some randomness in the

selection of the next token to help the model explore better

solutions. However, in the context of our problem, we want to

generate the most likely solution. Therefore, when executing

either of our models, we execute them k times and select

the result with the highest probability: p(Ri∣T0) for LLMA

and p(Ri∣Ri−1,T0) for LLMB. The probability is obtained by

measuring the respective model’s confidence on the given

prediction.

Inference. To infer R from a given T , we perform the

following process (illustrated in Fig. 2). First T is segmented

using the segmentation algorithm. Then the first segment T0 is

passed through LLMA k times and the result with the highest

confidence is selected as R̂0. Next, the second segment T1 is

passed through LLMB with R̂0. The result with the highest

confidence is selected as R̂1. This process repeats over LLMB

until the last segment is processed. Finally, R̂ is created by

concatenating the predicted segments in order such that R̂ =
R̂0∣∣R̂1∣∣...∣∣R̂∣R∣.

5 Evaluation

In this section, we evaluate the threat of the token-length

side-channel by demonstrating how effective our LLM-based

inference model is at performing a token inference attack.

Our evaluation is performed on services provided by major

vendors, such as OpenAI and Microsoft. A demo video of the

attack2 and the source code for this research3 can be found

online.

5.1 Experiment Setup
Datasets & Training. We used the UltraChat dataset [8]

which encompasses 1.5 million multi-turn dialogues using the

GPT-4 Turbo API. Of these dialogues, 570,000 are general in-

quiries, and the rest focus on creative writing, summarization,

and editing. For our purpose, we used the general inquiries

section. From each dialogue, we used the first response only

to form our dataset. After segmentation, the dataset had on

average 12.57 sentences per response and 17.5 tokens per

sentence. The entire dataset was used for training except for

10k which was used for validation and 10k which was used

for testing. To prevent contamination of the test set with train-

ing samples, we removed any test set prompts that either

contained all the same words as a prompt in the training set

or shared at least the first eight words with a prompt in the

training set.

The initial segment model was trained for 50 epochs, while

the model dedicated to middle segments underwent training

for 40 epochs, both utilizing an NVIDIA RTX 6000. The

training duration for the first model was approximately 2 days,

while the second model required about 10 days to complete

its training phase.

Metrics. In our evaluation, we employed two distinct met-

rics for assessing the fidelity of our reconstructions at differ-

ent granularities: edit distance (ED) at the character level and

ROUGE at the word level. ROUGE measures the overlap of

n-grams between the generated text and the reference text,

focusing on the aspects of recall and precision. Specifically,

we utilized precision ROUGE-1 (R1) and ROUGE-L (RL

2https://www.youtube.com/watch?v=UfenH7xKO1s&t
3https://github.com/royweiss1/GPT_Keylogger

3374 33rd USENIX Security Symposium USENIX Association

Figure 4: The relationship between cosine similarity and ob-

jective privacy exposure (average vote from 100 participants).

Each point represents an evaluated tuple (a sentence R and its

reconstruction R̂). The black line shows the linear relationship

with its 0.95 confidence interval. Most participants (above

blue line) perceived a privacy exposure for reconstructed sen-

tences with cosine similarity φ > 0.5 (left of red line).

-longest sub-sequence), with the understanding that higher

ROUGE scores, ranging from 0 to 1, indicate better perfor-

mance, where 1 signifies a perfect match.

However, reconstruction accuracy alone does not ascertain

whether the confidentiality of the responses, specifically their

topics, has been compromised. To address this, our evalua-

tion primarily hinges on cosine similarity [5, 22]. Utilizing

a pre-trained sentence transformer [29] from the MiniLM

architecture [33], we compute the embeddings for the original

response R and its reconstruction R̂, and then assess their sim-

ilarity through by computing their cosine similarity (denoted

φ), which ranges from -1 to +1 (φ = −1 implies a complete

divergence in the topic and φ = 1 indicates perfect alignment).

For examples of how this score correlates with actual recon-

structions, we direct the reader to Fig. 5, which showcases

successful and unsuccessful attacks on OpenAI’s ChatGPT-4.

To determine objectively what value of φ indicates a suc-

cessful attack (that the underlying topic is indeed captured in

the inferred text), we performed a survey: Using the test set,

we sampled 50 sentences uniformly at across φ = [0.3,1.0].
Then, 100 random people on Prolific were asked to vote on

whether or not a reconstructed sentence captures the content

or topic of the original sentence.4 Fig. 4 plots the 50 sentences

according to their survey score and φ values. The linear re-

lationship shows that the majority of the participants found

that φ values above approximately 0.5 indeed compromise the

privacy of the message. Using this observation, we measure

the attack success rate (ASR) of a model as the percent of

samples that have a φ greater than 0.5.

Experiments. Our experiments were designed with two

4The survey text can be found in the appendix.

primary objectives: to evaluate our model’s performance and

to analyze the effectiveness of our attack under realistic con-

ditions. Initially, we assessed the model’s capability using a

test set of 10,000 responses generated by GPT-4, focusing on

its accuracy and reliability in reconstructing text from token-

length sequences. Following this, we conducted an analysis

of the attack’s performance using captured network traffic,

where the token-length sequences were subject to additional

noise such as errors and buffering. We evaluated the attack

performance on OpenAI’s ChatGPT-4 services (browser appli-

cation, GPT marketplace, and API) and Microsoft’s Copilot.

To understand our model better, we also performed a base-

line evaluation and an ablation study on the impact of the

model’s training data.

