
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Critical Code Guided Directed Greybox
Fuzzing for Commits

Yi Xiang, Zhejiang University NGICS Platform; Xuhong Zhang, Zhejiang University and
Jianghuai Advance Technology Center; Peiyu Liu, Zhejiang University NGICS Platform;

Shouling Ji, Xiao Xiao, Hong Liang, and Jiacheng Xu, Zhejiang University;
Wenhai Wang, Zhejiang University NGICS Platform

https://www.usenix.org/conference/usenixsecurity24/presentation/xiang-yi

Critical Code Guided Directed Greybox Fuzzing for Commits

Yi Xiang1,2, Xuhong Zhang1,3, B, Peiyu Liu1,2, Shouling Ji1, Xiao Xiao1, Hong Liang1, Jiacheng Xu1, and
Wenhai Wang1,2, B

1Zhejiang University, 2Zhejiang University NGICS Platform, 3Jianghuai Advance Technology Center
E-mails: {xiangyi0406, zhangxuhong, liupeiyu, sji, xiao_xiao, hongliang, stitch, zdzzlab}@zju.edu.cn

Abstract
Newly submitted commits are prone to introducing vul-

nerabilities into programs. As a promising countermeasure,
directed greybox fuzzers can be employed to test commit
changes by designating the commit change sites as targets.
However, existing directed fuzzers primarily focus on reach-
ing a single target and neglect the diverse exploration of the
additional affected code. As a result, they may overlook bugs
that crash at a distant site from the change site and lack direct-
ness in multi-target scenarios, which are both very common
in the context of commit testing.

In this paper, we propose WAFLGO, a direct greybox
fuzzer, to effectively discover vulnerabilities introduced by
commits. WAFLGO employs a novel critical code guided
input generation strategy to thoroughly explore the affected
code. Specifically, we identify two types of critical code: path-
prefix code and data-suffix code. The critical code first guides
the input generation to gradually and incrementally reach the
change sites. Then while maintaining the reachability of the
critical code, the input generation strategy further encourages
the diversity of the generated inputs in exploring the affected
code. Additionally, WAFLGO introduces a lightweight multi-
target distance metric for directness and thorough examination
of all change sites. We implement WAFLGO and evaluate it
with 30 real-world bugs introduced by commits. Compared
to eight state-of-the-art tools, WAFLGO achieves an average
speedup of 10.3×. Furthermore, WAFLGO discovers seven
new vulnerabilities including four CVEs while testing the
most recent 50 commits of real-world software, including
libtiff, fig2dev, and libming, etc.

1 Introduction

Software vulnerabilities can pose a significant security threat,
making security testing on programs crucial. Within the thou-

BXuhong Zhang and Wenhai Wang are the corresponding authors.

sands of lines of code that a program comprises, newly in-
troduced code through commits for functional upgrades and
bug patching can be critical, as such code has the potential
to introduce new vulnerabilities to a program. For instance,
recent studies have shown that nearly four in five bug re-
ports in OSSFuzz [4] were regression bugs, indicating that
the bug was introduced by a historical commit rather than
the original codebase [39]. This emphasizes the need to com-
prehensively test commits, helping discover vulnerabilities
introduced through code modifications early on.

While traditional coverage-based fuzzing [15, 21, 24–26]
has proven to be highly effective in discovering security vul-
nerabilities in real-world software systems, it lacks efficiency
in identifying vulnerabilities introduced through commits.
This is because coverage-based fuzzing treats all parts of
the code equally and does not specifically target the commit
changes. By contrast, directed fuzzing [5, 14, 19, 27, 30, 38]
is more suitable for commit testing scenarios as it focuses on
testing specific parts of a program. Intuitively, one can guide
the fuzzer to prioritize testing the new code and its affected
areas by designating the commit change sites as targets.

However, in the specific context of commit testing, existing
directed greybox fuzzers (DGFs) still encounter several prob-
lems. First, existing DGFs primarily focus on quickly reaching
the target (change site) while not guiding the fuzzer to thor-
oughly test the affected code. Consequently, these fuzzers
may fail to discover newly introduced vulnerabilities where
the crash site differs from the change site, as they may not
trigger crashes or even reach the crash site. In particular, the
complexity of a program implies that a single modified line
in a commit can significantly impact the entire program. For
example, if a commit modifies the index of an array, all the
code that uses that index to access the array is affected. As a
result, an out-of-bounds vulnerability may occur at a location
far away from the commit change site. By analyzing the is-
sues of real-world programs on GitHub, we observe that over
half of the crash sites associated with a bug introduced by a
commit are different from the commit change site (refer to
Table 1 “DiffLoc” for details). Moreover, existing techniques

USENIX Association 33rd USENIX Security Symposium 2459

even introduce counteractions to the affected code exploration.
For instance, AFLGo [5] prioritizes inputs with shorter dis-
tances, resulting in the generation of inputs that follow similar
paths and thus reduce the input diversity. Similarly, Select-
Fuzz [23] only considers and instruments the relevant code
before the target, thus lacking important feedback to generate
high-quality input after reaching the target. Thus, we need a
new technique to discover commit introduced bugs that not
only reach the change site but also thoroughly test the actually
affected code.

Second, existing DGFs struggle to effectively handle the
multi-targets problem, which is common in commit testing
where a single commit can introduce multiple change sites.
When testing a commit, it is crucial to comprehensively test
every change site and its affected code. However, as the num-
ber of targets increases, existing DGFs experience a decrease
in directness. In the worst case, their effectiveness may de-
grade to coverage-based fuzzing, lacking targeted guidance.
The DGFs derived from AFLGo [5, 7, 11, 17] aggregate all
target distances using the harmonic mean, which will over-
look certain targets and compromise individual directness.
On the other hand, DGFs based on path pruning [14, 23]
aggregate the reachability analysis for all targets, which sig-
nificantly decreases the pruned path ratio for each individual
target. While there are some multi-target directed fuzzers like
Parmesan [27] and FishFuzz [38], they primarily focus on
sanitizer-marked targets, which often involve a large num-
ber of unrelated targets, unlike the commit targets that are
interconnected.

To overcome the aforementioned problems, this work aims
to propose an efficient directed greybox fuzzing for commit
testing. There are two primary challenges: 1) How to quickly
and thoroughly test the affected code? Like existing works,
we should first efficiently reach the change site (target). Once
the target is reached, we have to maintain the reachability,
and then generate diverse inputs to explore different program
states of the affected code. 2) How to handle multiple site
changes in a smart and lightweight manner? An intuitive
approach is to test each change site separately. However, this
becomes impractical when a commit has numerous change
sites. Moreover, this approach neglects important information,
such as the fact that change sites within a commit often share
the same context (e.g., being in the same function), result-
ing in a delay in bug discovery and inefficient utilization of
resources.

To address the first challenge, we propose a novel criti-
cal code guided input generation strategy. The core design
includes a critical code identification method, a target edge
selection, and a mutation masking mechanism. Our key in-
sight here is to generate inputs that explore diverse program
states while preserving the execution of the critical code.
Specifically, we identify two types of critical code: path-prefix
code and data-suffix code. The path-prefix code refers to the
control-flow prefix that can affect the change site, and the

data-suffix code represents the code that has data dependency
with the critical variables used in the change site. When mutat-
ing a seed, we check if it executes any critical code. If critical
code is identified, we generate a mutation mask for the seed
and apply fine-grained mutation to maintain its execution in
the generated input. Otherwise, we resort to coarse-grained
mutation to enhance the diversity of the seeds. Additionally,
during the fuzzing process, we select the target edge based on
whether the seeds reach the target. If the seed does not reach
the target, we select the “closest” edge to the target among
the executed path-prefix code of the seeds as the target edge.
By mutating only the input bytes that do not deviate from the
target edge, we gradually generate inputs that are closer to
the target. If the seed already reaches the target, we select the
rarest executed edge from both the path-prefix and data-suffix
as the target edge for comprehensive testing of the affected
code. The rare path-prefix indicates new paths toward the
target, and the rare data-suffix indicates new data values that
can impact the affected code. This approach allows our fuzzer
to explore diverse program states that reach the target and
thoroughly test the affected code.

To address the second challenge, we propose a new light-
weight distance metric that maintains the directness of each
target. Furthermore, we adjust the input generation strategy to
optimize the exploration of the affected code. Specifically, we
compute and record the distance for each target individually.
To ensure that each target is guided effectively and receives
sufficient testing attention, we only consider the distance of
the rarest executed target when calculating the distance for an
input. As for generating inputs to explore the affected code,
we identify the critical code separately for each target and
apply target edge masking accordingly. In addition, we sim-
plify the complexity of testing targets by grouping them based
on their common preconditions. Specifically, we employ the
dominator tree concept to merge change sites within the same
function into a merged target. These approaches allow our
fuzzer to sufficiently test all the change sites.

In order to fairly compare our design with existing state-
of-the-art fuzzers, we construct a benchmark dataset from
the GitHub repository. This dataset consists of 30 real-world
bugs from eight widely used C programs that have been tested
in prior works [5, 11, 14, 23]. For each bug we manually
identify its bug-inducing commit. In our evaluation, we com-
pare the performance of WAFLGO with three categories of
fuzzers. The first category includes directed fuzzers such as
AFLGo [5]. The second category consists of coverage-based
fuzzers like AFL [1]. The third category comprises regres-
sion fuzzers, specifically AFLChurn [39]. The experimental
results demonstrate the superiority of WAFLGO compared
to the other fuzzers. In general, WAFLGO achieves an aver-
age speedup of 10.3×. Besides, WAFLGO outperforms other
fuzzers by successfully reproducing the highest number of
bugs. Furthermore, we apply WAFLGO to test the newly
submitted commits in real-world projects, including libtiff,

2460 33rd USENIX Security Symposium USENIX Association

fig2dev, and libming, and successfully discover seven new
bugs, including four CVEs. This real-world application of
WAFLGO further validates its effectiveness in identifying
bugs in newly committed code.

