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Abstract
Large-scale pre-trained models are increasingly adapted

to downstream tasks through a new paradigm called prompt
learning. In contrast to fine-tuning, prompt learning does not
update the pre-trained model’s parameters. Instead, it only
learns an input perturbation, namely prompt, to be added
to the downstream task data for predictions. Given the fast
development of prompt learning, a well-generalized prompt
inevitably becomes a valuable asset as significant effort and
proprietary data are used to create it. This naturally raises
the question of whether a prompt may leak the proprietary
information of its training data. In this paper, we perform the
first comprehensive privacy assessment of prompts learned by
visual prompt learning through the lens of property inference
and membership inference attacks. Our empirical evaluation
shows that the prompts are vulnerable to both attacks. We also
demonstrate that the adversary can mount a successful prop-
erty inference attack with limited cost. Moreover, we show
that membership inference attacks against prompts can be
successful with relaxed adversarial assumptions. We further
make some initial investigations on the defenses and observe
that our method can mitigate the membership inference at-
tacks with a decent utility-defense trade-off but fails to defend
against property inference attacks. We hope our results can
shed light on the privacy risks of the popular prompt learning
paradigm. To facilitate the research in this direction, we will
share our code and models with the community.1

1 Introduction

Recent research has provided ample evidence that increasing
the size of machine learning (ML) models, i.e., the number
of parameters, is a pivotal factor in enhancing their overall
performance [6, 11, 40]. One of the commonly employed
strategies for adapting such large-scale pre-trained ML mod-
els to downstream tasks is fine-tuning [59], which updates

1https://github.com/yxoh/prompt_leak_usenix2024/.

model parameters for specific downstream tasks via back-
propagation. Fine-tuning, however, suffers from two main
drawbacks. First, it leads to high computational costs because
all model parameters need to be updated. In addition, it is stor-
age inefficient since a separate copy of the fine-tuned model
needs to be stored for each downstream task.

In order to address these limitations, researchers have pro-
posed prompt learning as an alternative to fine-tuning [4, 5,
20, 25, 26, 30, 31, 41, 56]. Prompt learning involves learning
an input perturbation, referred to as a prompt, that enables
shifting downstream task data to the original data distribution.
The pre-trained model generates a task-specific output based
on this prompt. It is important to note that, during prompt
learning, the pre-trained model remains frozen, leading to a
significant decrease in the number of learned parameters com-
pared to fine-tuning (see Section 2). In recent years, prompt
learning has been extensively validated and shown to be effec-
tive in the domains of computer vision (CV) [4, 5, 20, 31, 56]
and natural language processing (NLP) [25, 26, 30, 41]. It is
expected that prompt as a service (PaaS) will gain popularity.2

In this scenario, a user can request a prompt for a downstream
task from the PaaS provider without the need for arduous fine-
tuning. The user then combines their data with the prompt and
inputs them into the pre-trained model to obtain the predic-
tions, as depicted in Figure 1. In this way, the user can run the
pre-trained model and keep their data on-premise, while the
PaaS provider can reuse a single pre-trained model to support
multiple downstream tasks. These benefits differentiate PaaS
from machine learning as a service (MLaaS) [42]. As a result,
a well-generalized prompt becomes a valuable asset for PaaS
providers, as they invest significant efforts and use proprietary
data to develop it.

Previous research has demonstrated that ML models are
vulnerable to various privacy attacks, such as property infer-
ence attacks [14, 55] and membership inference attacks [28,
44, 46], which can disclose sensitive information about the
training data used to create the models. Such data leakage can

2https://twitter.com/AndrewYNg/status/
1650938079027548160.
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Figure 1: Overview of prompt usage and inference attacks.
The prompt is a pixel patch. The prompted image is an orig-
inal image with an added prompt. Property inference infers
sensitive properties of the target prompt’s training dataset that
the PaaS provider does not intend to disclose. Membership
inference infers whether a given sample was in the target
prompt’s training dataset.

severely damage the provider’s privacy as well as intellectual
property. However, to the best of our knowledge, previous
research about such privacy risks has focused on ML models
at the model level and has not yet been explored on prompts at
the input level. As the number of learned parameters is signif-
icantly reduced in prompt learning, it is natural to assume that
this paradigm would compress the proprietary information
of its training data, leading to less effective privacy attacks
(see Section 2.2). This motivates us to investigate whether
a prompt also leaks the proprietary information of its train-
ing data that the PaaS provider does not intend to disclose,
especially when such prompts are generated from images
containing sensitive private information.
Contributions. In this paper, we conduct the first privacy
risk assessment of prompts learned by prompt learning. We
focus on prompt learning for image classification tasks [4],
which represents one of the most promising directions in
computer vision research [4,5,8,20,22,31,49,51,56]. Our pri-
mary objective is to determine to what extent a visual prompt
possesses the potential to disclose confidential information.
Specifically, we perform property inference and membership
inference, two dominant privacy attacks against ML mod-
els [7, 14, 36, 46], where the former aims to deduce sensitive
properties of the dataset used to train the target prompt, and
the latter determines if a given data sample is part of the tar-
get prompt’s training dataset. We adopt the existing attack
methodologies for property inference [3,14] and membership
inference (neural network-based attacks [44,46], metric-based
attacks [47], and gradient-based attacks [24, 38]). Note that
our goal is not to develop new property inference attacks
or membership inference attacks against prompts. Instead,
we aim to use existing methods with well-established threat
models to systematically assess the privacy risks of prompt
learning. The overview of our study is depicted in Figure 1.

The empirical evaluation shows prompts are susceptible
to property inference attacks across multiple datasets and
pre-trained models. For example, we can achieve at least

81% accuracy in inferring different target properties from
prompts learned for CelebA [34]. Moreover, when inferring
the training dataset size of the prompt, we can achieve 100%
test accuracy in all cases. We also conduct a cost analysis to
show that the adversary can either train the shadow prompts
for fewer epochs or use fewer shadow prompts to minimize
their cost while maintaining decent attack performance.

Our study also provides empirical evidence that member-
ship inference poses a practical threat to prompts. The experi-
mental results demonstrate that existing attack methodologies
are effective across a range of datasets and pre-trained models.
In particular, the metric-based attack with modified predic-
tion entropy is the most effective one, e.g., achieving 93%
membership inference accuracy on the AFAD dataset [39].
The gradient-based attacks follow closely behind and out-
perform the neural network-based (NN-based) attacks. We
further investigate factors that may affect membership infer-
ence from both the victim’s and the adversary’s perspectives.
Specifically, from the victim’s side, we conduct a detailed
analysis of the relationship between the overfitting levels of
prompts and attack success [50]. The results indicate that
the attack success is positively correlated with the overfitting
level. Moreover, excessive training epochs and inadequate
training data increase overfitting levels, exacerbating the pri-
vacy threat posed by membership inference attacks. From an
adversarial perspective, we demonstrate that the adversary can
relax the assumption that the shadow dataset has the same dis-
tribution as the target prompt’s training dataset. This finding
further exemplifies the membership privacy risks of prompts
learned by prompt learning.