5.2 Attack Evaluation
First, we will explore the performance of the attack on the first

segment. This is because (1) often the first segment reveals

the confidential topic entirely and (2) the quality of R̂0 directly

impacts the subsequent segments.

First Segment Inference. As mentioned earlier, we subjec-

tively set our attack success threshold to φ > 0.5 as reflected in

5. Among the 10k test-set responses from GPT-4, we achieved

an attack success rate of over 52.7% on the first segment. This

is a significant finding because it indicates that over half of a

user’s conversations can be exposed. Furthermore, the model

was able to reconstruct 27% of the first segments with very

high accuracy (φ > 0.9).

The top row of Table 2 summarizes the results. In the ta-

ble, the cosine similarity and Rouge metrics reflect positive

outcomes, suggesting successful results. Conversely, the ED

metric presents a more conservative evaluation. This is be-

cause the cosine and Rouge metrics are considering more

abstract measures (topic similarity and word accuracy) than

ED (character accuracy). This result highlights a few insights

into our model:

• Our attack model uses nearby tokens as context to main-

tain the expected topic of the segment. For instance, the

second sample in Fig. 5 shows where the word “potential”

was used instead of “important”. Another example is the

difference between the phrases “recent advancements”

and “recent developments”. In these cases, cosine and

Rouge will be higher than ED.

• The model weighs the importance of token patterns in

the segment and will ‘cheat’ at times by altering tokens

in Ti to stay on topic while ensuring proper grammar. For

example, in the third sample of Fig. 5, “language and” is

used instead of “transferable”. This results in a higher

cosine but lower Rouge and ED.

Consequently, LLMA can effectively reveal the topic of a

token sequence, despite not precisely reconstructing the origi-

nal wording. This outcome aligns with our primary objective,

USENIX Association 33rd USENIX Security Symposium 3375

Attacks on OpenAI (ChatGPT-4)

φ ∶ 1.00 ROUGE-1: 1.00 Edit Distance: 0.00

The most common signs and symptoms of depression in
young adults include:

The most common signs and symptoms of depression in

young adults include:

φ ∶ 0.92 ROUGE-1: 0.88 Edit Distance: 0.12

Yes, there are several important legal considerations that
couples should be aware of when considering a divorce,

Yes, there are several potential legal considerations that

someone should be aware of when considering a divorce.

φ ∶ 0.82 ROUGE-1: 0.94 Edit Distance: 0.08

Yes, here are some online courses and resources that can
help individuals develop transferable skills that are rele-
vant in today’s job market:

Yes, here are some online courses and resources that can
help individuals develop language and skills that are rele-
vant in today’s job market:

φ ∶ 0.80 ROUGE-1: 0.83 Edit Distance: 0.21

I don’t have personal experience in qualifying
for a career option.
I don’t have personal experience in preparing
for a career change,

φ ∶ 0.66 ROUGE-1: 0.80 Edit Distance: 0.17

Alcohol consumption can have a harmful
effect on liver function.

Alcohol consumption can have a harmful
effect on sleep patterns.

φ ∶ 0.53 ROUGE-1: 0.70 Edit Distance: 0.30

Yes, certain foods can help with mental focus
and productivity.

Yes, certain foods can help with weight loss
and inflammation.

Below φ = 0.5 threshold (attack failure):

φ ∶ 0.44 ROUGE-1: 0.64 Edit Distance: 0.36

I would suggest the following strategies for team leaders
to balance the needs of individual team members with the
needs of the team as a whole:

I would suggest the following strategies for film studios to
balance the needs of production with staying true to the
story of a movie:

φ ∶ 0.12 ROUGE-1: 0.00 Edit Distance: 0.78

Cider and other apple-based beverages hold great sig-
nificance in Normandy’s culture and cuisine.
Coral bleaching occurs after organisms lose their repro-
duction or grow out a suitable new habitat.

Figure 5: A sample of attack successes and failures on R0. We

consider a cosine similarity of φ > 0.5 a successful attack.

Segments ASR φ
>0

.9

φ
=1

.0

R
1
>=

0
.9

R
1
=1

.0

R
L
>=

0
.9

R
L
=1

.0

E
D
<=

0
.1

E
D
=0

.0

1 52.78 27.05 15.07 29.52 19.55 29.08 19.33 29.09 12.85

2 44.84 19.96 8.55 19.88 11.08 19.52 10.95 19.39 6.54

3 41.25 16.86 5.93 14.87 7.63 14.57 7.54 14.59 4.40

5 38.54 13.94 3.69 9.89 4.73 9.66 4.67 9.77 2.70

10 37.52 10.72 2.03 5.67 2.59 5.50 2.56 5.61 1.48

20 37.99 8.92 1.47 4.13 1.88 4.00 1.86 4.08 1.07

all 38.00 8.83 1.44 4.05 1.84 3.92 1.82 4.00 1.05

Table 2: Inference performance on ChatGPT-4. Each row

indicates how many leading segments are considered. Results

are reported in percent [%].

as our main concern is the exposure of T in terms of confi-

dentiality, emphasizing the importance of understanding the

content’s nature over its exact phrasing.

Topic Exposure. To discern which topics are more sus-

ceptible to exposure, we utilized ChatGPT-4 to categorize

sentences by their privacy level and subject matter. Figure

7 displays the attack success rates (φ > 0.5) across these cat-

egories. The results demonstrate a relatively uniform topic

exposure, suggesting that (1) any topics can be exposed to a

certain extent, and (2) the model does not exhibit a marked

preference for reconstructing any specific subject over others.

However, we acknowledge that this result is likely due to the

diversity and relative uniformity of the topics in the UltraChat

dataset.