In summary, this paper makes the following contributions:

• We highlight the significance of thoroughly fuzzing the
affected code in the context of commit testing, as solely
reaching the commit change sites is insufficient for discov-
ering newly introduced bugs.

• We propose a commit directed greybox fuzzer that utilizes
a novel critical code guided input generation strategy and a
new distance metric. These designs enable the generation of
diverse inputs for thorough testing of all the commit change
sites and their affected code, facilitating the discovery of
newly introduced bugs.

• We implement a prototype of WAFLGO and make the
source code available for future research at https://
github.com/NESA-Lab/WAFLGo.

• We construct a dataset with 30 real-world bugs, and man-
ually identify their bug-inducing commits (BICs). On the
dataset, we evaluate WAFLGO through extensive experi-
ments, and compare it with existing fuzzers. The compari-
son with existing fuzzers demonstrates its superiority. With
WAFLGO, we successfully detect seven new vulnerabili-
ties, including four CVEs.

2 Background

2.1 Greybox Fuzzing
Greybox fuzzing is an automated technique used to discover
vulnerabilities in a project by generating and feeding inputs
into the target program. Two prominent branches of grey-
box fuzzing are coverage-based greybox fuzzing and directed
greybox fuzzing.

Coverage-based Greybox Fuzzing. Coverage-based
fuzzing has emerged as a popular approach within the field of
greybox fuzzing. Its main objective is to maximize code cov-
erage and explore various execution paths to identify potential
vulnerabilities. Coverage-based fuzzing has been enhanced
with lots of techniques (e.g., static and dynamic program anal-
ysis [13, 18, 21], intelligent optimal strategies [10, 24, 36]),
and has successfully discovered numerous vulnerabilities in
real-world scenarios.

However, for real-world programs, the codebase is often
large and complex, and a significant portion of the code re-
mains unchanged over time. Fuzzing this large but unchanged
code is less effective in finding vulnerabilities. Research by
Zhu et al. [39] highlights that about four out of five reported
bugs in OSSFuzz are introduced by recent code changes.
While fuzzing the entire codebase is undoubtedly important,
it is necessary to consider the limited availability of resources

and the higher likelihood of newly added code introducing
vulnerabilities. Therefore, prioritizing efficient fuzzing of the
newly added code is crucial to effectively detect bugs.

Directed Greybox Fuzzing. Directed greybox fuzzing fo-
cuses on testing specific parts of a program, and there has
been significant research dedicated to addressing challenges
in target selection and improving the efficiency of reaching
the target [14, 17, 30, 35].

For target selection, different applications require different
settings. For patch testing, the target code can be manually
specified as the patch site [17]. For crash reproduction, the
target code can be set as the crash site [5]. For static analysis
report verification, natural language processing techniques
can be used to set the target code [35]. Additionally, the target
code can be set as potential buggy points indicated by various
sanitizers [27]. In the context of finding bugs introduced by
commits, our work straightforwardly sets the commit change
sites as the original targets.

Many existing approaches aim to improve the efficiency of
reaching the target in directed greybox fuzzing. AFLGo [5],
one of the pioneering works in this field, defines a distance
metric to measure the proximity of the testing inputs to the
target code. It calculates the distance between a testing input
and a target code by averaging the distances between executed
blocks and the target. This approach helps identify inputs
that are closer to the target, and a power scheduling scheme
is proposed to prioritize these inputs. Several subsequent
works [7, 11, 17] have followed this line of research.

Taking account of the reachability analysis may also im-
prove the fuzzing efficiency. By identifying inputs that can-
not reach the target and, therefore, cannot trigger the corre-
lated vulnerability, these inputs can be discarded. Some works
employ deep learning methods to pretrain a model that pre-
dicts whether an input can reach the target [40]. Other works
use static analysis to identify inputs that are path-wise or
constraint-wise not reachable or relevant to the target, and
subsequently discard them [14, 23].

DGF for Commit Testing. As highlighted by regression
greybox fuzzing (RGF) [39], new commits are often prone
to introducing bugs into a program. Therefore, it is crucial to
efficiently detect whether a commit has introduced a bug or
not. As a promising countermeasure, DGF can be leveraged to
address this objective. However, there are two main problems
in applying DGF to this task.

The first problem is that the crash sites of the introduced
bugs may not be the same as the commit change sites. In our
analysis, we found that over half of the commit-introduced
bugs have change sites different from the crash sites, as de-
picted in Table 1. Existing approaches primarily focus on
reaching the target, while not providing substantial assistance
for thoroughly testing the target after it has been reached,
thus resulting in miss detection of the potentially introduced
bugs. The second problem arises from the fact that a commit
often modifies multiple sites, resulting in multiple targets for

USENIX Association 33rd USENIX Security Symposium 2461

https://github.com/NESA-Lab/WAFLGo
https://github.com/NESA-Lab/WAFLGo

1 static int correct_orientation(struct i *image, ...){
2 //...
3 rotateImage(image, ..., True); // can toggle
4 }
5 static int processCropSelections(struct i *image, ...){
6 // only cropped image sections are rotated
7 rotateImage(image, ..., False); < can’t toggle
8 if(img_mode == COMPOSITE_IMAGES){
9 //...

10 }else{
11 // read data from image
12 extractSeperateRegion(image, ...); < crash site
13 }//...
14 }
15 static int createCroppedImage(struct i *image,...){
16 rotateImage(image, ..., True); // can toggle
17 //...
18 }
19 static int rotateImage(struct i *image,..., int rotIP){
20 if(rotIP){
21 res_temp = image->width;
22 image->width = image->length;
23 image->length = res_temp;
24 }
25 //...
26 }

Listing 1: Motivating example.

1

Figure 1: Motivating example.

DGF. However, existing approaches may overlook certain
targets and compromise the individual directness required to
thoroughly test each target.

2.2 Motivating Example
To better illustrate the aforementioned problems, we provide
an excerpt, as shown in Figure 1, highlighting a specific issue
(i.e., #519) related to the rotateImage function in the libtiff
library [2]. In Figure 1, the bold texts are patch codes.

In the rotateImage function, there is a problem where
the width and length parameters of the main image are
mistakenly toggled, causing issues in subsequent execu-
tions (Figure 1, line 12). Specifically, when calling the
extractSeparateRegion function, the main image’s dimen-
sions are incorrectly modified by the previous call of the
rotateImage in line 7. Due to this modification, the program
ends up reading data from the main image using the incorrect
width and length parameters. As a consequence, a heap buffer
overflow is triggered during the subsequent function call to
extractContigSamplesBytes (not shown in Figure 1 for
brevity).

If the fuzzer only focuses on reaching the toggle code in
lines 21 - 23 of the rotateImage function, it will struggle to
trigger the bug. This is because distance-based fuzzers will
prioritize fuzzing other functions (correct_orientation in
line 1 and createCroppedImage in line 15) that are closer
in distance, generating more seeds that can reach the target
but not trigger the bug. This loss of diversity can limit the
effectiveness of bug detection.

Similarly, reachability-based fuzzers will fail to find the
bug due to their design limitations in testing the affected code
beyond the target site. Recent work, such as SelectFuzz [23],

also struggles to trigger the bug because it only instruments
target-related code before reaching the target, losing impor-
tant feedback to generate or save inputs that explore the else
branch at line 10.

The developer fixed this issue by adding a new parameter
called rotIP, which serves to determine whether the image
should be toggled or not. Now, when testing whether this
patch commit introduces any bug, we face the challenge of
dealing with multiple targets. In the given code, lines 3, 7, 16,
and 19 - 24 all represent different change sites (targets) that
need to be thoroughly tested for potential bugs.

To overcome these challenges, improved approaches are
needed to prioritize input diversity, extend assistance beyond
target reaching, and handle multi-target scenarios. By doing
so, we can enhance the effectiveness and efficiency of directed
fuzzing in identifying newly introduced bugs.

3 Design of WAFLGO

In this section, we present the design details of WAFLGO,
a directed fuzzer specifically designed to efficiently identify
bugs introduced by commits. First, we describe how to select
fuzzing targets from the commit diff and calculate distance
for each target. Second, we discuss how to define and identify
the critical code. Finally, we discuss how to use the critical
code to guide our tool during fuzzing. The overall architecture
of WAFLGO is illustrated in Figure 2.

3.1 Target Selection and Distance Calculation
When testing a commit to discover potential vulnerabilities, it
is necessary to test every change site and its affected code thor-
oughly. However, commits often consist of numerous change
sites, resulting in multiple fuzzing targets. Handling each
change site separately would be impractical and inefficient as
it disregards some connections between them. For example,
the similar preconditions shared by change sites within the
same function. On the other hand, treating all change sites as
a single target, as done in existing works [5,7,17], leads to the
oversight of certain change sites and compromises individual
directness.

In this work, we propose a novel multi-targets distance
metric for commit testing. This distance metric merges the
multiple change sites into a smaller set of function-level tar-
gets. The rationale behind this consolidation is to leverage
shared preconditions among the same group of changes. Next,
the distance metric calculates an individual distance for each
merged target, ensuring the preservation of directness for each
target, and pay more attention to the rarely executed targets.

1) Target Merging. We select the commit change sites as
the initial targets. The functions that contain these initial
targets are referred to as target functions. As the changes in
one function share lots of similar preconditions, we merge
all the change sites in the same function as one. We first

2462 33rd USENIX Security Symposium USENIX Association

Commit diff:
...
- m_Entries.S(sample_count);
- if ((table_size+8) > size) return;
+ m_FieldSize = field_size;
+ m_SampleCount = sample_count;
...

