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Abstract
Multi-party private set intersection (mPSI) securely enables
multiple parties to know the intersection of their sets with-
out disclosing anything else. Many mPSI protocols are not
efficient in practice. In this paper, we propose two efficient
mPSI protocols that are secure against an arbitrary number of
colluding parties. In the protocol O-Ring, we take advantage
of the ring network topology such that the communication
costs of the party with the largest workload can be cheaper
than other mPSI protocols with a star topology. In the proto-
col K-Star, we take advantage of the star topology to support
better concurrency such that the protocol can run fast. K-Star
is suitable for applications with a powerful centralized server.
Different from KMPRT (CCS’17) and CDGOSS (CCS’21)
that rely on Oblivious Programmable PRF primitive, we sim-
ply utilize the cheaper Oblivious PRF (OPRF) and a data
structure Oblivious Key-value Store (OKVS). We further pro-
pose two fine-grained optimizations for OKVS and OPRF in
multi-party cases to improve runtime performance.

After extensive experiments, we demonstrate that both
protocols run the fastest and achieve the lowest total com-
munication costs compared with the state-of-the-art counter-
parts in most settings. Specifically, O-Ring/K-Star is respec-
tively 1.6×∼ 48.3× and 4.0×∼ 39.8× (except one setting)
cheaper than KMPRT (CCS’17) and CDGOSS (CCS’21) in
the total communication costs. For the total running time,
K-Star can be respectively 1.4×∼ 9.0× and 1.0×∼ 15.3×
as fast as them in the LAN setting.

1 Introduction

Two-party private set intersection (PSI) allows two parties
(i.e., a receiver and a sender), each of them has a set, to se-
cretly know the intersection of their sets without disclosing
anything else. Specifically, a receiver gets the intersection
without disclosing any item of its set to the sender; the sender
discloses no more than the intersection to the receiver. Dif-
ferent from two-party PSI, multi-party PSI (mPSI) extends

the number of parties to n ≥ 3, which makes it more chal-
lenging. Two-party PSI does not need to consider collusion
attacks. However, the attack becomes more complicated when
it comes to multiple parties. Given n parties, the number of
colluding parties can be any t out of them. This explains that
though there are many efficient two-party PSI protocols, there
are relatively fewer mPSI protocols (e.g., [2, 4, 17]).

mPSI have many applications, e.g., medical data integra-
tion [19,20], cache sharing in edge computation [22], network
intrusion attack detection [13], and highly risky individual
identifications in the spread of disease [1]. Among the pro-
posed mPSI protocols, some of them are not concretely ef-
ficient because of using expensive cryptographic primitives,
e.g., homomorphic encryption [6,12,15,18]. CDGOSS’21 [4]
is efficient, but it can only work when the number of colluding
parties t is smaller than n/2. KMPRT’17 [17] can be secure
against an arbitrary number of colluding parties. However, it
is not sufficiently efficient in both the running time and the
communication costs. In KMPRT’17 [17], though the authors
also proposed an optimized 3-party PSI protocol, it is insecure.
Therefore, proposing an efficient mPSI protocol that can be
secure against an arbitrary number of colluding parties is of
great significance.

1.1 The high-level idea of our protocol

In this paper, we first propose an efficient mPSI protocol
called O-Ring. We show a simple example of O-Ring with
three parties. For parties P1, P2, and P3, each one has a set (e.g.,
X1 = {x1,x3,x4}, X2 = {x1,x2,x3}, and X3 = {x1,x2,x4}).
The core idea is to utilize a data structure called oblivious key-
value store (OKVS) to build a ring to filter out non-common
items. An OKVS is a data structure that encodes m key-value
pairs into a table T . Because of the oblivious property, T
hides the keys if the values are random. Now, P1 can re-
spectively generate three random values {v1,v3,v4} for X1 =
{x1,x3,x4} and encode {(x1,v1),(x3,v3),(x4,v4)} into an
OKVS table T1. Upon receiving T1 from P1, P2 decodes to get
the values {v1 = Decode(T1,x1),v′2 = Decode(T1,x2),v3 =
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Decode(T1,x3)}. Here, since x2 /∈ X1, the decoded value v′2
is random. After the transition, P2 keeps the common key-
value pairs (x1,v1),(x3,v3) but filter out the non-common
value v4. P2 encodes (x1,v1),(x2,v′2),(x3,v3) into another
OKVS table T2 and sends T2 to P3. Then P3 decodes and gets
{v1 = Decode(T2,x1),v′2 = Decode(T2,x2),Decode(T2,x4)}.
Now, v3 will also be filtered out because x3 /∈ X3. Finally,
P3 encodes (x1,v1),(x2,v′2),(x4,Decode(T2,x4)) into a ta-
ble T3 and returns it to P1. After decoding, P1 will know
the intersection I = {x1} by checking v1 = Decode(T3,x1),
v3 ̸= Decode(T3,x3), and v4 ̸= Decode(T3,x4).

The above idea is simple, but not secure. First, it is vulner-
able to the brute-force attack when the item domain is small.
In the above example, if P1 enumerates all items including x2
in the domain, P1 will easily find that x2 ∈ X2 ∩X3 by check-
ing Decode(T1,x2) = Decode(T3,x2). To thwart this attack,
we utilize a cryptographic primitive oblivious pseudorandom
function (OPRF). It is commonly used in two-party PSI pro-
tocols [16, 26], such that the sender with a private PRF key
can send the OPRF values to the receiver without disclosing
non-common items.

Second, the design is insecure against the collusion attack,
which is the greatest challenge in mPSI. For example, if P1
colludes with P3, after receiving T2 from P2, P1 and P3 can eas-
ily know X1∩X2 = {x1,x3} by checking v1 = Decode(T2,x1),
v3 = Decode(T2,x3), but v4 ̸= Decode(T2,x4). Ideally, a se-
cure mPSI protocol only discloses the intersection I = X1 ∩
X2 ∩X3 to the colluding parties. To be secure against an arbi-
trary number of colluding parties [17], we further exploit the
OPRF. Assuming the maximum number of colluding parties
is t, in the OKVS chain (or ring) P1 → P2 → ·· · → Pn → P1,
we select t parties Pn−t+1,Pn−t+2, · · · ,Pn, each of whom per-
forms OPRFs with the other n−1 parties by acting as a com-
mon OPRF sender. Also, we select the protocol receiver P1
to share PRF keys with the remaining n− t −1 parties. The
idea is that there must be at least one honest party among the
t +1 selected parties. Then for each item x j with a value v j
in a party, v j can be masked by Fk(x j) or Fs(x j) such that the
colluding parties cannot identify x j from an obfuscated value
v j ⊕Fk(x j) or v j ⊕Fs(x j), where k is the common sender’s
OPRF key, s is P1’s PRF key, and F is a PRF. More details
can be found in section 5.

1.2 Ring vs star topology

Most of previous protocols (e.g., [2, 4, 9, 12, 17]) are based
on a star topology, in which the central party (denoted as
leader) takes a much heavier burden in communication and
computation costs than other parties (denoted as clients). Our
ring-based protocol can share a part of the central party’s
costs among the other parties, thus reducing leader’s costs.
This is motivated by real-world applications in which the
communication and computation resources of the leader are
limited. Different topologies may be suitable for different

applications. For applications without a powerful leader, the
ring topology may be more suitable. In contrast, star topology
is suitable for applications in which the leader has powerful
resources (e.g., a cloud server). In the star topology, the leader
can concurrently execute the protocol with different clients,
such that the protocol can be faster.

1.3 Our contributions
In this paper, we propose two mPSI protocols, O-Ring and
K-Star, tailored for different application scenarios. O-Ring
is designed by utilizing a ring topology, while K-Star has
a traditional star topology. Briefly, we make the following
contributions.

1. O-Ring has three advantages. First, the communication
costs of the bearer in O-Ring are cheaper than other
mPSI protocols. The bearer is the party with the largest
workload. Compared with the state-of-the-art protocols
KMPRT’17 [17] and CDGOSS’21 [4], O-Ring can be
respectively 1.6×∼ 48.3× and 1.9×∼ 27.5× as cheap
as them in the bearer’s communication costs. Therefore,
O-Ring is suitable for applications in which the bearer
has limited resources. Second, the total communication
of O-Ring is low. O-Ring is respectively 1.6×∼ 48.3×
and 4.0×∼ 39.8× (except one setting) as cheap as them
in the total communication costs. Third, O-Ring runs
fastest in most settings. For the total running time, in the
LAN setting, O-Ring can be respectively 1.4×∼ 6.0×
and 1.2×∼ 12.9× as fast as them in most of the settings;
in the WAN setting, the ratios are respectively 1.2×∼
18.1× and 1.1×∼ 2.7×.

2. By modifying O-Ring into a star topology, we further
propose another protocol K-Star. K-Star also has three
advantages. First, K-Star runs the fastest in most settings.
Compared with O-Ring, it is 13.6%∼ 19.3% faster when
n = 10 in LAN. The reason is that O-Ring needs to run
sequentially among the parties by using the OKVS ring,
while K-Star can runs concurrently by using the star
topology. Also, compared with KMPRT’17 [17] and
CDGOSS’21 [4], in the LAN setting, K-Star can be re-
spectively 1.4× ∼ 9.0× and 1.0× ∼ 15.3× as fast as
them; in the WAN setting, the ratios are respectively
1.2×∼ 18.9× and 1.0×∼ 4.4× in most of the settings.
Second, K-Star gains the same lowest total communi-
cation costs as O-Ring. Third, for the bearer’s commu-
nication costs, K-Star can be 3.0% ∼ 63.4% more ex-
pensive than O-Ring but is still much cheaper than KM-
PRT’17 [17] and CDGOSS’21 [4]. K-star is suitable for
applications in which the central party is powerful.

3. We further make two fine-grained optimizations when
we implement the OKVS and OPRF in O-Ring and K-
Star. In the first optimization, we divide the encoding
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scheme of the OKVS [8] into a peeling phase and an
unpeeling phase. The peeling phase is only related to
each party’s items and can be done offline and paral-
lelly by all parties. By applying this optimization in the
OKVS chain, it can be 6.3% ∼ 52.5% faster. In the of-
fline phase of OPRF protocol [26], a receiver needs to
encode item-value pairs into an OKVS table. For each
item x, its value is generated by a public cryptographic
hash function H(x) and is only related to the item itself.
Having this observation, instead of simply invoking n′

OPRFs for a party who acts as a common OPRF receiver,
we optimize by only encoding the item-value pairs once
for this party. After applying this optimization, it saves
1.0% ∼ 24.0% computation costs than naively invoking
n′ OPRFs. More details can be found in subsection 6.1.

4. We identify insecurity in previous efficient mPSI works
KMPRT [17] and NTY [21]. Specifically, the augmented
semi-honest protocol and the specially optimized three-
party PSI protocol in KMPRT [17] are insecure for the
collusion attacks. Also, the semi-honest and malicious
protocols (t > 1) in NTY [21] are prone to the collusion
attacks. More details can be found in section 6.4.1.

2 Related work

In this section, we introduce the related mPSI protocols. The
computation and communication complexities of these proto-
cols and our protocols are shown in Table 1. More descriptions
of the related protocols with ours are as follows.

