é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Your Firmware Has Arrived: A Study of
Firmware Update Vulnerabilities

Yuhao Wu, Jinwen Wang, Yujie Wang, Shixuan Zhai, and Zihan Li, Washington
University in St. Louis; Yi He, Tsinghua University; Kun Sun, George Mason University;
Qi Li, Tsinghua University; Ning Zhang, Washington University in St. Louis

https://www.usenix.org/conference/usenixsecurity24/presentation/wu-yuhao

This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium
is sponsored by USENIX.

+ B — = -
n A : 4
- pl TENE »

Your Firmware Has Arrived: A Study of Firmware Update Vulnerabilities

Yuhao Wu', Jinwen Wang*, Yujie WangT, Shixuan Zhai”,
Zihan Li", Yi He®, Kun Sun?, Qi Li8, Ning ZhangJr

T Washington University in St. Louis,
S Tsinghua University, ¥ George Mason University

Abstract

Embedded devices are increasingly ubiquitous in our soci-
ety. Firmware updates are one of the primary mechanisms
to mitigate vulnerabilities in embedded systems. However,
the firmware update procedure also introduces new attack
surfaces, particularly through vulnerable firmware verifica-
tion procedures. Unlike memory corruption bugs, numerous
vulnerabilities in firmware updates stem from incomplete or
incorrect verification steps, to which existing firmware analy-
sis methods are not applicable. To bridge this gap, we propose
ChkUp, an approach to Check for firmware Update vulner-
abilities. ChkUp can resolve the program execution paths
during firmware updates using cross-language inter-process
control flow analysis and program slicing. With these paths,
ChkUp locates firmware verification procedures, examining
and validating their vulnerabilities. We implemented ChkUp
and conducted a comprehensive analysis on 12,000 firmware
images. Then, we validated the alerts in 150 firmware images
from 33 device families, leading to the discovery of both zero-
day and n-day vulnerabilities. Our findings were disclosed
responsibly, resulting in the assignment of 25 CVE IDs and
one PSV ID at the time of writing.

1 Introduction

The rapid increase of embedded devices, ranging from
portable devices, such as smartwatches, to large machines
like transport vehicles, brings more connectivity and conve-
nience to our lives. The market size of embedded devices is
expected to reach 116.2 billion dollars in 2025 [10]. Firmware
update plays an important role in fixing vulnerabilities and
improving functionalities. However, a poorly implemented
firmware update mechanism can diminish the benefit or even
introduce new attack surfaces. In fact, vulnerabilities related
to software update has been recognized as one of the top five
security risks for embedded devices [12].

Firmware Update Security. Software or firmware updates
are currently one of the most effective techniques against cy-

ber attacks. However, with the increasing connectivity and
complexity in modern embedded systems, there is an increas-
ing number of cyber attacks targeting specifically the firmware
update procedures, allowing the adversary to execute arbitrary
code or roll back the firmware version to expose prior vulnera-
bilities [21, 70]. Recent vulnerabilities in update mechanisms
of Jeep Cherokee [52], Samsung SmartThings Hub [8], and
Asus Router [9] have raised significant concerns, highlighting
the need for automatic identification of firmware update vul-
nerabilities. Existing firmware vulnerability detection meth-
ods often focus on identifying invocations to unsafe sinks
from user-controlled inputs [19,25,27,59,65] or finding bugs
using common vulnerable patterns or deviations from known
specifications [24,33,49, 50, 64]. However, firmware update
vulnerabilities pose a unique challenge as they often arise
from a combination of issues across multi-stage update proce-
dures, exacerbated by the absence of comprehensive specifica-
tions or systematic categorizations of vulnerable patterns. To
gain a better understanding of the landscape of firmware up-
date vulnerabilities, we categorize and systematize firmware
update-related CVEs in the past decade. Each type of vul-
nerability is placed in different abstract phases of a general
firmware update procedure, which is detailed in Section 2.

Our Solution - ChkUp. In this paper, we propose ChkUp,
a novel approach to Check for firmware Update vulnerabil-
ities, including missing verification (e.g. a lack of version
check) and improper verification (e.g., use of MDS5 for in-
tegrity check). Intuitively, ChkUp extracts the program exe-
cution paths for a firmware update procedure and then iden-
tifies the chain of verification steps in the update procedure.
We then summarize the vulnerable patterns across multiple
firmware update phases for vulnerability detection. While
working on this, we found that existing implementations of
firmware update mechanisms present unique challenges that
require new techniques. Specifically, there are three main
technical challenges:

C1. Diverse System Components Supporting Firmware Up-
date: In many Linux-based firmware images, various types of

USENIX Association

33rd USENIX Security Symposium 5627

programs such as front-end programs, scripts, and binaries are
invoked in the software update execution path that spans both
the front end and back end of the web server. Additionally, the
diversity of components involved in firmware updates leads
to the heterogeneity of inter-process communication (IPC)
mechanisms. To tackle these challenges, we develop tech-
niques to generate the inter-process update flow graph (UFG).
The entry program is first identified using common code pat-
terns and semantic information that interconnects the front
end and the back end in a firmware update procedure. Then,
cross-language control flows are extracted by connecting the
control flows of individual programs (i.e., front-end programs,
scripts, and binaries) and resolving the corresponding IPCs.
With such a cross-language cross-program control flow graph,
firmware update execution paths are resolved using backward
program slicing with firmware update-specific semantics.

C2. Verification Procedure Recognition: A firmware update is
a complex procedure that includes a variety of checks and ver-
ifications, from the verification of cryptographic signatures
to the comparison of versions and device IDs. An update
procedure is considered secure only when every verification
step (e.g., signature verification or compliance with version
update policies) and their composition are properly imple-
mented. However, firmware updates do not have standard-
ized specifications and are often implemented in multiple
programming languages. This leads to diverse verification
implementations, making it challenging to identify them from
numerous functions in execution paths. To tackle this chal-
lenge, ChkUp recognizes firmware verification procedures
using data flow graph (DFG) isomorphism-based semantic
similarity matching. To reduce the overhead of this process,
functions in execution paths are first ranked by a similarity
score, which is calculated using both syntactic and structural
features. Then, functions with higher similarity scores are
prioritized for DFG isomorphism-based analysis.

C3. Vulnerability Validation: Static analysis can produce a
number of false positives (FP), which require further valida-
tion. However, a firmware update procedure often involves
a chain of verification steps, each with its unique functions
and invocation parameters. To test a step later in the chain,
it is necessary to create an input and an environment that
are capable of passing the first several steps. To simplify
validation, we present a semi-automated dynamic method
to validate alerts for emulatable firmware images. Specifi-
cally, we employ firmware patching to ensure the execution
of potentially vulnerable procedures. The validity of the corre-
sponding alerts is then checked based on the update behaviors
after inputting malicious firmware images.

Evaluation and Findings. To gain a deeper understanding of
vulnerabilities in the wild, we ran ChkUp] on 12,000 firmware
images. We found that weak verification algorithms, such
as the use of MDS5 for integrity verification, were prevalent.

Our artifacts are available at https://fw-chkup.github.io

Then, we performed vulnerability validation on 150 randomly
selected firmware images: For those emulatable firmware im-
ages, we performed dynamic validation by creating PoCs; for
the remaining firmware images, we conducted manual analy-
sis to validate their alerts. Our results showed a true positive
rate (TPR) of 86.7% and a false positive rate (FPR) of 5.3%),
leading to the discovery of both zero-day and n-day vulner-
abilities in firmware images from 33 device families. These
findings were responsibly disclosed, and 25 CVE IDs and
one PSV ID have been assigned. Finally, to demonstrate the
exploitability of the vulnerabilities, we showcased firmware
downgrade and firmware modification attacks.

Contributions. Our contributions are outlined as follows:

* A systematization of firmware update security: We frame
general firmware update procedures into four phases and
examine security issues in each phase by analyzing and
categorizing 381 firmware update-related CVE reports.
A new approach for update vulnerability detection: We
propose a new firmware update vulnerability identifica-
tion approach, ChkUp, which addresses three technical
challenges: diverse components in update paths, verifica-
tion procedure recognition, and vulnerability validation.
Vulnerabilities on real-world firmware: We ran ChkUp
on 12,000 firmware images and validated alerts for 150
of them using a combination of proof-of-concept (PoC)
generation and manual analysis. The results demonstrate
ChkUp’s capability to identify zero-day and n-day vul-
nerabilities. Following responsible disclosure, 25 CVE
IDs and one PSV ID have been assigned.

2 Firmware Update Security Systematization

2.1 Challenges of Firmware Updates

To gain a better understanding of the threat landscape, 381
firmware update-related CVEs from the past decade are an-
alyzed and then systemized. While most CVEs stem from
vulnerable firmware update mechanisms, others simply have
an impact on the security of the update. Figure | shows
the annual distribution of Common Vulnerability Scoring
System (CVSS) v3 metrics since 2015. There is a steady
trend of increasing, with the number of CVEs doubling from
2020 to 2021. High and critical vulnerabilities are nearly

120 ; 7
CVSS v3 Score

"3 Low (0.1-3.9)
801 [Medium (4.0-6.9) - o/
EEE High (7.0 - 8.9)
60 mmm critical 9.0-10.00 /B
40 o e

=
(=3
o

Number of CVEs

200 B

072015 2016 2017 2018 2019 2020 2021 2022
Figure 1: CVSSv3 scores of firmware update-related CVEs.

5628 33rd USENIX Security Symposium

USENIX Association

https://fw-chkup.github.io

Generation Phase Delivery Phase

) Supply t] i :
o Sign u?ﬂ;‘l Chain E 41 HTTP : :
) o . = i :

~
o
Delivery Interfaces

Device User/ |
Maintainer :

irmware Server

[}
74d023fa142
110 IO°_| 2ddedfa638 11, I IWnte Reboot
gix Q Slgnature Dlgest g:mn
oot

Verification Phase Installation Phase

2a0a2c75300

mm
VXX.XX.XX Dewce

Version Dewce ID

Figure 2: A common firmware update workflow.

four times of low and medium ones. This increase can be
attributed to not only the general trend of increasing CVEs
but also the newly arising challenges specific to embedded
systems [15,30,62,72-74,84,86]. These challenges include
1) an expanding attack surface due to increased connectiv-
ity, 2) increased complexity of embedded systems, 3) long
product life cycle, and 4) limited resources on embedded de-
vices. These factors contribute to diverse firmware update
mechanisms and increased vulnerabilities.

2.2 Update Workflow and Vulnerabilities

A typical firmware update workflow has four phases as shown
in Figure 2: generation, delivery, verification, and installation.

Generation Phase. The goal of the generation phase is to
create firmware images and make them available. Specifically,
an author first develops a new firmware image and a mani-
fest. The manifest contains firmware metadata, including the
firmware digest, version, and device ID. subsequently, the
firmware image and manifest are signed with a digital sig-
nature and then transferred to a firmware server through the
software supply chain. Usually, the author uploads firmware
to the server through trusted parties in the supply chain.

During this phase, external attackers can conduct supply
chain attacks to steal certificates and compromise software
development tools or infrastructure. The root cause of such
attacks is inappropriate access control for critical assets and in-
frastructures. There has been an increasing number of supply
chain-related vulnerabilities reported in recent years, demon-
strating their security impact in the real world. Reports indi-
cate that the U.S. Government and more than 30,000 public
and private organizations such as Microsoft, Intel, and Fire-
Eye suffered from a large-scale software supply chain attack
known as the SolarWinds hack in 2020 [55]. Specifically,
cybercriminals compromised Orion IT management software
and then distributed malicious software updates containing
backdoors to users through the supply chain.