(a) Target Designation &
Distance Calculation (b) Critical Code Identification (c) Customized Fuzzing

ICFG

SVFG

Path-prefix
Code

Data-suffix
Code

Seed Selection &
Power Scheduling

Target Edge Selection

Mutation Masking

Instrumented
Binary

Crash

Figure 2: Architecture of WAFLGO.

construct the dominator trees of the target functions and then
set the immediate dominator of each initial target in the target
function as the merged target for that function. This ensures
that each target function has only one target, simplifying the
distance calculation phase and making it more efficient. The
initial targets then become the descendants of the merged
target, which will be marked and explored in the fuzzing
phase.

2) Distance Computation. The basic blocks that contain
merged targets are referred to as target blocks Tb. The block
distance db(m,Tb) determines the distance from a basic block
m to each target block Tb. More formally, we define the dis-
tance db(m1,m2) between two basic blocks m1 and m2 as the
minimum number of basic blocks along the shortest path be-
tween them. As we have built the inter-procedural control flow
graph (ICFG), we can more precisely compute the distance
across functions than AFLGo [5]. Additionally, we assign
an edge distance de(e,Tb) to every edge e by calculating its
distance to the target block Tb. Specifically, for an edge ei j,
where i and j respectively denote its head and tail nodes, we
compute its distance as follows:

de (e,Tb) = db(j,Tb) (1)

Taking Figure 3 as an example, we set line 14 as the target.
In this case, we define deab(eab,g) = db(b,g) = 2. The edge
distance is used for target edge selection in Sec 3.3.1.

Let δ(s) be the execution trace of a seed s. This trace con-
tains the executed basic blocks of s. For each target Tb, we
define the input distance ds (s,Tb) for a seed s as:

ds (s,Tb) =
∑m∈ξ(s)db(m,Tb)

|ξ(s)|
(2)

ξ(s) = {m | m ∈ δ(s) and db(m,Tb) ̸= NaN} (3)

The input distance of s : a→ b→ d in Figure 3 is 3+2
2 =

2.5. In the multi-targets scenario, to ensure that each target
receives sufficient testing attention, when using input distance
for power scheduling in Sec 3.3.2, we focus on the rarest
executed target Tr by using ds (s,Tr) as the input distance.

3.2 Critical Code Identification
WAFLGO highlights that in the context of commit testing,
the successful identification of new vulnerabilities requires

more than simply reaching the commit change site (target). It
is crucial to conduct thorough testing of the affected code by
employing diverse inputs. This is because the target can be
accessed through various program states, including different
paths and data values. Furthermore, the impact of the target
may extend throughout the entire program, potentially leading
to vulnerabilities that manifest at distant locations.

To ensure thorough testing of the commit change site, it is
crucial to extract additional information both before and after
the target. This information serves two key purposes: guiding
the fuzzer toward the target change site and providing guid-
ance for generating high-quality inputs that explore different
program states and the affected code. Specifically, we identify
code that is control- or data-dependent on the initial change
sites as critical code. This critical code is further classified
into two categories: path-prefix code and data-suffix code.

1) Path-prefix code. The path-prefix code refers to all the
code that can lead to the execution of the target code. It in-
cludes the code blocks that are directly or indirectly connected
to the target code in the ICFG. Consequently, the code that
acts as a data-prefix (i.e., data-dependency predecessor) is
inherently included within the path-prefix code. For instance,
in Figure 3, the path-prefix code for target g consists of code
blocks a, b, e, and f .

2) Date-suffix code. The data-suffix code includes the code
that depends on the critical variables used in the initial targets.
To identify the data-suffix code, we employ the following
strategy in conjunction with data-flow analysis.

We exclusively consider variables used in the target that
are written as sources for taint analysis. In the context of
Figure 3, which features two variables, namely x and y, our
focus for tracking the data-suffix code is limited to variable x
due to its being written. For the inter-procedure taint analysis,
when a tainted variable is employed as formal parameters, we
taint both the callee’s actual arguments and the callee’s return
values. Similarly, if a tainted variable is utilized as a return
value, we taint the corresponding variable at the caller’s call
site.

Subsequently, we collect the corresponding basic blocks
that use the tainted variables, constituting the data-suffix code.
For instance, in Figure 3, the data-suffix code comprises code
blocks i and k.

It’s noteworthy that the data-suffix code yields more com-
prehensive and meaningful insights compared to the path-

USENIX Association 33rd USENIX Security Symposium 2463

1 int main(){
2
3
4

int x,y,z,w=input1();
char ar[10]=input2();
if(ar == "TEST"){

5 if(y>0){
6 if(z<0){
7
8

...
}else{

9 if(z<10){
10
11

y=3;
if(w<5)

12 goto ...
13
14
15

}
x=y+5 -> x=y-5;
if(y>20){

16 y=0;
17 }else{
18 ar[y]="A";
19 if(x>10){
20 ar[0]="B";
21 }else{
22
23
24

ar[x]="C";
} } } } }
return 0;

25 }

ⓑ 5: y>0

ⓓ 6: z<0 ⓔ 9: z<10

ⓕ

ⓐ
3: ...
4: ar == 'TEST'

ⓒ 23: ...

ⓗ16: y=0

...

...

...
ⓙ20: ar[0]='B'

ⓛ 24: return 0

0

1

1

2

0

...

ⓖ 14: x=y-5
15: y>20

ⓘ18: ar[y]='A'
19: x>10

ⓚ 22: ar[x]='C'

12: goto ...ⓜ

10: y=3
11: w<5

Figure 3: Illustration example. Line 14 is the change site
(target) where we change x = y+5 to x = y−5. Line 22 is
the crash site.

suffix code which often used for code coverage measurement.
This distinction arises because not all the path-suffix code
reached by the target is affected by it (e.g., blocks h, j and l
in Figure 3). Conversely, the data-suffix code directly reflects
the impact of the target on the program by focusing on the
specific data changes by the target.

3.3 Critical Code Guided Fuzzing

Algorithm 1 sketches out our fuzzing procedure. In this sub-
section, we will demonstrate our target edge selection mech-
anism (line 7), and the practical application of the modified
mutation operations through mutation masking (line 9). Then,
we present our adaptive seed selection and power scheduling
mechanisms (line 4 and line 8).

3.3.1 Input Generation Strategy

In fuzzing, the generation of inputs that can trigger crashes is
highly prioritized. However, in the context of commit testing,
two additional criteria are crucial for generating high-quality
inputs. First, it is essential to generate inputs that can effi-
ciently reach the target. Second, once the target is reached, we
have to maintain the reachability, and then generate diverse
inputs to explore different program states and the affected
code.

To meet the criteria, WAFLGO utilizes a novel critical
code guided input generation strategy that involves target
edge selection and mutation masking. Specifically, WAFLGO
selects a target edge for each input based on its trace and
generates a mask for the input to maintain the execution of
the target edge. Our insight is that when we have a seed that

Algorithm 1 WAFLGO Algorithm
Input: Prog, Seeds
Output: potential bugs

1: function FuzzOne(Prog, Seeds)
2: Queue← Seeds
3: while true do
4: input = SelectOne(Queue)
5: test_target = GetRarestTarget(Prog, input)
6: test_edge =
7: GetTargetedge(Prog, input, test_target)
8: score = AssignEnergy(input)
9: mask = ComputeMask(Prog, input, test_edge)

10: for i = 1 to score do
11: newinput = Mutate(input, mask)
12: Execute(Prog, newinput)
13: end for
14: end while
15: end function

exercises critical code, we aim to generate diverse inputs from
this seed while ensuring the execution of the critical code.
This means that our fuzzer should be aware of the important
preconditions established by the seed and avoid unintentional
side-effects during seed mutation that could deviate from our
target.

1) Target Edge Selection. Based on the execution of the
input being fuzzed, the target edge selection process varies. If
the input does not reach the target, WAFLGO enters the target
reaching stage. If the input reaches the target, WAFLGO
enters the comprehensive testing stage. Algorithm 2 outlines
how WAFLGO select target edge.

Target reaching stage. We leverage the path-prefix code
identified in Sec 3.2 to systematically guide the fuzzer toward
the target in a gradual and incremental manner. To achieve
this, we take a step forward by preserving all incoming edges
of the path-prefix code, denoted as "Prefixes" in Algorithm 2.
This decision is motivated by the fact that edge execution state
provides fine-grained information compared to basic blocks.
For example, when inputs execute either edge eeg or e f g—both
leading to the execution of block g—they correspond to dis-
tinct program states. The edges within the "Prefixes" list are
organized in ascending order based on their edge distance. In
the Figure 3, the "Prefixes" is (e f g,eeg,ee f ,ebe,eab).

If an input has not triggered any of the targets (Algorithm
2, lines 2 - 12), our approach aims to guide the fuzzer first to
reach the rarest target. To achieve this, we select the closest
edge that has been triggered by the input as the target edge.
We systematically examine each edge in the “Prefixes” list.
To avoid repeatedly generating inputs to execute the same
edge, if an edge has been selected more times than a specified
threshold (line 3), we consider it fully tested and skip to the
next edge. We determine if the input has triggered each edge
by evaluating its trace bitmap, which is a shared memory holds
by fuzzer to record all the edges an input exercised. Once

2464 33rd USENIX Security Symposium USENIX Association

Algorithm 2 Target edge Selection in WAFLGO

Input: Prog, input, test_target,
Prefixes, // prefix edges of each target in ICFG, sorted by distance
Suffixes // suffix edges of each target in data-flow
Output: target_edge for input

1: function GetTargetEdge(Prog, input, test_target)
2: for edge ∈ test_target.Pre f ixes do
3: if selectcount[edge] < threshold then
4: if edge ∈ input.trace then
5: target_edge = edge
6: selectcount[edge]++
7: break
8: end if
9: end if

10: end for
11: if input not trigger target and ! target_edge then
12: target_edge = -1
13: else if input triggers target and ! target_edge then
14: for edge ∈ test_target.Su f f ixes do
15: if edge ∈ input.trace then
16: target_edge = min(hitcount[edge])
17: end if
18: end for
19: end if
20: return target_edge
21: end function

we find a triggered edge, we designate it as the “triggered-
closest” edge, which becomes the target edge for further mask
generation. If none of the edges in the “Prefixes” list have
been executed and the target has not been triggered, we assign
the value of -1 to the target_edge variable. This indicates that
the seed is considered highly irrelevant to the target. As a
result, no mask is generated for this input, and only havoc
mutation is performed.