Ranking. Recall that for each LLM we generate k samples,

rank them, and select the top result. Choosing the optimal

result for R̂0 is crucial as it sets the context for subsequent

sentences. To evaluate our ranking method, we examined what

would happen to the performance if we took the ideal sample

from the top n results. In Fig. 6 we present this experiment by

plotting the performance distribution for several selections of

n. The red line shows the performance of our method where

n = 1. The figure shows that while the top is not ideal, it is not

far from it. We leave refining the ranking strategy to future

work.

Inner Segment Inference. On average, the attack success

rate for entire responses was 38% (see Table 2). This is notice-

ably lower than the success rate on the first segment (52.7%),

but still meaningful. The reason for this drop is that the first

segments typically contain common phrases and styles of the

AI assistant more so than the inner segments (see section 4.5

for examples). However, the forward context from LLMA has

a significant impact on the success rate of the entire response

and correlates directly to the quality of R̂0 (see appendix Fig.

12). Moreover, we found the model to work well at identify-

ing and generating responses containing lists, likely due to

the \n structure. Overall, we found that if the first segment

receives φ > 0.6 then the attack on the entire response will be

successful.

3376 33rd USENIX Security Symposium USENIX Association

Cosine Similarity R −1 R −L Edit Distance

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

1

2

3

Score of Best Guess

de
ns

ity

Number of Top Guesses Considered 1 2 3 4 5 6 7 8 9 10

Figure 6: The performance distribution for 10k first segments. Red indicates the case where top ranked result is selected as R̂0.

Other colors indicate what the performance could have been when selecting the ‘ideal’ sample from among the top results.

Figure 7: Attack success rates for sentences grouped by their

topic of confidential exposure. Sentence classification and

categorization was performed by ChatGPT-4 Turbo.

Baseline Analysis. While the performance of LLMA

demonstrates the legitimacy of the token-length side-channel,

it is not clear whether the proposed model is better than other

state of the art. We first considered using a Markovian model

similar to [21] as well as using a hidden Markov model

(HMM). However, these models did not scale well due to the

enormous vocabulary of our dataset which includes names,

dates, and so on. This is especially an issue in cases where

tokens can be buffered or batched int eh network (see section

5.3). Markovian models are also memoryless which makes

them a poor match compared to modern LLMs that consider

long distance patterns.

Instead, we compared our model using two different ap-

proaches based on LLMs:

Direct Approach We used the ChatGPT-4 Turbo (0125-

preview) API to solve for T0 by writing prompts that

included (1) a definition of the puzzle, (2) an example

puzzle with solution and (3) T0 itself as a list of integers.5

Progressive Approach We used a pre-trained Flan-T5-xl

model to generate R̂: (1) The model was given the same

prompt as the direct approach and then (2) we generated

each token by taking the next most probable token with

the correct length. For example, to generate token ri, we

ranked the probability of the tokens in K according to

the model and then selected the most likely token with

the character length of ti (observed in the traffic).

Fig. 8 shows that our model significantly outperforms both

baselines. This finding reinforces our discussion in section

4.5, that it is necessary to train the model on new tokens that

represent token lengths for the attack to be effective.

Ablation Study. We further explored the influence of train-

ing data on the efficacy of our attack. As outlined in Section

3.2, an adversary has the option to utilize either historical

responses from the target AI assistant or alternative sources.

In Fig. 8 we compare the performance of our model trained on

ChatGPT-4 responses (victim) to the case where it is trained

on a regular text corpus; the C4 dataset [27]. The C4-trained

model performs significantly worse than the GPT4-trained

model but still outperforms the baseline (an attack success

rate of 5% vs 0.07%). Therefore, while it is clear that training

on the victim’s data gives the attacker a large advantage, pre-

venting access to historical chats does not prevent the attack.

Moreover, later in 5.3 we will show that this attack is even

transferable, where a model trained on OpenAI’s GPT-4 can

be used to attack Microsoft Copilot.

Out of Distribution Prompts. The UltraChat dataset,

which our model was trained on, was designed to captures

specific set of topics. The question is whether our model will

be able to generalize to topics not found in this dataset. To

evaluate this, we gave GPT-4-Turbo a large sample of the

UltraChat dataset and asked it to generate new prompts on dif-

ferent topics. These prompts were then sent to GPT-4-Turbo,

under separate contexts, to generate the responses.

5The exact query language and additional results can be found in the

appendix.

USENIX Association 33rd USENIX Security Symposium 3377

0

2

4

−0.25 0.00 0.25 0.50 0.75 1.00

D
en

si
ty

Model
Baseline
(GPT−4 queries)
Baseline
(Flan−T5 search)
Ours
(C4 trained)
Ours
(victim trained)

Cosine Similarity []

Figure 8: Comparative performance evaluation (1st segments).

Green indicates our model trained on the victim’s response

distribution, blue represents our model trained on a generic

text dataset, and red denotes the baseline model (GPT-4).

0.0

0.5

1.0

1.5

2.0

−0.25 0.00 0.25 0.50 0.75 1.00

D
en

si
ty Model

Out−of−distribution
(OOD)
In−distribution
(ID)

Cosine Similarity []

Figure 9: Performance of our model when attacking in-

distribution (ID) prompts and out-of-distribution (OOD)

prompts.

Figure 9 illustrates the performance of our model on both

in-distribution and out-of-distribution (OOD) test sets. When

inferring responses from OOD prompts, the accuracy of the

ASR decreases from 53% to 28%. Despite this drop, the abil-

ity to compromise over a quarter of the messages remains

notable. Regardless, this highlights the importance for adver-

saries to strategically prepare their attacks by incorporating

prompts related to the targeted topics during training.