Takeaway 1: Supply chain vulnerabilities pose a significant
risk, often from inadequate access controls. Without proper
on-device verification, compromised firmware can be in-
stalled in devices, leading to a loss of control over them.

Delivery Phase. The delivery phase involves transmitting the
new firmware image from the server to the target device. A

firmware component, known as the update agent [46], han-
dles downloading, verifying, and storing the new image in
persistent memory. Typically, new firmware can be delivered
in three ways: 1) The firmware server directly pushes the
firmware and manifest to the device’s update agent; 2) The
update agent polls for updates and downloads them when
they become available; 3) The firmware server notifies the
device user/maintainer, who manually downloads and uploads
updates to the update agent. In terms of communication chan-
nels, common methods include application-layer protocols
(e.g., HTTP, FTP), wireless media (e.g., Wi-Fi, Bluetooth Low
Energy), and physical interfaces (e.g., USB, removable mem-
ory cards). For some low-end, bare-metal devices, companion
apps on smartphones can assist with firmware updates. The
new firmware can either be bundled within or fetched by the
app from the firmware server through application-layer proto-
cols. Then, these apps generally communicate with the device
via wireless media for notification, polling, and downloading.
It is worth noting that while the apps act as intermediaries
for transferring firmware, they may also pre-verify updates.
Such early verification can filter out invalid updates, to avoid
unnecessary, subsequent on-device processing.

A secure communication channel is important for the con-
fidentiality and integrity of the delivered firmware images.
Insecure delivery mainly arises from a lack of cryptographic
protocols or the use of hard-coded keys, exposing systems to
machine-in-the-middle (MITM) attacks. For example, CVE-
2020-9544 involves plain HTTP without authentication, while
CVE-2020-25233 derives from the use of a hard-coded RSA
key for communication. Mobile apps can also have insecure
communication with either firmware servers or devices, as
shown by CVE-2018-3928, where insufficient communica-
tion security checks can lead to code execution vulnerabilities.
Importantly, the primary concern is not just the communica-
tion channel but also the lack of proper security verification.
For example, even with a leaked communication key, if a ro-
bust firmware verification mechanism is in place, malicious
firmware replacements during updates can be prevented.

Takeaway 2: Firmware delivery security mainly relies on
the communication channel and device user/maintainer. If
either is insecure, the device may receive compromised
firmware unless proper on-device verification is in place.

Verification Phase. The verification phase ensures the authen-
ticity, integrity, freshness, and compatibility of the received

USENIX Association

33rd USENIX Security Symposium 5629

Table 1: Top ten firmware update-related CWE vulnerability types.

CWE ID Name Example Proportion
CWE-345 Insufficient Verification of Data Authenticity CVE-2020-10831, CVE-2020-24395, CVE-2022-36360 | 5.47%
—CWE-347 | Improper Verification of Cryptographic Signature CVE-2020-27540, CVE-2021-37160, CVE-2022-21134 10.16%
CWE-287 Improper Authentication CVE-2018-6294, CVE-2020-27488, CVE-2022-2503 6.25%
—CWE-306 Missing Authentication for Critical Function CVE-2019-16243, CVE-2020-9544, CVE-2020-29379 3.91%
—CWE-295 Improper Certificate Validation CVE-2018-15476, CVE-2020-15498, CVE-2021-22909 3.13%
CWE-20 Improper Input Validation CVE-2018-3891, CVE-2019-11103, CVE-2021-25437 10.94%
CWE-434 Unrestricted Upload of File with Dangerous Type CVE-2019-10959, CVE-2021-37160, CVE-2022-28372 | 5.47%
CWE-798 Use of Hard-coded Credentials CVE-2019-5158, CVE-2019-14926, CVE-2020-24215 2.34%
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer | CVE-2017-11082, CVE-2017-14444, CVE-2017-14445 1.56%
CWE-639 Improper Neutralization of Special Elements used in an OS Command CVE-2018-3890, CVE-2019-5157, CVE-2019-15310 0.78%

Note: CWE-347 is the child class of CWE-345; CWE-306 and CWE-395 are the child classes of CWE-287.

firmware. Specifically, the update agent performs a series of
verification procedures before storing the image in persistent
memory: firmware authenticity is ensured by verifying the
digital signature of the firmware; firmware integrity is veri-
fied by checking the digest contained in the manifest; and the
freshness and compatibility are confirmed by examining the
metadata, along with version and device ID in the manifest.
Table 1 lists the top ten firmware update-related vulnera-
bilities in the Common Weakness Enumeration (CWE) cat-
egory, based on our CVE analysis. The top eight categories,
accounting for 47.67%, predominantly involve either missing
verification or improper verification methods for firmware up-
dates. These issues can enable attackers to replace the benign
firmware with a malicious one during updates. For instance,
the issue with CVE-2018-10988 stems from a lack of digital
signature verification in the shell script used for firmware
updates. Missing or improper integrity verification may lead
to firmware corruption. For example, using easily bypassable
internal checksums for firmware integrity checks is problem-
atic (e.g., CVE-2018-5441). Missing or improper freshness
verification can lead to firmware downgrade attacks, while
inadequate compatibility verification can expose the device
to DoS attacks. For instance, the root cause of CVE-2018-
3891 is a logic flaw in performing version verification, where
integer comparison operators are incorrectly used for string
comparison. Similarly, in the case of CVE-2020-10831, arbi-
trary firmware can be installed due to insufficient verification.

Takeaway 3: Either missing or improper implementation
of any steps in the verification procedure can lead to the
installation of unintended firmware on the embedded device.

Installation Phase. The installation phase is a process of in-
stalling and executing the new firmware. After verification, the
new firmware is stored in the persistent memory of the device
and is activated upon reboot. Specifically, a bootloader first
moves the new firmware image to the right offset in the device
memory when the device is starting up. Then, the bootloader
executes the new firmware image after conducting a firmware
inspection. However, this inspection is often incomplete and
insecure, commonly relying on internal checksums [46].
Most vulnerabilities in this phase are typical software bugs
such as command injection and memory corruption bugs.

Specifically, firmware update-related commands executed dur-
ing this phase may accept parameters from user inputs. If an
attacker manipulates these parameters and they are subse-
quently used by vulnerable functions (e.g., system, strcpy),
it can lead to command injection (e.g., CVE-2019-5155) or
memory corruption (e.g., CVE-2021-22675) attacks.

Takeaway 4: Incomplete firmware inspection procedures in
bootloaders during firmware installation are common, thus
making the security of firmware updates dependent on the
verification mechanisms in the update agent.

Summary. Security vulnerabilities can arise during any phase
of the firmware update process. Nevertheless, robust firmware
verification mechanisms by the device’s update agent can
mitigate the majority of vulnerabilities originating from other
phases. Hence, our research primarily focuses on identifying
vulnerabilities within the verification phase.

3 Threat Model and Overview

Threat Model. ChkUp aims to uncover firmware update vul-
nerabilities in OS-based firmware (integrated with file sys-
tems), particularly in the dominant Linux-based firmware [69].
It can detect the most prevalent firmware update vulnerabil-
ities including missing or improper verification of authen-
ticity, integrity, freshness, and compatibility. Aligned with
existing research [19, 34,36,59, 83], we assume no firmware
source code access, making ChkUp a binary-based vulnera-
bility detection approach. Potential users of ChkUp could be
security researchers seeking to notify vendors, or end-users
trying to obtain additional security information about their
devices. Even vendors with access to the source code can
benefit, especially in investigating the exploitability of vul-
nerabilities, since source code analysis can overlook binary
and runtime-level details. It is worth noting that, similar to
intrusion detection systems or malware detectors, in-depth
domain expertise proves valuable in further refining alerts.

Overview of ChkUp. The high-level idea of ChkUp is to stat-
ically extract the firmware update program execution paths
from the firmware codebase and to pinpoint potential vulner-
abilities along these paths based on summarized vulnerability

5630 33rd USENIX Security Symposium

USENIX Association

!

Execution Path Recovery
Recognition
Corpus

Ent
O¥ Noce
Signatures

Execution Paths
()
Function

Unpacked Firmware M *
°
S

001

Verification Procedure [

-

Vulnerability Discovery Vulnerability Validation [

Verification Procedures
(7170
Alerts
y 4—'0
Vulnerabilities

|
|
|
| Missing or @ | |
| Improper m —> |
1 Verification | PoC |

—_————_——

Figure 3: Overview of ChkUp.

patterns. Then, dynamic vulnerability validation is performed
to reduce false alerts. However, as discussed in Section 1,
three primary challenges need to be addressed to implement
this idea: CI. Diverse Programs in Update Paths during the
extraction of firmware update execution paths, C2. Verifica-
tion Procedure Recognition for matching vulnerability pat-
terns, and C3. Vulnerability Validation to reduce false alerts.
To address these challenges, we propose ChkUp (illustrated
in Figure 3). Specifically, to address C1, we first create a UFG
that captures the control flow information across programs
written in different programming languages. Next, we per-
form backward program slicing to determine the firmware
update execution paths (Section 4.1). To tackle C2, we extract
syntactic and structural features for function matching, then
employ more sophisticated DFG isomorphism to recognize
the verification chains in the firmware update execution paths
(Section 4.2). With the execution paths and the associated
verification procedures, we examine them to discover vulner-
abilities based on defined criteria (Section 4.3). Finally, we
address C3 by a patching-based method where the vulnerable
procedure is tested using the generated PoCs after its execu-
tion dependencies are bypassed via patching (Section 4.4).

4 Design of ChkUp

4.1 Execution Path Recovery

UFG Definition. The binary dependency graph (BDG) in
Karonte [59] can model data dependencies between bina-
ries within firmware images, which is crucial for firmware
update vulnerability detection. However, accurate firmware
update execution path recovery requires additional infor-
mation, including control flows, IPCs, and program invoca-
tions across programs in various languages to determine the
intra- and inter-process control flows of firmware update-
related programs. Therefore, building upon BDG, we intro-
duce UFG to accommodate these requirements. A UFG, rep-
resented by G, is a directed graph that captures the intra-
and inter-process control flow information at the basic block
(BB) level of firmware update-related programs. The UFG
is defined as G = (V,E), where V is a set of BBs extracted
from front-end programs, scripts, and binaries involved in
the firmware update procedure. E represents the directed

edges between the BBs, and each edge e € E is represented as
e = ([v1,p1],[v2, p2],¢). This indicates that BB v; in program
p1 either transfers execution flow or shares data with BB v,
in program p;, and c is a flag indicating the type of edge: c is
0 for intra-process control flow edges, c is 1 for IPC relations,
and c is 2 for program invocation relations.

Update Entry Finding. Receiving firmware is typically the
first step in an update procedure on the device side. There-
fore, the entry node in a UFG is the node responsible for
this task, and the program that includes this entry node is re-
ferred to as the entry program. For firmware containing a web-
based update interface, the entry program could be a front-end
firmware upload utility. To identify the entry program, we
use a static pattern-matching approach. This is non-trivial as
firmware update mechanisms vary greatly among different
vendors. To address this issue, we manually analyze numer-
ous firmware images (details are provided in Appendix B.2)
and identify distinct patterns that differentiate firmware up-
date entry programs from others. Specifically, such an entry
program always contains recognizable code patterns. For ex-
ample, front-end programs to upload firmware images might
use the <input type="file"...>> pattern, while scripts or bi-
naries that download firmware images might use the wget ...
pattern. Additionally, the entry program often displays prompt
messages containing common informative words, as well as
function and variable names (e.g., fw_version and fw_upload)
related to firmware updates. Built upon these observations,
we identify the program that matches the highest number of
predefined patterns as the entry program.

