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Abstract
Graph Neural Networks (GNNs) have emerged as a power-
ful tool for analysing graph-structured data across various
domains, including social networks, banking, and bioinfor-
matics. In the meantime, graph data contains sensitive infor-
mation, such as social relations, financial transactions, and
chemical structures, and GNN models are IPs of the model
owner. Thus, deploying GNNs in cloud-based Machine Learn-
ing as a Service (MLaaS) raises significant privacy concerns.

In this paper, we present a comprehensive solution to en-
able secure GNN inference in MLaaS, named OblivGNN.
OblivGNN is designed to support both transductive (static
graph) and inductive (dynamic graph) inference services with-
out revealing either graph data or GNN models. In particular,
we adopt a lightweight cryptographic primitive, i.e., function
secret sharing, to achieve low communication and computa-
tion overhead during inference. Furthermore, we are the first
to propose a secure update protocol for the inductive setting,
which can obliviously update the graph without revealing
which parts of the graph are updated. Particularly, our results
with three widely-used graph datasets (Cora, Citeseer, and
Pubmed) show that OblivGNN can achieve comparable accu-
racy to an Additive Secret Sharing-based baseline. Nonethe-
less, our design reduces the runtime cost by up to 38% and
the communication cost by 10× to 151×, highlighting its
practicality when processing large graphs with GNN models.

1 Introduction

A growing emphasis has been placed on the development
of Graph Neural Networks (GNNs) due to their power of
analysing complex graph-structured data. GNNs are adopted
in various domains (e.g., social networks [17], banking [67],
bioinformatics [68]). Due to the popularity of GNNs, Ma-
chine Learning as a Service (MLaaS) has started to support
GNN training and inference service [1, 4, 35]. Enterprises
deploy GNN models in MLaaS for known benefits like scal-
ability, reduced infrastructure maintenance, and convenient
deployment.

Despite great advantages, deploying GNNs in an untrusted
environment raises privacy concerns. On the one hand, col-
lecting training graphs and building a GNN model often re-
quires a large amount of human, computing, and economic
resources [2, 66], and thus a model owner expects strong pro-
tection of its training graphs and GNN model against unautho-
rised access. On the other hand, GNNs’ inference needs both
model parameters, graph structure and node feature informa-
tion, and sometimes graph data is sensitive by nature [67],
such as users’ financial transactions, and private friendships.

To ensure data confidentiality for machine learning in
MLaaS, previous efforts have been made to construct privacy-
preserving machine learning (PPML) protocols over en-
crypted data and models [16, 19, 28, 38–40, 44–46, 49, 51,
52, 56, 58]. However, those studies are designed for Convolu-
tional Neural Networks and Recurrent Neural Networks, and
are not tailored for GNNs. Although recent studies [14,50,59]
designed to secure graph data in GNNs, they lack support for
full protection of graph structures and feature information
under the diverse settings of GNN deployment.

Practical GNN applications [17, 18, 27] demand that the
inference should be conducted with both static graphs (trans-
ductive) and dynamic graphs (inductive). In this paper, we
consider the node classification task which is the most repre-
sentative task in GNN applications. In the transductive setting,
the graph used in training and inference is the same. The clas-
sification labels for all nodes are generated during training,
and the client directly queries the node ID to get the inference
result. However, in the inductive setting, the inference graph
is different from the training graph. Both the graph structure
and node features can be updated before inference.

On the one hand, existing work reveals certain informa-
tion about graph structures, such as the maximum node de-
gree in SecGNN [59] and the range of node degree in Cryp-
toGCN [50]. On the other hand, they do not support the in-
ference in the inductive setting, where the graph needs to be
securely updated. Specifically, directly updating the graph
(e.g., adding new nodes or modifying the node features) will
reveal the access to the encrypted graph. Such access could be
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exploited to infer the graph structure, which has been demon-
strated in leakage attacks against encrypted graph processing
protocols [21].

Another issue is that the existing PPML designs for GNNs
suffer from high computational and communication overhead
given the large size of the graph and the high dimension of
node features. For example, some work [14, 50] adopts heavy
cryptographic primitives like FHE which can hardly scale
for large matrix multiplication. Therefore, it is challenging
to enable privacy-preserving inference over encrypted graphs
and GNN models under transductive and inductive settings in
a secure and efficient manner.

1.1 Summary of Techniques

We propose OblivGNN, which brings the following capabil-
ities: 1) full protection on the graph structure data during
inference; 2) enabling oblivious inference under transductive
and inductive settings; 3) ensuring reduced, constant inter-
party communication during secure computation.
Full Protection on Graph Structure during Inference. As
mentioned above, existing secure GNN designs [14,50,59] re-
veal the access pattern or partial graph information to achieve
practical performance. To fully protect the graph structure in
the GNN inference process, we observe that the native ma-
trix multiplication can naturally hide the graph’s structural
information. However, the existing techniques [5, 23] for se-
cure matrix multiplication encounter high computational and
communication overhead.