Take Figure 3 as an example, if we have a seed A with
the input trace: a→ b→ e→ f → m, we first select ee f as
the target edge. If the selectcount[ee f] exceeds threshold, we
will select ebe as the target edge and so on.

Comprehensive testing stage. In this stage, we leverage
both the path-prefix code and the data-suffix code to enhance
input diversity. Simultaneously, we utilize the data-suffix code
to direct the fuzzer towards the affected code. Similar with
“Prefixes”, we define “Suffixes” as a set of all incoming edges
of the data-suffix code. In Figure 3, the “Suffixes” is {egi,eik}.

If an input has triggered one target, we still prioritize se-
lecting the “triggered-closest” edge, as we aim to generate
diverse inputs that can reach the target. Then, if all the ex-
ecuted edges of the input in the "Prefixes" list have been
triggered with sufficient frequency, we proceed to steer the
fuzzer toward low-frequency code that is affected by the tar-
get. Specifically, we identify the rarest hit edge among the
previously discovered “Suffixes” that the input executed (lines
13 - 18). This rarest hit edge is then designated as the target

edge for subsequent mask generation.

Consider Figure 3 as an example. Suppose we have a
seed B with the input data: x = 0,y = 16,z = 11,w = 0, and
ar =‘TEST’, leading to the input trace: a→ b→ e→ g→
i→ j→ l. Initially, we select eeg as the target edge, followed
by ebe and eab. Subsequently, we choose the rare hit edge eik
in the "Suffixes" as the new target edge.

2) Mutation Mask. To maintain the execution of the target
edge, we incorporate a mutation mask mechanism inspired
by techniques employed in FairFuzz [18] and GreyOne [13].
Specifically, WAFLGO employs a byte-by-byte mutation pro-
cess on the input using a predefined set of mutation operators,
which includes bit-flip, insertion, and deletion. After each
mutation, WAFLGO checks whether the target edge is still
executed. If the target edge is still hit, WAFLGO identifies
the corresponding byte in the input as mutable and updates
the input’s mask accordingly. In subsequent mutations, such
as the havoc mutation, the mutable bytes of the input will be
mutated with higher probability to generate new inputs.

3.3.2 Seed Selection and Power Scheduling

The traditional strategy of appending new inputs to the end
of the seed queue and selecting them sequentially can prove
inefficient, particularly when a significant portion of the inputs
in the queue are unrelated to the target, as discussed in [23].
To overcome this inefficiency, expedite target reachability, and
ensure thorough testing of the affected code, we introduce a
prioritization approach. This approach emphasizes seeds that
trigger new critical code during seed selection. Specifically,
we maintain a favored queue with higher priority and add
seeds that meet this criterion to it. During the fuzzing phase,
WAFLGO has a greater chance of selecting a seed from the
favored queue.

Regarding power scheduling, relying solely on the distance
metric of “Prefixes” as traditional works may reduce the di-
versity of the generated inputs, as it consistently prioritizes
closer inputs. WAFLGO assigns energy to input differently
based on whether the input reaches the target. For inputs that
do not reach the target, WAFLGO adopts the simulated an-
nealing algorithm proposed in AFLGo, with a modification
in the energy calculation using the new seed distance metric.
Specifically, it gradually assigns more energy to inputs that
are closer to the rarest executed target, facilitating faster target
reaching. On the other hand, for inputs that reach the target,
WAFLGO adjusts its approach by disregarding the distance
metric for energy assignment. Instead, it focuses on the code
coverage of the data-suffix code. This means that more en-
ergy is assigned to inputs that cover more data-suffix code,
resulting in the generation of more inputs for thorough testing
of the affected code.

USENIX Association 33rd USENIX Security Symposium 2465

4 Implementation

The implementation of WAFLGO mainly consists of two
parts: the static analysis module and the dynamic fuzzing
module. For the static analysis module, we utilize the SVF
static analysis framework [31] to construct an ICFG and an
inter-procedural static value-flow graph (SVFG) from LLVM
IR. The static analysis module is implemented with about
1,200 lines of C/C++ code. The dynamic fuzzing module is
implemented based on AFLGo [5], with about 2,000 lines of
C code. Next, we discuss a few important implementation
details.

Initial Target Acquisition. When a commit is submitted,
WAFLGO utilizes the git diff command to retrieve the
differences between commits. For added lines, the change site
is directly stored as “filename:linenum”, indicating the pre-
cise location of the added code. For deleted lines, WAFLGO
selects nearby code lines for further analysis. Next, to ensure
effective testing of the commit, WAFLGO filters out change
sites that are not relevant to the program’s functionalities, such
as comments or changes pertaining to other programs within
the project. To achieve this, a simple script is employed to
perform a straightforward reachability analysis, determining
if the commit changes can be reached from the entry point of
the tested program. In the end, only the change sites that truly
affect the tested program are tested.

Inter-procedural Data-flow Analysis. In the critical code
identification phase, WAFLGO utilizes a forward inter-
procedure data-flow analysis to identify the data-suffix code.
The process involves identifying the variables used in the
change sites and then traversing the SVFG to collect the code
that exhibits data dependency on these variables. However,
due to the potential presence of multiple callers for a callee,
it is essential to accurately propagate the data dependency
to the appropriate call site. In this regard, WAFLGO imple-
ments a context-sensitive propagation strategy that selectively
propagates the data dependency to the call site responsible
for transferring the data-dependent parameters to the callee.
This ensures that only the relevant call site is marked as data-
dependent, enhancing the accuracy of the critical code identi-
fication process.

Extra Feedback Utilization. Existing fuzzers often dis-
card inputs that do not execute any new branches, assuming
that they are not valuable for further exploration. However,
in the context of directed fuzzing, the branches executed by
non-target reaching inputs can still be valuable if they are exe-
cuted by target reaching inputs. WAFLGO acknowledges the
importance of the new feedback provided by target reaching
inputs. Therefore, WAFLGO constructs an additional trace
bitmap to record the execution traces of the inputs that suc-
cessfully reach the targets. This allows WAFLGO to leverage
the information from target reaching inputs and further guide
the exploration process for more effective bug detection.

Table 1: Real-world benchmark programs. “DiffLoc” and
“SameLoc” are used to denote whether the change sites of the
BIC are distinct from or identical to the crash sites, respec-
tively. “BIC Hash” represents the bug-inducing commit hash.

Project Program Diff Loc Same Loc BIC Hash Total
BBNum

Path-prefix
BBNum

Data-suffix
BBNum21 9

Libtiff

tiffcrop #488 7057734d 13921 7781 1253
tiffcrop #498 07d79fcac 15256 8166 1866
tiffcrop #519 f13cf46b 15227 7389 5
tiffcrop #520 e3195080 15706 12039 4992
tiffcrop #527 07d79fcac 15256 8166 1687
tiffcrop #530 f13cf46b 15227 7389 5
tiffcp #548 3079627e 13134 9995 6251

tiffinfo #559 b90b20d3 13722 7729 1493

Bento4

mp4info #652 c9f2c53 15621 6002 417
mp4info #679 2e29350 17216 1262 7600

mp4audioclip #732 bbb6f24 14593 5885 1347
mp42aac #751 61b2012 14424 4949 149

Mujs

mujs #65 8c27b126 6482 52 7
mujs #141 832e0690 6996 4240 631
mujs #145 4c7f6be 7319 939 6833
mujs #166 3f71a1c9 15791 10558 1756

Libjpeg cjpeg #493 88ae609 4982 468 106
jpegtran #636 88ae609 6075 898 429

Tcpreplay

tcprewrite #702 0a65668a 4110 2925 1606
tcprewrite #718 2c76868d 4030 3005 1742

tcpprep #756 16442ac3 1855 921 687
tcpreplay #772 4f9158da 2240 1234 7

Libxml2 xmllint #535 9a82b94a 66472 13030 5202
xmllint #550 7e3f469b 66150 9075 147

Poppler

pdfunite #1282 3d35d209 44103 6358 82
pdfunite #1289 3cae7773 1015 497 12
pdftops #1303 e674ca64 42235 7700 373

pdftoppm #1305 aaf2e808 37682 5959 77
pdftoppm #1381 245abada 51098 6557 122

ImageMagick magick #6075 a107b941 134594 9871 1206

5 Experimental Setup

5.1 Research Questions
RQ1 How effective is WAFLGO in discovering bugs intro-

duced by commits?
RQ2 Does the guidance toward critical code improve the

efficiency of fuzzing?
RQ3 Does the multi-target optimizations improve the effi-

ciency of fuzzing?
RQ4 Can WAFLGO detect new vulnerabilities in real-

world programs?

5.2 Commit Dataset
5.2.1 Commit Dataset for Testing Known Bugs

We construct a commit dataset to answer the RQ1, 2, and 3.
Real-world Target Programs.We conduct our evaluation

in real-world programs that have been frequently evaluated
in the existing fuzzing frameworks [5, 11, 13, 14], which are
shown in Table 1. The selected programs exhibit diverse func-
tionalities and vary in size, allowing us to demonstrate the
effectiveness and scalability of our approach in different con-
texts.