We also conduct preliminary investigations into mitigating
privacy risks associated with prompt learning. In particular,
we explore the effectiveness of adding Gaussian noise to
prompts, as proposed in prior research [18,54,57]. Our exper-
iments demonstrate that there exists a decent utility-defense
trade-off when mitigating both naive and adaptive member-
ship inference attacks. However, when defending against prop-
erty inference attacks, we need higher Gaussian noise to re-
duce the attack performance, leading to unacceptable utility
deterioration. Our findings indicate that the statistical infor-
mation of the training dataset in the target prompts is harder
to hide than individual information, i.e., membership. Our
results highlight the need for further research into more ef-
fective defense mechanisms for mitigating property inference
attacks in prompt learning.
Impact. This study presents an exploration of the privacy
risks associated with prompt learning, an emerging machine-
learning paradigm. Our investigation represents the first of its
kind in this area. Our findings indicate that prompts learned
through prompt learning are susceptible to privacy breaches.
We hope our study will increase the awareness of the stake-
holders when deploying prompt learning in real-world appli-
cations. Moreover, to facilitate research in the field, we will
share our code and models.
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Figure 2: Overview of visual prompt learning (VPL). We
learn an input prompt via back-propagation [4] at the input
transformation stage. We apply hard-coded mapping [13] to
map the pre-trained model’s outputs into the target labels at
the output transformation stage.

2 Preliminaries

2.1 Prompt Learning

Overview. Prompt learning is a new machine-learning
paradigm introduced to address the limitations of fine-
tuning [4, 5, 20, 25, 26, 30, 31, 41, 56]. It aims at learning a
task-specific prompt that can be added to the input data while
keeping the pre-trained model’s parameters frozen. With this
new paradigm, the service provider can share the same pre-
trained model across various downstream tasks with different
prompts in a space- and computation-efficient manner. In this
paper, we focus on prompt learning in computer vision, i.e.,
visual prompt learning (VPL) [4]. It is generally composed of
two stages: input transformation and output transformation.
Input Transformation. As shown in Figure 2, the goal of
input transformation is to learn an input prompt δ in the pixel
space, i.e., in the form of a single image, via back-propagation.
Given a dataset D = (X ,Y ), a pre-trained model M parame-
terized by ω, and a prompt δ parameterized by θ, the prompt
generation process q(D,M ) uses Equation 1 to maximize the
likelihood of Y :

max
θ

Pθ;ω(Y |X +δθ), (1)

where the prompt parameters θ are learned via back-
propagation and the model parameters ω are frozen. Note
that the prompt can be any visual template chosen by the
users, e.g., padding [4]. At inference time, the learned prompt
δ is added to each test image x to specify the task.
Output Transformation. Usually, the pre-trained model has
a different number of classes from the downstream tasks. To
accomplish the downstream task, the prompt owner supplies
a label mapping scheme τ to map the model’s outputs into the
target labels. As shown in Figure 2, a commonly used scheme
is hard-coded mapping [13]. It consists of mapping the first
n pre-trained model class indices to the downstream class
indices, where n is the number of classes in the downstream
task. The unassigned pre-trained classes are left out for the
loss computation. We rely on hard-coded mapping due to its
simplicity and proven effectiveness [4].

2.2 Prompt Learning vs. Fine-Tuning

Training Time. The fine-tuning paradigm updates all param-
eters of the pre-trained model via back-propagation. However,
as shown in Figure 2, VPL learns a visual prompt, i.e., in the
form of a single image, on the training dataset Dtrain = (X ,Y ).
During the back-propagation, the pre-trained model is frozen,
and only the parameters of the visual prompt are updated. In
this way, prompt learning dramatically lowers the bar for users
adapting large-scale vision models for real-world applications.
Prompt learning saves significant training resources and stor-
age space, especially when a pre-trained model serves multi-
ple downstream tasks. For example, the Vision Transformer
(ViT-B) [23] we use in later experiments has 86,567,656 pa-
rameters, and the visual prompt, i.e., a padding template with
a prompt size of 30, has 69,840 parameters. For each down-
stream task, the fine-tuning paradigm updates the entire model
(86,567,656 parameters), whereas, in prompt learning, a sin-
gle prompt, i.e., a single image with only 69,840 parameters,
is updated. The number of parameters updated by prompt
learning is only 0.08% of those of fine-tuning, so it is natu-
ral to assume that prompt learning would heavily compress
the training dataset information, leading to less effective pri-
vacy attacks. However, we show that the prompts are still
susceptible to two privacy attacks in later experiments.
Inference Time. As shown in Figure 1, both the trained
prompt and pre-trained models are involved in the inference
process. Given a test image x, the user gets the prompted
image, i.e., adding the trained prompt δ to x, and then feeds
the prompted image into the pre-trained model M to get the
prediction result. In the fine-tuning approach, the user directly
feeds the given test image x into the fine-tuned model to get
the prediction result.

2.3 Application Scenario

Taking a medical researcher as an example, they aim to clas-
sify CT images for COVID-19 diagnosis. Instead of hiring a
computer vision expert to fine-tune a model, the researcher
can request a prompt from a PaaS provider. They can either
opt for a publicly available pre-trained model or allow the
PaaS provider to select a suitable one for them. The provider
uses their proprietary data, e.g., CT images with explicit con-
sent, to learn a customized prompt and return it to them. At
inference time, the researcher simply combines their testing
data with the prompt and feeds them to the pre-trained model
to get the predictions. In this way, users minimize their ef-
fort in developing a well-generalized prompt and keep their
data on-premise, while the PaaS provider can reuse a sin-
gle pre-trained model to support multiple downstream tasks.
Meanwhile, the user can adapt to different tasks, e.g., clinical
decision support, by trivially switching to different prompts.
These benefits differentiate PaaS from machine learning as a
service (MLaaS) [42].
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3 Property Inference Attacks

We first measure the privacy risks of prompt learning through
the lens of property inference attacks. Our objective here is not
to devise novel attacks for prompts but rather to leverage well-
established threat models and existing techniques to gauge
the privacy implications of prompts.

3.1 Threat Model

Attack Scenario. The PaaS provider is a resourceful entity
that uses a pre-trained model M and their private dataset
Dtarget to create well-generalized prompts ∆ for downstream
tasks. The adversary can be any legitimate user of this PaaS
provider and can obtain a prompt δ for a target downstream
task together with the white-box access to M . Note that a pre-
defined label mapping τ is also provided by the PaaS provider
(see Section 2.1). The adversary runs the target downstream
task locally and does not interact with the PaaS provider.
Adversary’s Goal. Given a target prompt δtarget, the goal
of the adversary is to infer confidential macro-level proper-
ties of the training dataset Dtarget, which the PaaS provider
does not intend to share. Taking a prompt δtarget for facial
recognition as an example, the adversary may intend to infer
the confidential properties of the private dataset Dtarget, such
as the proportion of males and the proportion of youth. The
adversary considers such confidential properties as targets,
causing real-world harm to the PasS provider, e.g., reputation
damages, if the adversary can infer that certain classes of
people, such as minorities, are underrepresented in the train-
ing data [14]. For simplicity, we focus on binary properties,
such as if the proportion of males in the training dataset is
30% or 70%, in most of our experiments, following previous
work [14]. We later show that our attack can be generalized
to properties with multiple choices (see Section 3.4).
Adversary’s Knowledge and Capability. We assume that
the adversary has white-box access to the pre-trained model
M and the label mapping τ. Note that the white-box access
in the paper is more restricted than conventional white-box
access, as the latter can retrieve all information about the
model, such as model parameters and intermediate outputs. In
this paper, the adversary only needs to know the architecture
and version of the pre-trained model from the PaaS provider,
and such knowledge is often disclosed by the PaaS provider
for marketing purposes. We also assume that the adversary
has a shadow dataset Dshadow of similar distribution as Dtarget.
For instance, in our evaluation (see Section 3.3), we select
both Dshadow and Dtarget from the same dataset CelebA [34].
These two subsets are disjoint and may have different statisti-
cal properties, such as gender/race/age ratios. We emphasize
that previous property inference attacks also make the same
assumption [14, 55].