To enable a low-cost secure matrix multiplication process,
we resort to a lightweight cryptographic primitive, named
function secret sharing (FSS) [6]. FSS provides an efficient
way to conduct oblivious additions/multiplications with low
computation and communication costs. Moreover, this tech-
nique can be used to realise practical oblivious secure activa-
tion functions [52], which makes it a perfect candidate for our
application scenario. However, there are two main challenges
when combining FSS primitives in GNN. First, FSS schemes,
e.g., Distributed Point Function (DPF) [6] and arithmetic FSS
gates [13] (Section 2.2) are designed to enable dedicated func-
tionalities. This requires meticulous combinations of those
schemes for specific GNN functions, e.g., matrix multiplica-
tion, and activation functions (Section 4.2.3), in a seamless
and secure way. Moreover, unlike ASS-based designs that
rely on independent randomness, the FSS-based design fol-
lows a circuit fashion that requires the gates (FSS keys) to be
connected correctly for specific functions. Hence, it is also
challenging to design a proper mechanism (Section 4.2.1) for
generating/storing FSS keys correctly.

In OblivGNN, we carefully integrate different FSS func-
tionalities together to enable secure and efficient matrix multi-
plication. Furthermore, the secure matrix multiplication proto-
col is customised to seamlessly integrate with the FSS-based
secure activation functions, which guarantees a secure and

access-pattern hiding (oblivious) inference process.
Support Transductive and Inductive Inference. The afore-
mentioned design enables OblivGNN to conduct inference
under the transductive setting, i.e., inference on static graphs.
However, it is also crucial to support inferences on a graph
with updated node information (inductive setting) to enable
full GNN functionality in real-world applications [17, 18, 27].

Dynamic graphs are crucial in real-world application sce-
narios (i.e., inductive inference setting). However, the graph
update operations entitle accessing individual nodes and
nodes’ features to perform the update. Such operations result
in access pattern leakage if unprotected and can be exploited
to recover/perturb the graph structure and reveal/perturb graph
attribute information. Therefore, to protect the above leakage
when supporting the dynamic graph in GNN inference, we
develop secure oblivious update algorithms for OblivGNN.
The proposed algorithms leverage the specific instantiation of
FSS (DPF [6]) to update server-side sub-graphs into existing
graphs without revealing which parts of the graph are updated.
Our design ensures that the updated graph can be used as
the input of the inference process directly, and thus enable
OblivGNN to support oblivious GNN inference service on
dynamic graphs.
Contributions. We present OblivGNN, a lightweight and
oblivious GNN inference service. OblivGNN provides:

• Fully support secure GNN inference: We have de-
vised the first oblivious GNN inference framework that
supports both transductive and inductive settings, facili-
tating the protection of the inference and dynamic graph
update operations (node insertion and graph update).

• Obliviousness with Semi-honest Security: We formally
prove that the OblivGNN offers obliviousness under the
semi-honest security assumption. Our proof successfully
demonstrates the protection of the graph data, the graph
update and clients’ enquiry. A detailed exposition can
be found in Appendix A.

• Efficiency: We have devised effective and oblivious pro-
tocols tailored specifically for fully oblivious GNN mod-
els to support both static and dynamic graphs. In three
datasets, OblivGNN achieves a lower runtime cost com-
pared to traditional ASS-based secure GNN, and it is
scalable towards large dataset. To be specific, the base-
line uses 11.05 minutes, while the OblivGNN uses only
6.83 minutes in the largest graph dataset (Pubmed with
the size of 19717 nodes and 500 features). In the inter-
server communication cost, OblivGNN achieved an av-
erage improvement of 93× among the three datasets.

2 Preliminary

This section introduces the graph neural networks and cryp-
tographic tools used in OblivGNN. The notations are sum-
marised in Table 1.
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2.1 Graph Neural Networks

Node Classification via GNNs. Graph neural network (GNN)
is a neural network architecture specifically designed to anal-
yse graph-structured data. There are various graph analytics
tasks enabled by GNNs. OblivGNN considers the most widely
used one, i.e., graph convolutional networks (GCNs) [33] for
node classification task. Specifically, let G = (A,F) be an
attributed graph, where A∈ {0,1}n×n denotes the graph struc-
ture, and F ∈ Rn×c denotes the node features. Suppose the
graph contains a number of n nodes with c-dimension of the
feature vector, e.g., the F[i] ∈ R1×c is the feature vector for
node i. Given the nodes i labelled with respective Z1, a GNN
node classification task aims to classify a node with a label
based on both graph structure and node features.
GNN model formulation. We now formulate the GCN model
architecture for node classification. Intuitively, GCN is organ-
ised in a pipeline, where each layer aggregates the features of
a current node and its adjacent nodes (neighbours), followed
by a non-linear activation function. A two-layer feed-forward
GCN for node class predictions is formally defined as:

Z1 = Softmax(ÂReLU(ÂF̂W0)W1), (1)

where Â is an n×n normalised adjacency matrix correspond-
ing to graph structure; F̂ is an n×c normalised feature matrix.
The weight matrices W0,W1 contain trainable parameters of
GCN model. Softmax and ReLU are two non-linear activa-
tion functions. We follow standard GCN inference and refer
the reader to the work from Kipf and Welling [33] for the
details of training and normalization.
Transductive & Inductive GNNs. At a high level, GNN for
node classification comprises two learning settings: transduc-
tive and inductive. The training process for both transduc-
tive and inductive settings is identical. The main difference
is attributed to the dynamism of the underlying graphs. In
the transductive setting, the graph used during both training
and inference remains unchanged. In an MLaaS setting, the
server can pre-generate the inference results for all nodes at
the training time, and directly return inference results to any
consequent queries at the inference time.