Bug Selection Criteria. To ensure the reliability and rel-
evance of our commit benchmark subjects from real-world

2466 33rd USENIX Security Symposium USENIX Association

Table 2: Compared fuzzers.

Fuzzer Category Description
AFLGo Direct Sophisticated seeds prioritization

Windranger Direct Deviation basic blocks
SelectFuzz Direct Selective path exploration
FishFuzz Direct Multi-targets fuzzing

AFL Coverage Evolutionary mutation strategies
AFL++ Coverage Optimization of overall fuzzing framework

FairFuzz Coverage Mask mutation strategy
AFLChurn Regression Code history based strategy

programs, we establish the following criteria to collect the
most recent closed and reproducible issues (as of Sep’10).
• Fixed Issue. The selected issue must be marked as "fixed",

with the bug-fixing commit identified and linked.This aids
in identifying the BIC of the bug.

• Executable Proof-of-Concept (PoC). The issue should have
an accompanying executable PoC, enabling the verification
and reproducibility of the bug. This ensures that the bug
can be tested and verified in a practical manner.
DGF Target Code Designation. For each issue listed in Ta-

ble 1, we manually identify its BIC, and designate the targets
as the change sites of its BIC. The process begins by manually
finding a good commit (GoodC) in the commit history where
the bug is absent. Then we use git bisect to systematically
locate the first crash commit (FirstC) triggered by the PoC.
Following this, we perform a manual verification to confirm
whether FirstC indeed serves as the BIC. This verification
entails an examination of the bug-fixing commit and its rela-
tionship with FirstC. We also use debugging tools like gdb
to understand how changes in FirstC impact the execution of
the PoC. In instances where git bisect fails to accurately
identify FirstC, which occurs due to configuration problems
in some cases, we resort to an alternative method. We man-
ually trace the blame information for the change sites of the
bug-fixing commit to determine the BICs for these particular
cases.

5.2.2 Commit Dataset for Finding New Bugs

To answer the RQ4, we apply WAFLGO to detect new vul-
nerabilities.

We include the projects evaluated in recent fuzzing works
as our testing objects and compile their programs using de-
fault configurations. We test the latest 50 commits of these
projects and designate specific commit change sites as the tar-
get code. To accommodate practical constraints, we allocated
a maximum of 24 hours for testing each commit.

5.3 Compared Tools
We compare WAFLGO with the fuzzers listed in Table 2.

Directed Fuzzing Tools. We implement commit-directed
fuzzing into AFLGo. In order to evaluate the effectiveness of

our approach, we select AFLGo as our baseline for compar-
ison. Besides, we add the state-of-the-art DGFs for compar-
ison, including Windranger [11], SelectFuzz [23] and Fish-
Fuzz [38] which stand for distance-based, reachability-based
and multi-target DGFs, respectively.

Coverage-based Fuzzing Tools. In order to com-
pare commit-directed fuzzing to traditional coverage-based
fuzzing, we choose the base AFL [1], state-of-the-art tool
AFL++ [12] and innovative tool Fairfuzz [18] for comparison.
AFL and AFL++ demonstrate the effectiveness of coverage-
based fuzzers in detecting newly introduced bugs through
commits. FairFuzz utilizes a novel mutation mask that biases
mutations toward producing inputs that hit a given rare branch,
which is similar to the mask design we used in our approach.

Regression Fuzzing Tools. We add AFLChurn [39] to our
comparison because it leverages the observation that recently
modified code in commits should receive more attention from
the fuzzer. AFLChurn introduces a new power scheduling
mechanism to effectively test the modified code.

5.4 Configuration

In this subsection, we present some necessary configurations.
Initial Seeds. The initial seeds can greatly affect the effi-

ciency of the fuzzing process. To ensure a fair comparison, we
apply the same seeds per bug across different fuzzers. In our
experiment, we utilize the seeds provided by the project itself
and those available in UNIFUZZ [20] for the corresponding
input formats.

Time Budget. We limit each experiment to a time budget
of 24 hours and repeat it five times. This decision is justified
by the need for rapid iteration and security left-shifting in the
development process. The goal is to conduct thorough testing
of the code before it is merged, prioritizing early detection
of potential issues rather than relying solely on post-merge
testing. Considering the practical constraints and the need
for efficient bug detection, testing a commit for more than 24
hours would be impractical.

Infrastructure. All experiments are conducted in a docker
container configured with 1 CPU core of 2.40GHz E5-2680
V4 and the 64-bit Ubuntu 16.04 LTS. In total, we spend sev-
eral weeks running evaluations on four servers, each of which
has an Intel Xeon E5-2650 v4 (2.2GHZ, 48cores) CPU, and
256 GB memory.

6 Performance Evaluation

6.1 Efficiency of WAFLGO

We measure the time used by WAFLGO to reproduce the
issues. We present the evaluation results in the 4th column
of Table 3. In general, WAFLGO effectively reproduces 21
issues out of the 30 cases, achieving the highest success rate

USENIX Association 33rd USENIX Security Symposium 2467

Table 3: The average crash exposure time of WAFLGO and the compared fuzzers. Time-to-Exposure indicates the reproduction
time (hour) averaged over five runs. T.O. indicates the fuzzer cannot reproduce the issue within the given time budget, 24 hours.
For the timeout cases, we take the Time-to-Exposure time as 24 hours to calculate the speedup.

No. Issue-id Program Time-to-Exposure(hour) Factor
WAFLGo AFLGo Wind. Selc. Fish. AFL AFL++ Fair. AFLC. AFLGo Wind. Selc. Fish. AFL AFL++ Fair. AFLC.

1 #488 tiffcrop 6.247 T.O. T.O. T.O. T.O. T.O. T.O. 7.956 T.O. 3.8 3.8 3.8 3.8 3.8 3.8 1.3 3.8
2 #498 tiffcrop 0.001 0.011 0.004 0.003 0.012 0.005 0.005 0.001 0.003 9.5 3.9 2.6 10.4 4.6 4.4 1.0 2.5
3 #519 tiffcrop 0.286 6.059 3.002 2.081 3.955 6.426 0.613 0.617 10.958 21.2 10.5 7.3 13.8 22.4 2.1 2.2 38.3
4 #520 tiffcrop 0.940 3.230 1.301 1.230 T.O. 6.080 2.305 5.367 1.913 3.4 1.4 1.3 25.5 6.5 2.5 5.7 2.0
5 #527 tiffcrop 13.903 T.O. T.O. 17.596 17.354 T.O. 16.071 19.717 T.O. 1.7 1.4 1.3 1.2 1.7 1.2 1.4 1.7
6 #530 tiffcrop 9.759 T.O. 19.842 T.O. 15.428 T.O. T.O. T.O. 13.340 2.5 2.5 2.5 1.6 2.5 2.5 2.5 1.4
7 #548 tiffcp 2.593 23.401 14.723 11.489 T.O. 22.143 3.610 9.008 T.O. 9.0 5.7 4.4 9.3 8.5 1.4 3.5 9.3
8 #559 tiffinfo 0.656 1.826 4.906 14.600 T.O. 2.726 2.617 1.084 5.509 2.8 7.5 22.3 36.6 4.2 4.0 1.7 8.4
9 #732 mp3aud. 0.010 0.134 0.069 0.050 0.064 0.055 0.076 0.062 0.055 13.0 6.7 4.9 6.3 5.4 7.4 6.0 5.4

10 #751 mp42aac 12.617 T.O. T.O. T.O. T.O. T.O. 14.768 T.O. T.O. 1.9 1.9 1.9 1.9 1.9 1.2 1.9 1.9
11 #145 mujs 0.019 0.082 0.069 0.669 6.789 0.100 0.087 0.100 0.104 4.4 3.7 35.5 359.9 5.3 4.6 5.3 5.5
12 #493 cjpeg 0.028 0.509 0.633 0.158 0.523 0.831 0.850 3.900 0.368 17.9 22.2 5.6 18.4 29.2 29.9 137.0 12.9
13 #636 jpegtran 0.016 0.054 0.100 0.043 0.082 0.021 0.019 0.050 0.051 3.5 6.4 2.7 5.2 1.4 1.2 3.2 3.2
14 #702 tcprewrite 0.124 1.012 1.955 0.150 0.236 1.160 1.557 1.265 0.679 8.2 15.8 1.2 1.9 9.3 12.5 10.2 5.5
15 #718 tcprewrite 0.714 1.514 1.651 0.285 1.063 8.977 3.119 3.257 8.539 2.1 2.3 0.4 1.5 12.6 4.4 4.6 12.0
16 #756 tcpprep 0.401 6.671 0.535 1.746 0.867 6.881 T.O. 3.097 6.722 16.7 1.3 4.4 2.2 17.2 59.9 7.7 16.8
17 #772 tcpreplay 0.027 0.076 0.173 0.157 0.071 0.071 0.026 0.070 0.070 2.8 6.4 5.8 2.6 2.6 0.9 2.6 2.6
18 #535 xmllint 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
19 #1289 pdfunite 0.382 T.O. 1.891 1.716 13.155 T.O. 0.651 12.811 11.441 62.8 5.0 4.5 34.4 62.8 1.7 33.5 30.0
20 #1305 pdftoppm 6.672 11.891 17.470 T.O. 16.537 12.901 14.154 12.382 11.218 1.8 2.6 3.6 2.5 1.9 2.1 1.9 1.7
21 #6075 magick 10.989 T.O. T.O. T.O. T.O. T.O. T.O. T.O. T.O. 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2
#Reproduced / Average 21 15 17 16 15 15 17 18 16 9.1 5.4 5.7 25.8 9.9 7.2 11.2 8.0

among all the compared fuzzers. As the second most success-
ful fuzzer, FairFuzz, reproduces 18 issues out of the 30 cases.
For all the reproduced issues, WAFLGO outperforms other
fuzzers, achieving an average speedup of 10.3×. WAFLGO
fails to reproduce nine issues (i.e., Bento4 issue #679 and
#652, Mujs issue #166, #141 and #65, Poppler issue #1282,
#1305 and #1381 and Libxml2 issue #550), within the time
budget of 24 hours, while other fuzzers could not trigger them,
neither. The main reason is that these bugs require satisfying
complex path constraints, which is beyond the scope of our
approach. We further analyze these issues and find that none
of the test cases generated by any of the fuzzers are able to
reach the change site, let alone trigger the crashes.