Cross-language Control Flow Analysis. After identifying
the entry program, the next step is to locate the programs for
processing the received firmware image. These programs can
take different forms, such as binaries and shell scripts [48].
To gain complete insight into the control flow of the programs
executed during a firmware update, cross-language control
flow analysis is necessary. However, current path exploration-
based vulnerability detection methods [19, 59] lack this ca-
pacity. To address this challenge, we interpret the control flow
logic, IPC paradigms, and program invocation paradigms of
various program types (i.e., HTML paired with JavaScript,
shell script, and binary) commonly used in firmware updates
to construct UFGs. Specifically, we build the call graph (CG)
and inter-procedure control flow graph (CFG) of the entry

USENIX Association

33rd USENIX Security Symposium 5631

FUN_0001aa68 in binary_a
01.void FUN_0001aa68(undefined4 param_1,FILE *param_2,
uint param_3){...
02. // IPC set function invocaton
r—03. nvram_set_int("upgrade_fw_status",0);...
! 04. // library function invocation
& 05. pcStacké@ = "/sbin/ejusb";...
06. // program execution function invocation
_eval(&pcStack60,0,0,0);...

]
S
N

ion

: nvram_get in script_a

| 01.// IPC get function invocation

P 02.var upgrade_fw_status = '<% nvram_get
("upgrade_fw_status"); %>';...

_start in binary_b

01.void _start(undefined4 param_1){...

02. // main function invocation

03. __uClibc_main(FUN_0000e998,in_stack_00000000,
» &stack0x00000004, _init,_fini,param_1);...}

Program Invocat

Listing 1: IPC and program invocation examples.

program and identify IPC (i.e., sockets, files, signals, environ-
ment variables, NVRAM, and shared memory) and program
invocation paradigms in the entry program. Note that the sup-
ported program types and IPC paradigms are determined by
our preliminary manual firmware analysis, and their gener-
alizability is empirically measured using a large number of
firmware images. Then, dependency edges representing con-
trol dependencies between the entry program and other related
programs are created. The procedure is repeated in a recursive
manner, where the CFG of each newly added program is built,
and IPC and program invocation paradigms are identified.
Listing 1 illustrates the connection of two programs through
the discovery of IPC paradigms (nvram) and program invoca-
tion paradigms (eval) between them. The UFG construction is
completed once no more update-related programs are found.

Function-level Backward Slicing. With the constructed
UFG, the next step is to determine the possible program exe-
cution paths for a firmware update procedure using function-
level backward program slicing. Typically, a firmware up-
date procedure concludes with a reboot to execute the new
firmware. Thus, we locate calls to the reboot function, espe-
cially those that trigger the reboot binary, in the UFG and
set them as the target of backward slicing. The backward
slicing follows the inter-procedural control flow within and
across programs to determine all possible execution paths
starting from the firmware receiving function and ending with
the reboot function. These paths represent potential firmware
update execution paths. However, as with any path-based ex-
ploration analysis, this execution path recovery method may
encounter the issues of path explosion and path missing. We
tackle path explosion with five strategies, including skipping
standard libraries, skipping built-in utilities, using a timeout,
filtering paths with prompts, and merging paths. Further de-
tails on these strategies can be found in Appendix A.1.

4.2 Verification Procedure Recognition

Two-stage Approach Overview. Key functions are those
used in firmware verification, such as hash functions for in-

01.int divideUpLoadFile(char xfile_name, UPGRADE_FILE_HEADER
*pFileHeader){...

02.iVar2 = md5_verify_digest(fileMd5Checksum, input,uVar4);
03.if (ivar2 == 0){

04. pcVar5 = "[%s:%dImd5 error\n"; ...}...}

06.1int md5_verify_digest(uchar *xdigest,uchar xinput,int len){
07. int ivarl;

08. uchar digst [16];

09. md5_make_digest(digst,input,len);

10. ivarl = memcmp(digst,digest,0x10);

11. return (uint)(ivarl == 0);}

Listing 2: An integrity verification procedure example.

tegrity verification. Our manual analysis reveals that verifica-
tion procedures often use a similar set of key functions since
they all try to accomplish a similar set of functions. Moreover,
values from functions, either as return variables or pass-by-
reference arguments, often flow into conditional expressions.
These expressions then influence which conditional branch
is taken. An example can be seen when verifying firmware
integrity: the return value of a hash function is used in a
conditional expression to determine the verification result, as
demonstrated in Listing 2. To identify verification procedures,
we construct a corpus of function signatures from common
key functions. Next, we recognize verification procedures
from the execution paths in two stages: efficient function sim-
ilarity matching, which quickly filters out irrelevant functions;
and verification procedure chain identification, where we use
advanced semantic analysis for precise identification.

Efficient Function Similarity Matching. The goal of the
first stage is to improve the efficiency of the identification
of verification procedure chains by ranking functions with
syntactic and structural features. Kim et al. [39] show that the
use of numeric syntactic and structural features can efficiently
achieve comparable accuracy to more complex deep learning-
based methods. Therefore, a combination of numeric features
(see Table 4 in Appendix A.2) is selected for two reasons:
1) These features can be efficiently extracted without requir-
ing complex semantic code analysis; 2) The combination
of these features can achieve high discriminative capability
while being robust across different architectures, compiler
types, and code stripping. It is worth noting that the impact of
compiler optimizations on these features becomes less signifi-
cant in embedded systems, where stable and industry-standard
compiler options are commonly used, thereby ensuring the ro-
bustness of features. Specifically, we obtain syntactic features
from the intermediate representation (IR) of code, includ-
ing attributes from its abstract syntax tree (AST) such as the
number of function calls and key strings. Structural features
come from CFGs, including the number of BBs, edges, and
branches. Using these extracted features, similarity scores
between functions in execution paths and those in the corpus
are calculated based on the relative difference between their
feature values [39]. These scores improve efficiency in the
second stage by prioritizing functions with higher similarity
scores. Function pairs with similarity scores below a specific
threshold (0.5 in this work) are filtered due to the low like-

5632 33rd USENIX Security Symposium

USENIX Association

lihood of similarity. More details on the extracted features,
mathematical construction of similarity scores, and similarity
score threshold determination can be found in Appendix A.2.

Verification Procedure Chain Identification. A data-flow
graph (DFG) can represent the relationship between the data
and the arithmetic and logical operations, and it is used in
cryptographic primitive identification techniques [47,51]. To
further identify key functions with accurate semantics anal-
ysis, we employ DFG subgraph isomorphism. In addition
to function semantics, the usage pattern of the return vari-
ables and pass-by-reference arguments of key functions is
also considered to reduce the FPs of verification procedure
matching. The insight is that the return variables or arguments
from a key function often feed into a conditional expression.
This expression then determines the conditional branch to
execute and indicates the pass or fail status of the verification
procedure. An example can be seen in Listing 2, where the
return variable of the function md5_verify_digest is used to
determine whether the integrity verification has passed.

We search for verification procedure chains from all exe-
cution paths. For each execution path, various types of ver-
ification procedures are identified successively. To identify
verification procedures, such as authenticity verification, we
first select a function pair (f, f’) with the highest similarity
score, where f is from the execution path and f” is a key func-
tion for authenticity verification in the corpus. Then, the DFG
of the function f is constructed and normalized to preserve its
underlying semantics while eliminating variations introduced
by developers, compiler optimizations, or machine code trans-
lation. With the DFG, we can verify whether the functions f
and f’ are functionally equivalent by searching for subgraphs
in the DFG of f that are isomorphic to the graph signature
of f, using Ullmann’s algorithm [71]. If a match is found,
function f is considered semantically equivalent to function
f'. A reaching-definition analysis is then performed on the re-
turn variable and pass-by-reference arguments of f to obtain
data-flow slices. If the return variable or arguments flow into
conditional expressions, the verification procedure is consid-
ered identified. The process continues with the next function
pair having the next highest similarity score if no match is
found unless there are no remaining function pairs exceeding
the similarity score threshold. Upon completion of the second
stage, verification procedure chains in all execution paths are
identified and ready to be further examined.

Corpus Creation. Key functions are either standard library
functions or proprietary functions. Functions responsible for
authenticity and integrity checks often encapsulate standard
cryptographic routines from well-established libraries [85].
To this end, we collect open-source cryptographic functions
from libraries commonly used in embedded systems. Though
functions used for freshness and capability checks are usually
proprietary, they share similarities within the same device fam-
ily based on our analysis. These are obtained through reverse

engineering of firmware images from various major vendors.
We categorize all functions into two: those employing proper
cryptographic algorithms or assessing protected verification
information and those that do not (see Section 4.3 for details).
The next stage involves extracting function signatures, which
consist of feature vectors and graph representations. The fea-
ture vector is derived through syntactic and structural analysis,
while the graph representation is generated after constructing,
normalizing, and pruning the DFG. Normalization serves to
eliminate redundant nodes and edges, followed by pruning to
remove elements irrelevant to the verification process. This
approach is commonly used in existing research [47,51,78],
ensuring accurate function matching across a wide array of
possible implementations. Specifically, the process requires
pinpointing the variables or arguments holding the essential
verification data. After setting these as targets, program slic-
ing is executed to maintain all relevant nodes and edges. For
more detailed corpus statistics, please refer to Appendix A.3.

4.3 Vulnerability Discovery

Vulnerability Discovery Criteria. We focus on inspecting
the implementation deviation of proper verification proce-
dures for the four properties, i.e., authenticity, integrity, fresh-
ness, and compatibility. Despite the lack of verification ac-
counts for most verification stage vulnerabilities, improper
implementation of the verification procedure can also lead
to an insecure or exploitable verification procedure. In our
work, the primary concern of improper authenticity verifi-
cation arises from the use of symmetric cryptographic algo-
rithms (e.g., HMAC, CMAC, Poly1305). Likewise, we iden-
tify that the root cause of improper integrity verification often
lies in the usage of weak digest verification algorithms such
as CRC, SHAL1, and MDS5. Finally, for freshness and compati-
bility verification, our work emphasizes that the verification
can be insecure when the verification information, including
firmware version and compatible device ID, is extracted from
unprotected data sources (e.g., filenames of firmware images).

Vulnerability Discovery Process. We identify vulnerabilities
by examining both execution paths and associated verifica-
tion procedures. If a firmware image contains only one execu-
tion path, we focus on that path. For firmware with multiple
paths, we select the path with the most proper verification
procedures, as this often indicates thorough verification. This
strategy can reduce FPs, ensuring more conservative vulnera-
bility identification. Next, vulnerability detection is performed
on the sole or chosen path based on the previously defined
criteria. Specifically, to identify missing verification vulnera-
bilities, we check for the absence of verification procedures
for authenticity, integrity, freshness, or compatibility in the
execution path. To detect improper verification vulnerabilities,
we examine the use of improper functions in the correspond-
ing verification procedures in the execution path. It is worth

USENIX Association

33rd USENIX Security Symposium 5633

Table 2: Firmware modification or selection for PoCs.

Type Firmware Modification or Selection Method
Auth.* | Select a firmware image without signature from the same vendor
Integ. | Alter bits in an update firmware image

Miss.
188 Fresh. | Select an outdated firmware image for the same device
Comp.* | Select an incompatible image from the same device family
Auth. | Alter bits in an update image and resign it with the same key
Improp. Integ.* | Alter bits in an update image and replace its digest

Fresh. | Select an outdated image and alter its version field
Comp.* | Select an incompatible image and alter its device ID field

Note: Miss.: Missing; Improp.: Improper; Auth.: Authenticity; Integ.: Integrity;
Fresh.: Freshness; Comp.: Compatibility; Vulnerability types marked with an aster-
isk (*) most likely require patching during test environment generation.

noting that some firmware images perform a quick integrity
check using a weak algorithm, followed by a more thorough
verification for authenticity and integrity based on digital sig-
nature/MAC algorithms. We only report an alert for improper
integrity verification when the digest algorithm used in the
corresponding digital signature/MAC is also insecure.