KMPRT’17 [17]. Kolesnikov et al. [17] proposed the Obliv-
ious Programmable Pseudorandom Function (OPPRF) for
their mPSI protocols. In OPPRF, the sender owns an item-
value set {(x j,v j)}∀ j∈[m] and the receiver owns an item set
Y , where m is the set size. After OPPRF, the receiver gets
the correct value v j of an item y ∈ Y if y = x j; otherwise,
the value is random to the receiver. After designing their OP-
PRF protocol, they presented their mPSI protocols. In their
first semi-honest mPSI protocol, each party Pi (i = 1,2, · · · ,n)
randomly generates n zero shares for each item xi

j (i.e.,

β
i,1
j ⊕β

i,2
j ⊕·· ·⊕β

i,n
j = 0). Then Pi invokes an OPPRF with

another party Pu who owns a set Xu = {xu
j}∀ j∈[m], by taking

{(xi
j,β

i,u
j )}∀ j∈[m] as Pi’s item-value set. This phase is called

conditional zero-sharing. In the next phase, one party P1 acts
as the ‘dealer’ of the protocol to receive each item’s shares
from other n−1 parties. It is obvious that if an item is in the
intersection, its corresponding share sum is 0; otherwise not.

Their second protocol turns the conditional zero-sharing
into an unconditional zero-sharing. Specifically, Pi (i =
1,2, · · · ,n) shares a PRF key si, j to Pj ( j = i+1, i+2, · · · ,n).
If Pi and Pj have a common item x, both of them will
have the same PRF value Fsi, j(x); then their value sum

will be 0 (i.e., the pairwise property). After the uncondi-
tional zero-sharing, the protocol receiver P1 acts as a com-
mon OPPRF receiver and respectively invoke an OPPRF
instances with Pi (∀i ∈ [2,n]) who inputs an item-value
set {(xi

j,
⊕i−1

u=1 Fsu,i(xi
j)⊕

⊕n
u=i+1 Fsi,u(xi

j))}∀ j∈[m]. Given the
pairwise property, if x is in the intersection, its value sum that
P1 computes will be 0. Though the authors claimed that this
protocol was secure in the augmented semi-honest model, it
is prone to collusion attacks. More details are shown in 6.4.1.

To optimize the performance of their semi-honest protocol,
the authors also proposed a three-party PSI protocol. However,
this protocol is also insecure for the collusion attacks. The
detailed analysis is shown in subsection 6.4.1.

CDGOSS’21 [4]. To design a mPSI protocol, Chandran et
al. [4] first introduced a functionality weak private set mem-
bership (wPSM), which can be directly instantiated by the
OPPRF in [17]. In their protocol, first, the dealer P1 hashes all
items into a cuckoo hashing table and the other parties hash
their items by using the same hash functions. Then each party
does wPSM with the dealer P1 by acting as a sender, such that
all parties can get the corresponding value shares for each
item. After getting the value shares, all parties need to use a
primitive ConvertShares (in which a secret sharing scheme is
used) to generate the linear shares for the items. As a result,
if the majority of parties are honest, the dealer can get the
intersection. An interesting point about their work is that the
performance of their protocol is independent of the number
of colluding parties t by using the primitives. Their protocol
can be more efficient than KMPRT’17 [17]. Concretely, their
protocol has 6(t + 2)/5× less communication costs and is
up to 5× (resp. 6.2×) faster in LAN (resp. WAN) settings.
However, an obvious drawback of their protocol is that their
protocol can only work when t < n/2. Ideally, a protocol
should support an arbitrary number of colluding parties.

NTY’21 [21]. Nevo et al. [21] proposed their mPSI pro-
tocols by using an OKVS and OPPRF. To ensure the se-
curity of their mPSI protocol, they exploited a zeroXOR
protocol based on the augmented semi-honest protocol in
KMPRT’17 [17] by changing the input from an item set to
an item-value set. A party in zeroXOR needs to sum each
item’s input value with the PRF value sum before the OP-
PRF interaction. When t = n − 1, the input item’s value
is set as 0 in zeroXOR and their mPSI is almost the same
as the augmented semi-honest protocol in KMPRT’17 [17],
which is subjected to the attack in subsection 6.4.1. When
t < n − 1, the n parties in the mPSI protocol can be di-
vided into three parts: non-zeroXOR parties P2, · · · ,Pw−1, a
pivot Pw, and zero-XOR parties Pw+1,Pw+2, · · · ,Pn,P1, where
w = n− t +1. In the first step, Pi (∀i ∈ [2,w−1]) respectively
sends a PRF key si,u to Pu (u = w+1,w+2, · · · ,n,1). Then
Pi (i ∈ [w+1,n]∪{1}) can compute the value

⊕w−1
u=2 Fsu,i(xi

j)

of each item xi
j ∈ Xi. Pi (i ∈ [2,w−1]) can compute an item

xi
j’s value Fsi,1(xi

j)⊕
⊕n

u=w+1 Fsi,u(xi
j) and encode these item-
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Protocol Communication Computation Corruption
threshold

Security Concrete
efficientLeader Client Leader Client

HV’17 [12] O(nmκ) O(mκ) O(nm log logm) O(m)
t < n

semi No
O((n2 +nm logm)κ) O((n+m logm)κ) O(m2) malicious

GN’19 [9] O((n2 +nm)κ) O(nm logm) O(m logm) t < n malicious No
CDGOSS’21 [4] O(nm(λ+κ+ logm)) O(m(λ+κ+ logm) O(nmκ) O(mκ) t < n/2 semi Yes

ENOC’22 [2] O(nmκ2 +nmκ log(mκ)) O(mκ2 +mκ log(mκ)) O(nmκ) O(mκ) t < n malicious Yes

KMPRT’17 [17] O(nm(λ+κ+ logm))
O(m(λ+κ+ logm))

O(nmκ) O(mκ)
t < n

augmented Yes
O(tm(λ+κ+ logm)) O(tmκ) semi Yes

NTY’21 [21] O(m(nλ+κ+n logm)) O(m(λ+ logm)) O(mκ) O(m) t = 1 malicious Yes
O-Ring (t = 1) O(m(λ+κ+ logm)) O(m(λ+ logm)) O(mκ) O(m) t = 1 semi Yes
O-Ring (t > 1) O(nm(λ+κ+ logm)) O(tm(λ+κ+ logm)) O(nmκ) O(tmκ) t < n semi Yes
K-Star (t = 1) O(m(nλ+κ+n logm)) O(m(λ+ logm)) O(mκ) O(m) t = 1 semi Yes
K-Star (t > 1) O(nm(λ+κ+ logm)) O(tm(λ+κ+ logm)) O(nmκ) O(tmκ) t < n semi Yes

Table 1: The communication and computation complexity of different mPSI protocols. ‘semi’ indicates semi-honest. ‘augmented’
indicates augmented semi-honest. λ and κ are respectively the statistical and computational security parameters. m is the set size
of all parties. ‘Concrete efficient’ indicates whether the protocol is efficient in practice.

value pairs into an OKVS table Ti, which is sent to the pivot
Pw. Then the pivot can also compute each item xw

j ’s value as⊕w−1
i=2 Decode(Ti,xw

j ). Now, all Pw and Pw+1,Pw+2, · · · ,Pn,P1
have got their items’ values and they can input these item-
value pairs into the zeroXOR protocol to get the intersection.
Their protocol is still insecure when 1 < t < n− 1. More
discussions are in subsection 6.4.2.

Others. Garimella et al. [8] proposed a malicious mPSI pro-
tocol based on the augmented semi-honest protocol in KM-
PRT’17 [17]. In their work, they proved that their protocol
was secure in the malicious model but not in the semi-honest
model by introducing a random oracle model. However, their
protocol is still prone to collusion attacks as KMPRT’17 [17].

Inbar et al. [13] also designed their protocols in both semi-
honest and augmented semi-honest security models. Their
building primitives are Oblivious Transfer (OT) and an OKVS
called Garbled Bloom filter (GBF). The core idea of their
protocols is the GBF-based two-party PSI protocol from Dong
et al. [7]. In [7], the sender first builds a GBF from his/her set.
For an item x, its λ shares are stored in the bins of the GBF by
using λ hash functions. The receiver also constructs a Bloom
filter [3] by using the same hash functions. In the Bloom filter,
if a bin is hashed, then this bin is set as ‘1’; otherwise ‘0’.
Then the receiver invokes OTs with the sender. If the bin is
‘1’, the receiver gets the correct share in the sender’s GBF;
otherwise, the receiver can only get a random share. After all
OTs, the receiver can check whether the sum of an item’s λ

corresponding shares equals this item to get the intersection.
Inbar et al. [13] extended the work of Dong et al. [7] to multi-
party case. In the mPSI protocol, each party works as an
OT receiver to query the value shares of other parties. After
getting these shares, each party sums these shares and sends
the share sums to one party who computes the intersection by
reconstructing the share sum of each item.

Ben-Efraim et al. [2] followed Inbar et al. [13]’s work to

propose a malicious mPSI protocol. Similar to Dong et al. [7],
they aimed to limit the number of ‘1’s one party uses in the OT
interactions. To achieve this, they exploited K-out-of-N OT
in [25]. A similar work extending [25] can be found in [27].
Another work combining GBF and OPRF can be found in [14].
In addition, some works used additive homomorphic encryp-
tion [6,12,15,18], which is expensive and makes the protocols
not efficient. Ghosh and Nilges [9] replaced the homomor-
phic encryption with oblivious polynomial evaluation, which
is also expensive [21].

3 Preliminaries

3.1 Notations

Notations Comments

n The number of parties
t The number of colluding parties
Pi Party i, i = 1,2, · · · ,n
m The set size of each party Pi
Xi The set of party Pi, i.e., Xi = {xi

1,x
i
2, · · · ,xi

m}
Ti The OKVS table of Pi. Ti, j is the jth bin
ℓ The output bit length
λ The statistical security parameter
κ The computational security parameter

In addition to the above notations, ⊕ is the bitwise XOR;⊕n
i=1 xi denotes x1 ⊕ x2 ⊕·· ·⊕ xn.

⋂n
i=1 Xi denotes X1 ∩X2 ∩

·· · ∩Xn. [m] denotes the set {1,2, · · · ,m}. [a,b] denotes the
set {a,a+1, · · · ,b}. For any notation with a superscript, e.g.,
xi, the superscript i indicates the party index (not the power
in math operation).
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3.2 Multi-party PSI

The ideal functionality of mPSI is shown in Figure 1. In this
functionality, each party Pi inputs a set Xi; P1 is the only
receiver who gets the intersection.

Parameters: The number of parties n, the number of
corrupted parties t < n, and the set size of each party m.
The bit length of each item σ.
Inputs: Each party Pi inputs a set Xi = {xi

j}∀ j∈[m] for
i ∈ [n], and xi

j ∈ {0,1}σ.
Outputs: P1 gets the intersection I =

⋂n
i=1 Xi. The other

parties receive ⊥.

Figure 1: The ideal functionality of mPSI Fm−psi.

A computation protocol in the real world is said to be secure
with respect to certain adversarial behavior if the possible real
executions with such an adversary can be simulated in the cor-
responding ideal world [10]. In the ideal world, a trusted third
party performs the computation after giving the inputs and
returns the outputs. To prove the security, one needs to prove
the view of the adversary in the real world is indistinguishable
from the view of the simulator in the ideal world. Usually,
there are two types of security models: semi-honest model
and malicious model. In the semi-honest model, the parties
follow the protocol strictly but are curious to know extra in-
formation beyond their outputs. In the malicious model, the
malicious parties can arbitrarily deviate from the protocol. In
this paper, we only focus on the semi-honest security model.

mPSI is a special multi-party secure computation. Differ-
ent from two-party PSI, the greatest threat for the mPSI is
the collusion attack. In two-party PSI, only the receiver is al-
lowed to learn the intersection, while the sender learns nothing.
Keeping consistent with the two-party security requirement,
in mPSI, with an arbitrary number of colluding parties (i.e.,
t < n), if the receiver is in the colluding parties, the colluding
parties can learn only the intersection I =

⋂n
i=1 Xi; otherwise,

the colluding parties learns nothing. In other words, even
t = n−1 and the receiver is in the colluding parties, they can
only know I =

⋂n
i=1 Xi from the honest party. If the receiver

is not colluded, the colluding parties know nothing about the
receiver’s items. It is noted that the colluding parties can know
the set information about their own sets, e.g., the intersection
of their own sets.