3.2 Measurement Methodology

Shadow Prompt Generation. Given a shadow dataset
Dshadow and associated data properties P = {p1, ..., pk}, the
adversary uses Equation 2 to generate the shadow prompts:

∆shadow = {q(sP (Dshadow,Φi,Ni),M )}m
i=1, (2)

where sP denotes a sampling function that samples Ni data
points from Dshadow without replacement and the distribution
of sampled data with properties P satisfying the conditions Φi.
Note that, Φi = {φ1

i ,φ
2
i , ...,φ

k
i }, φk

i is the actual value of pk in
round i, m denotes the number of shadow prompts, and Ni de-
notes the size of the sampled dataset from Dshadow in round i.
In previous work [14,36,55], apart from the targeted property,
say p1 (and associated φ1), they tend to use a fixed set of other
conditions, i.e., {φ2, ...,φk}, and N. For example, the target
property is the proportion of males. They tend to keep the
training data size the same when training all target prompts
and shadow prompts in their evaluation. However, the training
data size of target prompts and shadow prompts is likely to be
different in a realistic scenario. If the target prompt is trained
on 500 samples with 70% males, but shadow prompts are
trained on 2000 samples with 70% males. Such discrepancies
in training dataset sizes, e.g., 500 and 2000, may influence
the attack performance. In contrast to those approaches, we
consider a mixed setting by design. As we can see in Equa-
tion 2, in every round i, we generate a prompt δi from a sub-
set sampled by sP (Dshadow,Φi,Ni) with properties P satis-
fying different Φi. For instance, given P = {youth,male},
Φ = {70%,70%}, and N = 2000, sP (D,Φ,N) samples 2000
data points from D to train the prompt. Among them, 980 data
points are young males, 420 data points are young females,
420 data points are old males, and 180 data points are old
females. As such, our approach can guarantee a more realistic
shadow prompt generation and fairer evaluation.
Attack Model Training. After obtaining the shadow prompts
∆shadow, we can build the attack model for each property pk:

A : ∆shadow → yk. (3)

We train the attack model A by optimizing the following loss
function:

L [A(∆shadow),yk], (4)

where L is a cross-entropy loss function in this paper. Con-
cretely, the attack model takes δi ∈ ∆shadow as input. To incor-
porate the input size of the attack model, we use zero value
to pad it to an image of size 224 × 224, with RGB channels.
This means the attack model is an image classifier. The ad-
versary then treats the corresponding condition value φk

i of
the target property pk as the class labels yk

i . To infer the target
property pk of Dtarget, the adversary queries the attack model
A with δtarget and obtains the corresponding prediction result,
i.e., the exact condition value of pk.
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Table 1: Experimental settings of the property inference attacks with the corresponding attack performance.

Inference
Dataset

Downstream Target Inference Test Accuracy
Task Task Property Labels RN18 BiT-M ViT-B

T1 CIFAR10 Image Classification Size (T size
1 ) {500, 2000} 100.00 100.00 100.00

T2 CelebA Multi-Atrribute Classification
Size (T size

2 )
Proportion of Males (T male

2 )
Proportion of Youth (T youth

2 )

{500, 2000}
{30%, 70%}
{30%, 70%}

100.00
99.75
93.00

100.00
99.25
90.75

100.00
93.00
81.00

T3 UTKFace Race Classification
Size (T size

3 )
Proportion of Males (T male

3 )
Proportion of Youth (T youth

3 )

{500, 2000}
{30%, 70%}
{30%, 70%}

100.00
80.50
81.75

100.00
80.50
87.50

100.00
82.00
84.00

T4 AFAD Age Classification
Size (T size

4 )
Proportion of Males (T male

4 )
{500, 2000}
{30%, 70%}

100.00
80.75

100.00
78.00

100.00
72.25

3.3 Measurement Settings
Datasets and Downstream Tasks. We use four datasets
in our study, including CIFAR10 [1], CelebA [34], UTK-
Face [52], and AFAD [39]. These datasets contain sensi-
tive properties (the proportion of males, the proportion of
youth, etc.) and are widely used to evaluate the performance
of property inference attacks [14, 55]. The introduction of
these datasets and corresponding downstream tasks are as
follows.

• CIFAR10 is a benchmark dataset for image classification
that contains 60K images in 10 classes. In this paper, the
downstream task is a 10-class image classification.

• CelebA is a large-scale facial attribute dataset containing
more than 200K facial images with 40 binary attributes.
We pick three attributes, including MouthSlightlyOpen,
Attractive, and WearingLipstick, and use their combina-
tions to create an 8-class attribute classification as the
downstream task.

• UTKFace has about 23K facial images. Each image
has three attributes: gender, race, and age. We consider
race classification, i.e., White, Black, Asian, Indian, and
Others, as the downstream task.

• AFAD is short for Asian Face Age Dataset. It contains
more than 160K facial images, each with age and gender
attributes. In this paper, we consider age classification as
the downstream task. Specifically, we divide the values
of age attribute into five bins: 15≤ age< 20, 20≤ age<
25, 25 ≤ age < 30, 30 ≤ age < 35, and 35 ≤ age < 40,
leading to a 5-class image classification.

Property Inference Task Configurations. For each task, we
split the dataset into three disjoint subsets Dtarget, Dshadow,
and Dvalidation in the ratio of 0.475 : 0.475 : 0.05. Dtarget and
Dshadow are used to develop the target prompt set ∆target and
shadow prompt set ∆shadow, respectively. We evaluate the
utility of all prompts on Dvalidation. We train 2000 shadow
prompts to construct the attack training dataset and 400 target
prompts to build the attack testing dataset in our experiments.
Our property inference targets include training dataset size,

proportion of males, and proportion of youth. Note that re-
cent research demonstrates that the size of the training dataset
significantly affects the performance of the model, necessitat-
ing substantial efforts to identify the optimal values [35, 58].
Consequently, we also view the training dataset size as confi-
dential information and as one of our inference objectives. We
outline the details of all inference tasks below and summarize
them in Table 1.

• Inference Task on CIFAR10 (T1). For CIFAR10, we
only consider the size of the prompt training dataset
N as the property inference target (T size

1 ). We focus
on two training data sizes, i.e., y1 ∈ {500,2000}, and
run the sampling function (see Equation 2) 1000 times
on Dshadow to generate 1000 shadow prompts for each
training data size. Meanwhile, we generate 200 target
prompts in the same manner for each training data size.