4.4 Vulnerability Validation

PoC Creation. We dynamically validate an alert by feeding a
PoC input that specifically violates a security property under
test and observing whether the firmware update procedure
still reaches the reboot stage. If it does, a vulnerability exists;
if not, the alert is an FP. The PoC image varies based on alert
type, as shown in Table 2. For example, to validate a missing
compatibility verification, we replace the benign firmware
with an incompatible version from the same device family.
However, this process may also alter other properties, compli-
cating root cause analysis. For example, the selected firmware
image may also contain an incorrect version number. To miti-
gate the issue, ChkUp patch and repack the testing firmware
to align the execution path of the verification procedure with
the property under test.

Patch Generation. We patch to skip verification procedures
that may hinder the vulnerability validation of a specific prop-
erty under test. The patching is conducted either at the source
code or binary level, depending on the program type. Typi-
cally, we invert conditional expressions without adding extra
code, essentially altering comparisons to their opposites (e.g.,
equal to not equal). Listing 4 in Appendix A.4 presents the
disassembly and decompiled code of the compatibility verifi-
cation procedure of a TP-Link firmware image. This proce-
dure fetches the current product ID using the getProductVer()
function and extracts the compatible product ID of the new
firmware from its file body. The ID comparison is conducted
by a bne (branch if not equal) instruction. To bypass this veri-
fication with the PoC firmware, we can substitute bne with a
beq instruction. Although most verification procedures em-
ploy straightforward conditional expressions, some include
complex conditions involving various logical operators and
multiple variables, some of which are only known at run-
time. This complexity makes simple methods like negating

comparisons ineffective. To address this, we first conduct a
successful firmware update with a benign image and record
the values of variables involved in conditional expressions.
Next, we perform static value-flow analysis, tracing backward
from these variables to identify the instructions where their
values are defined. Our investigation indicates that such in-
structions are typically within the same function, obviating
the need for complex control-flow recovery [66]. Finally, with
the recorded values and identified instructions, we employ
in-place binary rewriting techniques [43] to make use of the
previously recorded values, while including conditionals to
ensure that the replacement applies only to the firmware exe-
cution phase of interest.

S Implementation

ChkUp is prototyped to support both Linux-based and other
embedded OS-based firmware images (equipped with file sys-
tems) across various architectures, including ARM, MIPS,
and PowerPC. Specifically, the Execution Path Recovery mod-
ule efficiently constructs a UFG for each firmware image
within a 300s timeout, representing each UFG as a di-graph
using NetworkX [13]. The control flow of various programs is
analyzed with tools [22,61,66] like angr [66] for binaries. [PC
and program invocation paradigms are identified based on
the CPF module from KARONTE [59], extended to support
both JavaScript and shell scripts. After constructing UFGs,
execution path recovery is conducted using the Simple Paths
module of NetworkX at the function level. In the Verifica-
tion Procedure Recognition module, numerical features are
extracted from source code (specifically for JavaScript and
shell scripts), CFG, and both disassembled and decompiled
code (leveraging Ghidra [14]). Upon constructing and nor-
malizing DFGs using the normalization rules by Meijer et
al. [51], Ullmann’s algorithm is employed for DFG subgraph
isomorphism to identify verification procedures. The Vulnera-
bility Discovery module is based on the previous two modules
and performs vulnerability discovery using the described cri-
teria and process. In the Vulnerability Validation module,
Firmadyne [18] is initially used for dynamic analysis, and if
emulation is unsuccessful, the more advanced FirmAE [42] is
employed. Additionally, Ghidra and Firmware-mod-kit [11]
are used to patch and repack firmware images.

6 Evaluation

In this section, we evaluated the effectiveness three key mod-
ules of ChkUp, i.e., the Execution Path Recovery (Section 6.1),
Verification Procedure Recognition (Section 6.2), and Vulner-
ability Validation (Section 6.3).

Datasets. We collected 157,141 firmware images from the
websites of 10T vendors and successfully unpacked 111,958
of them. To enable large-scale analysis, a dataset, Dy, was

5634 33rd USENIX Security Symposium

USENIX Association

45

30

[TP [FN . FP

| mmm Execution Path Recovery

1571

0 Authenticity

Verification Procedure Recognition

Integrity

45
30

15

Number of Procedures

0

8
wn
4]
=
5
c
i
=
9]
g
S
5]
(]
-
5]
o
2
©
o

Freshness

(a) Accuracy of update entry identification

(b) Metrics of procedure recognition

Analysis Time(s)

Compatibility NG TPL DL TN AS ZX LS ul

(c) Performance overhead

Figure 4: Evaluation results (NG, TPL, DL, TN, AS, ZX, LS, and UI represent Netgear, TP-Link, D-Link, TRENDnet, Asus,

Zyxel, Linksys, and Ubiquiti, respectively).

created by randomly sampling 12,000 firmware images from
eight major vendors, including Netgear, TP-Link, D-Link,
TRENDnet, Asus, Ubiquiti, Zyxel, and Linksys. To evaluate
the effectiveness of ChkUp and validate its alerts, a ground-
truth dataset, Dg, was created by sampling from Dy. The
construction of the ground truth for the firmware images in
D¢ was undertaken by four security experts through manual
analysis. For details on the dataset construction and manual
analysis, refer to Appendix B.1 and Appendix B.2.

Experimental Environment. The evaluation was conducted
on a server with an Ubuntu 18.04 LTS OS and an AMD EPYC
7302P CPU with 64GB of RAM.

6.1 Effectiveness of Execution Path Recovery

The effectiveness of the Execution Path Recovery module is
assessed by the accuracy of the update entry finding as well
as the correctness of recovered execution paths.

Accuracy of Update Entry Finding. An update entry pro-
gram is identified using three types of patterns: prompt mes-
sage (P1), variable and function name (P2), and common code
(P3). To evaluate the effectiveness of each type of pattern, we
performed an ablation study, assessing the correctness of the
identified entry programs under different settings, specifically,
without P1, without P2, without P3, and with all patterns.
Evaluation results for firmware from each vendor in Dg are
shown in Figure 4a. The highest accuracy is achieved when
all patterns are used, and the lowest when only P1 and P3
are employed. This indicates that P2 is the most essential for
this process, as its absence often leads to significant perfor-
mance drops across firmware images from most vendors. The
impact of P1 and P3 varies by vendor. For instance, P1 signif-
icantly impacts firmware images from TP-Link, TRENDnet,
and Zyxel, while P3 is vital for those from Netgear and Asus.
Importantly, when using all patterns, the identification demon-
strates its robustness by accurately identifying update entry
programs of most firmware images. While 9 Netgear firmware
images had their update entries misidentified due to limited
semantic information, most of these misidentified programs
are still related to firmware updates but handle update roles
other than firmware delivery.

Correctness of Execution Path Recovery. Upon executing

the Execution Path Recovery module on firmware images
from D¢, ChkUp takes an average of 126.0 seconds for each
image (see Figure 4c). As a result, of the 150 generated UFGs,
122 are both firmware update sound and complete. 136 UFGs
are sound since since every edge in UFGs represents control
flows or IPC paradigms in the update procedures. However,
UFGs from 7 Asus, 4 D-Link, and 3 Zyxel firmware images
are unsound, yielding unrelated IPC paradigms. 133 UFGs
are complete, containing all related control flows and IPC
paradigms. However, UFGs from 9 Netgear firmware images
are incomplete due to misidentified update entries. Note that
the 3 above-mentioned UFGs from Zyxel firmware images are
also incomplete due to a mismatch between update entries and
back-end handlers. The rest, from 5 TP-Link firmware images,
are incomplete due to timeouts during UFG construction.
We found that sound and complete UFGs always lead to
the recovery of correct paths, while unsound or incomplete
UFGs might introduce incorrect paths or overlook the correct
ones during backward slicing. For example, the 3 unsound
and incomplete UFGs of Zyxel firmware only contain reboot
function invocations that were intended for other device man-
agement functionalities (e.g., applying new configurations).
Despite this, most incorrect paths do not influence the vulnera-
bility discovery process, as they contain relatively incomplete
verification procedures and are filtered out as long as correct
paths are also found during the vulnerability discovery. Also,
all the overlooked correct paths still contain a reboot step and
can be identified once the complete UFGs are constructed.

6.2 Effectiveness of Procedure Recognition

Upon evaluating the Verification Procedure Recognition mod-
ule on Dg, ChkUp recognizes verification procedures for
each firmware image in an average of 216.1 seconds (see
Figure 4c). The results of recognizing different categories
of verification procedures are shown in Figure 4b. Note that
the eight columns in each category represent the results of
firmware images from Netgear, TP-Link, D-Link, TRENDnet,
Asus, Zyxel, Linksys, and Ubiquiti, respectively. In summary,
there are 461 true positives (TPs), 45 false negatives (FNs),
and 17 FPs. Fewer authenticity verification procedures are rec-
ognized because some execution paths indeed lack a firmware
authenticity verification procedure, based on our analysis.

USENIX Association

33rd USENIX Security Symposium 5635

ChkUp has the highest integrity verification accuracy, as ven-
dors often use standard functions such as MD5_Update with
minor or even no customization.

False Result Discussion. The FPs and FNs primarily arise
from inaccurate execution paths and misidentification of key
functions. Specifically, our analysis reveals that inaccurate
execution paths lead to 23 FNs and 6 FPs since either ver-
ification procedures are not included or unrelated code is
mistakenly identified as verification procedures. For instance,
device management functionalities, different from firmware
updates, are included in the UFGs of 2 D-Link DAP firmware
images and are falsely recognized as authenticity verifica-
tion procedures. Other FNs and FPs mainly stem from using
uncommon key functions or from including functions with
similar semantics in execution paths. Notably, 6 FNs arise
from deviating from the heuristics guiding the identification
of verification procedures: 3 for Zyxel NBG-series images
because return variables and arguments of their digest calcu-
lation functions do not feed into conditional expressions. A
similar issue is seen in the version parsing of Netgear R-series
images, resulting in 3 FNs. Further analysis shows that these
images display the digests or parsed firmware versions on
user interfaces, requiring manual verification. Despite some
FNs and FPs, the module remains effective in most cases.

6.3 Effectiveness of Vulnerability Validation

To evaluate the effectiveness of the Vulnerability Validation
module, we assessed its success rate on D¢ and analyzed
firmware patching results. Moreover, we measured its scala-
bility on 1,200 additional firmware images from Dy .

Success Rate of Vulnerability Validation. After running the
Vulnerability Discovery module on Dg, a total of 271 alerts
were raised. Of these, 119 alerts were raised for 72 emulat-
able firmware images in Dg, which are compatible with the
Vulnerability Validation module. Among the 119 alerts, 90
require patching to create a testing environment for conduct-
ing PoCs. Applying the Vulnerability Validation module on
the corresponding firmware images resulted in 69 successful
generations of patched firmware images. Obstacles in creating
patched firmware images stem mainly from diverse firmware
implementations, including the use of uncommon file sys-
tems, which are not supported by the state-of-the-art firmware
repacking tool. We then emulated these repacked firmware
images and found only 10 failed to run due to violations of
runtime firmware signature checks. In total, 88 testing envi-
ronments from both patched and original firmware images
were created successfully. After undertaking PoC creation,
73 PoCs were successfully conducted and the corresponding
alerts are considered TPs. Investigation of the failure cases
reveals that 6 are indeed FPs and 9 are supposed to be TPs.