3.3 OKVS

An Oblivious Key-Value Store (OKVS) is a data structure to
store key-value pairs. Specifically, given m key-value pairs
S = {(x1,v1),(x2,v2), · · · ,(xm,vm)}, an OKVS encodes them
into a table T , which denotes as T = Encode(S). For decod-
ing, one can query to get each key x’s corresponding value

Decode(T,x). If x = xi, then Decode(T,x) = vi; otherwise,
Decode(T,x) is pseudorandom.

Definition 1. Obliviousness [8]. If the values in set
{v1,v2, · · · ,vm} are uniform, then T1 = Encode(S1) and
T2 = Encode(S2) are computationally indistinguishable,
where S1 = {(x1

1,v1),(x1
2,v2), · · · ,(x1

m,vm)} and S2 =
{(x2

1,v1),(x2
2,v2), · · · ,(x2

m,vm)}.

In OKVS, the expansion rate η shows that one only needs
a table with size mη for encoding. Pinkas et al. [24] proposed
an OKVS PaXoS with linear computation costs and low ex-
pansion rate of η = 2.4. Later, Garimella et al. [8] proposed
3H-GCT based on PaXoS to reduce the expansion rate to
η = 1.3. In this paper, for simplicity, we denote an OKVS as
its stored table T . In PaXoS/3H-GCT, there are two phases in
the encoding: peeling and unpeeling. In the peeling phase, the
encoder exploits the keys to find an ordering sequence. Then
in the unpeeling phase, the encoder assigns the values based
on the ordering sequence. For more details about PaXoS/3H-
GCT, one can refer to [8, 24].

3.4 OPRF
Oblivious Pseudorandom Function (OPRF) al-
lows the receiver to obliviously get the PRF val-
ues {Fk(x1),Fk(x2), · · · ,Fk(xm)} after inputting a set
{x1,x2, · · · ,xm}, where F(·)(·) is a common pseudorandom
function (PRF), and the key k is the sender’s output. The
ideal functionality of OPRF is depicted in Figure 2.

Parameters: The set size m of the receiver. A PRF F(·)(·).
Inputs: The receiver inputs the sets {xi}∀i∈[m].
Outputs: The receiver gets the PRF outputs {Fk(xi)}∀i∈[m].
The sender gets a pseudorandom secret key k.

Figure 2: The ideal functionality of OPRF Fopr f .

OPRF can be utilized to realize a two-party PSI (e.g., [5, 8,
16, 26]). After running the OPRF, the sender gets the OPRF
key k and computes the PRF values V = {Fk(yi)|∀yi ∈ Y}.
Then the sender directly sends V to the receiver. The receiver
gets the intersection I = {x|Fk(xi) ∈V,∀i ∈ [m]}. To securely
get the intersection, the core idea is to compare the OPRF
values of the sender and the receiver. The workflow of a two-
party PSI by utilizing OPRF can be found in Figure 3. The
security goes that all {Fk(yi)|yi ∈ Y\I} are pseudorandom to
the receiver. Hence, the receiver learns only the intersection.
Here, for security, it is noted that only the sender can send
the OPRF values to the receiver; the receiver cannot send
the ORPF values to the sender. Therefore, it is unidirectional.
Once the receiver sends {Fk(x1),Fk(x2), · · · ,Fk(xm)} to the
sender, it is possible for the sender to get the items of the
receiver since the sender holds the key k, especially when the
item domain is small.
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P1P2

V

OPRF

Figure 3: The workflow of two-party PSI by using OPRF. The
start and the end of the OPRF arrow line respectively represent
the OPRF receiver P1 and OPRF sender P2. P2 returns its
OPRF value set V to P1 after OPRF invocation.

In the above flow, the sender can also return an OKVS
table T that encodes {(yi,Fk(yi))}∀i∈[m] to the receiver rather
than the set V . Then the receiver gets the intersection I =
{x|Fk(xi) = Decode(T,xi),∀i ∈ [m]}. By returning an OKVS
table, the output bit length of Fk(·) can be reduced by log2(n)
[23] because the receiver no longer needs to compare n OPRF
values for each item’s OPRF value to know whether it is in the
intersection. In this paper, for simplicity, the sender returns
an OKVS table encoding the item-value pairs to the receiver.

4 Our protocol without collusion

In this section, we propose a simple and efficient semi-honest
mPSI protocol without collusion by only using OKVS and
OPRF. The general idea is to reduce the mPSI to the two-party
PSI. The receiver P1 and the last party Pn run as the two-party
PSI in Figure 3. All parties run in an OKVS chain.

4.1 A simple but insecure protocol

P1 P2 P3 Pn
OKVS OKVS OKVS

Figure 4: The workflow of an OKVS chain.

We first introduce a protocol called OKVS chain. The
workflow of an OKVS chain is shown in Figure 4. In the
OKVS chain, each party Pi has an item-value pair set Si =
{(xi

j,v
i
j)}∀ j∈[m] and needs to transit the XOR value sum of the

common items. Specifically, the first party P1 encodes his/her
item-value pairs Si = {(xi

j,v
i
j)}∀ j∈[m] into an OKVS table T1

and transits it to P2. The intermediate party Pi (i = 2,3, · · · ,n)
receives an OKVS table Ti−1 from its previous party Pi−1.
Then Pi decodes each item xi

j ∈ Xi to get its corresponding
value Decode(Ti−1,xi

j) and encodes to get the next OKVS ta-
ble Ti = Encode{{(xi

j,v
i
j ⊕Decode(Ti−1,xi

j))}∀ j∈[m]}. After
receiving Tn−1 from Pn−1, Pn computes vn

j ⊕Decode(Tn−1,xn
j)

for each item xn
j and the transition stops.

In the transition, each party transits the value XOR sum
of the intersection items. The obliviousness of the OKVS
chain inherits from the OKVS. For P2, if an item x2

j /∈ X1,
then Decode(T1,x2

j) is pseudorandom and P2’s updated value
v2

j ⊕Decode(T1,x2
j) for x2

j will be randomized. Then P2 keeps

only the correct value sum for the items in X1 ∩X2. For P3,
if x3

j /∈ X1 ∩X2, its updated value sum v3
j ⊕Decode(T2,x3

j)
will also be randomized. The transition continues until Pn
keeps the correct value sum for all items in the intersection
X1∩X2∩·· ·∩Xn; otherwise, their value sums are randomized.
From another angle, the OKVS chain is a filter to filter out non-
common items by randomizing their corresponding values. In
the above transition, it is noted that Pi (i = 2,3, · · · ,n) cannot
simply compute Ti = Ti−1 ⊕Encode({(xi

j,v
i
j)} j∈[m]) because

of a possible false positive issue. If doing so, although the
common items remain, the non-common items also remain.
Then Pi cannot filter out the non-common items. Therefore,
Pi has to decode to get the corresponding values from Ti−1.

By utilizing the OKVS chain, one can trivially design
a mPSI protocol. First, P1 can generate m random values
{v1

j}∀ j∈[m] for his/her m items to input m key-value (item-
value) pairs in the chain. The other parties simply input their
items with associated values as 0s. After the intersection value
transition, Pn will get an updated value set V and send it to
P1. P1 includes an item into the intersection if its associated
value v1

j is in V . This protocol is very simple. However, there
are two security concerns. First, it is vulnerable to the brute-
force attack when the item domain is small. It is noted that
P1 sends out an OKVS table T1 and receives the value set
from Pn. If P1 simply brute-forces the item domain to get
all the associated values by decoding on T1. Then it is easy
to know the intersection of all other parties (i.e.,

⋂n
i=2 Xi) by

intersecting the full domain values with the received value set.
Second, it is vulnerable to the collusion attack. For example,
if P3 colludes with P1, it is easy for them to attack P2 to know
X1 ∩X2 because P3 receives the intersection information from
P2 in the chain. It is noted that the input value vi

j for each
item xi

j are set depending on the specific protocol needs. In
the above protocol, v2

j ,v
3
j , · · · ,vn

j are set as 0. In late sections,
they will be set differently.

4.2 O-Ring(t=1): a secure protocol without col-
lusion

P1

P2

P3

P4

Pn

Mask

OKVS

OKVS
OPRF

OKVS

OKVS

Figure 5: The workflow of our mPSI protocol O-Ring (t = 1)
without collusion.
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Since we do not consider the collusion attack in this sec-
tion, we put our focus on handling the brute-force attack by
combining with an OPRF primitive. The workflow of our pro-
tocol is shown in Figure 5. One can easily find that our design
combines the OKVS chain with the two-party PSI in Figure
3. When there are only two parties, it simply becomes the
two-party PSI. In the flow, ‘Mask’ indicates that P1 shares a
PRF key with P2. The full protocol is shown in Figure 6. The
correctness goes that if x is in the intersection, the PRF and
OPRF value sum will be 0 because PRF and OPRF values are
in pairs. Otherwise, the probability that the value sum is 0 will
be negligible. For the security, because of the OPRF between
P1 and Pn, P1 can no longer has the brute-force attack against
the other parties because he/she does not have the OPRF key.
Due to the page limit, we put the formal security proof of this
protocol in Appendix A.1.

Parameters: The number of parties n and set size m.
The item’s bit length σ. An OKVS scheme Encode(·),
Decode(·, ·). A PRF F(·)(·) : {0,1}κ ×{0,1}σ 7→ {0,1}ℓ.
Inputs: Each party Pi inputs a set Xi = {xi

j}∀ j∈[m] for i ∈ [n],
and xi

j ∈ {0,1}σ.
Protocol:

1. [Initiation]. P1 sends a PRF key s to P2. Also,
P1 invokes Fopr f with Pn, where P1 and Pn respec-
tively act as the receiver and sender. Then Pn re-
ceives an OPRF key k and computes an item-value
set Sn = {(xn

j ,Fk(xn
j))}∀ j∈[m]. P1 and P2 respectively

compute S1 = {(x1
j ,Fs(x1

j)⊕Fk(x1
j))}∀ j∈[m] and S2 =

{(x2
j ,Fs(x2

j))}∀ j∈[m].

2. [Transition]. P2 starts the OKVS transition by in-
putting S2 in the OKVS chain P2 → P3 → ··· →
Pn → P1. In the transition, Pi inputs {(xi

j,0)}∀ j∈[m]

(i = 3,4, · · · ,n−1) and Pn inputs Sn.

3. [Intersect]. P1 computes the intersection I =
{x1

j |Fs(x1
j)⊕Fk(x1

j)⊕Decode(Tn,x1
j) = 0,∀ j ∈ [m]},

where Tn is the P1’s received OKVS table from Pn.

Figure 6: O-Ring (t = 1): mPSI without collusion.

5 Our protocol with arbitrary collusion

In the above section, we have designed an elegant mPSI pro-
tocol without collusion (i.e., t = 1) by utilizing OKVS and
OPRF. In this section, we continue to design a mPSI protocol
that can thwart 1 < t < n colluding parties.