• Inference Task on CelebA (T2). For CelebA, we con-
sider the size of the prompt training dataset (T size

2 ), the
proportion of males (T male

2 ), and the proportion of youth
(T youth

2 ) of the data samples used to train the target
prompts as the property inference targets. T male

2 is based
on the male attribute, and T youth

2 is based on the young at-
tribute. Both attributes are binary. The inference labels of
each property are: y1 ∈ {500,2000}, y2 ∈ {30%,70%},
and y3 ∈ {30%,70%}. Recall that we consider a mixed
data sample strategy. Given these three properties, we
end up with eight sampling functions in total. We run
each sampling function 250 times on Dshadow and 50
times on Dtarget to generate the shadow prompt set
∆shadow and target prompt set ∆target, respectively.

• Inference Task on UTKFace (T3). For UTKFace, we
also consider the size of the prompt training dataset
(T size

3 ), the proportion of males (T male
3 ), and the propor-

tion of youth (T youth
3 ) as the property inference targets.

Note that T male
3 is based on the gender attribute, and

T youth
3 is based on the age attribute. Specifically, we use

the median of age values from all images, i.e., 30, as the
threshold. We then label samples with 0 ≤ age ≤ 30 as
Young and 30 ≤ age ≤ 116 as Old. The inference labels

USENIX Association 33rd USENIX Security Symposium    5845



of each property are the same as those of CelebA. Thus,
we follow the same sampling settings as those of T2 to
generate the shadow and target prompts.

• Inference Task on AFAD (T4). For AFAD, we consider
the size of the prompt training dataset (T size

4 ) and the
proportion of males (T male

4 ) as the property inference
targets. T male

4 is based on the gender attribute. The infer-
ence labels of each property are: y1 ∈ {500,2000} and
y2 ∈ {30%,70%}. We use four sampling functions to
generate the shadow and target prompts. We run each
sampling function 500 times on Dshadow and 100 times
on Dtarget to generate the shadow prompt set ∆shadow and
target prompt set ∆target, respectively.

Metric. As the attack training/testing dataset is balanced in
terms of class distribution, we use test accuracy as the main
metric to evaluate the prompt utility and the property inference
attacks.
Pre-trained Models. We select three representative vision
models in our experiments, including ResNet-18 (RN18) [15],
Big Transfer (BiT-M) [23], and Vision Transformer (ViT-
B) [12]. More details can be found in Appendix A.
Prompts. We follow the default training settings [4] to
train prompts on the above vision models. Specifically,
we choose the padding template with a prompt size of 30.
The number of parameters for each prompt is calculated
as 2 ×C × p × (H +W − 2p), where p, C, H, and W are
prompt size, image channels, height, and width, respectively.
All images are resized to 224 × 224 to match the input of
the pre-trained models. The number of parameters for each
prompt is 69,840. We leverage the same hard-coded map-
ping method [4] to map the first n indices of the pre-trained
model’s outputs to the target labels, where n is the number
of target classes. We adopt cross-entropy as the loss function
and SGD as the optimizer with a learning rate of 40 and the
cosine scheduler. In our property inference attacks, we train
all prompts for 50 epochs for efficiency.
Attack Models. We leverage the pre-trained RN18 [15] as
the backbone of the attack model A . We fit a linear classifier
on top of the pre-trained RN18 to infer the property labels.
We employ cross-entropy as the loss function and Adam as
the optimizer with a learning rate of 1e-5. The attack model
is trained on the shadow prompt set ∆shadow for 100 epochs.

3.4 Measurement Results
Property Inference Privacy Risks. We report the main re-
sults on four datasets and three pre-trained models in Table 1.
In general, we observe that proposed attacks achieve good per-
formance across different pre-trained models and datasets. For
example, on CelebA and RN18, we achieve at least 93.00% ac-
curacy in inferring target properties. Furthermore, we achieve
maximum performance (100.00%) on all datasets, considering
the size of the prompt training dataset as the target property.
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Figure 3: Attack performance of the proposed property infer-
ence attacks on CelebA with (a) different numbers of epochs
for training shadow prompts and (b) different sizes of the
attack training dataset, using RN18 as the pre-trained model.

Additionally, we observe that the pre-trained model has a
moderate influence on the attack performance. Specifically,
when inferring the proportion of youth on UTKFace (T youth

3
in Table 1), the test accuracy is 81.75% on RN18, 87.50%
on BiT-M, and 84.00% on ViT-B. Although the test accuracy
varies across pre-trained models and datasets, the proposed
attacks are generally effective, indicating prompts are indeed
vulnerable to property inference attacks.
Extension to Multi-Class Property Inference. In the above
experiments, we treat property inference as a binary classifica-
tion task. Here, we extend it to multi-class classification and
explore if the adversary can infer finer granularity information
from the prompts. To this end, we adjust the condition values
of the proportion of males in CelebA to {10%, 30%, 50%,
70%, 90%} and use RN18 as the pre-trained model. Note
that the condition values of the training dataset size and the
proportion of youth remain the same. In turn, we have 20
sampling functions in total. We keep the sizes of ∆shadow and
∆target unchanged and run each sampling function 100 times
on Dshadow and 20 times on Dtarget to generate the shadow
prompt set ∆shadow and target prompt set ∆target, respectively.
We further adjust the condition values of the training dataset
size in CIFAR10 to {500, 1000, 1500, 1750, 1800, 2000} and
use RN18 as the pre-trained model to explore the performance
of the property inference attack when the range of options
for the dataset size is closer together. To this end, we have 6
sampling functions in total and run each sampling function
400 times on Dshadow and 80 times on Dtarget to generate the
shadow prompt set ∆shadow and target prompt set ∆target, re-
spectively. The test accuracy for the proportion of males is
90.25%, while for training dataset size is 95.40%, demonstrat-
ing that property inference attacks can successfully infer finer
granularity information from prompts.
Takeaways. We show that the property inference attacks
achieve remarkable performance on diverse datasets and pre-
trained models. Moreover, the proposed attacks can be ex-
tended to multi-class classification, providing evidence that
the adversary can infer fine granularity property information
from prompts.
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Figure 4: Target performance on four datasets. The x-axis denotes the magnitude of the Gaussian noise, from 0 to 5, where 0
means the proposed defense mechanism is not implemented. The y-axis represents the target performance on the downstream
tasks with respect to the average test accuracy of all target prompts in the attack testing dataset.
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Figure 5: Attack performance of (a) naive attacks where the adversary is not aware of the proposed defense and (b) adaptive
attacks on four datasets. The x-axis denotes the magnitude of Gaussian noise, from 0 to 5, where 0 means the proposed defense
mechanism is not implemented. The y-axis represents the attack performance with respect to the test accuracy.