Patching Result Analysis. Unsuccessful PoC generation can
result from either the alert being an FP or issues encountered

during firmware patching. Specifically, patch generation in
ChkUp involves three steps: 1) identification of verification
procedures to bypass, 2) selection of code segments to modify,
and 3) deployment of patched firmware. If the identification
of the first step is incorrect, the subsequent patch might not
enable further exploration of the program space, leading to
an FN. Of the 15 failed PoC cases, 9 were due to this prob-
lem. Although not implemented in our current prototype, this
issue can be mitigated by monitoring program execution to
differentiate between known correct and incorrect running
firmware. Even with the correct verification procedure iden-
tified, issues like heuristically negating logic in an incorrect
code location can arise. Similar to the issue of misidentifi-
cation, this can be addressed. Yet, we did not encounter any
of these cases, likely due to the use of heuristics that work
well for known firmware types. Lastly, the deployment of the
patched firmware is not always feasible due to challenges
with firmware repacking and emulation. A deeper analysis of
these challenges is provided later.

Scalability of Vulnerability Validation. The scalability of
the Vulnerability Validation module is closely tied to its ability
to emulate and repack firmware images. To assess this, we an-
alyzed a random sample of 1,200 firmware images, which rep-
resent 10% of Dy . Initial emulation tests showed that 44.1%
of these images were successfully emulated and thus appli-
cable to this module. Notably, D-Link firmware exhibited
the highest emulation success rate, while Ubiquiti firmware
had the lowest. For the emulatable images, we achieved a
repacking success rate of 72.2%. The most significant factor
hindering successful repacking was the presence of file sys-
tems that were not as widely supported as common ones like
SquashFS and CramFS. Finally, of the repacked firmware im-
ages, 82.7% were successfully emulated. The primary reason
for most failures was runtime firmware signature checks.

7 Vulnerability Discovery Results

7.1 Alerts on Real-world Firmware

Alert Analysis. We used ChkUp to identify potential vulner-
abilities on Dy and analyzed the alert distribution. In terms
of performance, ChkUp processed 93.4% of firmware images
within 600 seconds each. Timeouts during UFG construction
contributed to the extended analysis time observed in 3.4% of
the firmware images. ChkUp resolved the execution paths for
10,670 firmware images and generated 15,132 alerts. Figure 5
displays the distribution of alerts by vulnerable verification
type for major device types in Dy. Notably, a significant por-
tion of alerts arise from firmware of various network devices
(e.g., routers and switches) and cameras due to two primary
reasons: 1) Network devices and cameras, which often have
publicly accessible firmware images, dominate a substantial
share of the IoT market; 2) Many devices reuse vulnerable

5636 33rd USENIX Security Symposium

USENIX Association

Table 3: Vulnerability discovery results of ChkUp on D¢ dataset.

Authenticity Verification Integrity Verification Frest Verification Compatibility Verification
Vendor #FW Missing Improper Missing Improper Missing Improper Missing Improper
TP FN FP| TP FN FP|TP FN FP|TP FN FP|TP FN FP|TP FN FP|TP FN FP | TP FN FP
Netgear 40 27 5 0 0 0 0] 0 0 3129 3 0] 0 0 416 0 1 0 0 310 0 1
TP-Link 17 0 0 3 10 3 0|0 0 0117 0 0|0 0 210 0 0] 0 0 310 0 0
D-Link 15 9 2 0 0 0 0|0 0 0] 9 0 0|0 2 0] 9 0 0|0 2 415 4 0
TRENDnet 10 100 0 0 0 0 010 0 2| 8 2 010 0 010 0 010 0 010 0 0
Asus 23 0 0 0 |13* 0 0|0 0 010 0 010 0 0 |4* 0 310 0 0 |4* 0 4
Zyxel 6 3 0 3 0 0 010 0 3 3 3 010 0 010 0 010 0 010 0 0
Linksys 21 12 4 0 0 0 0|0 0 2 113 2 213 0 0|0 0 0] 0 0 310 0 0
Ubiquiti 18 12 2 0 0 0|0 0 0]16 0 0|0 0 0|0 0 010 0 210 0 0
Summary 150 |72 13 8 | 23 3 010 0 1095 10 2| 3 2 6 19 0 410 2 15| 9 4 5

Note: Numbers marked with an asterisk (*) indicate that the TPs correspond to n-day vulnerabilities.

Il Authenticity [Integrity [IEEE Freshness [Compatibility

3553
2620
958
738
716
479
277
277
168
884
0

Device Type
Y,
2
SIETIVATEACT

HHHHHHHIHE

S 0 20 40 60 80
Alert Distribution by Verification Procedure (%)

=
o

Figure 5: Distribution of alerts for various device types.

code for their firmware foundation and have seen a lack of
effective security enhancements, resulting in persistent vul-
nerabilities across both new and old versions.

The most prevalent security issue reported by ChkUp in-
volved vulnerable integrity verification procedures. For in-
stance, of the alerts for network switch firmware, over half re-
late to this issue. The majority of these alerts highlight the use
of weak algorithms like CRC and MDS5. Vulnerable authen-
ticity verification also threatens various device types, notably
routers. The primary concern is the lack of verification, but the
use of symmetric digital signatures is also widespread. While
alerts related to freshness and compatibility verification are
less common, cameras and network extenders exhibit more
of these alerts than other devices. The most frequent issue
involves using unprotected data, such as filenames, to verify
versions or device IDs in the firmware update interfaces.

Invalid and Outlier Result Discussion. In the results
from ChkUp, the invalid cases primarily consisted of 1,330
firmware images for which ChkUp could not resolve the ex-
ecution paths. The outlier cases were those 589 firmware
images that raised four alerts, which was uncommon as most
images typically triggered up to three alerts. We delved deeper
into these results by examining a random 10% sample. We
found that two primary reasons emerged for the 133 failure
cases in execution path recovery: 32.3% of cases stemmed
from misidentification of the entry program, and 29.3% from
timeouts during UFG construction. The remaining issues were
mainly due to unusual IPC implementations or unsupported

programming languages, like PHP used for specific firmware
update steps. We found no cases where, despite correct UFG
construction, the use of reboot functions as slicing targets
caused path identification to fail. Moreover, we inspected the
verification procedures of 59 firmware images with four alerts
to check their validity. Out of these, 39.0% were found to have
insecure update mechanisms, while the remaining firmware
contained FPs that primarily resulted from misidentified exe-
cution paths and verification procedures. Importantly, the key
reason for the misidentification of verification procedures was
the mismatch of functions between firmware images and the
corpus. While most of the procedures that ChkUp overlooked
do adhere to the value-to-condition heuristic, some do not.
For these outliers that we confirmed as genuine, we provided
exceptions, exempting them from the heuristic matching.

7.2 Real-world Vulnerabilities

Validating alerts is both time-consuming and labor-intensive,
so our focus was on 150 firmware images from Dg. We em-
ployed the Vulnerability Validation module for emulatable
firmware and manually validated the rest with our ground
truth. To pinpoint FNs, all firmware images were assessed
using the ground truth. The results are displayed in Table 3.
Overall, the TPR is 86.7% and the FPR is 5.3%, demonstrating
the effectiveness of ChkUp in detecting vulnerabilities. Most
FPs and FNs arose from the Execution Path Recovery and
Verification Procedure Recognition modules as we discussed
in our evaluation. TPs for Asus firmware images are n-day
vulnerabilities (i.e., CVE-2014-2718, CVE-2020-15498, and
CVE-2021-3166), while those for 29 other device families
were undisclosed. We have also reported our findings to ven-
dors and received acknowledgment. At the time of writing, 25
CVE IDs and one PSV ID have been assigned. It is worth not-
ing that the majority fall into the categories of CWE-345 and
CWE-20. These findings align with our systematization, indi-
cating that these two categories are the most prevalent. More
CVE/PSV details are available at our project website [76].

Vulnerability Analysis. Regarding the vulnerability type, im-

proper integrity verification emerged as the most frequent
issue, with 39.0% using CRC and 23.8% using MD5. Issues

USENIX Association

33rd USENIX Security Symposium 5637

1. upgrade.js

01.function clickUpgrade(form){...

02. var file_array=file_name.split(‘-V');...

03. // check the firmware compatibility with filename

04. var file_module=file_array[0];

05. 1if(file_module.toUpperCase()!=netgear_module.toUpperCase()){
06. alert(error_module); return false;}...

07. // check the firmware freshness with filename

08. if(netgear_num>file_num){

09. if(!confirm(oldverl+file_version+oldver2+netgear_version+oldver3))
10. return false;}... return true;} Front-end
2. webupgrade.sh Back-end
01.imginstall(){...

02. # check the firmware compatibility with firmware header

03. module_name=$(cat /module_name)

04. new_name=$(sed -n '1{p; q}' $INFO_HEAD | sed 's/.*://"')

05. if ["$module_name" !'= "$new_name"]; then...

06. giveup_webupgrade_in_imginstall $STATUS_CHKINFO_ERROR fi

07. # check the firmware integrity using CRC checksum
08. CHECKSUM=$(/sbin/mychecksum —-o $offset —i $IMPORT_FILE_NAME|sed

s/, x$//")
09. if ["$CHECKSUM" != "checksum = 0x00" 1; then...
10. giveup_webupgrade_in_imginstall $STATUS_CHKSUM_ERROR... fi...}

3. mychecksum (decompiled code)
01.bool calcsum(undefined4 param_1,__off_t param_2){...
02. while (sVar3 = read(__fd,local_a8,0x80), 0 < svar3){...

03. // calculate the CRC checksum
04. iVaré = ivaré + sVar3;}
05. printf("checksum = 0x%02X, len = %d\n",~uVar5 & 0xff,ivar6);...}

Listing 3: Firmware update code in the case studies.

with missing and improper authenticity verification are preva-
lent. For example, in the firmware from TP-Link WR-series
devices, although there exists an RSA signature for authen-
ticity verification in firmware updates, the signature does not
protect the firmware header. Moreover, the MD5 sum value
is also stored in the header. Therefore, to craft a malicious
firmware image that can bypass the verification, an attacker
could modify header content and recompute the hash value
to replace the original one. Furthermore, fewer vulnerabil-
ities were identified in freshness and compatibility, mostly
rooted in the use of unprotected information. For instance,
the firmware version verification of D-Link DAP-series de-
vices is to extract the version from the filename of the new
firmware image and compare it with the current version. As
the filename lacks authenticity and integrity protections, at-
tackers could alter the filename to bypass the verification and
introduce vulnerable firmware images to devices.

7.3 Case Studies

Listing 3 shows the firmware verification flows in a firmware
image from Netgear WNR-series routers. These devices pro-
vide a web interface for manual firmware updates. In the front
end of the interface, as seen in line 3 to line 10 of upgrade.js,
both compatibility and freshness are verified by examining
the filename of the uploaded file, a method we have already
identified as vulnerable. After passing these verifications, the
back-end shell script webupgrade.sh proceeds with further ver-
ification. From line 2 to line 6 of webupgrade.sh, the firmware
header is examined to ensure compatibility. Therefore, com-
patibility can be ensured as long as firmware integrity is en-
sured. Integrity verification occurs in webupgrade.sh (see line
7 to line 10) through the binary mychecksum. Upon inspection,
mychecksum uses the weak CRC algorithm for this verifica-
tion. Notably, authenticity verification is absent. As a result,
these vulnerable verification procedures make the firmware

update mechanism susceptible to real-world exploits.