In the inductive setting, the graphs used for training and
inference are different. This is because of the appearance of
new nodes/graphs that would connect to existing nodes in
the inductive inference. In an MLaaS setting, when a client
submits new nodes or existing nodes with updated features
for queries, the server should update the corresponding adja-
cency matrix and feature matrix with these newly submitted
nodes before proceeding with the inference. The dynamism
of the inductive setting makes it better suit real-world scenar-
ios where the graph is employed during training to involve
updates, such as new node insertions or graph updates, before
the inference process [17, 18, 27].

b Party number b ∈ {0,1}
Pb Party P0, P1
m Total number of output classes
hl Size of weight matrix in layer l
L Number of classes

A∗ Adjacency matrix for subgraph
F∗ Feature matrix for subgraph
A′ Masked adjacency matrix
F′ Masked feature matrix

Â = {Â0, . . .} Normalised adjacency matrix
F̂ = { f̂0, . . .} Normalised feature matrix

N = {N[0][0], . . .} Padded neighbouring nodes matrix
E = {E[0][0], . . .} Padded neighbouring edge matrix

AF = {a f0, . . .} Aggregated matrix
Zl = {zl [0], . . .} Result on layer l before activation

Table 1: Notation

2.2 Function Secret Sharing
A two-party function secret sharing (FSS) [6,13] splits a func-
tion f into succinct function shares. It guarantees that each
function share reveals no information about f . When the func-
tion shares are evaluated at a given point x, the combination of
the evaluations is equal to f (x). OblivGNN resorts to two FSS
constructions 1) distributed point functions (DPF [6]) and 2)
arithmetic FSS [13]. We now give their formal definitions.
DPF for Equality Test. DPF.Equa(JxK) aims to evaluate
whether a secret value x inputted to a point function equals to
0. Such that,

Eval=(k=0 ,x
′)+Eval=(k=1 ,x

′) =

{
y = 1 if x′ = γ

0 otherwise.

During key generation, the client takes random value γ ∈ Z2ℓ

and runs KeyGen=(1λ,α = γ,β = 1) to produce kb for two
parties. During evaluation, given a secret value Jx′Kb = JγKb +
JxKb is additively masked by γ ∈ Z2ℓ . Parties exchange Jx′Kb
to reveal the masked x′. Each party Pb evaluates the DPF
Eval=(kb,x′) to produce secret shared JyKb, which would be
reconstructed to have y = 1 only if x′ = γ (i.e., x = 0).
DPF for Comparison. DPF.Comp(JxK) works in a similar
way. Such that,

Eval<(k<0 ,x
′)+Eval<(k<1 ,x

′) =

{
y = 1 if x′ ≤ γ

0 if x′ > γ

Given a point function compares if x is less/equal to 0. the
client runs DPF.Comp’s key generation on α = γ and β = 1
to produce kb. During DPF evaluation, party Pb evaluates
the DPF Eval(kb,x′) on masked x and produces secret shared
y = 1 if x′ ≤ γ (i.e., x≤ 0). Otherwise, it is evaluated to y = 0
if x′ > γ (i.e., x > 0). Note that in both constructions, the DPF
key generation is independent of the computation; it thus can
be generated offline at random and stored in a key pool. For
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Algorithm 1: FSS Multiplication FSS.Mul(x′1,x′2)
Multiplication Gate (KeyGen×, Eval×)
KeyGen×(1λ,rin

1 ,r
in
2 ,r

out)

1) Sample random number τ0,τ1 ∈ Zin
2ℓ , where

τ0 + τ1 = rin
1 .

2) Sample random number ρ0,ρ1 ∈ Zin
2ℓ , where

ρ0 +ρ1 = rin
2 .

3) Sample random number ξ0,ξ1 ∈ Zin
2ℓ , where

ξ0 +ξ1 = rin
1 · rin

2 + rout .
4) Let kb = τb ∥ ρb ∥ ξb, where b ∈ {0,1}.
Return: (k×0 ,k

×
1 ).