5.1 O-Ring(P1 honest): a naive protocol
In the mPSI protocol, P1 is the only one who receives the
intersection. In Figure 5, we also observe that P1 is the end
node of the ring, which indicates that P1 plays a different

role from others in the protocol. If P1 is honest, we utilize its
special role to design a mPSI protocol with arbitrary collu-
sion. Specifically, P1 sends a secret key s1,i to each non-OPRF
party Pi respectively (i = 2,3, · · · ,n− 1). Then each of the
non-OPRF parties can use this secret PRF key to mask its
items’ decoded values, thus making it random to other par-
ties. It is noted that there is no need for P1 to do masking
with Pn because they have already invoked an OPRF instance.
The general workflow is shown in Figure 7. In this flow, the
masked parties Pi (i = 2,3, · · · ,n−1) can utilize these PRF
keys to mask their items’ values by updating the value v as
v⊕Fs1,i(x), thus keeping it pseudorandom to the other parties.

P1

P2

P3

P4

Pn

Mask

OKVS

OKVS
OPRF

OKVS

OKVS
Mask

Mask

Figure 7: The workflow of our mPSI protocol with arbitrary
collusion when P1 is honest.

5.2 Identifying an honest party
The above protocol assumes that P1 is honest and does mask-
ing between P1 and the other parties such that the protocol
can be secure against an arbitrary number of colluding par-
ties. However, if P1 joins the collusion, the protocol will be
insecure. Therefore, assuming that P1 is not honest, we need
to find an honest party to ensure the security of the protocol.

In addition to having masking between P1 and the other
parties in Figure 7, we follow the masking idea to assume
that Pn is honest and try to do the masking between Pn
and Pi with PRF keys sn,i (i = 2,3, · · · ,n− 1) to thwart the
colluding attack. Unfortunately, there will be a colluding
attacks even after masking. If P1 joins the collusion with
a masked party Pi (i ∈ [2,n − 1]), they will know extra
information beyond the intersection. Specifically, assuming
P1 has an item x but Pi does not, they can know if the
other n − 2 parties have x. P1 and Pi can simply check if
Decode(Tn,x)⊕Decode(Ti−1,x) = Decode(Ti,x)⊕Fsn,i(x)1

if i > 2. Here Pi has Ti, Ti−1, and sn,i; P1 has Tn. Based on
the property of OKVS chain, if P2,P3, · · · ,Pi−1,Pi+1, · · · ,Pn
has x, we have Decode(Ti−1,x) =

⊕i−1
j=2 Fsn, j(x) and

Decode(Tn,x) = Decode(Ti,x) ⊕
⊕n−1

j=i+1 Fsn, j(x) ⊕
1For simplicity, we do not consider PRF values between P1 and

the other parties. If consider, P1 and Pi should check Decode(Tn,x)⊕
Decode(Ti−1,x) = Decode(Ti,x)⊕Fsn,i (x)⊕

⊕n
j=2 Fs1, j (x)⊕Fs1,i (x).
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⊕n−1
j=2 Fsn, j(x) = Decode(Ti,x) ⊕

⊕i−1
j=2 Fsn, j(x) ⊕ Fsn,i(x).

Then it is easy to know Decode(Tn,x)⊕Decode(Ti−1,x) =⊕i−1
j=2 Fsn, j(x) ⊕ Decode(Ti,x) ⊕

⊕i−1
j=2 Fsn, j(x) ⊕ Fsn,i(x) =

Decode(Ti,x) ⊕ Fsn,i(x). Now, Pi knows x is in the in-
tersection of the other n − 2 parties’ sets, which should
not be allowed because x is not in the intersection of
all parties. If i = 2, P2 and P1 can simply check if
Decode(Tn,x) = Decode(T2,x)⊕Fsn,2(x).

The reason why Pi and P1 can have the collusion attack
is that masking by sharing PRF keys is symmetric. Namely,
both Pi and Pn know the PRF key sn,i. By using this key, Pi
can compute the PRF value Fsn,i(x) for x to do the checking
even he/she does not have x. To thwart the colluding attack,
instead of using masking, the asymmetric OPRF can be used.
Specifically, Pn can invoke an OPRF instance with Pi by acting
as a sender who holds the OPRF key kn,i. Then if Pi does not
have x, he/she cannot compute Fkn,i(x) to finish the checking.
Since i∈ [2,n−1], Pn needs to do OPRF with P2,P3, · · · ,Pn−1.
Taking P1 into attack, Pn still needs to do OPRF with P1 by
acting as a sender. As a common OPRF sender to the other
n−1 parties, if one colluding party Pi who acts as an OPRF
receiver does not have x, then its OPRF value Fkn,i(x) of Pn
will be pseudorandom to Pi and the colluding parties, thus
ensuring the security of Pn. For an honest party Pj, j ∈ [2,n−
1] who is an OPRF receiver, his/her OPRF value Fkn, j(x) is
also pseudorandom to other parties because the honest Pn
holds the key kn, j. Therefore, it is also secure for Pj.

P1

P2

P3

Pa

Pb

Pc

Pn

OKVS
OKVS

OKVS

OKVS

OKVS
OKVS

OPRF

Mask

Mask

OPRF

Figure 8: The workflow of a protocol that assumes Pb is honest.
Pa and Pc are respectively the previous party and posterior
party of Pb in the OKVS chain.

Having the above analysis, we know that if Pn (who acts as
a common OPRF sender to the other n−1 parties) is honest,
the protocol is secure against the collusion attack. In a general
discussion, let us assume Pb is honest, the protocol workflow
is shown in Figure 8. In this workflow, Pb acts as the common
OPRF sender to the other n− 1 parties and the protocol re-
ceiver P1 shares PRF keys with the other parties except for
Pb. It is noted that Pb has already done OPRF with P1 and
there is no need for P1 to do the masking with him/her. In the
OKVS chain, Pb’s input key-value pair set in the OKVS chain

is {(xb
j ,
⊕b−1

i=1 Fkb,i(xb
j)⊕

⊕n
i=b+1 Fkb,i(xb

j))}∀ j∈[m]. From the
value sum, one can know that if xb

j is not in common, at least
one of the OPRF values will be pseudorandom to the other
parties and the encoded value in Tb is also pseudorandom.

5.3 O-Ring(t > 1): a protocol against arbitrary
collusion

P1

P2

P3

Pa

Pb

Pc

Pn

OKVS
OKVS

OKVS

OKVS

OKVS
OKVS

OPRF

Mask

Figure 9: The workflow of O-Ring (t > 1). Pi (∀i ∈
[b,n]) is a common OPRF sender for the other parties
P1, · · · ,Pi−1,Pi+1, · · · ,Pn. When t < n− 1, P1 still needs to
share PRF keys with P2,P3, · · · ,Pb−1. The bidirectional arrow
line indicates that the two parties invoke two OPRF instances
with switched OPRF roles.

After the discussion about the honest party Pb in the above
subsection, we design the mPSI protocol O-Ring in which
there are at most t colluding parties. The workflow of O-Ring
(t > 1) is shown in Figure 9. In this Figure, we set b= n−t+1
and make Pi (∀i ∈ [b,n]) as a common OPRF sender to the
other n−1 parties. From subsection 5.1, if P1 is honest, it is
easy to know the protocol is secure. Assuming P1 is a colluder,
there must be at least one honest party among the t parties
Pb,Pb+1, · · · ,Pn because the number of colluders is at most t.

The full protocol is shown in Figure 10. In the protocol,
there are three phases: share distribution, share collection, and
share transition. In the share distribution phase, Pi (∀i ∈ [b,n])
has OPRFs with other parties and P1 shares PRF keys with Pj
(∀ j ∈ [2,b−1]). Since the OPRF values and masking values
are pairwise, the XOR value sum for a common item will be
zero. In other words, each OPRF value or masking value is
a share of 0 for the common items. After share distribution,
each party Pi collects the shares it distributes and receives for
each item from other parties in the OKVS chain by XOR these
shares. After preparing the items’ corresponding values (i.e.,
the share sum), all parties input their key-value (i.e., item-
value) sets into the OKVS chain and start the intersection
value sum transition. Given the property of OKVS chain, the
end party P1 will get the correct value sum of all the parties
for each item x1

j if x1
j ∈ X2 ∩X3 ∩ ·· · ∩Xn ∩X1; otherwise

not. The correctness of our protocol is obvious because both
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Parameters: The number of parties n. The number of colluding parties t. The set size m. The statistical and computational security
parameter λ and κ. The item’s bit length σ. An OPRF functionality Fopr f . A PRF F(·)(·) : {0,1}κ ×{0,1}σ 7→ {0,1}ℓ.
Inputs: Each party Pi (i ∈ [n]) inputs a set Xi = {xi

j}∀ j∈[m].
Protocol:

1. [Share distribution]. Denote b = n− t +1.

(a) [OPRF]. Pi (∀i ∈ [b,n]) respectively invokes an instance of Fopr f with Pj (∀ j ∈ [1,n]\{i}) to get {Qi(xi
u) =⊕i−1

j=1 Fki, j(xi
u)⊕

⊕n
j=i+1 Fki, j(xi

u)}∀u∈[m] and {Fki, j(x j
u)}∀u∈[m], where ki, j is the common OPRF sender Pi’s OPRF key.

(b) [Mask]. If b > 2, P1 respectively sends a random PRF key s1, j to Pj (∀ j ∈ [2,b−1]).

2. [Share collection].

• b > 2. Pi (∀i ∈ [2,b−1]) computes vi
j = Fs1,i(xi

j)⊕
⊕n

u=b Fku,i(xi
j) (∀ j ∈ [m]). Pi (∀i ∈ [b,n]) computes vi

j = Qi(xi
j)⊕⊕i−1

u=b Fku,i(xi
j)⊕

⊕n
u=i+1 Fku,i(xi

j) (∀ j ∈ [m]). P1 computes v1
j =

⊕b−1
u=2 Fs1,u(x1

j)⊕
⊕n

u=b Fku,1(x1
j) (∀ j ∈ [m]).

• b = 2. Pi (∀i ∈ [1,b − 1]) computes vi
j =

⊕n
u=b Fku,i(xi

j) (∀ j ∈ [m]). Pi (∀i ∈ [b,n]) computes vi
j = Qi(xi

j) ⊕⊕i−1
u=b Fku,i(xi

j)⊕
⊕n

u=i+1 Fku,i(xi
j) (∀ j ∈ [m]).

3. [Share transition].

• For O-Ring, in the OKVS chain (i.e., P2 →P3 →···→Pn →P1), each party Pi has {(xi
j,v

i
j)}∀ j∈[m]. P2 starts the transition

and P1 gets the transition value v1
j = v1

j ⊕
⊕n

i=2 vi
j for each item x1

j . P1 gets the intersection: I = {x1
j |v1

j = 0,∀ j ∈ [m]}.

• For K-Star, Pi (i = 2, · · · ,n−1) builds an OKVS table Ti by encoding {(xi
j,v

i
j)}∀ j∈[m] and sends it to Pn. Upon receiving

these tables, Pn also builds an OKVS table Tn by encoding {(xn
j ,v

n
j ⊕

⊕n−1
u=2 Decode(Tu,xn

j))}∀ j∈[m] and sends it to P1.
Then P1 gets the intersection: I = {x1

j |v1
j ⊕Decode(Tn,x1

j) = 0,∀ j ∈ [m]}.