3.5 Factors Affecting Property Inference

We conduct an empirical analysis to investigate the factors that
may influence the performance and cost of property inference
attacks on prompts.
Number of Epochs. Previously, we train both shadow
prompts and target prompts for 50 epochs. However, it is
likely that the adversary has no knowledge about the number
of epochs for target prompts. Next, we investigate whether the
number of epochs in the training process of shadow prompts
must match that of the target prompts in order to maintain a
strong attack performance. Concretely, we vary the number
of epochs for shadow prompts from 30 to 70 while fixing the
number of epochs for target prompts to 50. The minimum
number of epochs is 30 because the prompt starts to outper-
form the pre-trained model solely on the downstream task at
this point. We show the attack performance on CelebA in Fig-
ure 3a. In general, the proposed attacks work similarly well
when the number of epochs for target and shadow prompts
do not match. The results also show that the proposed at-

tacks can achieve comparable performance even with fewer
epochs, e.g., 30 epochs, to train shadow prompts. In addition,
increasing the number of epochs for shadow prompts does not
improve the attack performance. For example, the test accu-
racy for inferring the proportion of youth is between 92.50%
and 94.00% depending on the number of epochs. This im-
plies that the proposed attacks are robust to variations in the
number of epochs for training shadow prompts, making them
more practical and efficient.
Attack Training Dataset Size. So far, we have assumed the
adversary can rely on an attack training dataset containing
2000 shadow prompts. However, creating such a dataset costs
considerable computational resources. Hence, we investigate
the influence of the attack training dataset size on the attack
performance. Specifically, we randomly sample balanced sub-
sets from the original attack training dataset on CelebA with
different sizes {400, 800, 1200, 1600, 2000}. The size of the
attack testing dataset remains the same as for the previous ex-
periments, i.e., 400 target prompts. As shown in Figure 3b, the
size of the training dataset only has negligible influence on the
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attack performance, indicating that a relatively small number
of training samples, e.g., 400 shadow prompts, are sufficient
to launch the property inference attacks against prompts. This
finding implies that the cost of the proposed attack can be
further reduced.
Takeaways. We demonstrate that the proposed attacks can
be performed with cost-efficiency by training the shadow
prompts with fewer epochs or a smaller number of shadow
prompts. We further show that to achieve a good attack perfor-
mance, the adversary must have a shadow dataset of similar
distribution as the target dataset and must have access to the
same pre-trained model. The results are displayed in Ap-
pendix B.

3.6 Defense
Gaussian Noise as Defense. We propose a defense mecha-
nism [18, 54, 57]. Specifically, the PaaS provider adds Gaus-
sian noise N (0,σ2I) to the released prompts, resulting in
noised target prompts ∆′

target = {δi + εi | ∀δi ∈ ∆target,εi ∼
N (0,σ2I)}. The magnitude of the noise is controlled by the
value of σ, with larger values corresponding to higher noise.
We examine the effectiveness of the proposed defense with
σ ∈ {1,2,3,4,5}. We first report the target performance, i.e.,
prompt utility, on all datasets in Figure 4. The evaluation
metric is the average test accuracy of all target prompts in
the attack testing dataset on specific downstream tasks. In
general, we observe that the target performance decreases on
all datasets by a large margin with the increase of σ. For ex-
ample, the prompt utility decreases from 33.95% to 10.55%,
which is even lower than random guess (12.50%), meaning
the prompt is no longer usable. We present the attack perfor-
mance in Figure 5a. We can observe that the effectiveness of
the proposed attack significantly declines with the increase
of σ. The test accuracy on CelebA and UTKFace drops to
almost random guess when σ ≥ 2. The attacks on CIFAR10
are more robust to the defense, but the performance still starts
decreasing when σ = 3.
Adaptive Attacks. We further consider an adaptive adver-
sary [21] who is aware of the defense mechanism, i.e., that
Gaussian noise has been added to the target prompts. They
can construct their attack training dataset with noised shadow
prompts. Similarly, we set σ ∈ {1,2,3,4,5} for both shadow
and target prompts. We report the performance of adaptive
attacks on all datasets in Figure 5b. The results show that
the attack performance declines less and more slowly. For
example, the attack performance barely decreases when σ = 1
on all datasets. In addition, when considering the size of the
prompt training dataset as the target property, the attack per-
formance only has negligible degradation with the growth
of Gaussian noise. For example, the attack performance has
almost no drop even with σ = 5 on all datasets.
Takeaways. These findings indicate that adding Gaussian
noise as a defense mechanism can ostensibly decrease the

attack performance. But the defender suffers from unaccept-
able prompt utility degradation. Moreover, this defense can
be bypassed by the adaptive attack. We leave it as future work
to investigate more effective defenses. We later show that
the proposed defense can achieve a decent utility-defense
trade-off by using a smaller σ, e.g., σ = 0.6, indicating that
the statistical information of the training dataset in the target
prompts is harder to hide than individual information, i.e.,
membership (see Section 4.7).

4 Membership Inference Attacks

In this section, we leverage the membership inference attacks
to quantify the privacy risks of prompts.

4.1 Threat Model
Adversary’s Goal. In membership inference, the goal of the
adversary is to infer whether a given data sample x is in the
training dataset of the target prompt δtarget.
Adversary’s Knowledge and Capability. Similar to the prop-
erty inference attack, the adversary can query the PaaS service
to get δtarget and has white-box access to the pre-trained model
M . The adversary has a shadow dataset Dshadow that is from
the same distribution as Dtarget to train the shadow prompt
δshadow. We later demonstrate that the adversary can operate
in a data-free manner, i.e., leveraging Dshadow that comes from
a different distribution than Dtarget.

4.2 Measurement Methodology
Attack Setup. The adversary first divides the shadow dataset
into two disjoint subsets: D train

shadow, referred to as the member
split, and D test

shadow, referred to as the non-member split. The
member split is then utilized for training the shadow prompt
δshadow, which mimics the behavior of δtarget.
Attack Descriptions. We adopt three types of membership
inference attacks, i.e., neural network-based (NN-based) at-
tacks [44], metric-based attacks [47], and gradient-based at-
tacks [24, 38]. We outline their technical details below.
NN-based Attacks [44]. The adversary constructs the attack
training dataset on Dshadow. Specifically, they combine each
sample in Dshadow with the shadow prompt trained on D train

shadow
and query the corresponding pre-trained model to get the top-
5 posteriors as attack input features. Then, for each sample
in the member split, the adversary labels the corresponding
top-5 posteriors as “member.” For samples that belong to
the non-member split, their top-5 posteriors are labeled as
“non-member.” At inference time, the adversary queries the
pre-trained model with the given data sample x and δtarget to
obtain the top-5 posteriors and feeds them to the attack model
to obtain its membership prediction.
Metric-based Attacks [47]. Song and Mittal propose metric-
based attacks using four metrics, i.e., prediction correctness
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Figure 6: Attack performance of three membership inference attacks on four datasets.

(metric-corr), prediction confidence (metric-conf), prediction
entropy (metric-ent), and modified prediction entropy (metric-
ment). Unlike NN-based attacks where a neural network is
trained to make membership predictions, metric-based attacks
first calculate class-wise thresholds over δshadow. Then, at in-
ference time, the adversary calculates the metric values and
compares them with the pre-calculated thresholds to deter-
mine the membership status for given data samples. It is worth
noting that in scenarios where the adversary possesses data
from a different distribution than the target dataset, we calcu-
late an overall threshold for all classes. This is because certain
classes present in the target dataset may not be represented in
the shadow dataset, so class-specific thresholds would not be
applicable.
Gradient-based Attacks [38]. Nasr et al. propose gradient-
based attacks on the basis of the NN-based attacks by in-
corporating augmented input information. Specifically, the
adversary has white-box access to the pre-trained model and
target prompt with its intermediate computations, e.g., gradi-
ents. They combine each sample x with the prompt and input
resulting data into the pre-trained model to obtain top-5 pos-
teriors, the loss incurred during the forward pass, the gradient
of the prompt during the backward pass, and an indicator that
denotes the correctness of the prediction. These obtained data
are treated as the attack input for the attack model.