Comparison with Directed Fuzzers. Compared with
the baseline tool AFLGo, which WAFLGO is built upon,
WAFLGO identifies six more bugs, with an average speedup
of 9.1×. As for other state-of-the-art directed greybox fuzzers,
namely Windranger, SelectFuzz, and FishFuzz, WAFLGO
identifies four, five, and six more bugs, with an average
speedup of 5.4×, 5.7×, and 25.8×, respectively.

Comparison with Coverage-based Fuzzers. We compare
WAFLGO with three coverage-based tools listed in Table 2,
namely AFL, AFL++, and FairFuzz. In total, WAFLGO iden-
tifies six, four, and three more bugs compared to them, with
an average speedup of 9.9×, 7.2× and 11.2×, respectively.
Our results show that our tool is more effective at detecting
commit-inducing bugs compared to existing coverage-based
fuzzers. This can be attributed to WAFLGO’s capability of
drawing more energy to test the code regions affected by

commit changes.
Comparison with Regression Fuzzers. The evaluation

results of AFLChurn are listed in the 12th column in Table
3. WAFLGO outperforms AFLChurn by successfully repro-
ducing five more bugs. On average, WAFLGO achieves a
speedup of 8.0×. The improved performance of WAFLGO is
the result of its capability to identify fine-grained changes in
the code compared to AFLChurn.

Directed Fuzzers v.s. Coverage-based Fuzzers. We no-
tice that, in certain cases, directed fuzzers exhibit inferior
performance compared to their coverage-based counterparts.
There are two main reasons. First, in some scenarios, certain
bugs are relatively easy to trigger, as demonstrated by cases
such as issues #498, #732, and #535. These bugs can be suc-
cessfully exploited within a short time frame of approximately
one minute of fuzzing, as indicated in Table 3. Upon analysis,
we find that the main reason for this is that the initial seed used
for fuzzing is already in close proximity to the target location.
This proximity allows for the generation of inputs that can
effectively trigger the bug through simple mutations. In such
cases, directed fuzzing-based tools may appear less effective,
as the bug-triggering process does not require additional guid-
ance or sophisticated mutation strategies. Second, some bugs,
as exemplified by issue #519, have easily accessible target lo-
cations. This means that the majority of generated inputs can
readily reach these targets. When the target is readily reached,
the challenge shifts from reaching the targets to conducting
thorough code testing, aligning more with a coverage-based
testing task. Therefor, coverage-based fuzzers, such as AFL++

2468 33rd USENIX Security Symposium USENIX Association

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

1

2

3

4

5
WAFLGo
WAFLGo-c
AFLGO

Figure 4: The component-wise effectiveness of WAFLGO. The y-axis represents the ratio of reproduction time, with WAFLGO
as the baseline.

and FairFuzz, tend to excel in such scenarios. For example, in
the case of issue #519, it is worth noting that more than 90%
of seeds generated by all the fuzzers can successfully reach
the target.

6.2 Impacts of Critical Code Guidance

To effectively direct WAFLGO toward and thoroughly test
the target and its affected code, we introduce a novel criti-
cal code guided input generation strategy. The core design
includes a critical code identification method, a target edge
selection and a mutation masking mechanism. To evaluate
how the strategy contributes to the efficiency of WAFLGO,
we created a variant of WAFLGO in which these mechanisms
were disabled. We refer to this variant as WAFLGO-c, and we
conducted a set of experiments to compare its performance
with that of the original WAFLGO.

Bug Triggering Time. The experimental results are
depicted in Figure 4. Overall, WAFLGO outperforms
WAFLGO-c to reproduce the bugs with an average speedup
of 2.1×. These results demonstrate the effectiveness of the
critical code guidance. Notably, our strategy has shown re-
markable effectiveness in certain cases, such as case No.1.
Both WAFLGO-c and AFLGo fail to reproduce this bug. To
further evaluate its performance, we extend the fuzzing time
for AFLGo on case No.1 to 48 hours. As a result, AFLGo
successfully detects the bug at 37.1 hours. However, we ob-
serve that even though AFLGo reaches the target within the
first hour, the coverage of affected basic blocks in the sub-
sequent fuzzing period increases very slowly. This indicates
that after reaching the target, AFLGo does not pay much at-
tention to testing the affected code, leading to the bug not
being triggered within the given time budget.

Coverage of Affected Code. To further demonstrate the
effectiveness of our target testing, we present the edge cover-
age achieved by AFLGo and WAFLGO, along with the count
of paths that reach the targets in Figure 5. We exclude the cov-
erage of inputs that do not reach the targets from our analysis,
as they are unlikely to discover bugs introduced by the targets.
Due to space limitations, Figure 5 showcases the results for

0 10 20
Time(hour)

700

750

800

850

Ta

rg
et

 E
dg

es
 C

ov
er

ed

AFLGo
WAFLGo

0 10 20
Time(hour)

20

40

60

80

Ta

rg
et

 P
at

hs
 F

ou
nd

AFLGo
WAFLGo

(a) Tcpreplay #718

0 10 20
Time(hour)

900

950

1000

Ta

rg
et

 E
dg

es
 C

ov
er

ed

AFLGo
WAFLGo

0 10 20
Time(hour)

100

200

300

400

500

Ta

rg
et

 P
at

hs
 F

ou
nd

AFLGo
WAFLGo

(b) Poppler #1289

Figure 5: The edge coverage and the number of target-reached
paths.

two issues: No. 15 (Tcpreplay #718) and No. 19 (Poppler
#1289). We will make all of our data available on our website
for further analysis and reference. From the results, we ob-
serve that WAFLGO achieves an average increase of 11.7%
in edge coverage after 24 hours compared to AFLGo. Further-
more, WAFLGO discovers nearly 2× (181.5%) more paths
than AFLGo after 24 hours. It is worth noting that during
the initial three hours, WAFLGO discovered a greater num-
ber of paths reaching the target compared to AFLGo, which
aligns with the findings shown in Figure 4, where WAFLGO
identifies the bugs at a faster rate than AFLGo.

6.3 Impacts of Multi-Target Optimization

To address the multi-target challenge, we have proposed sev-
eral optimizations, which include the distance calculation
methods, the adjusted input generation strategy and the seed
scheduling mechanism.

USENIX Association 33rd USENIX Security Symposium 2469

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentages

WAFLGo

AFLGo

FishFuzz
Targets
target0
target1

Figure 6: Target reached seeds.

Bug Triggering Time. In evaluating the effectiveness of
our proposed optimization methods, we conducted a series of
experiments involving WAFLGO-c and AFLGo. The experi-
mental results shown in Figure 4 demonstrate that WAFLGO-
c is faster than AFLGo for discovering bugs, achieving an
average speedup of 4.3×. This improvement is attributed to
the generation of high-quality seeds for each target using our
multi-target optimizations. All 30 issues in our dataset have
multiple targets, and 21 of them have more than 10 targets.
Our target merging process reduces the number of targets by a
factor of 6.72, and after the merging process, 20 of the issues
have fewer than five targets.

Quality of Generated Seeds. To further understand the
effectiveness of our multi-target optimization, we conducted
an analysis of the seeds generated by AFLGo and WAFLGO
for issue #1289. In this case, the BIC of issue #1289 mod-
ified one file with 31 additions and two deletions, resulting
in changes to 32 basic blocks. Following our target merging
process, WAFLGO identifies two targets. From Figure 6, we
observe that nearly all the seeds generated by AFLGo reach
target1 but ignore target0. However, it is target0 that repre-
sents the key change introducing the bug. Therefore, AFLGo
fails to reproduce this bug. Furthermore, we analyze the seeds
generated by FishFuzz, a fuzzer designed for multi-target sce-
nario. Interestingly, we found that the seed distribution in
FishFuzz is similar to that of WAFLGO, further highlight-
ing the effectiveness of our approach in handling multi-target
situations.

6.4 Detecting New Vulnerabilities
In this subsection, we employ WAFLGO to detect new vul-
nerabilities by applying them to various programs. WAFLGO
successfully identifies seven new vulnerabilities during the
time budget as listed in Table 4. It is noteworthy that
WAFLGO demonstrated its effectiveness in uncovering vul-
nerabilities even in complex software such as libtiff. We
promptly reported all identified vulnerabilities to the respec-
tive developers. As of the time of writing, four vulnerabil-
ities have been patched and receive CVE IDs, showcasing
the impact and value of our approach in contributing to the
improvement of software security.