Figure 10: O-Ring and K-Star (t > 1): our mPSI protocols against ≤ t colluding parties.

masking and OPRF enable pairwise sharing. If an item is
common, both parties will receive the same mask value and
OPRF value. XORing the same value twice will get 0.

Theorem 1. Our O-Ring (t > 1) in Figure 10 realizes the
functionality Fm−psi against ≤ t colluding semi-honest adver-
saries in the Fopr f hybrid model.

Proof. (Sketch). Due to the space limitation, we only sketch
the security proof. Dividing the n parties into two groups C
and O, which are respectively the coalition of corrupt parties
and honest parties. If the protocol receiver P1 is honest, the
protocol is secure (see subsection 5.1 for related analysis).
Now, assuming P1 is a colluder in C, there must be at least
one common OPRF sender (say it Pi) among the t common
OPRF senders Pb,Pc, · · · ,Pn. If |O|= 1 (i.e., only Pi in O), it
is easy to know the protocol is secure. If |O|> 1, denoting Pj
as another honest party, then the OPRF values of Pi and Pj
are pseudorandom to C because the honest Pi holds the secret
OPRF key ki, j. Then Pi and Pj’s encoded values in step 3 is
also pseudorandom. When Pi and Pj both have an item x and
they are adjacent, their OPRF value sum by using ki, j will
be 0, which is not pseudorandom. However, assuming x /∈ I,
there must be one party in C who does not have x, say Pu.
Then Fku, j(x) is pseudorandom to C and it is an XOR share
of Pi’s value sum in step 2. Then x’s encoded value in step 3
is also pseudorandom for C. Since all honest parties’ encode

values in step 3 are pseurandom to C, the protocol is secure.
More details are in Appendix A.3.

5.4 K-Star: a protocol with star topology

P1

P2

P3

P4

Pn

Mask

OKVS
OPRF

Mask

Mask

OKVS
OKVS

OKVS

Figure 11: The workflow of K-Star when t = 1.

In O-Ring, there is no central party. We notice that many
previous works [2, 17, 21] used the star topology to design
their protocol. In their works, one party needs to carry the
workload much larger than the other parties, especially when
n is large and t is small. This cannot be avoided because the
star structure requires one party to handle the shares from
other parties. In real-world applications, this central party can
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be a server with strong computation power and is willing to
pay more communication costs.

Based on the ring design, we also proposed a star design
K-Star. The full protocol of K-Star when t > 1 is shown in
Figure 10. The only difference between O-Ring and K-Star is
in the last step. Instead of transiting the shares via the OKVS
chain in O-Ring, the parties P2,P3, · · · ,Pn−1 simply send the
value shares to the center Pn via the OKVS tables. Then Pn
transits the collected shares to the protocol receiver P1 such
that P1 can compute the intersection. The security of K-Star
(t > 1) is the same as O-Ring (t > 1).

Theorem 2. Our K-Star (t > 1) in Figure 10 realizes the
functionality Fm−psi against ≤ t colluding semi-honest adver-
saries in the Fopr f hybrid model.

Proof. (Sketch). In O-Ring (t > 1), the share distribution and
share collection steps by using OPRF and masking ensure the
security of the protocol. Specifically, having OPRF enables
each item’s encoded value in step 3 is pseudorandom to the
colluded parties. K-Star and O-Ring only differs in the share
transition step. Therefore, if O-Ring (t > 1) is secure, K-Star
(t > 1) is also secure. More analysis are in Appendix A.4.

We also illustrate the working flow of K-Star when there is
no collusion (i.e., t = 1) in Figure 11. In the flow, P1 first sends
PRF keys to Pi (∀i∈ [2,n−1]) and has an OPRF instance with
Pn by acting as an OPRF receiver. Then each party collect their
shares. Parties P2,P3, · · · ,Pn−1 directly send their values to
the center Pn via OKVS tables. Finally, Pn sends the collected
shares to P1 via an OKVS table to compute the intersection.
The full protocol is shown in Figure 12. We put the security
proof for this protocol in Appendix A.2.

6 Experiments and evaluations

The benchmark machine is with 32-core Intel(R) Xeon(R)
Gold 6226R CPU @ 2.90GHz and 236G RAM. The network
is simulated by the localhost network as other mPSI works
[4, 17]. The bandwidth and the latency are controlled by the
Linux tc command. There are two network settings: for the
LAN setting, the bandwidth is 10Gbps and the round-trip
latency is 0.06ms; for the WAN setting, the bandwidth is
200Mbps and the round-trip latency is 96ms.

To implement our protocols (O-Ring and K-Star), we utilize
the OPRF protocol in [26], which is composed of a primitive
VOLE and an OKVS. We utilize the OKVS 3H-GCT [8] with
an expansion rate about 1.3. The statistical and computational
security parameters are respectively set as λ= 40 and κ= 128.
The item bit length is σ = 128. As [17], the item’s share
bit length is ℓ = λ+ log2(m). For each party, we run it by
using a single thread as previous works [4, 17]. For each
setting, we run 10 times and take the average as [17]. Our
protocols are written in C++ as [4, 17]. Our source codes are
at https://github.com/private-panda/oring.

Parameters: The number of parties n and set size m. The
statistical security parameter λ and the computational se-
curity parameter κ. The item’s bit length σ. An OKVS
scheme Encode(·), Decode(·, ·). A PRF F(·)(·) : {0,1}κ ×
{0,1}σ 7→ {0,1}ℓ.
Inputs: Each party Pi inputs a set Xi = {xi

j}∀ j∈[m] for i ∈ [n],
and xi

j ∈ {0,1}σ.
Protocol:

1. [Initiation]. P1 sends a PRF key s1,i to Pi (i =
2,3, · · · ,n − 1). Also, P1 invokes Fopr f with Pn,
where P1 and Pn respectively act as the receiver and
sender. Then Pn receives an OPRF key k and com-
putes an item-value set Sn = {(xn

j ,Fk(xn
j))}∀ j∈[m]. P1

and Pi (i ∈ [2,n − 1]) respectively compute S1 =
{(x1

j ,v
1
j =

⊕n−1
i=2 Fs1,i(x1

j)⊕ Fk(x1
j))}∀ j∈[m] and Si =

{(xi
j,Fs1,i(xi

j))}∀ j∈[m].

2. [Transition]. Pi (i = 2,3, · · · ,n−1) encode Si into an
OKVS table Ti and sends Ti to Pn. Then Pn encodes
{(xn

j ,Fk(xn
j)⊕

⊕n−1
i=2 Decode(Ti,xn

j)}∀ j∈[m] to get an
OKVS table Tn and sends it to P1.

3. [Intersect]. P1 computes the intersection I = {x1
j |v1

j ⊕
Decode(Tn,x1

j) = 0,∀ j ∈ [m]}.

Figure 12: K-Star (t = 1): mPSI without collusion.

6.1 Optimizations
There are two fine-grained optimizations when we implement
the OKVS and OPRF. For the OKVS, there are two phases:
peeling and unpeeling. The peeling phase is only related to
the keys and the unpeeling phase is to assign the values for the
keys. Our first optimization is to do the peeling for each party
(by taking the items as the keys) before interactions with other
parties. Then each party can immediately do the unpeeling
(rather than peeling and unpeeling) upon receiving the values
from other parties, thus supporting better concurrency. Having
this optimization, the running time of the OKVS chain can be
6.3% ∼ 52.5% faster, as is shown in Table 2.

m\n 3 10
212 33/46 (27.3%) 169/216 (22.1%)
216 429/699 (38.6%) 2883/3078 (6.3%)
220 10412/15001 (30.6%) 29823/62766 (52.5%)

Table 2: The running time (in ms) comparisons for OKVS
chain with/without our optimization. In each cell, the left and
right data of ‘/’ are respectively for our optimization and the
naive one; the data in ‘()’ is the improvement percentage.

In the OPRF invocations, each receiver needs to do
the OKVS encoding before interactions with multiple
senders. Specifically, an OPRF receiver Pi needs to do
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Encode({(xi
j,H1(xi

j))}∀ j∈[m]), which is independent with
other senders. Here H1(·) : {0,1}σ 7→ {0,1}ℓ is a random
oracle. Therefore, there is no need for an OPRF receiver Pi to
repeatedly do the encoding for multiple times. In our second
optimization, we only do Encode({(xi

j,H(xi
j))}∀ j∈[m]) once

for each OPRF receiver, thus saving computation costs. In
Table 3, we compare the running time by utilizing this op-
timization with that by having n′ naive OPRF invocations.
From this table, we can find that one can save 1.0% ∼ 24.0%
running time for n′ = 2,9 and 212 ≤ m ≤ 220 after optimiza-
tion. We call our optimization as a multi-sender OPRF. More
details are in Appendix B.

m\n′ 2 9
212 49/51/113 (3.1%) 95/113 (16.1%)
216 363/367 (1.0%) 659/867 (24.0%)
220 9093/9336 (2.6%) 14565/15555 (6.4%)

Table 3: The running time (in ms) comparisons between our
optimization (by having an OPRF receiver with n′ OPRF
senders) with naive n′ OPRF invocations. In each cell, the left
and right data of ‘/’ are respectively for our optimization and
the naive one; data in ‘()’ is the improvement percentage.

6.2 Performance comparisons
We respectively compare the running time and communica-
tion costs of O-Ring and K-Star after the above optimizations
with other state-of-the-art mPSI protocols [4, 17] in Table 4
and 6. The comparisons are made in the same benchmark
environment (i.e., same machine and bandwidth) by running
their source codes. In both tables, the client is the party with
the lowest workload; the bearer is the party with the largest
workload2. For our K-Star and O-Ring, the bearer is Pn and
the client is P2.

6.2.1 K-Star vs O-Ring

The difference between O-Ring and K-Star lies in the last step
in Figure 10. The ring-based design O-Ring distributes the
transition costs to all parties. However, the star-based design
K-Star assigns the costs to the bearer Pn. Therefore, Pn gets
larger computation costs and communication costs.

In Table 4, we do not show the running time of Pn. The
running time of Pn is slightly smaller than the total running
time of P1. For other star-based protocols [4, 25], the running
time is the central party’s running time. When n = 3, O-Ring
and K-Star have the same topology, thus having the same per-
formance. Since the star structure gains better concurrency,

2Here, we do not use leader as the traditional mPSI protocols that are
based on a star topology. The reason is that we do not have such a central
party in O-Ring that is based on a ring topology.

K-Star runs faster than O-Ring in other settings. For example,
when n = 10, K-Star runs 13.6% ∼ 19.3% faster in the LAN
setting. For the client running time, K-Star and O-Ring are
close. O-Ring can share a part of the bearer’s cost in K-Star to
the other parties, especially the communication costs. From
Table 6, we can find that O-Ring has the lowest communi-
cation costs for the bearer Pn, which is 3.0% ∼ 63.4% lower
than K-Star except for the case when n = 3. For the client
P1 in both protocols, the only difference is that P1 sends an
OVKS table to P2 in O-Ring and sends an OKVS table to
the bearer Pn in K-Star, thus having the same communica-
tion costs. Though the topology of K-Star is different from
O-Ring, the total communication costs do not change. For
theoretical communication costs, we put them in Table 5.

From the above analyses, one can find that O-Ring is more
suitable than K-Star in applications where the bearer has
relatively limited communication and computation resources.
In contrast, if the bearer’s resources are sufficient, K-Star is
preferable because it runs faster.

After comparing O-Ring and K-Star, we continue to make
comparisons between them with [4,17]. Compared with these
protocols, O-Ring and K-Star run the fastest and achieve the
lowest communication costs in the most of the settings. More
details are as follows.