4.3 Measurement Settings

Datasets and Downstream Tasks. We reuse CIFAR10,
CelebA, UTKFace, and AFAD to evaluate membership infer-
ence attacks. The downstream tasks for all datasets are the
same as those for property inference attacks (see Section 3.3).
We randomly sample 8000 data samples for each dataset in
the main experiments and then evenly split each dataset into
four disjoint sets, i.e., D train

target, D test
target, D train

shadow, and D test
shadow.

D train
target is used to develop the target prompt δtarget, and D test

target
is the evaluation set. D train

shadow and D test
shadow are used to build

the attack model as discussed in Section 4.2.
Attack Configurations. All experimental settings of the pre-
trained models and target prompts are the same as those for
property inference attacks except for the number of epochs.
We follow the default setting to train all prompts for 1000
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Figure 7: Overfitting levels of target prompts across (a) dif-
ferent pre-trained models on AFAD and (b) different datasets
using BiT-M as the pre-trained model. Different points with
the same marker denote different runs of the same pre-trained
model/dataset using different random seeds.
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Figure 8: Overfitting levels of target prompts with (a) differ-
ent numbers of epochs and (b) different sizes of the training
dataset, using ViT-B as the pre-trained model.

epochs. For attacks that leverage neural networks as the at-
tack model, we employ the cross-entropy loss function and
optimize it using Adam optimizer. We conduct a grid search
on {1e-2, 1e-3, 1e-4, 1e-5} to determine the optimal learning
rate for each attack, and all attack models are trained for 100
epochs. For the NN-based attacks, we use a 2-layer MLP as
the attack model and set the size of the hidden layer to 32. For
the gradient-based attacks, we utilize an attack model com-
posed of four sub-networks, each corresponding to one attack
information (gradient, top-5 posteriors, loss, and indicator),
and the outputs of these sub-networks are concatenated to
form the final input of a 2-layer MLP.
Metric. Following the convention [17, 46], we use test accu-
racy as the main metric to evaluate the attack performance.
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Figure 9: Attack performance of three membership attacks with varying number of epochs, using ViT-B as the pre-trained model.
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Figure 10: Attack performance of three membership attacks with different sizes of D train
target, using ViT-B as the pre-trained model.

4.4 Measurement Results

Membership Inference Privacy Risks. We report the per-
formance of three membership inference attacks in Figure 6.
We conduct three separate runs of each attack experiment and
report the average values as the final results. We observe that
metric-based attacks achieve the best performance in most
cases, e.g., 93.20% membership inference attack accuracy on
AFAD. Unless otherwise specified, we use metric-ment at-
tacks as the representative of the metric-based attacks, as they
consistently achieve the best performance across all datasets
(see Appendix C). The gradient-based attacks also exhibit
strong performance, with results that are closely comparable
to those of the metric-based attacks. Song and Mittal [47]
also report that the metric-based attacks can outperform NN-
based attacks and have similar performance as gradient-based
attacks. NN-based attacks perform worse than gradient-based
attacks. This is expected since the adversary leverages less
information from the target prompt.

Analysis. Figure 6 shows that the performance of three attacks
varies on different pre-trained models and different datasets.
We hypothesize that the different overfitting levels may affect
the attack performance. Following previous work [17,43], we
calculate the difference between train accuracy and test accu-
racy to measure the overfitting level of a given target prompt.
We train five target prompts with different random seeds for
each experimental setting. The relationship between overfit-
ting levels and attack performance is illustrated in Figure 7.
We observe that different pre-trained models and different
datasets have different overfitting levels. Meanwhile, our re-
sults demonstrate that overfitting does have a significant effect
on membership inference attacks. The overall trend is that

the higher the overfitting level, the better the attack perfor-
mance. To quantify this correlation, we calculate the Pearson
correlation scores between the overfitting level and attack
performance. The result is 0.89. Our finding is in line with
previous analyses [33, 45].
Takeaways. We show that prompts can leak sensitive member-
ship information of their training dataset. Similar to previous
analyses, overfitting is strongly correlated with the member-
ship inference performance.

4.5 Factors Affecting Membership Inference
From the Victim’s Side

In this section, we measure the factors that may affect the
membership inference privacy risks from the perspective of
the victim. As shown in Figure 8, the number of epochs used
to train the target prompt and its training dataset size (D train

target)
are closely related to the overfitting level of the target prompt.
A larger number of epochs results in larger overfitting lev-
els. On the contrary, a larger training dataset size results in
reduced overfitting levels. Therefore, we explore how these
two factors affect the attack performance.
Number of Epochs. We set the number of epochs for the
target prompt to {200, 400, 600, 800, 1000} and use the same
number of epochs for the shadow prompt in each experiment.
The results are shown in Figure 9. We observe that, in general,
more epochs lead to better attack performance, hence greater
membership inference privacy risks. The attack performance
becomes steady after 500 epochs, while the overfitting level
also becomes stable simultaneously in Figure 8a.
Prompt Training Dataset Size. We investigate the effect of
the training dataset size on the attack performance by varying
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the size from 500 to 5000. To control the variables, we always
fix the other three sets (D test

target, D train
shadow, and D test

shadow) to the
same size as D train

target. As illustrated in Figure 10, the attack
performance decreases as the dataset size grows. The general
trend of the attack performance is also consistent with the
findings in Figure 8b. That is, more training data reduces
the overfitting level in most cases, leading to a decrease in
the attack performance. There is a significant drop in the
overfitting level on CIFAR10 when increasing the size of
D train

target from 2000 to 5000. Therefore, the test accuracy of
metric-based attacks drops from 86.60% to 64.00%.
Takeaways. We perform an analysis of the relation between
overfitting levels and attack performance. Our results show
that more epochs and fewer training data can aggravate over-
fitting and pose a more severe threat to membership privacy.

4.6 Factors Affecting Membership Inference
From the Adversary’s Side

We evaluate the factors that may affect the membership in-
ference privacy risks from the perspective of the adversary.
In previous experiments, we made two assumptions: 1) the
adversary has a dataset Dshadow that comes from the same
distribution as Dtarget, and 2) the PaaS provider offers users
the target prompt with white-box access to the pre-trained
model. Here, we evaluate if these two assumptions are needed
to mount a successful membership inference attack.
Dataset Assumption. We relax the same distribution assump-
tion by leveraging a shadow dataset that comes from a differ-
ent distribution than Dtarget to train the shadow prompt; the re-
sults with three attack methodologies are shown in Figure 11.
In the diagonal of the heatmaps, we show the results of the
adversary having access to Dshadow that comes from the same
distribution as Dtarget. We observe that the performance of
NN-based, metric-based, and gradient-based attacks is slightly
reduced but remains effective. For instance, as shown in Fig-
ure 11b, using any one of the four datasets as the shadow
dataset to launch the metric-based attack can achieve a test ac-
curacy of around 86.00%, when the target dataset is CIFAR10.
Interestingly, CIFAR10 contains images of 10 classes such as
cars and trucks, but the other three datasets only include facial
images. This supports the findings of Salem et al. [44] and Li
et al. [27], which also report the effectiveness of membership
inference using shadow datasets from different domains.