Eval×(b,k×b ,x′1,x′2)
1) Parse k×b = τb ∥ ρb ∥ ξb.
Return: b · (x′1 · x′2)− x′1 ·ρb− x′2 · τb +ξb.

ease of demonstration, we omit the security parameter in the
key generation KeyGen routine.
FSS Multiplication Gate The FSS multiplication gate aims
to secretly calculate the arithmetic function g×(x1,x2) :=
x1 · x2 with masks rin

1 ,r
in
2 , i.e., (x1 + rin

1 ) · (x2 + rin
2 ). The two

routines in FSS multiplication gate are denoted as KeyGen×
and Eval×. We define the FSS multiplication evaluation pro-
cess such that, Jx1 ·x2+routKb←FSS.Mul(x′1,x′2). The formal
algorithm is in Algorithm 1.
FSS Addition Gate. The FSS addition gate aims to secretly
calculate masked g+(x1,x2) := x1+x2 with masks rin

1 ,r
in
2 , i.e.,

(x1 + rin
1 )+(x2 + rin

2 ) non-interactively. The two underlying
routines in FSS addition gate are denoted as KeyGen+ and
Eval+. We define the FSS addition evaluation process such
that, Jx1 + x2 + routKb ←FSS.Add(x′1,x′2). The formal algo-
rithm is in Algorithm 2.

2.3 Additive Secret Sharing

Additive secret sharing (ASS) [3] shares a secret value x∈Z2ℓ

into two additive secret shares JxK0 + JxK1 ≡ x (mod 2ℓ) by
sampling random values JxK0 ∈R Z2ℓ and JxK1 = x− JxK0.
Let P0 and P1 be two parties involved in the computation.
Each of them holds secret shares JxKb,b ∈ {0,1}. To reveal
a secret, P1−b sends its share JxK1−b to Pb who computes
x= JxK0+JxK1. Given two secret values x and y shared among
parties. Arithmetic operations are evaluated by ASS as fol-
lows. Addition JzKb = JxKb + JyKb (mod 2ℓ) can locally com-
puted by Pb. Multiplication JzK = JxK · JyK (mod 2ℓ) is as-
sisted by Beaver’s multiplication technique [5].

3 System Overview

In this section, we introduce OblivGNN’s system architecture,
threat model and security guarantees.

Algorithm 2: FSS Addition FSS.Add(x′1,x′2)
Addition Gate (KeyGen+, Eval+)
KeyGen+(1λ,rin

1 ,r
in
2 ,r

out)

1) Sample random number ξ0,ξ1 ∈ Zin
2ℓ , where

ξ0 +ξ1 = rout − (rin
1 + rin

2 ).
2) Let k+b = ξb, where b ∈ {0,1}.
Return: (k+0 ,k

+
1 ).

Eval+(b,k+b ,x′1,x′2)
1) Parse k+b = ξb.
Return: x′1 +ξ0 and x′2 +ξ1.

3.1 System Architecture
Figure 1 shows OblivGNN’s system architecture, which has
three entities: model owner, client, and two cloud servers.

• Model owner possesses a GNN model and wishes to lever-
age OblivGNN to enable an oblivious inference without re-
vealing the model (i.e., training graph and model weights).

• Client is the querier who requests an oblivious node classifi-
cation by making queries to OblivGNN. It submits node ID
(transductive) and/or graph (inductive) to OblivGNN and re-
ceives inference results without revealing its private query.

• Two cloud servers in different trust domains obliviously
execute the inference on both transductive and inductive
GNNs, without seeing the model from the model owner and
the query from the client in cleartext.

OblivGNN Workflow. OblivGNN has two settings of obliv-
ious GNN inferences: Oblivious Transductive and Oblivi-
ous Inductive. Oblivious Transductive offloads the graph and
model weights to the cloud servers in secret-shared format and
only supports client queries to infer an existing node. Oblivi-
ous Inductive, on the other hand, supports updating the graph
that has been already offloaded to the clouds. Both settings
support OfflineGen,OblivAgg, and OblivAct, while Oblivious
Inductive further supports OblivUpdate. Only OfflineGen is
invoked by the model owner, all others are executed by the
two cloud servers. Both settings are under OblivGNN’s sys-
tem framework and can be smoothly switched between each
other. From a high-level point of view, Oblivious Transductive
and Oblivious Inductive operate as follows.
Oblivious Transductive:

• OfflineGen: Given a ring Z2ℓ , mask and secret share the
adjacency matrix Â, feature matrix F̂, model weights W0
and W1 to two servers, and generate randomnesses.

• OblivAgg: Each party evaluates the matrix multiplications
over the shared matrices, i.e., JÂKb× JF̂Kb× JW0Kb for the
first layer, and JÂKb × JReLU(ÂF̂W0)Kb × JW1Kb in the
second layer, without revealing them.

• OblivAct: Each party uses the shares from the OblivAgg to
perform oblivious ReLU, Softmax and Argmax.
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Model Owner Client

GNN Model Graph

Server 0 Server 1

Labels

Figure 1: System Architecture of OblivGNN.

Oblivious Inductive works in a similar way to Oblivi-
ous Transductive yet additionally supports oblivious update
OblivUpdate, therefore we only describe the above here.
Oblivious Inductive:
• OblivUpdate: Upon receiving the new node information

JÂ∗Kb and JF̂∗Kb, update the shares on each party to include
the newly added nodes and updated node features.

3.2 Threat Model
We consider our system to be a secure cloud-based GNN in-
ference service that protects both data privacy and data access
pattern (obliviousness). Similar to the prior outsourced PPML
schemes [16, 39, 46, 52], two servers execute the proposed
protocol collaboratively and compute the inference result in
secret shares. During the process, each server only observes
computations over random numbers and cannot learn any
model information, inputs or inference results [41].