6.2.2 Comparisons with KMPRT’17 [17]

We compare K-Star and O-Ring with the semi-honest protocol
in [17] under the same collusion security model, i.e., support-
ing an arbitrary t ∈ [1,n−1]. Kolesnikov et al. [17] proposed
their mPSI protocol by using an OPPRF primitive. Their OP-
PRF protocols are built upon the OPRF primitives, thus more
expensive than OPRF protocol. We build our protocols by
using OPRF. Considering t = n− 1, in their protocol, each
party first needs to have n−1 OPPRF invocation with other
parties and have another invocation with the bearer. There-
fore, the total number of invocations is n×(n−1)+(n−1) =
(n+1)(n−1). In comparison, our O-Ring and K-Star only
needs n × (n − 1) invocations of the OPRF functionality.
When t < n−1, they need (t +1)×n+(n−1) OPPRF invo-
cations. In comparison, we need t(n−1) OPRF invocations.
Additionally, we need n−1 OKVS encoding and decoding.
The cost of OKVS can be very small [8]3. Therefore, our
protocols are theoretically more efficient than [17].

From Table 4, in the LAN setting, O-Ring is respectively
1.5×∼ 13.2 and 1.4×∼ 6.0× as fast as KMPRT’17 [17] in
the client running time and the total running time (except for
one setting (n, t,m) = (10,1,220)). The exception is because
O-Ring takes a ring design while KMPRT’17 [17] has a star
structure. in the WAN setting, we also observe one excep-
tions in the settings (n, t,m) = (10,1,212), in which O-Ring
is 25.5% and 11.1% slower in the total running time. In other

3In [8], one can encode m = 220 key-values pairs for 7.13s and decode
m = 220 keys for 1.09s with a table size about 1.3m.
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Network Protocol (n, t) (3,1) (3,2) (10,1) (10,4) (10,9)
m 212 216 220 212 216 220 212 216 220 212 216 220 212 216 220

LAN

KMPRT’17 [17] Client 0.17 1.1 15.7 - - - 0.27 1.7 25.2 0.48 4.3 62.9 0.90 11.0 156
Total 0.20 1.5 21.3 - - - 0.33 2.4 35.3 0.53 5.0 73.9 0.98 11.9 171

CDGOSS’21 [4] Client 0.82 1.5 17.8 - - - 1.67 2.3 22.9 1.66 2.4 22.8 - - -
Total 0.82 1.5 17.9 - - - 1.68 2.4 23.1 1.66 2.4 23.1 - - -

O-Ring Client 0.02 0.4 10.7 0.08 0.5 13.0 0.03 0.5 11.2 0.11 0.7 13.3 0.18 0.8 16.3
Total 0.06 0.5 14.8 0.10 0.7 16.9 0.14 1.6 39.6 0.22 1.9 41.4 0.29 2.0 44.6

K-Star Client 0.02 0.4 10.7 0.08 0.5 13.0 0.03 0.5 11.2 0.11 0.7 13.3 0.18 0.9 16.6
Total 0.06 0.5 14.8 0.10 0.7 16.9 0.12 1.0 20.1 0.19 1.1 22.3 0.23 1.3 25.3

WAN

KMPRT’17 [17] Client 1.86 18.3 284.1 - - - 2.65 7.7 147 2.86 27.9 570 4.79 60.4 745
Total 3.21 21.7 324.9 - - - 4.43 18.9 290 4.98 43.0 709 6.72 74.9 1261

CDGOSS’21 [4] Client 3.14 6.6 46.1 - - - 3.62 10.6 136 3.70 10.6 135 - - -
Total 3.24 6.7 46.5 - - - 3.72 10.9 137 3.80 10.9 136 - - -

O-Ring Client 0.36 0.7 12.8 3.24 3.8 19.3 1.3 1.7 13.2 3.67 4.4 35.1 5.24 7.4 64.8
Total 1.92 3.1 18.0 3.36 4.3 24.3 3.6 6.7 50.1 5.60 8.7 69.9 5.84 10.4 98.5

K-Star Client 0.36 0.7 12.8 3.24 3.8 19.3 1.3 1.6 15.4 3.70 4.4 37.8 5.23 7.5 65.4
Total 1.92 3.1 18.0 3.36 4.3 24.3 3.6 6.6 31.4 5.60 7.8 50.5 5.74 9.0 78.0

Table 4: The running time comparisons (in seconds) between our protocols with other mPSI protocols. The best results are
marked in bold. Cell with ‘-’ indicates that the setting is not supported.

Protocol Client Bearer Total
O-Ring (t = 1) φ 2φ+ω φ′+ω

O-Ring (t > 1) φ+ tω 2φ+(n−1)ω φ′+(n−1)tω
K-Star (t = 1) φ φ′+(n−1)ω φ′+ω

K-Star (t > 1) φ+ tω φ′+(n−1)ω φ′+(n−1)tω

Table 5: The theoretical communication costs (in bits) for O-
Ring and K-Star. ω = 1.3κm+ ℓm+213κm0.13 is the OPRF
cost [26]. φ = (1.3m+λ+0.5log(m))ℓ is the OKVS table bit
size [8]. φ′ = (n−1)φ.

settings, O-Ring is 1.2× ∼ 18.1× as fast as theirs. Our O-
Star has the same star structure as KMPRT’17 [17]. From
Table 6, in the LAN setting, K-Star is 1.6× ∼ 12.7× and
1.4×∼ 9.0× as fast in the client running time and the total
running time. in the WAN setting, the ratios for the client run-
ning time are 2.0 ∼ 26.2× with two exceptions in the settings
(n, t,m) = (10,4,212),(10,9,212). In these two exceptions,
K-Star is respectively 22.7% and 8.5% slower. As for the
total running time, K-Star is 1.2×∼ 18.9× as fast with one
exception in the setting (n, t,m) = (10,4,212). In this excep-
tion, K-Star runs 11.1% slower. In communication, O-Ring
and K-Star are respectively 1.4×∼ 82.6× and 1.6×∼ 48.3×
as cheap as KMPRT’17 [17] in the client’s costs and the total
costs. For bearer’s communication costs, O-Ring and K-Star
are respectively 1.4×∼ 26.9× and 1.4×∼ 14.4× as cheap.

In KMPRT’17 [17], the authors specially proposed an op-
timized protocol for n = 3. However, when (n, t) = (3,2),
their protocol is insecure. More details are in subsection 6.4.3.
Therefore, we do not report their data in this setting in Table
4 and 6. In [17], the authors also proposed another protocol
that gained better performance based on a weaker security
model, i.e., the augmented semi-honest security model. In this
paper, we only focus on the semi-honest model. Also, their

augmented semi-honest protocol is prone to the collusion
attack, which will be also elaborated in subsection 6.4.1.

6.2.3 Comparisons with CDGOSS’21 [4]

Chandran et al. [4] proposed their protocol based on their
proposed functionality called wPSM, which was instantiated
by the OPPRF protocols in [17]. Additionally, after the OP-
PRF invocations between the center P1 and the other n− 1
parties, they need other multi-party functionalities, e.g., the
ConvertShares that can exploit (n, t) secret sharing to generate
shares. One drawback of their protocol is that their protocol
is limited in t < n/2. Therefore, we only provide the perfor-
mance data for t < n/2 in Table 4 and Table 6.

From Table 4, for the client running time, O-Ring is respec-
tively 1.7×∼ 57.1 and 1.0×∼ 10.0× as fast as CDGOSS’21
[4] in the LAN and WAN settings. For the total running time,
except for two setting (n, t,m) = (10,1,220),(10,4,220), O-
Ring is respectively 1.2×∼ 12.9× as fast as CDGOSS’21 [4]
in the LAN setting. In the WAN setting, except for one set-
ting (n, t,m) = (10,4,212), O-Ring is 1.1× ∼ 2.7× as fast.
For K-Star, for the client running time, it is respectively
1.7×∼ 55.5× and 1.0×∼ 8.7× as fast as CDGOSS’21 [4]
in the LAN and WAN settings. In the total running time, K-
Star is 1.0×∼ 15.3× as fast in the LAN setting. Except for
one setting (n, t,m) = (10,4,212), K-Star is 1.0×∼ 4.4× as
fast. In this exception, CDGOSS’21 [4] is 1.5× as fast as K-
Star. In communication, O-Ring is respectively 1.2×∼ 69.9×
and 2.0×∼ 67.8× as cheap as CDGOSS’21 [4] in the client
costs and the bearer’s costs. For the total costs, except for
the setting (n, t,m) = (10,4,212), O-Ring is 4.0× ∼ 39.8×
as cheap as theirs. In (n, t,m) = (10,4,212), CDGOSS’21 [4]
is 1.1× as cheap as O-Ring. In the bearer’s costs, K-Star is
1.9×∼ 27.5× as cheap as CDGOSS’21 [4].

6500    33rd USENIX Security Symposium USENIX Association



Protocol (n, t) (3,1) (3,2) (10,1) (10,4) (10,9)
m 212 216 220 212 216 220 212 216 220 212 216 220 212 216 220

KMPRT’17 [17]
Client 2.19 36.9 639 - - - 3.14 46.6 743.2 3.14 46.6 743.2 19.37 326.6 5668
Bearer 2.19 36.9 639 - - - 4.04 68.6 1195 10.63 179.2 3112 19.37 326.6 5668
Total 3.29 55.3 958.5 - - - 19.75 331.8 5751 49.39 829.6 14377 96.87 1633 28341

CDGOSS’21 [4]
Client 1.79 27.6 441.1 - - - 2.55 39.8 635.7 2.55 39.8 635.7 - - -
Bearer 3.02 46.3 738.9 - - - 12.37 189.1 3018 12.37 189.1 3018 - - -
Total 3.29 50.8 810.5 - - - 17.65 273.6 4369 17.65 273.6 4369 - - -

O-Ring
Client 0.04 0.6 11.0 1.56 5.8 78.5 0.04 0.6 11.0 2.07 7.5 101.0 8.68 30.2 393.3
Bearer 0.58 2.9 44.5 1.60 6.4 89.5 0.58 2.9 44.5 6.18 22.1 291.9 8.72 30.8 404.3
Total 0.58 2.9 44.5 2.11 8.1 112 0.85 6.9 121.6 18.64 67.9 908.7 41.51 146.3 1921

K-Star
Client 0.04 0.6 11.0 1.56 5.8 78.5 0.04 0.6 11.0 2.07 7.5 101.0 8.68 30.2 393.3
Bearer 0.58 2.9 44.5 1.60 6.4 89.5 0.85 6.9 121.6 6.44 26.0 368.9 8.98 34.8 481.4
Total 0.58 2.9 44.5 2.11 8.1 112 0.85 6.9 121.6 18.64 67.9 908.7 41.51 146.3 1921

Table 6: The communication cost (in MB) comparisons between our protocols with other mPSI protocols. The best results are
marked in bold. Cell with ‘-’ indicates that the setting is not supported. The bearer is the party with the largest workload.