Real-world Exploits. We showcase the exploitability of these
vulnerabilities by crafting two exploits, specifically a firmware
downgrade attack and a firmware modification attack, target-
ing a Netgear WNR-series router. In these attack scenarios,
both attackers and the target device share the same network
environment. Attackers can either directly access the firmware
update interface or sniff the network and initiate MITM at-
tacks, given that the communication for firmware delivery
uses unencrypted HTTP. Notably, during our preliminary man-
ual firmware analysis, we found a significant number of public
firmware images lack TLS for update interfaces, highlighting
the feasibility of these attacks in the real world.

Al. Firmware Downgrade Attack: Since the firmware fresh-
ness is determined by checking the filename of the uploaded
file, attackers can craft a malicious firmware image using a
legacy firmware image by changing its version field in the
filename to match a legitimate one. Then, they can either up-
load the malicious firmware image through the web interface
or substitute the benign firmware image through MITM. Sub-
sequently, the firmware is replaced with an insecure legacy
version with vulnerabilities, which can be further exploited.
A2. Firmware Modification Attack: As the firmware integrity
verification is based on CRC checksum, attackers can cre-
ate a modified firmware image while keeping the checksum
value consistent. However, some fields, such as device ID
in the header for compatibility verification, need to remain
unchanged to ensure other verification procedures proceed
successfully. Attackers can introduce the malicious firmware
to the device in the same way mentioned in firmware down-
grade attack. With this attack, if the malicious firmware is
carefully crafted, various further attacks can be introduced,
including backdoors, malware, and DoS attacks.

8 Discussion

Security Impacts of Heuristics. Heuristic approaches cap-
ture common patterns discovered via manual reverse engineer-
ing. While effective for firmware images with similar patterns,
they cannot capture the foundational problem that can be gen-
eralized across different systems. In the context of ChkUp,
our approach that attempts to heuristically identify the en-
try and end of firmware update paths can fail on customized
firmware, preventing the analysis from starting. Furthermore,
our heuristic approach that uses information flow from the
crypto function to identify the update phase could fail to ex-
tract the correct update phase code. From the evaluation, we
found that such heuristics can fail on unconventional designs.

Limitations of Static and Dynamic Analysis. There is a
trade-off between static analysis and dynamic analysis. How-
ever, when used appropriately in combination, they provide a
good balance between completeness and soundness of analy-
sis. In the context of ChkUp, a key advantage of static analysis

5638 33rd USENIX Security Symposium

USENIX Association

is the elimination of the need to emulate firmware, which re-
mains an open research challenge. For example, out of 150
firmware images in Dg, only 72 are emulatable using state-of-
the-art firmware emulators. The emulation rate is even lower
for bare-metal firmware. Another advantage of static analysis
is the ability to detect deeper bugs where crafting an input
to reach the bug is extremely challenging. For example, 39
firmware images check the cryptographic signature before
proceeding to the buggy verification procedures. Yet, static
analysis often results in many false alarms. To mitigate this,
ChkUp leverages dynamic analysis to attempt to provide a
level of validation, albeit a basic one. Besides the challenge of
emulation, dynamic analysis only allows the validation of one
path at a time, limiting the breadth of exploration. For ChkUp,
success also depends on the patching being performed cor-
rectly, which is not always true as discussed.

Extensibility of ChkUp. Beyond firmware update vulnera-
bilities, our techniques can detect vulnerabilities like faulty
firmware function implementations (e.g., in cryptographic
functions). By adding faulty function signatures to the cor-
pus, we ensure that even if there are correctly implemented
counterparts, the vulnerable function will match its signature
based on a higher similarity score, enabling us to pinpoint
the use of flawed implementations. ChkUp is tailored for
multi-architecture Linux and other embedded OS firmware
with file systems. While bare-metal firmware analysis poses
challenges, like addressing base resolution, most do not re-
quire cross-language control/data flow analysis. By incorpo-
rating methods from FirmXRay [77] and updating the corpus,
ChkUp could handle bare-metal firmware too. Our technique
is not vendor-specific; if ChkUp supports the firmware type, it
can analyze it. Though FPs can occur, our system can still of-
fer insights like firmware update paths. Extending the corpus
can further improve the accuracy of ChkUp.

9 Related Work

Firmware Update Security. Recent studies have revealed
security concerns in firmware or software update mecha-
nisms [15,17,21,57,63,70]. Notably, the prevalent use of
insecure protocols like HTTP can expose update processes
to MITM and backdoor attacks [17,63]. Moreover, there are
demonstrated firmware modification attacks by exploiting
update procedure weaknesses [21,70]. Both academics and
the Internet Engineering Task Force (IETF) are addressing
these concerns by developing secure firmware update strate-
gies [46,53] and efficient hotpatching solutions [35,54].

Vulnerability Detection in Firmware. Firmware vulner-
ability detection is broadly divided into three categories.
The first group [37, 40, 68, 77, 82, 87] detects vulnerabili-
ties by identifying discrepancies between specifications and
actual implementations. For example, FirmXRay [77] uncov-
ers Bluetooth layer vulnerabilities using specification knowl-

edge. The second category uses methods like taint analy-
sis [19, 27,59, 83, 85] and symbolic execution [25, 32, 34,
36,65] to explore vulnerable execution paths. For instance,
Karonte [59] targets memory-corruption vulnerabilities by
pinpointing unsafe user-controlled input sinks. The third cat-
egory involves pattern matching [20, 38, 44, 81] and code
similarity checks [23,24,28,33,39,41,49,50,64,75,79, 88],
detecting vulnerabilities by matching known patterns or vul-
nerable code, such as FirmUP [24] that uses procedure simi-
larity. Our research specifically targets firmware update vul-
nerabilities, which are distinct due to their multi-stage nature
and the unique semantics of firmware updates.

Cryptographic Misuse Detection: Cryptographic API mis-
use detection is a technique for identifying potential vulnera-
bilities stemming from incorrect usage of cryptographic primi-
tives [16]. The general idea is to verify that parameters passed
to cryptographic APIs meet pre-defined rules [26,29,31,45,
56,58,67,85]. ChkUp differs from existing cryptographic mis-
use detection studies in terms of system goals, security impact
and technical standpoints. Regarding security goals, ChkUp
focuses on firmware update security, providing a fundamen-
tally distinct focus. Instead of analyzing individual crypto-
graphic vulnerabilities, our approach involves systematizing
the firmware update ecosystem and conducting a security
analysis to map the attack surface, uncovering a significant
amount of non-crypto attack vectors. From the perspective
of security impact, ChkUp provides new ways to automate
the search for firmware update vulnerabilities, covering both
crypto misuses and non-crypto-related vulnerabilities such as
downgrade attacks. From the technical perspective, ChkUp
tackles new challenges, including identifying long sequences
of inter-process invocations as well as discovering and vali-
dating firmware update-specific semantic bugs.

10 Conclusion

In this paper, we present ChkUp, a novel approach for detect-
ing firmware update vulnerabilities, including missing and
improper verification during updates. Specifically, ChkUp
resolves firmware update execution paths through cross-
language inter-process control flow analysis and program
slicing. Then, firmware verification procedures are identified
through syntactic, structural, and semantic program analysis.
These procedures along with the corresponding execution
paths are further examined based on our defined criteria to
detect vulnerabilities. To reduce false positives, alerts for
emulatable firmware images are validated dynamically with
a patching-based method, while others are validated manu-
ally. ChkUp is implemented and employed to analyze 12,000
firmware images, with subsequent validation of alerts for 150
firmware images from 33 device families. The results show
that ChkUp can identify zero-day and n-day vulnerabilities,
leading to the assignment of 25 CVE IDs and one PSV ID.

USENIX Association

33rd USENIX Security Symposium 5639

References

[1] LibCRC — Open Source CRC Library in C. https:
//www.libcrc.org/.

[2] Libcrypto APIL https://wiki.openssl.org/index.

php/Libcrypto_API.
[3] LibTom. https://www.libtom.net/LibTomCrypt/.

[4] Mbed Crypto. https://os.mbed.com/docs/
mbed-o0s/v6.16/apis/mbed-crypto.html.

[5] Nettle - a low-level cryptographic library. https://
www.lysator.liu.se/~nisse/nettle/.

[6] wolfSSL. https://www.wolfssl.com/doxygen/.
[7] zlib. https://www.zlib.net/.

[8] CVE-2018-3926. https://nvd.nist.gov/vuln/
detail/CVE-2018-3926, 2018.

[9] CVE-2021-3166. https://nvd.nist.gov/vuln/
detail/CVE-2021-3166, 2021.

[10] Embedded devices market size report. https:
//www.marketsandmarkets.com/Market-Reports/
embedded-system-market-98154672.html, 2022.

[11] Firmware-mod-kit. https://github.com/rampageX/
firmware-mod-kit, 2022.

[12] Internet of things (iot) top 10 2018. https:
//wiki.owasp.org/index.php/OWASP_Internet_
of_Things_Project#tab=IoT_Top_10,2022.

[13] Network analysis in python. https://github.com/
networkx/networkx, 2022.

[14] National Security Agency. Ghidra software re-
verse engineering framework. https://github.com/
NationalSecurityAgency/ghidra, 2022.

[15] Omar Alrawi et al. Sok: Security evaluation of home-
based iot deployments. In S&P, 2019.

[16] Amit Seal Ami et al. Why crypto-detectors fail: A
systematic evaluation of cryptographic misuse detection
techniques. In S&P, 2022.

[17] Anthony Bellissimo et al. Secure software updates:
Disappointments and new challenges. In HotSec, 2006.

[18] Daming D Chen et al. Towards automated dynamic
analysis for linux-based embedded firmware. In NDSS,
2016.

[19] Libo Chen et al. Sharing more and checking less: Lever-
aging common input keywords to detect bugs in embed-
ded systems. In USENIX Security, 2021.

[20] Andrei Costin et al. A {Large-Scale} analysis of the
security of embedded firmwares. In USENIX Security,
2014.

[21] Ang Cui et al. When firmware modifications attack: A
case study of embedded exploitation. NDSS, 2013.

[22] Piotr Dabkowski. Js2py: Javascript to python transla-
tor. https://github.com/PiotrDabkowski/Js2Py,
2022.

[23] Yaniv David et al. Similarity of binaries through re-
optimization. In PLDI, 2017.

[24] Yaniv David et al. Firmup: Precise static detection of
common vulnerabilities in firmware. ASPLOS, 2018.

[25] Drew Davidson et al. {FIE} on firmware: Finding vul-
nerabilities in embedded systems using symbolic execu-
tion. In USENIX Security, 2013.

[26] Manuel Egele et al. An empirical study of cryptographic
misuse in android applications. In CCS, 2013.

[27] Mohamed Elsabagh et al. {FIRMSCOPE}: Automatic
uncovering of {Privilege-Escalation} vulnerabilities in
{Pre-Installed} apps in android firmware. In USENIX
Security, 2020.

[28] Sebastian Eschweiler et al. discovre: Efficient cross-
architecture identification of bugs in binary code. In
NDSS, 2016.

[29] Sascha Fahl et al. Why eve and mallory love android:
An analysis of android ssl (in) security. In CCS, 2012.

[30] Andrew Fasano et al. Sok: Enabling security analyses
of embedded systems via rehosting. In ASIACCS, 2021.

[31] Johannes Feichtner et al. Automated binary analysis
on ios: a case study on cryptographic misuse in ios
applications. In WiSec, 2018.

[32] Farhaan Fowze et al. Proxray: Protocol model learning
and guided firmware analysis. IEEE Trans. Softw. Eng.,
2019.

[33] Jian Gao et al. Vulseeker: A semantic learning based
vulnerability seeker for cross-platform binary. In ASE,
2018.