We further analyse the newly discovered vulnerabilities and
found that the CVE-2023-34631 is introduced by the fixing

Table 4: New vulnerabilities detected by WAFLGO

Program Bug Type Status ID
tiffcrop segmentation fault patched CVE-2023-3618
fig2dev null pointer dereference patched CVE-2023-34629
fig2dev segmentation fault patched CVE-2023-34630
fig2dev memory leak patched CVE-2023-34631
swftophp heap buffer overflow reported issue-271
swftophp heap buffer overflow reported issue-270
swftophp heap buffer overflow reported issue-269

commit (6678ad8) for CVE-2023-34630. The vulnerability
originates from the code at fig2dev/gengbx.c:1135 [3],
where a linked list pointer is dereferenced without checking
the existence of the next pointer. This led to a null pointer
dereference bug (CVE-2023-34630). To address the vulnera-
bility, the sanitize_lineobject() function in fig2dev/read.c
was modified to include a check for the presence of the next
pointer in the linked list. However, this adjustment affected the
length of the linked list and disrupted other code logic, result-
ing in CVE-2023-34631 with invalid memory access. In order
to resolve the vulnerability, the developers opted to revert
the fix commit (6678ad8) and perform a careful refactoring
of the linked list length handling in the sanitize_lineobject()
function. It is worth noting that the change site of the bug-
introducing commit is far away from the crash site, and it was
not even evident in the stack trace of the crash. This obser-
vation further validates our hypothesis that effective fuzzing
of newly committed code requires a focus not only on the
changed code itself but also on the code that is affected by
the changed code. By considering the broader code context,
we can uncover potential vulnerabilities and bugs that may
have cascading effects beyond the immediate scope of the
modifications.

7 Discussion and Limitation

In this section, we discuss the limitations of WAFLGO and
the possible future works.

Reaching Target Failure. WAFLGO proposes a compre-
hensive approach that focuses on thoroughly testing commit
modifications and their affected code throughout the entire
program. The first step in achieving this goal is to reach the
modification sites. However, the task of reaching the target
locations itself remains a significant challenge in the current
research landscape of directed greybox fuzzing. As discussed
in Section 6.1, there are instances where WAFLGO, along
with existing fuzzers, fails to reach the modified sites and trig-
ger the associated bugs. This limitation primarily stems from
WAFLGO’s difficulty in efficiently generating high-quality
inputs that satisfy complex path constraints.

To address this challenge, incorporating advanced static
analysis techniques could be highly beneficial. We plan to in-
tegrate other advanced static analyses (e.g., concolic symbolic

2470 33rd USENIX Security Symposium USENIX Association

execution similar to [8, 16, 37]) into WAFLGO to mitigate
this limitation.

Semantic Affected Code Identification. In WAFLGO,
we collect all the code that exhibits a data dependency with
the written variables used in the targets (commit changes) and
consider it as the data-suffix code. However, not all variables
in the commit changes hold the same level of importance
regarding the potential introduction of bugs. For instance,
a freed pointer variable is more critical than an arithmetic
variable, as it could potentially lead to null pointer reference
bugs in the suffix code logic of the program. Additionally, if
we treat the data-suffixes with different levels of importance,
the bug discovery process will be enhanced. Semantic infor-
mation plays a significant role in determining the relevance
of data dependencies. Factors such as data flow to a global
value or memory write rather than memory reads carry more
significance.

To enhance the precision and value of affected code tar-
geting for vulnerability discovery in the commit-introducing
changes, WAFLGO can collect and learn from the seman-
tic information of the codes like [22]. By incorporating this
semantic knowledge, one can achieve more accurate identifi-
cation of affected code, ultimately improving the efficacy of
vulnerability detection.

Incremental Testing. Different from traditional greybox
fuzzing approaches, WAFLGO focuses on newly submitted
commits to uncover newly introduced bugs. The ultimate goal
is to shift commit security testing left in the Continuous Inte-
gration/Continuous Deployment (CI/CD) pipeline, ensuring
that bugs are detected before a commit is merged into the
main branch and released to the public. While our evaluation
results demonstrate that we can discover a significant number
of bugs within two hours, there are still instances where bug
detection requires more than 12 hours (e.g., No. 5). This ex-
tended duration may not be feasible or acceptable in practical
commit testing scenarios.

To address this challenge, an intuitive solution is to explore
incremental testing. We could leverage historical testing data
to guide WAFLGO more efficiently to the change site, sim-
ilar in [25, 29]. Additionally, program analysis techniques
such as under-constraint symbolic execution [6, 28, 34] and
program slicing [9] can be utilized to further optimize the
testing process. We consider these topics as future work, with
the potential to enhance the efficiency and effectiveness of
WAFLGO in the context of commit testing.

8 Related Work

In this section, we discuss the closely related works.
Improvement of Directed Greybox Fuzzing. Many ap-

proaches have been proposed to optimize directed greybox
fuzzing and improve its effectiveness in discovering program
bugs. Inspired by distance-guided fuzzer AFLGo [5], Hawk-
eye [7] introduces augmented distance metrics to enhance

directness, while Windranger emphasizes precise distance cal-
culation through the deviation of basic blocks. Reachability-
based fuzzers like FuzzGuard [40] train models to predict
and discard inputs that cannot reach the target, while Bea-
con [14] stops inputs that cannot reach the target. Select-
Fuzz [23] selectively instruments relevant code of the target
to explore the program more efficiently. Parmesan [27] and
FishFuzz [38] address the multi-target problem, while their
targets are sanitizer-marked locations.

Different from existing works primarily focusing on
quickly reaching the target, WAFLGO aims to thoroughly test
the commit change sites and their affected code. Recognizing
the importance of the commit’s impact on the entire program,
WAFLGO goes beyond reaching the target commit change
sites and extensively tests the affected code with diverse in-
puts. By combining targeted testing with a comprehensive
exploration of affected code, WAFLGO enhances its ability
to uncover vulnerabilities introduced by code changes and
contributes to more effective bug detection.

Verifying New Code. When a new commit is submit-
ted to a program, it becomes crucial to verify whether this
commit has introduced any new vulnerabilities. In the de-
fect prediction community, lots of approaches [32–34] have
been proposed to address this concern. For instance, UC-
KLEE [28] utilizes under-constrained symbolic execution to
directly check individual functions for potential crashes and
to verify the new code. Symbolic execution provides a high
level of certainty in code verification as it exhaustively ex-
plores the input space. However, it can be computationally
intensive.

Regarding the fuzzing scope, AFLChurn [39] proposes
simultaneous testing of all commits, assigning more energy to
the inputs that execute the recent modified code area. In this
work, we adopt a similar objective of targeting every commit
change and addressing the multi-target challenge carefully.
The aim is to identify newly introduced bugs as early as
possible during the development process.

9 Conclusion

This work addresses the challenges faced in testing commits
to discover newly introduced bugs and proposes WAFLGO,
a directed fuzzer designed to efficiently reach change sites
and thoroughly test their affected code. WAFLGO employs
a critical code guided input generation strategy and a multi-
target distance metric to enhance its effectiveness. We curate a
dataset containing 30 real-world bugs, and identify their BICs
manually. Through a meticulous evaluation of this dataset, we
demonstrate the effectiveness of WAFLGO compared to ex-
isting fuzzers. Furthermore, WAFLGO successfully identifies
and reports seven new vulnerabilities, including four CVEs,
in real-world programs, showcasing its practical applicability.

USENIX Association 33rd USENIX Security Symposium 2471

10 Acknowledgments

We would like to thank the anonymous reviewers and our shep-
herd for their detiled and valuable comments. This work was
partly supported by NSFC under No.62302443, the Funda-
mental Research Funds for the Central Universities (Zhejiang
University NGICS Platform), Jianghuai Advance Technology
Center under No. 00QK0021 and the Key R&D Program of
Ningbo under Grant No.2023Z235.

References

[1] American Fuzzy Lop. https://github.com/google/
AFL, 2021.

[2] libtiff issue #519. https://gitlab.com/libtiff/
libtiff/-/issues/519, 2021.

[3] fig2dev issue #142. https://sourceforge.net/p/
mcj/tickets/142/, 2022.

[4] OSS-Fuzz: Continuous Fuzzing for Open Source
Software. https://github.com/google/oss-fuzz,
2023.

[5] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2329–
2344, 2017.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1032–
1043, 2016.

[7] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye:
Towards a desired directed grey-box fuzzer. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2095–2108, 2018.

[8] Ju Chen, Wookhyun Han, Mingjun Yin, Haochen Zeng,
Chengyu Song, Byoungyoung Lee, Heng Yin, and Insik
Shin. {SYMSAN}: Time and space efficient concolic
execution via dynamic data-flow analysis. In USENIX
Security Symposium, pages 2531–2548, 2022.

[9] Libo Chen, Quanpu Cai, Zhenbang Ma, Yanhao Wang,
Hong Hu, Minghang Shen, Yue Liu, Shanqing Guo,
Haixin Duan, Kaida Jiang, et al. Sfuzz: Slice-based
fuzzing for real-time operating systems. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 485–498, 2022.

[10] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 711–725. IEEE, 2018.

[11] Zhengjie Du, Yuekang Li, Yang Liu, and Bing Mao.
Windranger: a directed greybox fuzzer driven by devi-
ation basic blocks. In Proceedings of the 44th Inter-
national Conference on Software Engineering, pages
2440–2451, 2022.

[12] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. AFL++ : Combining incremental steps of
fuzzing research. In 14th USENIX Workshop on Offen-
sive Technologies (WOOT 20). USENIX Association,
2020.

[13] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao,
Xiaojun Qin, Dong Wu, and Zuoning Chen. Greyone:
Data flow sensitive fuzzing. In USENIX Security Sym-
posium, pages 2577–2594, 2020.

[14] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao,
Rongxin Wu, and Charles Zhang. Beacon: Directed
grey-box fuzzing with provable path pruning. In 2022
IEEE Symposium on Security and Privacy (SP), pages
36–50. IEEE, 2022.

[15] Patrick Jauernig, Domagoj Jakobovic, Stjepan Picek,
Emmanuel Stapf, and Ahmad-Reza Sadeghi. Darwin:
Survival of the fittest fuzzing mutators. arXiv preprint
arXiv:2210.11783, 2022.