In addition to the above experiment results, we also com-
pare the total theoretical communication costs. From CD-
GOSS’21 [4], the total communication cost of their protocol
is m(n− 1)(4.5κ+ 35ℓ+ 140) bits (i.e., in O(mn)), which
is independent with the number of parties t and linear with
n. However, O-Ring and K-star need (n − 1)(1.3m + λ +
0.5log(m))ℓ+ (n − 1)t(1.3κm + ℓm + 213κm0.13) bits (i.e.,
in O(mnt)). Therefore, when t is large (e.g., t = n/2− 1),
their protocol is expected to have better performance than O-
Ring and K-Star. For example, in Table 4, when m = 212 and
(n, t) = (10,4), their protocol needs 17.65 MB in total, which
is 5.3% cheaper than O-Ring and K-Star. However, for a large
set size m = 220, even when we increase n to 544, their pro-
tocol still needs more communication costs than O-Ring and
K-Star. Specifically, their protocol needs 50320.7 MB, while
O-Ring and K-Star only need 31573.2 MB, which is 37.3%
cheaper. As for the total running time, from Table 4, when
(n, t,m) = (10,4,212) in the WAN setting, their protocol can
already run 32.1% faster. For a large set size m = 220 in the
LAN setting, when increasing n to 11 and set the largest t = 5,
their protocol can also run faster. Specifically, their protocol
runs in 24.1 seconds, which is 9.8% faster than K-Star.

6.3 Application: secure medical data integra-
tion

In [11], Gon et al. showed that integrating medical records
between different institutions was useful to investigate the
correlation between stroke and cancer. In privacy-preserving
medical data integration [19, 20], multiple institutions aim to
integrate their patient databases without violating the patient
or commercial privacy. To achieve this, Miyaji et al. [20] pro-
posed a mPSI protocol by using Bloom filter and exponential
ElGamal homomorphic encryption (exElGamalHE) 5.

4For a larger set size, their program simply crashes.
5In [19], the authors directly used the mPSI protocol in [20]. Therefore,

we do not put it into analysis in this paper.

To test the efficiency of our protocols for secure medical
data integration, we set the largest number of institutions
n = 16 and the largest database size m = 214 as [20]. For the
number of colluding parties, we also consider t = n− 1 as
theirs. The bandwidth is also the same as their (i.e., 2 Gbps).
As a result, our O-Ring and K-Ring respectively run in 1.5
seconds and 1.2 seconds, which are cheap. In comparison,
their protocol needs > 1044 seconds 6, which are expensive.
In communication costs for the client and the bearer, O-Ring
(resp. K-Star) needs to take 22.7 MB (resp. 22.7 MB) and 22.9
MB (resp. 24.9 MB). For the total communication cost, both
O-Ring and K-Star need 177.6 MB. The communication costs
are very low. In comparison, the protocol in [20] respectively
needs to take 1731.2 MB, 22159.8 MB, and 42934.6 MB for
the client, the bearer, and the total cost, which are respectively
> 76.2×, > 890.0×, and > 365.1× as expensive as O-Ring
and K-Star.

6.4 Insecurity of prior protocols
6.4.1 Augmented semi-honest protocol [17]

In section 2, we have introduced the augmented semi-honest
protocol in [17]. Though it gets good performance, it is prone
to the collusion attack when the protocol receiver P1 joins the
collusion. One can first check the case for t = n−1. Since the
PRF keys sharing is symmetric, if t = n−1, all the PRF keys
are known to the colluding parties, thus bringing no security
benefit. Assuming Pi (i > 1) is the non-colluding party and
its PRF keys are si, j (∀ j ∈ [n]\i), then the share of each item
xi ∈ Xi is vi =

⊕i−1
j=1 Fsi, j(xi)⊕

⊕n
j=i+1 Fsi, j(xi). With the col-

lusion between the receiver with the other n−2 parties, the
receiver P1 knows all si, j (∀ j ∈ [n]\i). After the OPPRF invo-
cation between Pi, it is easy for P1 to know the intersection

6Their protocol is very time-consuming. In our implementation of their
protocol, only encrypting the Bloom filter by using exElGamalHE takes 1044
seconds. There are also other expensive operations, e.g., computing the sums
of the encrypted Bloom filter.
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X1 ∩Xi by comparing the OPPRF value of each item x1 ∈ X1
with v1. If they are equal, then x1 is in the intersection; oth-
erwise not. As a consequence, the colluding parties know
extra information beyond the intersection

⋂n
i=1 Xi, which is

not allowed. In fact, one can further generalize the above
collusion attack for t < n−1 such that the colluding parties
can know X1 ∩

⋂
Xi, where

⋂
Xi is the intersection of the n− t

non-colluding parties. Since there are t −1 parties who are
colluding with the protocol receiver P1, P1 can know all the
PRF keys between them with the n− t honest parties. Now,
after the OPPRF between these n− t honest parties, for each
item x1 ∈ X1, P1 simply checks whether its OPPRF value sum
is equal to the PRF value sum by using the PRF keys that are
known to colluding parties. If there is a match, it indicates
that x1 is in X1∩

⋂
Xi. It is noted that none of colluding parties

except for P1 needs to use their sets in the above attack.

6.4.2 ZeroXOR [21]

In section 2, we have introduced the zeroXOR protocol and
mPSI protocol in [21]. When t = n−1, their mPSI protocol
becomes the zeroXOR protocol in which all items’ values
of the n parties are 0s and their mPSI protocol is almost the
same as the augmented semi-honest protocol [17], thus it is
also prone to the collusion attack.

When 1 < t < n−17, their mPSI protocol is also insecure.
Specifically, the pivot Pw can collude with the protocol re-
ceiver P1 to know information beyond the intersection

⋂n
i=1 Xi.

After receiving an OKVS table Ti from a non-zeroXOR party
Pi, Pw decodes and computes each item xw

j ’s associated value
vw

j = Decode(Ti,xw
j )⊕ v′j and performs OPPRF with the pro-

tocol receiver P1 by inputting {(xw
j ,v

w
j )}∀ j∈[m], where v′j is

the PRF value sum in the zeroXOR. If the final value sum
of x1

j ∈ X1 is 0, then P1 will include x1
j into the intersection.

Now, assuming all the other parties have an item x except for
the pivot party Pw. Then Pw and P1 can collude to know if Pi
has x. Specifically, Pw can decode Ti by using x and compute
v′′ = Decode(Ti,x)⊕v′, where v′ is the PRF value sum in the
zeroXOR. Pw shows v′′ to P1. If v′′ is matched, it indicates
that Pi has x. It is noted that Pw can compute any PRF value
sum including v′ because he/she has the shared PRF keys with
the other t parties in the zeroXOR. Therefore, their protocol
is also insecure when 1 < t < n−1.

6.4.3 Optimized three-party protocol [17]

In addition to their augmented protocol and semi-honest gen-
eral protocol, the authors [17] also specially proposed an
optimized three-party PSI protocol. In this protocol, the pro-
tocol receiver P1 and P2 first invoke an OPPRF instance, in
which P1 acts as the sender and P2 acts as the receiver. Then
P2 interacts with P3 by acting as the OPPRF sender. Finally,

7In [21], the authors also specially proposed a protocol when there is no
collusion (i.e., t = 1), which is secure by using a two-party PSI primitive.
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Figure 13: Three-party PSI protocol workflow comparisons.

P3 interacts with P1 by acting as the OPPRF sender. One can
find the working flow in sub-Figure 13a.

However, their proposed three-party PSI protocol is also
insecure. As the sender, P1 knows the OPPRF key and can get
the key-value pairs in the full item domain. Then P3 will also
know X2 ∩X3 by colluding with P1. Actually, P1 is not sup-
posed to act as a sender in any OPPRF (or OPRF) interaction
with other parties in case that he/she launches the brute-force
attack when the input domain is small. In another collusion
attack, P2 and P1 can collude to know if P3 has an item x even
x /∈ I. Specifically, assuming P1 and P3 both have x, then P1
can get the correct value v from P3. For P3, v is got from P2.
If P2 does not have x, P3 will get the incorrect v and then give
v to P1 and P1’s colluding party P2. Since P2 has the OPPRF
key, he/she can have the brute-force attack for the input do-
main until he/she finds x. Or a more simple way of P2 is to
compute the OPPRF values of P1’s items until he/she finds
v and knows x. Now, P2 and P1 knows P3 has x even x /∈ I.
Intuitively, it is insecure for an OPPRF receiver to disclose its
OPPRF values to the OPPRF sender.

In comparison, our three-party design can thwart the above
collusion attacks because both P2 and P3 are a common OPRF
sender to the other two parties. The working flow of our three-
party protocol is shown in sub-Figure 13. It is noted that
O-Ring and K-Star share the same topology when n = 3.
In the first step of our protocol, P1 invokes the multi-sender
OPRF instances with P2 and P3 by acting as the receiver. As
the receiver of the multi-sender OPRF, only the intersection
items’ values can be correctly distributed. P1 cannot know the
item-value pairs in the item domain because he/she does not
have the OPRF key. P2 and P3 both act as a common OPRF
sender to the other parties. For an item x of P2 or P3, if it is
not in common, at least one of its two OPRF values will be
pseudorandom to the other parties because he/she holds the
OPRF keys. Then the sum of the three OPRPF values (i.e.,
two values as an OPRF sender and one value as an OPRF
receiver) will also be pseudorandom to the other parties, thus
disclosing nothing to them. In the above second collusion
attack, if P2 does not have x, the OPRF value for x of P3 will
be pesudorandom to P2 because P3 is an OPRF sender (to P2)
who holds the key.
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7 Conclusion and Future work

In this paper, we propose two protocols to achieve mPSI. Both
protocols can be secure against an arbitrary number of collud-
ing parties. Our first protocol O-Ring is ring-based and has the
minimum bearer communication costs. Our second protocol
is star-based and can run the fastest in the most of the settings.
Both O-Ring and K-Star can achieve the lowest communica-
tion costs in the most of the settings. Technically, we utilize
the OKVS and OPRF. To better support concurrency and save
computation costs, we make find-grained optimizations when
we implement the OKVS and OPRF in our protocols. We be-
lieve these optimizations can be utilized in other applications
where a party needs to have multiple OPRF invocations with
other parties by acting as a common OPRF receiver.

In this paper, we only focus on the semi-honest security
model. Though Garimella et al. [8] has proved that their mali-
cious mPSI protocol is not secure in the semi-honest model,
there are also other works that focus on the malicious security
model (e.g., [2,9]). By introducing a random oracle, Garimella
et al. [8] designed their malicious mPSI protocol on top of
the augmented semi-honest protocol in KMPRT’17 [17]. We
believe using a random oracle is also helpful to make our
protocols maliciously secure. We keep it as a future work.
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A Security proof of O-ring and K-Star

A.1 O-Ring (t=1)
Theorem 3. Our protocol in Figure 6 realizes Fm−psi against
a semi-honest adversary in the Fopr f -hybrid model.

Proof. For the security, the receiver can no longer brute-force
the full input domain even if it is small because of OPRF.
Without OPRF between P1 and Pn, P1 can have the brute-
force attack to know

⋂n
i=2 by checking Pn’s OKVS table

Tn. To check if an item x is in
⋂n

i=2 Xi, P1 can simply check
Decode(Tn,x) = Fs(x) even when x /∈ X1 because P1 has the
PRF key s. If yes, then x is in

⋂n
i=2. Having the OPRF, as an

ORPF receiver, P1 cannot know Fk(x) if x /∈ X1 because Pn
holds the key k. Therefore, P1 cannot know

⋂n
i=2 Xi. Here we

also provide formal security proof.

• Corrupt P2. In the protocol, P2 receives an PRF key
from P1. Therefore, P2’s view can be simulated by re-
turning a random seed. This view is indistinguishable.

• Corrupt Pi (i ∈ [3,n− 1]). Pi receives an OKVS table
Ti−1 from its previous party in the protocol. Pi’s view
can be simulated by returning a random table with the
same size. Given the oblivious property of OKVS, this
view is also indistinguishable.