Moreover, we present the average test accuracy and the aver-
age drop in accuracy of three attacks on different pre-trained
models in Appendix D. The results show that the metric-
based and gradient-based attacks achieve the best attack per-
formance on average, while the NN-based and gradient-based
attacks, in general, are more robust than metric-based attacks.
Hence, we conclude that the gradient-based attacks exhibit
superior performance in terms of both utility and robustness
after relaxing the dataset assumption. However, it should be
noted that the gradient-based attacks come at the cost of high

computational resources and a significant amount of informa-
tion needed. Overall, our findings suggest that we can relax
the assumption of the same-distribution shadow dataset, im-
plying greater membership inference privacy risks of prompts.
Pre-trained Model Assumption. In the previous evaluation,
we assume the adversary has white-box access to the pre-
trained model. However, the PaaS provider may only allow
users to submit prompted images and receive corresponding
results, thus limiting access to the pre-trained model. The
adversary has to develop their pre-trained models, which may
be different from the pre-trained models used to train the tar-
get prompts (abbreviated as the target model). We, therefore,
measure the impact of the discrepancy in architecture be-
tween the pre-trained model used to train the shadow prompts
(abbreviated as shadow model) and the target model on the
attack performance. The results of three attacks are shown
in Figure 12.

In the diagonal of the heatmaps, we show the results of the
adversary having white-box access to the same pre-trained
model used to train the target prompt. We observe that, in
some cases, the attack performance decreases noticeably but
remains effective. For example, when the pre-trained model
of the target prompt is ViT-B on CelebA, the performance of
metric-based attacks drops from 86.00% to 78.40% (77.10%)
when using RN18 (BiT-M) as the pre-trained model for the
shadow prompt. However, in certain cases, all three attacks
fail completely, i.e., they become random guesses. For in-
stance, when the adversary uses ViT-B to attack the target
prompt trained on RN18, these three methodologies become
random guesses. We also present the average test accuracy
and the average drop in accuracy of three attacks on different
datasets in Appendix D. The gradient-based and metric-based
attacks achieve the best attack performance, and the gradient-
based attacks are more robust than the metric-based attacks.
However, the average drop in accuracy of all attacks after re-
laxing the pre-trained model assumption, in general, is larger
than that of relaxing the dataset assumption.
Discussion. We have shown that all methodologies only have
slight performance degradation after relaxing the dataset as-
sumption. Meanwhile, after relaxing the pre-trained model
assumption, these attack methodologies are effective in some
cases but fail to maintain high robustness, i.e., they fail in
other cases. Previous work [27, 44] on membership infer-
ence against traditional ML classifiers has shown that having
shadow models with different architectures than the target
models does not have a strong impact on the attack perfor-
mance. However, we do not observe the same in VPL. One
possible explanation is that a prompt is specific to the machine
learning model it is trained on. In other words, prompts from
different models share less similarity, which makes the mem-
bership inference knowledge hard to transfer among them. As
illustrated in Figure 13, we find that metric-corr attacks have
no performance deterioration after relaxing these assump-
tions, as they do not rely on the shadow technique. Thus, the
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Figure 11: Attack performance of three attacks after relaxing the dataset assumption, using ViT-B as the pre-trained model.
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Figure 12: Attack performance of three attacks after relaxing the pre-trained model assumption on CelebA.
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Figure 13: Attack performance of metric-corr attacks after
relaxing (a) dataset assumption using ViT-B as the pre-trained
model and (b) pre-trained model assumption on AFAD.

adversary can leverage the metric-corr attacks when relaxing
the data assumption and the pre-trained model assumption.
Takeaways. Our results show that the adversary can be data-
free, as the attack performance only has a slight deteriora-
tion and remains effective. The results also indicate that the
adversary has some dependency on the knowledge of pre-
trained models to steal private information, as not all attack
methodologies can be successfully launched after relaxing
the pre-trained model assumption. However, we show that the
adversary can still leverage the metric-corr attacks to obtain
decent attack performance with high robustness, as they do
not rely on the shadow technique.

4.7 Defense

Gaussian Noise as Defense. We have demonstrated that the
prompts are also vulnerable to membership inference attacks.
Meanwhile, in the above experiments, we observe that the
performance of membership inference is heavily related to the

overfitting level of the target prompt. Potentially, a defender
can decrease the threat to membership privacy by reducing
the overfitting level. As shown in Figure 9 and Figure 10,
leveraging fewer epochs and more data to train the target
prompt can decrease the attack performance to some extent.
However, using these methods comes at the cost of either
the utility of the target prompt or the resource to collect and
process data. We also apply the widely adopted Differential
Privacy-Stochastic Gradient Descent (DP-SGD) [2], which
involves adding noise to clipped gradients, as a defense mech-
anism. However, the experimental results show that it is hard
to maintain the prompt utility even with a larger privacy bud-
get, e.g., ε = 20. We hypothesize that DP-SGD may work on
large datasets, but not on the data for prompt learning since it
is relatively small. Hence, we investigate if the defense mech-
anism used in Section 3.6, i.e., adding Gaussian noise to the
prompts, can reduce the risks of membership leakage. We set
σ ∈ {0.2,0.4,0.6,0.8,1.0}. We first report the target perfor-
mance on CIFAR10 in Figure 14a. The evaluation metric is
the test accuracy of the target prompt. We observe that the
target performance, i.e., prompt utility, only decreases heav-
ily when σ ≥ 0.6. For example, the prompt utility remains
above 41.40% when σ ≤ 0.6 and then decreases heavily from
41.40% to 29.70% on CIFAR10 when increasing σ from 0.6
to 0.8. We then present the attack performance where the
adversary is unaware of the defense mechanism in Figure 14b.
We can observe that all attacks are close to random guesses
when σ ≥ 0.6, showing that there is a practical utility-defense
trade-off when σ = 0.6.

Adaptive Attacks. We further consider an adaptive adver-
sary [21] who is aware of the defense mechanism. Hence,
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Figure 14: Prompt utility and attack performance using the proposed defense on CIFAR10.

the adversary can craft their attack training datasets us-
ing the shadow prompt with Gaussian noise. We set σ ∈
{0.2,0.4,0.6,0.8,1.0} for both shadow and target prompts.
We report the performance of adaptive attacks on CIFAR10
in Figure 14c. The results show that the attack performance
is still close to random guess when σ ≥ 0.6.
Takeaways. When defending against membership inference
attacks, the proposed defense mechanism can achieve a de-
cent utility-defense trade-off when setting σ = 0.6. A similar
conclusion can be drawn from the other three datasets.