5.3 Framework Evaluation
In the previous section, we evaluated our model’s effective-

ness in ideal conditions with all tokens intact and unaltered.

This section shifts focus towards validating the threat in prac-

tical scenarios, examining how our attack performs under

imperfect network conditions. We examine four services from

Microsoft and OpenAI. From OpenAI we looked at their

in-browser assistant, GPT Marketplace, and their API. For

Microsoft, we considered their in-browser assistant called

Copilot. When analyzing traffic captured from these services,

we noticed three consistent behaviors.

Preamble. We found that Microsoft includes a variable

length preamble with the first token. The preamble in-

cludes metadata such as relevant URLs. As a result, we

cannot infer the size of the first two tokens. To counter this,

we trained a new version of our model where the ground

truth R is complete but T would be missing the first two

tokens.

Vendor Model Service ASR φ
>0

.9

φ
=1

.0

R
1
>=

0
.9

R
1
=1

.0

E
D
<=

0
.1

E
D
=0

.0

OpenAI GPT-4 in-browser 38.21 15.64 4.57 12.94 5.75 16.20 3.68

OpenAI GPT-4 marketplace 53.01 25.80 13.01 28.09 17.02 27.29 10.21

OpenAI GPT-4 API 17.69 5.06 0.82 2.65 0.99 2.40 0.57

N
o

B
uf

f.

Microsoft Copilot in-browser 40.87 17.42 7.96 17.96 10.80 17.11 0.51

OpenAI GPT-4 in-browser 35.55 13.70 3.60 10.98 4.79 13.88 2.97

OpenAI GPT-4 marketplace 50.28 22.89 10.84 24.03 14.47 23.52 8.56

OpenAI GPT-4 API 17.69 5.06 0.82 2.65 0.99 2.40 0.57

B
uf

fe
ri

ng

Microsoft Copilot in-browser 30.15 5.93 0.16 6.73 0.19 5.18 0.00

Table 3: Performance evaluation on vendor traffic, for best

case (no groupings) and the average case. All values are

reported as percent [%].

Buffering. Some services buffer tokens and send them

grouped as a single message. As a result, these tokens

are viewed as a single larger token during the sequence

extraction step. This rarely occurs by Microsoft but fre-

quently occurs by OpenAI depending on the time of day

(see Fig. 10 in appendix). We found that the first two tokens

are grouped 80% of the time, while groupings later within

the response are rare. To handle this, we trained another

model on an augmented dataset where tokens in T are

grouped probabilistically according to statistics collected

from OpenAI’s traffic over a 24-hour period.

Pairing. When the GPT-4 API is set to stream=true, every

pair of tokens is grouped together. For this, we trained

model on a similarly augmented dataset.

For all four services, each message contained the current token

and all prior tokens as well. For more information on other

vendors, see the right side of Table 1.

We evaluated each of the services using token streams

which capture the network traffic. We examined two times

of day: night when there is no buffering and day when there

is buffering. The results in Table 3 present the performance

of the first segments. The results show that even with lost

tokens, grouped tokens and paired tokens, we can still infer

the content from the vendors’ token-length side-channels. On

the browser and marketplace assistants, we achieve an ASR

of 30%-53%. On the API, where every two tokens are paired,

we obtain an ASR of 17.7%.

There are two interesting takeaways from these results: (1)

even if the token-stream side-channel is noisy, compressed,

or incomplete, it is still possible to infer its content and (2)

there is transferability between AI assistants. The latter in-

sight is drawn from the fact that our models were trained on

GPT-4 responses only, yet we still succeed when targeting

Microsoft’s Copilot. For examples of reconstructed prompts

achieved on network traffic, please see GitHub repository. 6

6https://github.com/royweiss1/GPT_Keylogger

3378 33rd USENIX Security Symposium USENIX Association

6 Discussion

Our investigation leads to two significant observations: first,

our model is capable of making high-quality (φ > 0.9) infer-

ences on the initial response segment, and second, it exhibits a

notable degree of success in applying the learnings from one

AI assistant’s responses to another. These points highlight an

essential characteristic of the AI assistants: their responses are

marked by a degree of predictability in style and a tendency

to reuse phrases, especially noticeable in the first segment of

the response, facilitating effective content inference by our

model.

We observed four patterns that our model was particularly

good at identifying:

Warnings. These are openings to responses that warn the

user about the reliability of the response. For example,

when personal questions, responses such as “I don’t have
personal beliefs or interests, but...” are common. Another

example is when the model is asked about current events,

the response is often in the form of “As an AI language
model, I do not have access to current data... However, ...”

Templates. These are styles used by the assistant to frame

the response and are often topic-specific. For example, if a

user asks GPT-4 for a recipe it will get a response with the

form “Certainly! Here’s a simple and classic recipe for...”,

or when asking about travel: “Certainly! Here are some
lesser-known cultural attractions...”

Unique Token Sequences. These are sequences of tokens

that are unique in terms of n-gram frequency. For example,

phrases and names such as ‘Yellowstone National Park’,

‘The Road Not Taken’, and ‘renewable energy sources’ are

predicted perfectly quite often regardless of context.

Structure. These are formats that are included as tokens.

For example, the structure of a list includes many newline

tokens in a row and enumerated numbers. These patterns

help the model scope and structure the inferred response.