• Corrupt Pn. Pn receives an OKVS table Tn−1 from Pn−1
in the protocol and gets an OPRF key k from Fopr f . Tn−1
and k are independent. Pn’s view can be simulated by
returning a random table with the same size as Tn−1 in
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the real protocol and a random key. Given the oblivious
property of OKVS and the security of OPRF, this view
is also indistinguishable.

• Corrupt P1. P1 receives an OKVS table Tn from Pn
and an OPRF set {Fk(x1

j)}∀ j∈[m] from Fopr f . The sim-
ulator can observe P1’s output set I. P1’s view can be
simulated by returning an OKVS table T ′

n . Here T ′
n is

encoded by {(x′i,v′i)}i=1,2,··· ,m−|I| ∪ I′, where {x′i}m−|I|
are non-common items, {v′i}m−|I| are randomly sampled
values, and I′ are item-value pairs that correspond to
the common items and each common item x’s value is
Decode(Tn,x). Given the obliviousness of OKVS and
the security of OPRF, this view is indistinguishable.

A.2 K-Star (t = 1)
Theorem 4. Our K-Star (t = 1) in Figure 12 realizes Fm−psi
against a semi-honest adversary in the Fopr f -hybrid model.

Proof. The correctness is the same as O-Ring (t = 1). For
security, similar to O-Ring (t = 1), because of the OPRF be-
tween P1 and Pn, P1 cannot have the brute-force attack to
know

⋂n
2 Xi even the input domain is small. The view of a

corrupt party can be simulated as follows:

• Corrupt P2. Same as O-Ring (t = 1).

• Corrupt Pi (i = 3,4, · · · ,n−1). Same as P2.

• Corrupt Pn. Similar as O-Ring (t = 1), Pn’s view can be
simulated by returning n−2 random OKVS tables with
the same size as Ti in the read protocol and a random key.
Given the oblivious property of OKVS and the security
of OPRF, this view is also indistinguishable.

• Corrupt P1. Same as O-Ring (t = 1).

A.3 O-Ring (t > 1)
Proof. Dividing the n parties into two groups C and O, which
are respectively a corrupt one in which the parties collude
and an honest one in which all parties are honest. If the pro-
tocol receiver P1 is honest, the protocol is secure because P1
discloses nothing about his/her set to the other parties and
the values of each other party is obfuscated by P1’s shared
values. Now, we assume P1 is a colluder in C. Then C and O
can be taken as two large parties in the protocol. C can be the
protocol receiver who gets the intersection and O can be the
protocol sender who sends messages to the receiver such that
the receiver can compute the intersection. Since the OPRF
are the security building block of the protocol. O is supposed
to an OPRF sender to C. Since there must be at least one

common OPRF sender (say it Pi) among the t common OPRF
senders Pb,Pc, · · · ,Pn and all other parties in O are connected
with Pi, O can be taken as an OPRF sender to C. Specifically,
we consider the following cases:

1. |O|= 1. In this case, there is only one party Pi is O. Since
Pi is a common OPRF sender to the others, if xi ∈ Xi is
not in common, its OPRF value sum vi in step 2 of the
protocol is pseudorandom to C. Then C’s view can be
simulated by returning an OKVS table T ′

i (in step 3)
in which xi’s value is randomly sampled. This view is
indistinguishable. Therefore, the protocol is secure when
|O|= 1.

2. |O|> 1. In this case, denoting Pj as another honest party,
for an item x of C, there are two further cases to be
considered:

(a) x∈X i∩X j. If x is common in C,C will know x is in
the intersection, which is allowed. If not, assuming
Pu does not has x, then Fki,u(x) is pseudorandom to
Pu and Pi’s value sum in step 2 is pseudorandom
to C. Since the honest Pi holds the key ki, j, Pj’s
OPRF value Fki, j(x) is also pseudorandom to C and
Pj’s value sum v j in step 2 of the protocol is also
pseudorandom to C. If Pi and Pj are adjacent, C’s
view can be simulated by returning an OKVS table
T ′

max(i, j) in which x’s value is randomly sampled.
This view is indistinguishable because the pseu-
dorandom Fki,u(x) is an XOR share of Pmax(i, j)’s
value sum Decode(Tmin(i, j),x)⊕ vmax(i, j) in step 3.
It is noted that Pi and Pj cannot rely on the security
of their key ki, j when they are adjacent because
the XOR sum of their OPRF values by using this
key is 0. If Pi and Pj are not adjacent, C’s view
can simulated by returning two OKVS tables T ′

i
and T ′

j in which x’s value are randomly sampled.
This view is indistinguishable because Fki,u(x) and
Fki, j(x) are pseudorandom to C.

(b) x /∈ X i ∩X j. In this case, Fki, j(xi) and Fki, j(x j) are
both pseudorandom to C because Pi has the OPRF
key ki, j, where xi ∈ Xi, x j ∈ X j, and xi ̸= x j. Since
Fki, j(xi) and Fki, j(x j) are respectively an XOR share
of vi and v j, the value sums Decode(Ti−1,x)⊕ vi

and Decode(Tj−1,x)⊕ v j are also pseudorandom
to C. If Pi and Pj are adjacent,C’s view can be simu-
lated by returning an OKVS table T ′

max(i, j) in which
x’s value is randomly sampled. This view is indis-
tinguishable because Fki, j(xi) is pseudorandom and
it is an XOR share of Decode(Tmin(i, j),x)⊕vmax(i, j)

in step 3. It is noted that Decode(Tmin(i, j) is also
pseudorandom based on the property of OKVS
when xi ̸= x j. However, we do not rely its security
because of the possible brute-force attack (see sub-
section 4.1 for related analysis). If Pi and Pj are
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not adjacent in step 3, C’s view can be simulated
by returning two OKVS tables T ′

i and T ′
j in which

both xi’s value and x j’ value are randomly sampled.
This view is indistinguishable because Fki, j(xi) and
Fki, j(x j) are pseudorandom to C.

From above analyses, C cannot distinguish the above two
cases. Therefore, O-Ring is also secure when |O|> 1.

A.4 K-Star (t > 1)
Proof. In O-Ring (t > 1), the share distribution and share
collection steps by using OPRF and masking ensure the secu-
rity of the protocol. Specifically, having OPRF enables each
item’s value that is encoded in step 3 is pseudorandom to
the colluded parties. If P1 is honest, having masking can also
ensure the encoded values are pseudorandom. K-Star (t > 1)
shares the same OPRF and masking steps (i.e., step 1 and step
2), thus having the same security. K-Star and O-Ring only
differ in the share transition step. In K-Sar, there is a center
Pn. In the simulation, if the common OPRF sender Pi is Pn, Pi
and Pj will be adjacent. The view of C can be simulated by
returns an OKVS table T ′

n in which an item x’s value is ran-
domly sampled. This view is indistinguishable. If Pi is not Pn,
Pi and Pj are not adjacent. The view of C can be simulated by
returning two OKVS tables T ′

i and T ′
j in which x’s values are

randomly sampled. This view is also indistinguishable.

B Multi-sender OPRF

Parameters: The number of senders n′, the set size of each
sender mi and the receiver mr. The bit length of each item
σ. A PRF F(·)(·) and a function Q(·)(·).
Inputs: The receiver has a set X = {x j}∀ j∈[mr ]. The n
senders respectively have n sets Yi = {yi

j}∀i∈[mi] for i ∈ [n],
and x j,yi

j ∈ {0,1}σ.
Outputs: The receiver gets an item-value set
{(x j,Qk(x j)}∀ j∈[mr ] and the n′ senders respectively
get an item-value set {(yi

j,Fsi(yi
j))}∀ j∈[mi] (i ∈ [n′]), where

si is the i-th sender’s PRF key, k = (s1,s2, · · · ,sn′).
If x j ∈ X ∩

⋂n′
i=1 Yi, then its corresponding value

Qk(x j) =
⊕n′

i=1 Fsi(yi
∗)), where ∗ is the index of an

item yi
∗ ∈ Yi equaling to x j; otherwise, Qk(x j) is pseudoran-

dom to the receiver.

Figure 14: The ideal functionality of multi-sender OPRF
Fms−opr f .

We propose the notation of multi-sender OPRF in Figure 14.
In multi-sender OPRF, if an item x ∈ X ∩

⋂n′
i=1 Yi, the receiver

gets its OPRF value Qk(x) and each sender gets a share of

Qk(x). Before describing our construction, we first review the
Vector Oblivious Linear Evaluation (VOLE) [26], which is a
building block for our construction. The ideal functionality
of VOLE is shown in Figure 15.

Parameters: The set size m. The computational security
parameter κ.
Inputs: Both the receiver and the sender input nothing.
Outputs: The sender receives ∆ ∈ {0,1}κ, B ∈ m×{0,1}κ.
The receiver receives A ∈ m×{0,1}κ and C = ∆A+B.

Figure 15: The ideal functionality of VOLE Fvole.

We design a multi-sender OPRF protocol in Figure 16.
The correctness of this protocol is obvious. If an item x j
is common, we can get Decode(Bi +∆iA′

i −∆iH1(yi
∗),y

i
∗) =

Decode(Ci,yi
∗) = Decode(Ci,x j), where yi

∗ ∈ Yi equals to x j.
Then the XOR sum of the senders for yi

∗ equals the PRF value
of the receiver for x j. More details and security proof for a sin-
gle OPRF can be found in [26]. In this protocol, the receiver
only needs to build the OKVS once when interacting with the
n′ senders. In the OPRF protocol [26], the OKVS encoding
time costs are much larger than VOLE. Therefore, our opti-
mization can save many computation costs compared with
simply invoking n′ instances of the OPRF protocol, especially
when n′ is large.

Parameters: The number of senders n′. The statistical
and the security parameter are respectively λ and κ. The
item’s bit length σ. Two random oracles H1(·) : {0,1}σ 7→
{0,1}κ and H2(·, ·) : ({0,1}κ,{0,1}σ) 7→ {0,1}ℓ. An
OKVS scheme Encode(·), Decode(·, ·). A VOLE primitive
Fvole. Two PRFs Q·(·), F·(·) : {0,1}κ ×{0,1}σ 7→ {0,1}ℓ.
Inputs: The receiver has a set X = {x j}∀ j∈[mr ]. Each one of
the n′ senders has a set Yi = {yi

j}∀ j∈[mi] (i ∈ [n′]).
Protocol:

1. [Initiation]. The i-th sender samples a random ωs
i ∈

{0,1}κ and sends H1(ω
s
i ) to the receiver.

2. [OKVS]. The receiver encodes to get an OKVS table
T = Encode({(x j,H1(x j))}∀ j∈[mr ]).

3. [VOLE]. The i-th sender and the receiver invoke Fvole
to respectively get (∆i,Bi) and (Ai,Ci = ∆iAi + Bi),
where Bi, Ai, Ci are vectors with size mr, and ∆i is a
constant. The receiver sends A′

i = Ai+T and a random
ωr ∈ {0,1}κ to the i-th sender.

4. [PRF valuing]. For the i-th sender, he/she computes
Fsi(yi

j) = H2(Decode(Bi+∆iA′
i,y

i
j)−∆iH1(yi

j)+ωs+

ωr,yi
j) (∀ j ∈ [mi]). The receiver computes Qk(x j) =⊕n

i=1 H2(Decode(Ci,x j) + ωs + ωr),x j) (∀ j ∈ [mr]),
where k = (s1,s2, · · · ,sn′).

Figure 16: Our multi-sender OPRF protocol.
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