5 Related Work

Property Inference Attacks. Property inference [3, 7, 14,
36, 53, 55] aims to extract sensitive global properties of the
training data distribution from an ML model that the model
owner does not want to share. It is an important privacy at-
tack against ML models, as it can violate prompt owner’s
privacy, i.e., proprietary information about the dataset, and
enable attackers to perform tailored attacks, e.g., enhancing
membership inference attacks [55]. The main approach for
launching these attacks is building a meta-classifier on a large
number of shadow models [3]. Existing work focuses on
deep neural networks, including fully connected neural net-
works [14], generative adversarial networks (GANs) [55], and
graph neural networks (GNNs) [53].
Membership Inference Attacks. Membership inference [24,
28,29,38,44,46,47] is another important type of privacy attack
against ML models, where the adversary aims to infer whether
the given data sample was involved in a target model’s train-
ing dataset. Shokri et al. [46] propose the first membership
inference attack which depends on training multiple shadow
models for developing their attack models. Salem et al. [44]
then relax assumptions proposed by Shokri et al. [46]. Yeom
et al. [50] attribute the vulnerability of membership inference
to the overfitting of ML models. Song and Mittal [47] propose
metric-based attacks that rely on pre-calculated thresholds
over shadow models to determine the membership status. Nasr
et al. [38] perform a thorough investigation of membership
privacy in both black-box and white-box settings for both cen-
tralized and federated learning scenarios. More recently, Liu
et al. [32] leverage the loss trajectory to further enhance the

attack performance. Most recent work focuses on deep neural
networks, including GNNs [16,48], multi-modal models [19],
and multi-exit networks [27].

Previous work has demonstrated that the fine-tuning
paradigm is vulnerable to these privacy attacks [10, 37]. The
privacy risk in the fine-tuning paradigm resides at the model
level, as the privacy information is leaked through fine-tuned
models. This differs from the privacy risk associated with
the prompt learning paradigm, where the risk lies at the input
level, as the prompt exists in the pixel space.

6 Limitation and Future Work

Efficacy of VPL. VPL is an emerging ML paradigm. Al-
though its current performance cannot rival that of a fine-
tuned model, an increasing number of studies are attempting
to enhance its performance through various approaches, e.g.,
label mapping [9] and better data homogeneity [20]. Since we
are the first to explore the vulnerabilities of the visual prompt,
we have focused on the widely recognized VPL paradigm
and followed their default training settings [4]. We anticipate
that as VPL with enhanced performance are introduced in the
future, it will be straightforward for us to extend our measure-
ment, and thus we recognize this as a promising avenue for
future research.

Defense. In the evaluation, we show that adding Gaussian
noise to the prompt can mitigate the membership inference at-
tacks with a decent utility-defense trade-off but fails to defend
against property inference attacks. DP-SGD fails to preserve
the original prompt utility. Since the privacy risk in the prompt
learning paradigm is at the input level, devising diverse de-
fense mechanisms for it is more challenging compared to
addressing the privacy risk at the model level. We leave it as
a future work to explore effective defenses against property
inference attacks.

NLP Prompt Learning. Another interesting future work is
to apply the two proposed privacy attacks along with their
motivation to prompt learning in the NLP domain [25, 26], as
the NLP prompt is essentially a (soft) token that can be added
to the text input, operating at the input level.
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7 Conclusion

In this paper, we conduct the first privacy assessment of
prompts learned by VPL through the lens of property infer-
ence attacks and membership inference attacks. Our empirical
evaluation shows that prompts are vulnerable to both of these
attacks. Moreover, we have discovered that an adversary can
successfully mount the property inference attacks by training
only a few shadow prompts. They can also relax the dataset
assumption to achieve effective membership inference attacks.
We further make some initial investigations on possible de-
fenses. Experiments show that our method, i.e., adding Gaus-
sian noise to prompts, can mitigate the membership inference
attacks with a decent utility-defense trade-off but fails to de-
fend against property inference attacks. We hope our results
can raise the awareness of the stakeholders when deploying
prompt learning in real-world applications. Moreover, we will
share our code and models to facilitate research in this field.
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Appendix

A Details of Pre-trained Models

Table 2 shows details about the architectures and pre-trained
datasets of the pre-trained models used in the paper.

Table 2: Overview of the pre-trained models.

Model Architecture Pre-trained Dataset # Parameters

RN18 ResNet-18 1.2M ImageNet-1k 11,173,962
BiT-M ResNet-50 14M ImageNet-21k 23,520,842
ViT-B ViT-B/16 14M ImageNet-21k 86,567,656

B Relax Assumptions of Property Inference
Attacks

We first relax the assumption that the adversary has a shadow
dataset of similar distribution as the target dataset, i.e., the
dataset assumption. As shown in Figure 15, we observe that
the performance of the property inference attack is close to a
random guess, considering the proportion of males and youth
as the target properties. When inferring the prompt train-
ing dataset size, the property inference attacks maintain high

accuracy in most cases. However, the attack performance de-
creases significantly when leveraging CIFAR10 as the shadow
dataset. We reason this is because the CIFAR10 datasets con-
tain objections such as cars and birds, whereas other datasets
only contain facial images. We then relax the assumption
that the pre-trained model used to train the shadow prompts
and target prompts are the same, i.e., the pre-trained model
assumption. As illustrated in Figure 16, we notice that the
attack performance has a significant degradation when infer-
ring the proportion of males and youth. When inferring the
prompt training dataset size, the property inference attacks
are effective in some cases. However, they are not robust, as
they become random guesses in certain cases. For example,
when the target prompt is trained on ViT-B and the shadow
prompt is trained on RN18, the property inference attacks fail.
Thus, we conclude that it is necessary to leverage a shadow
dataset of similar distribution as the target dataset and the
same pre-trained model to train the shadow prompt.

C Performance of Metric-based Attacks With
Different Metrics

As shown in Figure 17, metric-conf and metric-ment attacks
achieve the best performance in all cases. The reason why they
work better than the other two metrics is that they take both
prediction correctness and confidence into account, while the
other two metrics only consider prediction correctness.

D Average Test Accuracy and Drop in Accu-
racy

We present the average test accuracy and drop in accuracy
of three attacks on different pre-trained models in Figure 18.
We calculate these values based on the heatmap in Figure 11.
Specifically, for each heatmap, we take the average of all val-
ues as the average test accuracy for each attack methodology
on a pre-trained model. We calculate the difference between
each cell value and the diagonal value in the corresponding
column and take the average as the average drop in accu-
racy. Basically, a lower drop accuracy value means a more
robust attack when relaxing the dataset assumption. As illus-
trated in Figure 18a, metric-based and gradient-based attacks
achieve the best attack performance on average. Meanwhile,
as shown in Figure 18b, we observe that the average drop in
accuracy is smaller than 5.00% in most cases. The NN-based
and gradient-based attacks, in general, are more robust than
metric-based attacks. We also present the average test accu-
racy and drop in accuracy of three attacks on different datasets
in Figure 19. The gradient-based and metric-based attacks
achieve the best attack performance, and the gradient-based
attacks are more robust than the metric-based attacks.
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Figure 15: Attack performance of property inference attacks after relaxing the dataset assumption, using RN18 as the pre-trained
model.
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Figure 16: Attack performance of property inference attacks after relaxing the pre-trained model assumption on CelebA.
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Figure 17: Attack performance of four metric-based attacks on four datasets.
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Figure 18: Average test accuracy and drop in accuracy of
three attacks after relaxing the dataset assumption.
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Figure 19: Average test accuracy and drop in accuracy of
three attacks after relaxing the pre-trained model assumption.
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