Although this does not exist in our dataset, there are other

frequent patterns that can be used to infer content. For ex-

ample, AI safeguards are used to prevent users from asking

illegal or unethical questions. They almost always result in

a response declining the prompt but also include the context.

E.g., “I’m sorry, but I can’t assist with creating content that
could be used for phishing...” Also, we note that while iden-

tifying these patterns helps the model infer them, our model

is agnostic to them. For example, our model was able to per-

fectly infer the following segment although the training set

does not include this topic at all: “The recent economic crisis
in Greece has had a severe impact on small businesses in
Athens.”

Lastly, from our evaluation in section 5.3, we note suc-

cess in model transferability across different AI assistants.

This points to consistency in their construction of responses,

drawing a subtle comparison to transfer attacks in adversar-

ial examples. This phenomenon not only sheds light on the

potential uniformity in AI assistants’ linguistic strategies but

also raises questions about LLM security, hinting that their

predictable patterns and phrase repetition may present other

transferable vulnerabilities.

For future work, we recommend integrating other side-

channel information, such as previous prompts from the same

conversation, to improve context.

7 Ethics, Disclosure and Guidance

Disclosure Timeline. The side-channel attack introduced in

this paper represents a practical and perilous threat that could

potentially compromise the privacy of millions of individuals.

Recognizing the severity of this vulnerability, we proactively

reached out to all the vendors listed in Table 1 in parallel to

this paper’s submission (Feb. 1st 2024). Contact was made

either through their bug bounty programs or through other

confidential channels. Within the first month, the contacted

vendors acknowledged the vulnerability and patched their

systems.7 Several vendors asked us for advice on how to fix

the problem (discussed below). We also confirmed for them

whether their defence was effective. We received bug bounties

from OpenAI, CloudFlare and Quora as well as bug bounty

recognition from Microsoft and Notion. After confirming

with the vendors that their systems were protected, we made

a public disclosure (March 14th) on Ars Technica8 in parallel

with a coordinated disclosure by CloudFlare.9

Countermeasures. To counteract the side-channel vulnera-

bility, several mitigation strategies can be implemented:

1. Adding Random Padding: Incorporating random

padding to each message can obscure the actual length of

tokens, thereby complicating attempts to infer informa-

tion based on packet size. However, this approach would

inevitably lead to increased bandwidth consumption, as

the padded messages consume additional network re-

sources.

2. Grouping Tokens: Another effective measure is to trans-

mit tokens in larger groups rather than individually. This

method reduces the granularity of information that can

be gleaned from observing the communication, thereby

mitigating the risk. However, it’s important to note that

this could impact the real-time responsiveness that users

expect from such services.

3. Batching Responses: Sending complete responses at

once, instead of in a real-time, token-by-token manner,

7The exception was Perplexity, WriteSonic, CKSource and Anthropic

who we repeatedly sent messages to for six weeks, but did not respond.
8https://arstechnica.com/security/2024/03/

hackers-can-read-private-ai-assistant-chats-even-though-theyre-encrypted/
9https://blog.cloudflare.com/ai-side-channel-attack-mitigated

USENIX Association 33rd USENIX Security Symposium 3379

can significantly reduce the vulnerability to side-channel

attacks. This approach eliminates the possibility of infer-

ring token lengths from the packet sizes.

Despite the effectiveness of these mitigation strategies, they

come with notable caveats. Specifically, the introduction of

padding and the batching of responses would increase band-

width usage, which could be a concern for services operating

at scale. Moreover, grouping tokens or sending responses in

batches could detract from the user experience. The real-time

feedback provided by AI assistants is a key feature of their

appeal and utility, especially given the inherent latency in

processing large language models. Balancing security with

usability and performance presents a complex challenge that

requires careful consideration.

8 Related Works

Length-Based side-channels. The study of length-based side-

channels reveals two primary methodologies: high-level infer-

ence, which deduces general information from a set of packets

(e.g., website fingerprinting) and low-level inference, which

explicitly infers plaintext from individual packets.

An example of a low-level inference attack was CRIME

[30], which was revealed in 2012. The attack exploited infor-

mation leakage in the LZ77 compression algorithm enabling

attackers to infer plaintext in HTTPS traffic by interacting

with the session. In 2015, the BICYCLE attack demonstrated

the feasibility of inferring content without the need for inter-

acting with the victim’s session [12]. In this attack, a victim’s

password length is inferred by subtracting the size of the

traffic’s overhead from the traffic carrying the password.

The exploration of side-channels for plaintext inference

on network traffic gained momentum in 2017 when it was

shown that statistics, such as packet times and sizes, could

reveal information about a query sent to a search engine on

the web [24]. By employing classical ML models, the authors

of [24] were able to detect the presence of specific keywords

within a query but they could not decipher complete texts.

However, this was solved in 2019 when the authors of [21]

proposed KREEP. In their work, the authors noticed that the

autocomplete feature of search websites was sending a single

packet for every typed character. By measuring the victim’s

keystroke timings, the authors were able to infer entire search

queries with an ED of about 0.4 for queries containing 7-12

words.

In contrast to the works of [21,24], our problem is different

since (1) we cannot use keystroke timing to reduce character

entropy, and (2) we are trying to predict sequences of tokens

(∼words) to the length of entire paragraphs. This distinction

underlines the novelty of our approach in inferring content

solely based on the length of tokens, presenting a pioneer-

ing effort in the analysis of extended texts via side-channels.

Moreover, regarding the sequence prediction method, in [21]

the authors used a memory-less Markovian model which only

considers the previous word. However, we leverage long-

distance linguistic relationships and inter-sentence context by

using a modified LLM.