[34] Fabio Gritti et al. Heapster: Analyzing the security of
dynamic allocators for monolithic firmware images. In
S&P, 2022.

[35] Yi He et al. Rapidpatch: Firmware hotpatching for real-
time embedded devices. In USENIX Security, 2022.

5640 33rd USENIX Security Symposium

USENIX Association

https://www.libcrc.org/
https://www.libcrc.org/
https://wiki.openssl.org/index.php/Libcrypto_API
https://wiki.openssl.org/index.php/Libcrypto_API
https://www.libtom.net/LibTomCrypt/
https://os.mbed.com/docs/mbed-os/v6.16/apis/mbed-crypto.html
https://os.mbed.com/docs/mbed-os/v6.16/apis/mbed-crypto.html
https://www.lysator.liu.se/~nisse/nettle/
https://www.lysator.liu.se/~nisse/nettle/
https://www.wolfssl.com/doxygen/
https://www.zlib.net/
https://nvd.nist.gov/vuln/detail/CVE-2018-3926
https://nvd.nist.gov/vuln/detail/CVE-2018-3926
https://nvd.nist.gov/vuln/detail/CVE-2021-3166
https://nvd.nist.gov/vuln/detail/CVE-2021-3166
https://www.marketsandmarkets.com/Market-Reports/embedded-system-market-98154672.html
https://www.marketsandmarkets.com/Market-Reports/embedded-system-market-98154672.html
https://www.marketsandmarkets.com/Market-Reports/embedded-system-market-98154672.html
https://github.com/rampageX/firmware-mod-kit
https://github.com/rampageX/firmware-mod-kit
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://github.com/networkx/networkx
https://github.com/networkx/networkx
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://github.com/PiotrDabkowski/Js2Py

[36] Grant Hernandez et al. Firmusb: Vetting usb device
firmware using domain informed symbolic execution.
In CCS, 2017.

[37] Grant Hernandez et al. {BigMAC}:{Fine-Grained} pol-
icy analysis of android firmware. In USENIX Security,
2020.

[38] Grant Hernandez et al. Firmwire: Transparent dynamic
analysis for cellular baseband firmware. NDSS, 2022.

[39] Dongkwan Kim et al. Revisiting binary code similar-
ity analysis using interpretable feature engineering and
lessons learned. IEEE Trans. Softw. Eng., 2022.

[40] Eunsoo Kim et al. Basespec: Comparative analysis
of baseband software and cellular specifications for 13
protocols. In NDSS, 2021.

[41] Geunwoo Kim et al. Improving cross-platform binary
analysis using representation learning via graph align-
ment. In ISSTA, 2022.

[42] Mingeun Kim et al. Firmae: Towards large-scale emu-
lation of iot firmware for dynamic analysis. In ACSAC,
2020.

[43] Taegyu Kim et al. Revarm: A platform-agnostic arm
binary rewriter for security applications. In ACSAC,
2017.

[44] Taegyu Kim et al. {PASAN}: Detecting peripheral ac-
cess concurrency bugs within {Bare-Metal } embedded
applications. In USENIX Security, 2021.

[45] Stefan Kriiger et al. Crysl: An extensible approach to
validating the correct usage of cryptographic apis. IEEE
Trans. Softw. Eng., 2019.

[46] Antonio Langiu et al. Upkit: An open-source, portable,
and lightweight update framework for constrained iot
devices. In ICDCS, 2019.

[47] Pierre Lestringant et al. Automated identification of
cryptographic primitives in binary code with data flow
graph isomorphism. In ASIACCS, 2015.

[48] Wen Li et al. Understanding language selection in
multi-language software projects on github. In ICSE-
Companion, 2021.

[49] Bingchang Liu et al. adiff: cross-version binary code
similarity detection with dnn. In ASE, 2018.

[50] Andrea Marcelli et al. How machine learning is solving
the binary function similarity problem. In USENIX
Security, 2022.

[51] Carlo Meijer et al. Where’s crypto?: Automated identi-
fication and classification of proprietary cryptographic
primitives in binary code. In USENIX Security, 2021.

[52] Charlie Miller et al. Remote exploitation of an unaltered
passenger vehicle. Black Hat USA, 2015.

[53] Brendan Moran et al. A firmware update architecture
for internet of things. Internet Requests for Comments,
RFC Editor, RFC 9019, 2021.

[54] Christian Niesler et al. Hera: Hotpatching of embedded
real-time applications. In NDSS, 2021.

[55] U.S. Government Accountability Office. Solarwinds
cyberattack demands significant federal and private-
sector response (infographic). https://www.gao.
gov/blog/solarwinds-cyberattack-demands\
-significant-federal-and-private-sector-\
response-infographic, 2021.

[56] Luca Piccolboni et al. Crylogger: Detecting crypto
misuses dynamically. In S&P, 2021.

[57] Vijay Prakash et al. Inferring software update practices
on smart home iot devices through user agent analysis.
In SCORED, 2022.

[58] Sazzadur Rahaman et al. Cryptoguard: High precision
detection of cryptographic vulnerabilities in massive-
sized java projects. In CCS, 2019.

[59] Nilo Redini et al. Karonte: Detecting insecure multi-
binary interactions in embedded firmware. In S&P,
2020.

[60] ReFirmLabs. binwalk.
ReFirmLabs/binwalk/, 2022.

https://github.com/

[61] Yann Régis-Gianas et al. Morbig: A static parser for
posix shell. In SLE, 2018.

[62] Michael Rushanan et al. Sok: Security and privacy in
implantable medical devices and body area networks.
In S&P, 2014.

[63] Justin Samuel et al. Survivable key compromise in
software update systems. In CCS, 2010.

[64] Paria Shirani et al. Binarm: Scalable and efficient detec-
tion of vulnerabilities in firmware images of intelligent
electronic devices. In DIMVA, 2018.

[65] Yan Shoshitaishvili et al. Firmalice-automatic detec-
tion of authentication bypass vulnerabilities in binary
firmware. In NDSS, 2015.

[66] Yan Shoshitaishvili et al. Sok:(state of) the art of war:
Offensive techniques in binary analysis. In S&P, 2016.

USENIX Association

33rd USENIX Security Symposium 5641

https://www.gao.gov/blog/solarwinds-cyberattack-demands\-significant-federal-and-private-sector-\response-infographic
https://www.gao.gov/blog/solarwinds-cyberattack-demands\-significant-federal-and-private-sector-\response-infographic
https://www.gao.gov/blog/solarwinds-cyberattack-demands\-significant-federal-and-private-sector-\response-infographic
https://www.gao.gov/blog/solarwinds-cyberattack-demands\-significant-federal-and-private-sector-\response-infographic
https://github.com/ReFirmLabs/binwalk/
https://github.com/ReFirmLabs/binwalk/

[67] David Sounthiraraj et al. Smv-hunter: Large scale, auto-
mated detection of ssl/tls man-in-the-middle vulnerabil-
ities in android apps. In NDSS, 2014.

[68] Lin Tan et al. Autoises: Automatically inferring secu-
rity specification and detecting violations. In USENIX
Security, 2008.

[69] EE Times. 2019 embedded markets study.
https://www.embedded.com/wp-content/
uploads/2019/11/EETimes_FEmbedded_2019_
Embedded_Markets_Study.pdf, 2019.

[70] Ryan Tsang et al. Fandemic: Firmware attack construc-
tion and deployment on power management integrated
circuit and impacts on iot applications. In NDSS, 2022.

[71] Julian R Ullmann. An algorithm for subgraph isomor-
phism. J. ACM, 1976.

[72] Jinwen Wang et al. Rt-tee: Real-time system availability
for cyber-physical systems using arm trustzone. In S&P,
2022.

[73] Jinwen Wang et al. Ari: Attestation of real-time mission
execution integrity. In USENIX Security, 2023.

[74] Jinwen Wang et al. IP Protection in TinyML. In DAC,
2023.

[75] Shuai Wang et al. In-memory fuzzing for binary code
similarity analysis. In ASE, 2017.

[76] [Website]. ChkUp. https://fw-chkup.github.io.

[77] Haohuang Wen et al. Firmxray: Detecting bluetooth
link layer vulnerabilities from bare-metal firmware. In
CCS, 2020.

[78] Seongil Wi et al. Hiddencpg: large-scale vulnerable
clone detection using subgraph isomorphism of code
property graphs. In WWW, 2022.

[79] Yueming Wu et al. Detecting semantic code clones by
building ast-based markov chains model. In ASE, 2022.

[80] Yuhao Wu et al. Work-in-progress: Measuring security
protection in real-time embedded firmware. In RTSS,
2022.

[81] Fabian Yamaguchi et al. Modeling and discovering
vulnerabilities with code property graphs. In S&P, 2014.

[82] Yuging Yang et al. Detecting and measuring misconfig-
ured manifests in android apps. In CCS, 2022.

[83] Jiawei Yin et al. Finding smm privilege-escalation vul-
nerabilities in uefi firmware with protocol-centric static
analysis. In S&P, 2022.

[84] Zhiyuan Yu et al. Security and privacy in the emerging
cyber-physical world: A survey. IEEE Commun. Surv.
Tutor., 2021.

[85] Li Zhang et al. {CryptoREX}: Large-scale analysis of
cryptographic misuse in {IoT} devices. In RAID, 2019.

[86] Ruide Zhang et al. Augauth: Shoulder-surfing resistant
authentication for augmented reality. In /ICC, 2017.

[87] Yue Zhang et al. When good becomes evil: Tracking
bluetooth low energy devices via allowlist-based side
channel and its countermeasure. In CCS, 2022.

[88] Binbin Zhao et al. A large-scale empirical analysis of
the vulnerabilities introduced by third-party components
in iot firmware. In ISSTA, 2022.

A Additional Design Details

A.1 Path Explosion Reduction

Five path explosion reduction strategies are utilized in ChkUp.
The initial three are applied during UFGs construction, and
the last two during backward slicing. 1) Excluding non-crypto
standard libraries: Standard libraries are omitted from UFG
construction to reduce complexity, with an exception for cryp-
tographic libraries for vulnerability identification without sig-
nificantly increasing UFG complexity. 2) Omitting built-in
utilities: During firmware updates, known built-in utility pro-
grams (e.g., mtd, reboot) are executed, negating the need for
control flow analysis. 3) Implementing a timeout: If UFG gen-
eration takes excessive time, a timeout strategy limits UFG
complexity and the inclusion of FP paths. 4) Applying path
filtering: Execution paths are refined by filtering based on
error messages from unsuccessful firmware updates causing
device reboots. 5) Path merging: Post backward slicing, paths
with identical verification procedures and nodes are merged
for their equivalent semantic meanings.

A.2 Function Similarity Matching

Similarity Score Calculation. With extracted features (see
details in Table 4), we can calculate the similarity between
a function f and a function in the corpus f’ based on the
relative difference between their feature values [39]. Given

Table 4: Syntactic and structural features of functions.

Category Feature
Data Constant | # constants, # strings

Instruction # all instructions, # operands, # each type of instructions’

CFG # BBs, # edges, # loops, avg. # edges per BB, * BBs, * loops
Function Call | # imported calls, # incoming calls, # outgoing calls
Misc. # arguments, # API callees, # library references, # code references

Note: #: The number of; *: The size of; avg.: average. ! Instruction type: arithmetic,
branch, data transfer, logic, and bit-oriented instructions.

5642 33rd USENIX Security Symposium

USENIX Association

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://fw-chkup.github.io

100 = e
J><\

§ 80 \\
]
=
g 60
L
5 \
9]
= 40 \\A
—4&— Recall
—e— Precision
20
0.0 0.2 0.4 0.6 0.8 1.0

Similarity Score Threshold

Figure 6: Effect of threshold selection on function matching.