We now describe the threat model and security scope of
OblivGNN. OblivGNN operates in a semi-honest two-party
setting following the works [28, 38, 44, 46, 51, 52], guarantee-
ing its users’ data privacy if the adversary controls only one
server. In particular, we assume that several non-colluding
adversaries compromise one server at most. These adver-
saries do not deviate from the protocol but will try to infer
input/model information based on their processed data/pattern.
Prior works [16, 46, 52] indicate that two-party collusion
can be prevented by making it costly or infeasible by plac-
ing two servers in different clouds or countries/jurisdictions.
The laws/conflict of interest stop collusion [29] effectively.
Furthermore, even in a semi-honest non-colluding adversary
model, the compromised server can still observe the access
pattern when accessing the graph (i.e., updating the graph
matrices and the client inquiry). As stated in [21], the graph
access pattern can be exploited even in an encrypted graph.

3.3 Security Guarantees
The GNN model owner outsources the GNN model and
graph data to two servers for GNN inference service. During

the process, the adversary can obtain the entire view of the
OblivGNN protocol execution on the compromised server and
analyse it. Nonetheless, all private information from the GNN
model owners, including the adjacency matrix, feature matrix
and model weights will not be revealed during inference.

In OblivGNN, the access pattern is protected (therefore
named oblivious) from potential semi-honest adversarial at-
tacks when accessing and updating the original graph. The
access pattern protection also ensures the security of clients’
interactions, e.g., the clients’ inquiries when accessing and
retrieving the inference outcomes.

4 PROTOCOL

We start by describing the strawman approach in Section 4.1.
We then describe our OblivGNN in Section 4.2. We show and
discuss our protocols in Algorithm 3, 5 and the complete
protocols are shown in Algorithm 7 and Algorithm 8.

4.1 Strawman Approach
A naive solution to enable oblivious GNN inference can be
achieved with the arithmetic secret sharing scheme. In partic-
ular, we leverage the following steps to obliviously evaluate
Equation 1 from Section 2.1 to enable the transductive infer-
ence (Oblivious Transductive):

• OfflineGen(Z2ℓ , Â, F̂,W0,W1): The model owner shares
the adjacency matrix Â, feature matrix F̂, model weights
W0 and W1 over the given ring Z2ℓ . Then, the model owner
sends the shares of JÂKb, JF̂Kb, JW0Kb,JW1Kb to Server b.

• OblivAgg(Z2ℓ ,JÂKb,JF̂Kb,JW0Kb,JW1Kb): In the back-
ground, the model owner continuously generates beaver’s
multiplication triples, shares them over the given ring Z2ℓ ,
and sends them to Server b. With triples, two servers jointly
compute the matrix multiplication with ASS additions [3]
and Beaver’s Triples [5] based multiplications.

• OblivAct(Z2ℓ): The strawman approach leverages the ap-
proximation techniques [32] to approximate the Rectified
Linear Unit (ReLU) and softmax to a polynomial. Then,
two servers evaluate the activation functions with ASS and
beaver’s triples over Z2ℓ .

We can further enable oblivious inductive inference (Oblivi-
ous Inductive):

• OblivUpdate(Z2ℓ ,JÂKb,JF̂Kb): When the client or the
model owner performs updates on the graph by inserting
nodes and updating features, they directly modify the adja-
cency matrix Â and feature matrix F̂. Then, those matrices
are shared over Z2ℓ and sent to the servers.

The above design is fully oblivious. Because all the above-
mentioned operations (i.e., matrix multiplications, polynomial
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Figure 2: Protocol Overview of OblivGNN

evaluations, and graph updates) always execute the same pro-
cess regardless of the input in the view of two servers. How-
ever, we noticed two problems: 1) the runtime/communication
costs were significant due to adopting Beaver’s Triple in ag-
gregation. 2) to update obliviously, the communication cost
of re-uploading the updated graph is significant. To address
the above issues, we propose the OblivGNN approach.

4.2 OblivGNN Approach
To address the above two problems: we use Arithmetic FSS
to save the significant runtime and communication costs due
to adopting Beaver’s Triple in aggregation (1). We adopt DPF
to update obliviously with reduced communication cost (2).

Our focus has been primarily on executing secure GNN
inference on the static graph (i.e., transductive setting). How-
ever, it is important to note that nodes and features may require
updates in practice. We will discuss how OblivGNN approach
facilitates the oblivious graph updates, limits the graph infor-
mation leakage and substantially improves efficiency. Details
are elaborated in the subsequent sections, and an illustration
is provided in Figure 2.
Overview. The OblivGNN’s oblivious inference operates as
follows. In the offline phase, the model owner generates ran-

domnesses to mask the normalised adjacency matrix, nor-
malised feature matrix, and model weights. The randomnesses
are also used to form the FSS keys pool, for all multiplication
and addition pairs in oblivious matrix multiplication between
the above matrices. The graph matrices are then split into
secret shares using ASS from Section 2.3. In the inductive set-
ting, the client or the model owner prepares the DPF keys for
graph update, according to the updated subgraph’s adjacency
and feature matrix on the client side.