Side-channel Attacks using LLMs. The utility of using deep

neural networks to perform side-channel analysis (SCA) has

been well documented [3, 17, 20, 25, 26]. The primary appli-

cation of deep learning in SCA is to classify (detect) known

patterns in noisy and complex physical signals. Some works

have used generative AI, specifically generative adversarial

networks (GANs), to help create better training sets for the

model to learn from [32]. To the best of our understanding,

our study introduces two novel contributions to the field: it

is the first instance where generative AI has been explicitly

applied to reconstruct hidden information, and uniquely, it

marks the first occasion where plaintext has been successfully

extracted from encrypted network traffic utilizing a generative

AI approach.

The risk of attackers using LLMs for malicious use cases

is a growing concern. Our study aligns with the observations

made in [37] which highlights the potential for malicious use

of LLMs in side-channel attacks. This work not only confirms

these hypotheses but also presents a concrete example of such

an application.

Side-channel Attacks on LLMs. Recent studies have high-

lighted the vulnerability of deep neural networks to side-

channel attacks, revealing that attackers can extract a model’s

architecture and parameters by observing behaviors in cache

[13, 14, 19, 36], timing [9, 11], memory access [16] and phys-

ical signals [15, 34, 38]. Recent research by Debenedetti et

al. [7] further highlights the presence of side-channels capa-

ble of revealing information about a model’s training data,

including the extraction of LLM vocabularies and inferring

details through membership inference attacks. Our work, how-

ever, diverges significantly from these approaches. We discuss

a novel side-channel attack that targets model predictions,

distinct from past works which targets model parameters or

training data.

9 Conclusion

This study exposes a critical vulnerability in AI assistants

like OpenAI’s ChatGPT-4 and Microsoft’s Copilot through a

novel token-length side-channel attack, achieving significant

success in reconstructing and inferring encrypted responses.

By leveraging large language model capabilities, context inte-

gration, and known-plaintext attack techniques, we are able to

perform a token-inference attack that can expose over half of

the responses sent back from these assistants. The research un-

derscores the importance of addressing this security flaw and

highlights the broader security implications for large language

models, pointing to a need for enhanced privacy measures in

AI-powered digital services.

3380 33rd USENIX Security Symposium USENIX Association

Acknowledgments

This work has received support from the Israel National Cyber

Directorate and the Zuckerman STEM Leadership Program.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo

Almeida, Janko Altenschmidt, Sam Altman, Shyamal

Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] Samuel Addington. Chatgpt: Cyber security threats and

countermeasures. Available at SSRN 4425678, 2023.

[3] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu,

Eleonora Cagli, and Cécile Dumas. Deep learning for

side-channel analysis and introduction to ascad database.

Journal of Cryptographic Engineering, 10(2):163–188,

2020.

[4] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,

Katherine Lee, Florian Tramer, and Chiyuan Zhang.

Quantifying memorization across neural language mod-

els. arXiv preprint arXiv:2202.07646, 2022.

[5] Junjie Chu, Zeyang Sha, Michael Backes, and Yang

Zhang. Conversation reconstruction attack against gpt

models. arXiv preprint arXiv:2402.02987, 2024.

[6] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A sur-

vey of man in the middle attacks. IEEE communications
surveys & tutorials, 18(3):2027–2051, 2016.

[7] Edoardo Debenedetti, Giorgio Severi, Nicholas Carlini,

Christopher A Choquette-Choo, Matthew Jagielski, Mi-

lad Nasr, Eric Wallace, and Florian Tramèr. Privacy side

channels in machine learning systems. arXiv preprint
arXiv:2309.05610, 2023.

[8] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng,

Shengding Hu, Zhiyuan Liu, Maosong Sun, and Bowen

Zhou. Enhancing chat language models by scaling

high-quality instructional conversations. arXiv preprint
arXiv:2305.14233, 2023.

[9] Vasisht Duddu, Debasis Samanta, D Vijay Rao, and

Valentina E Balas. Stealing neural networks via tim-

ing side channels. arXiv preprint arXiv:1812.11720,

2018.

[10] Leo Gao, Stella Biderman, Sid Black, Laurence Golding,

Travis Hoppe, Charles Foster, Jason Phang, Horace He,

Anish Thite, Noa Nabeshima, et al. The pile: An 800gb

dataset of diverse text for language modeling. arXiv
preprint arXiv:2101.00027, 2020.

[11] Cheng Gongye, Yunsi Fei, and Thomas Wahl. Reverse-

engineering deep neural networks using floating-point

timing side-channels. In 2020 57th ACM/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2020.

[12] Benjamin Harsha, Robert Morton, Jeremiah Blocki,

John Springer, and Melissa Dark. Bicycle attacks con-

sidered harmful: Quantifying the damage of widespread

password length leakage. Computers & Security,

100:102068, 2021.

[13] Sanghyun Hong, Michael Davinroy, Yiğitcan Kaya,

Dana Dachman-Soled, and Tudor Dumitraş. How to 0wn

nas in your spare time. arXiv preprint arXiv:2002.06776,

2020.

[14] Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya, Stu-

art Nevans Locke, Ian Rackow, Kevin Kulda, Dana

Dachman-Soled, and Tudor Dumitraş. Security anal-

ysis of deep neural networks operating in the pres-

ence of cache side-channel attacks. arXiv preprint
arXiv:1810.03487, 2018.

[15] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei

Zuo, Yu Ji, Xinfeng Xie, Yufei Ding, Chang Liu, Timo-

thy Sherwood, et al. Deepsniffer: A dnn model extrac-

tion framework based on learning architectural hints. In

Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 385–399, 2020.