[16] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim,
Yeongjin Jang, Insik Shin, and Byoungyoung Lee. Hfl:
Hybrid fuzzing on the linux kernel. In NDSS, 2020.

[17] Gwangmu Lee, Woochul Shim, and Byoungyoung Lee.
Constraint-guided directed greybox fuzzing. In USENIX
Security Symposium, pages 3559–3576, 2021.

[18] Caroline Lemieux and Koushik Sen. Fairfuzz: A tar-
geted mutation strategy for increasing greybox fuzz test-
ing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engi-
neering, pages 475–485, 2018.

[19] Yuwei Li, Yuan Chen, Shouling Ji, Xuhong Zhang,
Guanglu Yan, Alex X Liu, Chunming Wu, Zulie Pan,
and Peng Lin. G-fuzz: A directed fuzzing framework for
gvisor. IEEE Transactions on Dependable and Secure
Computing, 2023.

[20] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-
Han Lee, Yueyao Chen, Chenyang Lyu, Chunming Wu,
Raheem Beyah, Peng Cheng, et al. Unifuzz: A holistic
and pragmatic metrics-driven platform for evaluating
fuzzers. In USENIX Security Symposium, pages 2777–
2794, 2021.

2472 33rd USENIX Security Symposium USENIX Association

https://github.com/google/AFL
https://github.com/google/AFL
https://gitlab.com/libtiff/libtiff/-/issues/519
https://gitlab.com/libtiff/libtiff/-/issues/519
https://sourceforge.net/p/mcj/tickets/142/
https://sourceforge.net/p/mcj/tickets/142/
https://github.com/google/oss-fuzz

[21] Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu,
Yu Jiang, Jianzhong Liu, Zhe Liu, and Jiaguang Sun.
Pata: Fuzzing with path aware taint analysis. In 2022
IEEE Symposium on Security and Privacy (SP), pages
1–17. IEEE, 2022.

[22] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting
Missing-Check bugs via semantic- and Context-Aware
criticalness and constraints inferences. In USENIX Se-
curity Symposium, pages 1769–1786, 2019.

[23] Changhua Luo, Wei Meng, and Penghui Li. Selectfuzz:
Efficient directed fuzzing with selective path exploration.
In 2023 IEEE Symposium on Security and Privacy (SP),
pages 1050–1064. IEEE Computer Society, 2022.

[24] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. Mopt: Opti-
mized mutation scheduling for fuzzers. In USENIX
Security Symposium, pages 1949–1966, 2019.

[25] Chenyang Lyu, Shouling Ji, Xuhong Zhang, Hong Liang,
Binbin Zhao, Kangjie Lu, and Raheem Beyah. Ems:
History-driven mutation for coverage-based fuzzing. In
29rd Annual Network and Distributed System Security
Symposium, NDSS, pages 24–28, 2022.

[26] Chenyang Lyu, Hong Liang, Shouling Ji, Xuhong Zhang,
Binbin Zhao, Meng Han, Yun Li, Zhe Wang, Wenhai
Wang, and Raheem Beyah. Slime: program-sensitive
energy allocation for fuzzing. In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 365–377, 2022.

[27] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. Parmesan: Sanitizer-guided grey-
box fuzzing. In USENIX Security Symposium, pages
2289–2306, 2020.

[28] David A Ramos and Dawson Engler. Under-constrained
symbolic execution: Correctness checking for real code.
In USENIX Security Symposium, pages 49–64, 2015.

[29] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In NDSS, vol-
ume 17, pages 1–14, 2017.

[30] Abhishek Shah, Dongdong She, Samanway Sadhu, Kr-
ish Singal, Peter Coffman, and Suman Jana. Mc2: Rigor-
ous and efficient directed greybox fuzzing. In Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 2595–2609, 2022.

[31] Yulei Sui and Jingling Xue. Svf: interprocedural static
value-flow analysis in llvm. In Proceedings of the
25th international conference on compiler construction,
pages 265–266. ACM, 2016.

[32] Xin Tan, Yuan Zhang, Chenyuan Mi, Jiajun Cao, Kun
Sun, Yifan Lin, and Min Yang. Locating the se-
curity patches for disclosed oss vulnerabilities with
vulnerability-commit correlation ranking. In Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 3282–3299, 2021.

[33] Seunghoon Woo, Hyunji Hong, Eunjin Choi, and Heejo
Lee. {MOVERY}: A precise approach for modified
vulnerable code clone discovery from modified {Open-
Source} software components. In USENIX Security
Symposium, pages 3037–3053, 2022.

[34] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie
Lu. Precisely characterizing security impact in a flood
of patches via symbolic rule comparison. In The 2020
Annual Network and Distributed System Security Sym-
posium (NDSS’20), 2020.

[35] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang,
Xiaojing Liao, Pan Bian, and Bin Liang. Semfuzz:
Semantics-based automatic generation of proof-of-
concept exploits. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pages 2139–2154, 2017.

[36] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu,
Kai Lu, and Xu Zhou. Ecofuzz: Adaptive energy-saving
greybox fuzzing as a variant of the adversarial multi-
armed bandit. In USENIX Security Symposium, pages
2307–2324, 2020.

[37] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. {QSYM}: A practical concolic execution
engine tailored for hybrid fuzzing. In USENIX Security
Symposium, pages 745–761, 2018.

[38] Han Zheng, Jiayuan Zhang, Yuhang Huang, Zezhong
Ren, He Wang, Chunjie Cao, Yuqing Zhang, Flavio Tof-
falini, and Mathias Payer. Fishfuzz: catch deeper bugs
by throwing larger nets. In USENIX Security Sympo-
sium, pages 1343–1360, 2023.

[39] Xiaogang Zhu and Marcel Böhme. Regression greybox
fuzzing. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2169–2182, 2021.

[40] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng,
Ruigang Liang, and Kai Chen. Fuzzguard: Filtering out
unreachable inputs in directed grey-box fuzzing through
deep learning. In USENIX Security Symposium, pages
2255–2269, 2020.

USENIX Association 33rd USENIX Security Symposium 2473

Appendix

A Bug Information

For each bug used in our paper, we present the manually
identified bug-inducing commit along with the corresponding
bug-fixing commit in Table 5.

Table 5: Bug information. “BIC Hash” and “Fix Hash” repre-
sent the bug-inducing commit hash and the bug-fixing commit
hash, respectively. “#Changed lines” refers to the number of
modified lines in the commit.

Project Program Issue BIC Hash
#Changed

lines Fix Hash
#Changed

lines
tiffcrop #488 7057734d 40+,17- 97d65859 1+,1-
tiffcrop #498 07d79fcac 51+,26- 82a7fbb1 66+, 2-
tiffcrop #519 f13cf46b 9+,2- 69818e2f 35+, 24-
tiffcrop #520 e3195080 210+,72- 6366e8f7 53+, 19-
tiffcrop #527 07d79fcac 51+,26- ec8ef90c 13+, 34-
tiffcrop #530 f13cf46b 9+,2- b0e1c25d 7+, 0-
tiffcp #548 3079627e 244+,137- 9be22b63 5+, 0-

Libtiff

tiffinfo #559 b90b20d3 1647+,1538- e8874d75 1879+, 22-
mp4info #652 c9f2c53 33+,18- 8d7253e 1+, 1-
mp4info #679 2e29350 1148+,742- 902210c 29+, 25-

mp4audioclip #732 bbb6f24 1045+,1688- df9ba99 6+, 1-Bento4

mp42aac #751 61b2012 0+,6- 1565b65 10+, 4-
mujs #65 8c27b126 27+,16- 833f82c 2+, 0-
mujs #141 832e0690 87+,27- 6871e5b 6+, 0-
mujs #145 4c7f6be 41+,5- 9c76d8e 1+, 1-Mujs

mujs #166 3f71a1c9 260+,47- 8b5ba20 17+, 47-
cjpeg #493 88ae609 1999+,228- 1719d12 15+, 2-Libjpeg jpegtran #636 88ae609 1999+,228- dc4a93f 5+, 1-

tcprewrite #702 0a65668a 282+,148- c23738f 3+, 2-
tcprewrite #718 2c76868d 45+,45- ad346b7 89+, 77-

tcpprep #756 16442ac3 312+,338- 00b6601 1+, 2-Tcpreplay

tcpreplay #772 4f9158da 1+,2- 5c59132 19+, 2-
xmllint #535 9a82b94a 253+,176- d0c3f01e 0+, 2-Libxml2 xmllint #550 7e3f469b 32+,38- 6273df6c 6+, 5-
pdfunite #1282 3d35d209 16+,0- 0b9f7022 4+, 0-
pdfunite #1289 3cae7773 31+,2- efb68686 13+, 2-
pdftops #1303 e674ca64 71+,80- a4ca3a96 4+, 0-

pdftoppm #1305 aaf2e808 31+,2- 907d05a6 1+, 1-
Poppler

pdftoppm #1381 245abada 20+,45- 1be35ee8 22+, 20-
ImageMagick magick #6075 a107b941 103+,134- 8c97870 3+, 0-

2474 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Greybox Fuzzing
	Motivating Example

	Design of WAFLGo
	Target Selection and Distance Calculation
	Critical Code Identification
	Critical Code Guided Fuzzing
	Input Generation Strategy
	Seed Selection and Power Scheduling

	Implementation
	Experimental Setup
	Research Questions
	Commit Dataset
	Commit Dataset for Testing Known Bugs
	Commit Dataset for Finding New Bugs

	Compared Tools
	Configuration

	Performance Evaluation
	Efficiency of WAFLGo
	Impacts of Critical Code Guidance
	Impacts of Multi-Target Optimization
	Detecting New Vulnerabilities

	Discussion and Limitation
	Related Work
	Conclusion
	Acknowledgments
	Bug Information