In the online phase, the model owner secretly shares the
masked normalised adjacency matrix, feature matrix and the
model weight matrices to both servers. Each party then per-
forms oblivious aggregation by revealing the masked matrices
and securely aggregating the neighbouring features for each
node. The aggregated results then go through the first layer
activation function, oblivious ReLU. As shown in Figure 2,
the aggregation process will repeat with the oblivious softmax
activation function for the second layer.

After two layers, the inference results are stored as secret
shares in both parties. The client can then enquire the result(s)
with specific node(s) ID. We will elaborate on each other the
above protocol in the following sections.
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Figure 3: FSS Multiplicative and addition gates Chaining
between Adjacency and Feature Matrix in OblivGNN

4.2.1 Oblivious Aggregation

The oblivious aggregation entitles the collection of infor-
mation from nearby nodes. To protect the access pattern in
aggregation, we employ matrix multiplication which linear
accesses all nodes to naturally hide the access pattern.

To build secure matrix multiplication algorithms for obliv-
ious aggregation, we leverage the FSS multiplication and
addition gate, inspired by the works of Boyle et al. [7, 13].
FSS Circuit Chaining. To enable secure matrix multipli-
cation, we should enable the secure dot product operation
between each row and column of the matrix. While this is
easy to be achieved with ASS, we realise that it is not straight-
forward to realise with FSS. This is because the FSS-based
arithmetic operations consider a specific operation as a gate,
which has randomnesses associated with the input and output
wires of the gate (see Section 2.2). As a result, when calcu-
lating multiple arithmetic operations with FSS, it generates a
circuit structure, where the randomness associated with the
output wire of a gate, will be the randomness used by the
input wire of the next gate.

In Figure 3, we provide an illustrative example for the dot
product between one row and one column of the matrix. As
shown in the figure, the dot product process will be converted
to a circuit with FSS multiplication and addition gates. For
each gate, three randomnesses (rin

1 ,r
in
2 ,r

out) are selected and
associated with the input/output wires of the gate, respectively
(see Algorithm 1 and 2). For multiplication randomnesses,
they can be selected independently since the multiplications
in dot product are independent. However, the randomnesses
for addition gates are correlated because they sum up the mul-
tiplication results to get the final result. More specifically, the
randomnesses associated with the input wires of the addition
gate are the randomnesses associated with the output wires of

the previous multiplication gate or addition gate.

Without loss of generality, in the given example, when
computing the dot product of the first row of Â and the first
column of F̂, the multiplication of Â[0][i]×F̂[i][0] for i∈ [0,2]
are done with three independent sets of the randomnesses
(rin

1,i,r
in
2,i,r

out
i ). When summing the multiplication outputs for

the final dot product result, the circuit however requires to use
the output wire randomnesses of prior gates that cascade to the
addition gate. This covers two scenarios: The first one is that
the addition gate is adding two outputs from multiplication
gates (Â[0][0]× F̂[0][0] + Â[0][1]× F̂[1][0] in our example),
so it leverages rout

0 and rout
1 as the input wire randomnesses.

Following the above procedure, one can obtain a list of
chained FSS keys that enable dot product operations for fixed-
size vectors (the rows and columns of matrices) and thus can
be readily used to support matrix multiplication.

The total number of arithmetic FSS keys depends on the
size of the dataset. In Figure 2, there will be n× (nc+ ch0 +
nh0+h0h1)(O(n2c)) number of keys generated for FSS multi-
plication gate. And (n−1)×(nc+ch0+nh0+h0h1)(O(n2c))
number of keys generated for FSS addition gate.

FSS Key Pool Generation. From the above, we observe that
FSS keys are input-independent and solely rely on uniform
randomnesses. This observation allows a similar pooling tech-
nique for Beaver’s Triple [5], i.e., given the matrix sizes, the
model owner can generate a large number of FSS keys follow-
ing the above chaining process. Moreover, the model owner
can distribute them to two servers in an offline phase for effi-
cient matrix multiplications, while performing on-the-fly key
pooling like in [46] to meet the query demands.

Aggregation functions. With the above FSS keys and pooling
mechanism, two servers can conduct oblivious aggregation
with matrix multiplication. In the aggregation function, two
servers will have shared matrices JXKb and JYKb and want
to multiply them together. To bootstrap the computation, the
model owner sends the FSS keys for one matrix multiplication
to two servers. Also, he/she extracts the input wire random-
nesses of multiplication gates to form two mask matrices R1
and R2 with the same sizes as JXKb and JYKb. These two mask
matrices will be shared as additive secret share matrices JR1Kb
and JR2Kb and sent to two servers to mask the corresponding
elements in X and Y, respectively.