[16] Weizhe Hua, Zhiru Zhang, and G Edward Suh. Reverse

engineering convolutional neural networks through side-

channel information leaks. In Proceedings of the
55th Annual Design Automation Conference, pages 1–6,

2018.

[17] Sunghyun Jin, Suhri Kim, HeeSeok Kim, and Seokhie

Hong. Recent advances in deep learning-based side-

channel analysis. ETRI Journal, 42(2):292–304, 2020.

[18] Anastasios Lamproudis, Aron Henriksson, and Hercules

Dalianis. Vocabulary modifications for domain-adaptive

pretraining of clinical language models. In HEALTH-
INF, pages 180–188, 2022.

[19] Yuntao Liu and Ankur Srivastava. Ganred: Gan-based

reverse engineering of dnns via cache side-channel.

In Proceedings of the 2020 ACM SIGSAC Conference
on Cloud Computing Security Workshop, pages 41–52,

2020.

[20] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A

comprehensive study of deep learning for side-channel

analysis. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 348–375, 2020.

USENIX Association 33rd USENIX Security Symposium 3381

[21] John V Monaco. What are you searching for? a remote

keylogging attack on search engine autocomplete. In

28th USENIX Security Symposium (USENIX Security
19), pages 959–976, 2019.

[22] John X Morris, Volodymyr Kuleshov, Vitaly Shmatikov,

and Alexander M Rush. Text embeddings reveal (al-

most) as much as text. arXiv preprint arXiv:2310.06816,

2023.

[23] Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew

Jagielski, A Feder Cooper, Daphne Ippolito, Christo-

pher A Choquette-Choo, Eric Wallace, Florian Tramèr,

and Katherine Lee. Scalable extraction of training data

from (production) language models. arXiv preprint
arXiv:2311.17035, 2023.

[24] Se Eun Oh, Shuai Li, and Nicholas Hopper. Finger-

printing keywords in search queries over tor. Proc. Priv.
Enhancing Technol., 2017(4):251–270, 2017.

[25] Max Panoff, Honggang Yu, Haoqi Shan, and Yier Jin.

A review and comparison of ai-enhanced side channel

analysis. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 18(3):1–20, 2022.

[26] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao

Wu, and Lejla Batina. Sok: Deep learning-based phys-

ical side-channel analysis. ACM Computing Surveys,

55(11):1–35, 2023.

[27] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine

Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei

Li, and Peter J. Liu. Exploring the limits of transfer

learning with a unified text-to-text transformer. arXiv
e-prints, 2019.

[28] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine

Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei

Li, and Peter J. Liu. Exploring the limits of transfer

learning with a unified text-to-text transformer. Journal
of Machine Learning Research, 21(140):1–67, 2020.

[29] Nils Reimers and Iryna Gurevych. Sentence-BERT:

Sentence embeddings using Siamese BERT-networks.

In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun

Wan, editors, Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 3982–

3992, Hong Kong, China, November 2019. Association

for Computational Linguistics.

[30] Juliano Rizzo and Thai Duong. Crime: Compression

ratio info-leak made easy. In ekoparty Security Confer-
ence, 2012.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,

and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[32] Ping Wang, Ping Chen, Zhimin Luo, Gaofeng Dong,

Mengce Zheng, Nenghai Yu, and Honggang Hu. En-

hancing the performance of practical profiling side-

channel attacks using conditional generative adversarial

networks. arXiv preprint arXiv:2007.05285, 2020.

[33] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan

Yang, and Ming Zhou. Minilm: Deep self-attention

distillation for task-agnostic compression of pre-trained

transformers. In H. Larochelle, M. Ranzato, R. Hadsell,

M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 5776–

5788. Curran Associates, Inc., 2020.

[34] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang

Xu. I know what you see: Power side-channel attack on

convolutional neural network accelerators. In Proceed-
ings of the 34th Annual Computer Security Applications
Conference, pages 393–406, 2018.

[35] Laura Weidinger, Jonathan Uesato, Maribeth Rauh,

Conor Griffin, Po-Sen Huang, John Mellor, Amelia

Glaese, Myra Cheng, Borja Balle, Atoosa Kasirzadeh,

et al. Taxonomy of risks posed by language models.

In Proceedings of the 2022 ACM Conference on Fair-
ness, Accountability, and Transparency, pages 214–229,

2022.

[36] Mengjia Yan, Christopher W Fletcher, and Josep Torrel-

las. Cache telepathy: Leveraging shared resource attacks

to learn {DNN} architectures. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2003–2020,

2020.

[37] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Eric

Sun, and Yue Zhang. A survey on large language model

(llm) security and privacy: The good, the bad, and the

ugly. arXiv preprint arXiv:2312.02003, 2023.

[38] Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang

Zhao, and Yier Jin. Deepem: Deep neural networks

model recovery through em side-channel information

leakage. In 2020 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages

209–218. IEEE, 2020.

[39] Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,

Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-

wei Zhang, Fei Wu, et al. Instruction tuning for

large language models: A survey. arXiv preprint
arXiv:2308.10792, 2023.

3382 33rd USENIX Security Symposium USENIX Association

Appendix

A Details on Experiment Setup

Setup of Baseline Model (GPT-4) The following is an exam-

ple of the prompt template used to ask GPT-4 to infer R from

T :

GPT-4 Inference Prompt

Transform the given sequence of numbers into a coherent

sentence where each number represents the length of a

word in the sentence. For example, the sequence ’7, 10, 10,

9, 3, 4, 5, 3, 2, 5, 1’ could be transformed into ’Contact

allergies typically manifest on the skin as a rash,’

Please use the following sequence to generate a new

sentence: <encoding>.