M features, the feature vectors for f and f” are represented as
f=[xi,x0, - ,xy] and f' = [x|,x},- - ,x),], respectively. The
relative difference & between x; and x is
i — x|

oy = T
8050 %) = 3Tl WD)

@

From this, the similarity score between the two features is
1 — 8(x;,x}). Then, the overall similarity score of f and f” is
defined as the average similarity score for all features by

YEE) =1 1 (8r1,x) + 802,) oo 8). @)

The value ranges of 8(x;,x}) and y(f,f') are 0 to 1. The higher
the y(f,f'), the more similar f and f” are considered to be.
Based on this similarity score definition, we assess the sim-
ilarity between each function in the execution paths and each
function in the corpus. The corpus contains Q key functions
divided into four sets: S, Sil, 85 ,and S,. Given N recovered
execution paths of a firmware image, we calculate four simi-
larity matrices for each path including S¢, Sﬁ,, Si: ,and S{,. Each
matrix represents the similarity scores between functions in
the n-th path and those in the corpus for a specific verification
procedure. For instance, the similarity score matrix S¢ for
authenticity verification of the n-th path is defined as

Y(E) v(fLf) Y(f1, 1)
v 8) v, f5) Y(f2,£p)

= : e 3)
Y(Ep.f) v(Ep.£r) Y(tp.£p)

where P is the number of functions in the execution path
and y(f,,f ;) is the similarity score between the p-th function
in the execution path and the g-th function in the corpus, as
calculated using Equation 2. Note that when there is function
overlap in the execution paths, the similarity score between
each function pair is only calculated once.

Similarity Score Threshold Selection. In the first stage of
the Verification Procedure Recognition, the similarity score
threshold should effectively eliminate a substantial number of
irrelevant functions while preserving the majority of essential
key functions. This approach can ensure efficient and accurate
recognition of the verification procedure in the second stage.
To establish this threshold, we calculated numerous similarity
scores between key functions found in the firmware images
from D¢ and their counterparts in the corpus. Moreover, we

Table 5: Cryptographic functions in the corpus.

. Integrity Authentication
Library
! Proper Improper Proper Improper
SHA256_Update, MD4_Update, RSA_verify, HMAC_Update,
Liberypto [2] |SHA3_absorb, MD5_Update, DSA_verify, CMAC_Update,

RIPEMD160_Update, etc. [SHAI_Update, etc. |ECDSA_do_verify, etc.|Poly1305_Update, etc.

Sha256Update, Md4Update, RsaSSL_Verify, HmacUpdate,
wolfCrypt [6] [Sha3_512_Update, Md5Update, DsaVerify, CmacUpdate,
RipeMdUpdate, etc. ShaUpdate, etc. ecc_verify_hash, etc. |Poly1305Update, etc.

sha256_process,
LibTomCrypt [3]|sha3_process,
rmd160_process, etc.
sha256_update_ret,
Mbed Crypto [4] [sha512_process,

md4_process, rsa_verify_hash,
md5_process, dsa_verify_hash, lomac_process,
shal_process, etc. |ecc_verify_hash, etc. |poly1305_process, etc.
md4_update_ret,
md5_update_ret,
ripemd160_update_ret, etc.|shal_update_ret, etc..

hmac_process,

cipher_cmac_update,
md_hmac_update,
poly1305_update, etc.

rsa_pkes1_verify,
ecdsa_verify

sha256_update, md4_update, rsa_sha512_verify, hmac_shal_update,
Nettle [5] sha3_update, md5_update, dsa_verify, cmac_aes128_update,
ripemd160_update, etc. shal_update, etc. ecdsa_verify, etc. poly1305_aes_update, etc.

Note: Function names in wolfCrypt, Mbed Crypto, and Nettle are prefixed with wc_,
mbedtls_, and nettle_, respectively; Omitted functions implement algorithms from the
same family of algorithms implemented by the listed functions, for example, MD2
for improper integrity verification and SHAS512 for proper integrity verification.

selected an irrelevant function at random for each key function
in every firmware image and calculated its similarity score
with the corresponding function in our corpus. In total, we
assessed 1,012 functions and generated their respective simi-
larity scores. Subsequently, we defined a range of similarity
score thresholds, ranging from O to 1 in increments of 0.05,
and measured the recall and precision at each threshold. As
illustrated in Figure 0, a threshold of approximately 0.5 de-
livers an optimal balance between precision and recall, with
both metrics exceeding 90%. Consequently, we selected a
similarity threshold of 0.5.

A.3 Corpus Statistics

Key functions in the corpus include the functions from open-
source libraries and proprietary functions obtained during
the construction of the ground truth. Overall, the corpus con-
tains 129 functions: 76 from widely used libraries and 53
that are proprietary. Our observations on key functions used
for integrity and authentication verification align with previ-
ous work [85], showing that executable programs generally
utilize either low-level cryptographic APIs from standard li-
braries or employ self-defined APIs that wrap these low-level
APIs. Therefore, our corpus includes common cryptographic
functions for digest algorithms (such as SHA family, MD
family, and RIPEMD family), digital signature algorithms
(such as RSA, DSA, and ECDSA), and MAC algorithms (such
as HMAC, CMAC, and Poly1305) from standard libraries,
namely Libcrypto [2], wolfCrypt [6], LibTomCrypt [3], Mbed
Crypto [4], Nettle [5]. These functions are further classified
into two categories (proper and improper) based on their cor-
responding algorithms (see Table 5 for details). In addition,
non-cryptographic digest functions based on CRC, considered
weak for integrity verification, from z/ib [7] and LibCRC [1]
are included. All these functions are compiled for ARM (both
32-bit and 64-bit), MIPS (both 32-bit and 64-bit), and Pow-
erPC (both 32-bit and 64-bit) architectures using the GCC
compiler with optimization levels ranging from OO0 to O3.
Proprietary functions in the corpus include those used for

USENIX Association

33rd USENIX Security Symposium 5643

Disassembly Code
01.lw s0@,0x44(s2)
02.jalr t9=>getProductVer

-03.bne s@,v0,LAB_004e9c4c
+04.beq s@,v0,LAB_004e9c4c
05._1i v1,0x4655

Decompiled Code

01.ivVar5 = *(int *)(param_1

+ 0x44);

02.iVarl = getProductVer();
-03.if (ivar5 != ivarl) {
+04.if (ivar5 == ivarl) {

06.clear vl 05. return 0x4655;
07.LAB_004e9c4c: 06.}
08.1lw ra,local_4(sp) 07.return 0;

09.move vO,vl
10.jr ra

Listing 4: A compatibility verification patch example.

freshness and compatibility verification and developer-defined
functions for integrity and/or authenticity that significantly
differ from open-source alternatives. These functions were
collected through our manual analysis while constructing the
ground truth using firmware images from eight different ven-
dors, as outlined in D¢g. During this process, we observed
that key functions in firmware images from the same device
family or vendor tend to be similar. For example, all firmware
images from the Asus DSL-N families in D¢ feature sim-
ilar key functions. As a result, the proprietary functions in
the corpus can be scaled across numerous firmware images
besides their source firmware images. To facilitate vulnera-
bility discovery, all functions are classified into proper and
improper categories, based on whether the information used
for verification is protected as mentioned in Section 4.3.

A.4 Patching Example

Listing 4 shows the disassembled and decompiled code for
the compatibility verification in a TP-Link firmware image.
This procedure can be bypassed with our patching method.

B Firmware Collection and Manual Analysis

B.1 Evaluation Datasets

Firmware Collection and Unpacking. We developed a web
crawler to collect firmware images primarily from official
websites of major vendors in areas like network devices, cam-
eras, and smart home devices [80]. The collected 157,141
firmware images from 204 vendors were then unpacked using
Binwalk [60] to extract the file system, kernel, and bootloader,
successfully unpacking 111,958 firmware images (statistics
can be found in our website [76]). Given the differences in
firmware update mechanisms across various vendors, building
a ground truth for evaluating ChkUp with firmware images
from all vendors demands substantial manual work. Thus, we
built a large-scale dataset, Dy, by randomly sampling 12,000
(just over 10%) firmware images consisting of eight leading
vendors (i.e., Netgear, TP-Link, D-Link, TRENDnet, Asus,
Ubiquiti, Zyxel, and Linksys) from our collection of unpacked
firmware images. The eight vendors have significant market
share in the embedded device market, notably holding over
60% market share in the wireless router market.

Ground Truth Dataset. Thoroughly evaluating ChkUp and
validating its alerts requires manual analysis to establish
ground truth, a labor-intensive process even for experts. To es-
tablish a ground-truth dataset, Dg, we performed a weighted
random sampling of 150 firmware images from Dy, prioritiz-
ing those from various device families. These selected images
originate from 33 different device families of the eight leading
vendors. Then, manual analysis is performed by four security
research field experts to build ground truth for D (for details,
refer to Appendix B.2). With the ground truth, Dg is used to
evaluate the effectiveness of ChkUp in Section 6 and validate
the generated alerts by ChkUp in Section 7.

B.2 Manual Firmware Analysis

Assumption. Since a ground truth dataset is theoretically im-
possible to obtain, we have to assume that our manual analysis
and cross-validation among different members provide a good
approximation to the ground truth.

Approach. A four-member team of experienced security re-
searchers performed the analysis. One team member is a
senior computer security researcher with almost 20 years of
experience, while the other three members have about 7 years
of exposure to computer security. Given a firmware image,
the objective is to figure out its firmware update mechanism
by resolving all the invoked programs and their execution
sequences, as well as all the critical verification procedures.
To this end, we use a multi-step, documentation-supported ap-
proach. First, we search all the programs suspected of contain-
ing firmware update functionalities based on firmware update-
related keywords like firmware update and firmware upgrade.
We perform a careful review of any available firmware docu-
mentation and README files. These resources are invaluable
for validating hypotheses about the function of specific bina-
ries, effectively compensating for the absence of embedded
information. For instance, if the screenshots of update in-
terfaces are provided in the documents, the corresponding
front-end programs can be easily found.

Secondly, we conduct a control flow analysis to understand
the program execution sequence using the binary analysis
tool, Ghidra. Data flow analysis, facilitated by angr, reveals
how data moves and changes within the programs, provid-
ing insights into critical verification procedures. For emulat-
able firmware images, we also perform emulation to record
the firmware update execution paths. Finally, we perform
cross-validation to mitigate the limitations in analysis accu-
racy stemming from the varying experiences of researchers.
Specifically, team members independently assess the same bi-
naries and subsequently reconcile their findings. This process
depends on internal peer reviews and external documentation
to arbitrate discrepancies. Consequently, our approach guar-
antees a comprehensive examination, establishing a robust
foundation for a reliable ground truth.

5644 33rd USENIX Security Symposium

USENIX Association

	Introduction
	Firmware Update Security Systematization
	Challenges of Firmware Updates
	Update Workflow and Vulnerabilities

	Threat Model and Overview
	Design of ChkUp
	Execution Path Recovery
	Verification Procedure Recognition
	Vulnerability Discovery
	Vulnerability Validation

	Implementation
	Evaluation
	Effectiveness of Execution Path Recovery
	Effectiveness of Procedure Recognition
	Effectiveness of Vulnerability Validation

	Vulnerability Discovery Results
	Alerts on Real-world Firmware
	Real-world Vulnerabilities
	Case Studies

	Discussion
	Related Work
	Conclusion
	Additional Design Details
	Path Explosion Reduction
	Function Similarity Matching
	Corpus Statistics
	Patching Example

	Firmware Collection and Manual Analysis
	Evaluation Datasets
	Manual Firmware Analysis