Upon receiving the shared mask matrices and the FSS
keys, two server first compute JX′Kb = JXKb + JR1Kb and
JY′Kb = JYKb+JR2Kb. Then, they exchange their local shares
of JX′Kb and JY′Kb to recover the masked X′ and Y′. With
masked matrices, two servers can directly compute FSS-based
multiplications and additions without interactions, and get
Z′ = X×Y+Rout at the end of the execution. In Algorithm 3,
we provide the oblivious aggregation process in details. Note
that the oblivious aggregation can be used to support the linear
layer aggregation functions in each layer of GNN.
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Algorithm 3: Oblivious Aggregation OblivAgg
Input: Shared matrices JXKb (m×n elements) and

JYKb (n× c elements)
Output: Masked aggregated results Z′
Model Owner (FSS Key Pooling):
1) Generate R1 with m×n randomnesses, R2 with

n× c randomness, and Rout with m× c randomness.
2) For i ∈ [0,m−1],
3) For j ∈ [0,c−1],
4) Initialise temp r×out and r+out arrays.
5) KeyGen+(1λ,r×out [0],r

×
out [1],r

+
out [0]).

6) For k ∈ [0,n−1],
7) KeyGen×(1λ,R1[i][k],R2[k][ j],r×out [ j]).
8) KeyGen+(1λ,r+out [k−1],r×out [k+1],r+out [k]), if
k ∈ [1,n−3].

9) KeyGen+(1λ,r+out [n−3],r×out [n−1],Rout[i][ j]).
10) Share R1, R2 and Rout as JR1Kb, JR2Kb and
JRoutKb.

Send JR1Kb, JR2Kb and JRoutKb and FSS keys to Pb.
Party Pb:
1) Mask the shares of JXKb as JX′Kb = JXKb + JR1Kb

and JYKb as JY′Kb = JYKb + JR2Kb.
2) Exchange shares with P1−b to recover X′ and Y′.
3) For i ∈ [0,m−1],
4) For j ∈ [0,c−1],
5) Set vector JTempKb.
6) For k ∈ [0,n−1],
7) JTemp[k]Kb= FSS.Mul(X′[i][k],Y′[k][ j]).
8) Exchange shares with P1−b to recover Temp.
9) For k ∈ [0,n−1],
10) JZ′[i][ j]Kb=FSS.Add(Z′[i][ j],Temp[k]).
11) Exchange shares with P1−b to recover Z′[i][ j].
return Z′ = Z+Rout .

4.2.2 Oblivious Graph Update

DPF Update Key Generation. During the update phase,
some entries of the adjacent and feature matrices will be
updated to new values. We note that if we directly update the
matrix, it reveals the access pattern on the graph matrices and
has the potential to disclose the underlying graph structure.

OblivGNN employs the DPF to hide the access pattern in
graph updates. In particular, two sets of the key will be gen-
erated to implement two modifications, i.e., the connections
relations change on the adjacency matrix and the feature up-
dates on the feature matrix. Algorithm 4 demonstrates how to
use the above two information with their location information.
The algorithm extracts the updated node location (vi∗) from
the updated subgraphs A∗ and F∗. Then, it generates n DPF
keys to update the vi∗ location of each row on the adjacent
matrix, and c DPF keys to update the vi∗ location of each
column on the feature matrix. Those keys will be sent to two
servers to let them update their local shares of the adjacent
matrix and the feature matrix, respectively.

Algorithm 4: DPF Update Key Generation Up-
dateKeyGen
Input: Updated subgraph A∗ and F∗
Output: kA

b , kF
b

1) Initialise kA
b ,k

F
b ←{}.

2) Extract the target node vi∗ for the update.
3) For i ∈ [0,n−1], ; // loop column

4) kA
b [i]←KeyGen(vi∗ ,A∗[vi∗ ][i]−A[vi∗ ][i]).

5) For i ∈ [0,c−1], ; // loop column
6) kF

b [i]←KeyGen(vi∗ ,F∗[vi∗ ][i]−F[vi∗ ][i]).

Algorithm 5: Oblivious Graph Update OblivUpdate
Input: New node adjacency and feature information Â

and F̂, Graph Update DPF keys kA
b and kF

b
Output: Shares of updated adjacency matrix JÂKb and

updated feature matrix JF̂Kb
Party Pb:
1) For i ∈ [0,n−1], ; // loop column
2) For j ∈ [0,n−1], ; // loop row

3) JÂ[ j][i]Kb = JÂ[ j][i]Kb+Eval(kA
b [i], j).

4) For i ∈ [0,c−1], ; // loop column
5) For j ∈ [0,n−1], ; // loop row

6) JF̂[ j][i]Kb = JF̂[ j][i]Kb+Eval(kF
b [i], j).

Graph Update. With the DPF keys, two servers can easily
update the graph with Algorithm 5. Specifically, to update the
adjacency matrix, each server evaluates the given n DPF keys
with inputs from [0,n−1], and set the corresponding cell in
each row to the evaluate output. By doing this, the connection
of the updated point is changed while the access pattern of
this update is hidden as the update scans the entire adjacency
matrix. Similarly, each server can update the feature matrix by
evaluating the given c DPF keys with inputs from [0,n−1],
and accumulates the evaluate output to corresponding cell
in each column. Since the keys for the feature matrix up-
date are generated by leverage the difference between new
feature value and old one (F∗[vi∗ ][i]−F[vi∗ ][i]). The update
process will replace the old feature with the new one, without
revealing which node is updated.
Node Insertion. When inserting a new node, the model
owner/client can directly shares the new node into two
servers. Then, two servers can directly expand the adjacency
(from n× n to (n+ 1)× (n+ 1)) and feature (from n× c to
(n+ 1)× c) matrices and attach the shares to the expanded
row/column. This process will not affect OblivGNN’s security
because the matrix size is not protected in OblivGNN.