Provide a coherent sentence that matches the pattern of

word lengths as specified, without explaining your answer.

Setup of Framework Evaluations (Groupings) Here we

present how many tokens are grouped by OpenAI’s ChatGPT

in-browser service over a 24 hour period. The statistics from

this data where used to augment the datasets with groupings.

’

Figure 10: Percentage of grouped tokens in R by OpenAI

across various times of the day.

B Additional Results

In Fig. 11 we provide another view of topic exposure among

the first segments. Here, we asked ChatGPT-4 Turbo to clas-

sify the segments into 15 categories based on subject alone.

In Fig. 12 we show the relationship between the first seg-

ment’s performance and its performance with its subsequent

segments. As described in the paper, we can see that the

performance of the paragraph is largely dependent on the

performance of the first segment. However, interestingly, we

see that for poor starts (φ < 0.4), letting the model see more

sentences improves paragraph performance. This indicates

that the model can use long term patterns to help resolve local

patterns in T .

Figure 11: Attack success rates on first segments, grouped by

subject material by GPT-4 Turbo.

Figure 12: Performance of paragraph reconstruction by para-

graph length, with each color indicating the performance

when the first segment has a specific φ value. The initial

segment’s performance influences the accuracy of subsequent

sentences in a paragraph.

USENIX Association 33rd USENIX Security Symposium 3383

The following is a random sample of full paragraphs in-

ferred from ChatGPT-4:

Paragraph Reconstruction Examples

φ ∶ 0.93 ROUGE-1: 0.75 Edit Distance: 0.26

Original: As an AI language model, I don’t have personal

experience or emotions, but below are some strategies that

can help in developing a self-compassionate attitude:

1. Practice mindfulness - Mindfulness can help you identify

and observe your thoughts and emotions without judging

or reacting to them. This can help you develop a more

compassionate attitude towards yourself.

2. Treat yourself with kindness - In stressful situations,

treat yourself the way you would treat a friend or loved one.

Do something kind for yourself, such as taking a break,

self-care activities, or giving yourself a compliment.

3. Change your self-talk - Instead of being self-critical or

negative, try to reframe your self-talk in a positive and

supportive manner.

4. Accept your imperfections - Acknowledge that everyone

makes mistakes and has flaws, including yourself. Learn to

accept yourself for who you are, imperfections and all.

5. Be patient with yourself - Give yourself time to process

and bounce back from stressful situations. Remember that

healing and growth take time.

6. Seek support - Reach out to friends, family, or a mental

health professional for support, guidance,

Prediction: As an AI language model, I don’t have

personal experience or emotions, but below are some

strategies that can help in developing a self-compassion

attitude:

1. Practice mindfulness - Mindfulness can help you identify

and process your emotions and thoughts without judging

or reacting to them. This can help you develop a more

compassionate attitude towards yourself.

4. Treat yourself with kindness - By embracing compas-

sion,treat yourself the way you would treat a friend or loved

one. By accepting your own mistakes, such as taking a

break,resuming activities, or simply avoiding a temptation.

4. Change your self-talk - Instead of going into a battle or

argument,try to reframe your self-talk in a positive and

supportive manner.

3. Accept your imperfections - Acknowledge that everyone

makes mistakes and has flaws. Challenge yourself, learn to

accept yourself for who you are, treat oneself kindly.

5. Be patient with yourself - Your personal life is complex

and unique with many different challenges. Practice

self-control and manage your time.

6. Seek support - Reach out to friends,family, or a mental

health professional for support, guidance,

φ ∶ 0.80 ROUGE-1: 0.82 Edit Distance: 0.16

Original: As an AI language model, I am unable to pro-
vide information about specific individuals or universities.
However, in general, one way that universities can ensure
fair access to leadership opportunities for underrepresented
groups is by implementing affirmative action programs and

diversity and inclusion initiatives. These programs can in-
volve outreach and recruitment efforts aimed at increasing
the representation of underrepresented groups in leadership
roles, mentorship and support programs for individuals from
underrepresented groups, and policies that require a diverse
pool of candidates for leadership positions.
Prediction: As an AI language model, I am unable to
provide information about specific individuals or institu-
tions. However, in general, one way that institutions can
ensure that access to employment opportunities for under-
represented groups is by implementing progressive hiring
policies and promoting job placement initiatives. These
policies can include training and development efforts aimed
at increasing the representation of underrepresented groups
in leadership roles,mentorship and support programs for
individuals from underrepresented groups,and policies that
promote a diverse pool of candidates for leadership posi-
tions.

C Volunteer Survey

To objectively find an φ cutoff value for our ASR, we per-

formed a survey described in section 5.1. The following is the

text used in the survey:

Introduction

When sending messages across the Internet, we expect that

no one except the intended party will be able to read them.

In this survey, we are trying to assess how much one’s

privacy is violated when a message is partially revealed.

In this questionnaire, you will be given two messages: A
and B.

• ‘A’ is a private message sent over the Internet.

• ‘B’ is what an attacker sees.

You will be asked whether the topic of message ‘A’ is re-

vealed by ‘B’. In other words, was there a breach of privacy?

Example Question:

(A) Message: In order to register as a political party in

New Zealand,

(B) Attacker View: In order to function as a political party

in New Zealand,

Is the content or topic of (A) revealed in any way in (B)?

YES NO

3384 33rd USENIX Security Symposium USENIX Association