However, since the matrix is expanded to fit the new node,
the FSS pooling requires to be expanded accordingly to sup-
port the matrix multiplication with new matrix size. Fortu-
nately, as stated in Section 4.2.1, the matrix multiplication
can be seem as a series of independent dot products, thus we
do not need to re- generate the FSS pooling to meet the com-
putation requirement. Instead, we design a FSS key pooling
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Algorithm 6: FSS Pooling Expansion PoolExpand
Input: Expanded R1 with (m+1)× (n+1)

randomnesses, R2 with (n+1)×c randomness,
and R′out with (m+1)× c randomness;
Original Rout with m× c randomness.

Model Owner:
1) For i ∈ [0,m−1],
2) For j ∈ [0,c−1],
3) Initialise temp r×out values.
4) KeyGen×(1λ,R1[i][n],R2[n][ j],r×out).
5) KeyGen+(1λ,Rout[i][ j],r×out ,R′out[i][ j]).
6) For i ∈ [0,c−1],
7) Initialise temp r×out and r+out arrays.
8) KeyGen+(1λ,r×out [0],r

×
out [1],r

+
out [0]).

9) For j ∈ [0,n],
10) KeyGen×(1λ,R1[m][ j],R2[ j][i],r×out [ j]).
11) KeyGen+(1λ,r+out [ j−1],r×out [ j+1],r+out [ j]), if

j ∈ [1,n−2].
12) KeyGen+(1λ,r+out [n−2],r×out [n],R′out[m][i]).
13) Share R1, R2 and R′out as JR1Kb, JR2Kb and
JR′outKb.

Send JR1Kb, JR2Kb and JR′outKb and FSS keys to Pb.

expansion algorithm (see Algorithm 6) to assist this process.
For the existing nodes (i.e., nodes labeled with 0 to m−1),

the algorithm calculates the FSS key for the multiplications
of newly added nodes and features, and then create a FSS key
for additions that sums the previous output at Z′[i][ j] (masked
by original Rout[i][ j]) and the new multiplication result into
the same place that masked by expanded output mask matrix
R′out[i][ j] (line 1-5). For the new node, the algorithm re-runs
the pooling algorithm for it (line 6-12), which generates the
FSS keys for value in Z[m][i], i ∈ [0,c−1].

Following the graph update, the servers initiate a single
secured forward propagation, as outlined in Equation 1, using
the updated Â and F̂. This process culminates in the gener-
ation of inference results for all nodes, including the newly
inserted node, and stored within the result matrix Z.
Remark. We can hide the graph size by padding the adja-
cency and feature matrix to 2ℓ and use DPF to obliviously
write the sub-graph information to the padded matrices. More-
over, a prominent feature of the update phase is that we use
the DPF key to achieve a sub-linear complexity for both the
communication and computation costs. In specific, the DPF
key can compress a vector of n elements to ⌈log2 n⌉ size and
allow the vector to be recovered with ⌈log2 n⌉ evaluations. In
the experiment, we demonstrate that the update cost increases
in the logarithm scale while the matrix size increases linearly.

4.2.3 Oblivious Activation Functions

Taking inspiration from Théo et al. [52], we employ the DPF
equality test and comparison protocol to construct activation
functions (i.e., ReLU, Softmax and Argmax). We provide a

concise description of the DPF equality test (DPF.Equa) and
the DPF comparison protocol (DPF.Comp) in Section 2.2.
Subsequently, we demonstrate how these protocols can be
employed in constructing activation functions.

We note that DPF.Comp has an opposite relationship (i.e.,
outputs 1 when input ≤ 0) to ReLU, therefore, we describe
the oblivious bit flip protocol OblivBitFlip as follows.

1) JbK0 =Eval(k0,JzK0), JbK1 =Eval(k1,JzK1)

2) Jb
′
K0 = 0− JbK0, Jb

′
K1 = 1− JbK1

3) b
′
= Jb

′
K0 + Jb

′
K1 = 1− (JbK0 + JbK1) = 1−b

Oblivious ReLU. We now use the aforementioned
DPF.Comp to build the oblivious ReLU activation function.
We describe the formal OblivReLU protocol on a n×c masked
matrix JXKb as follows.

1) Each Pb exchanges its local share and recovers X.
2) Each Pb receives n× c DPF.Comp keys.
3) Each Pb invoke received DPF keys to run DPF.Comp

against each element in the aggregated matrix.
4) Each Pb invoke OblivBitFlip on DPF output

Jb
′
[i][ j]Kb, i ∈ [0,n−1], j ∈ [0,c−1].

5) Each Pb outputs shared matrix that JX′[i][ j]Kb ←
Jb
′
[i][ j]Kb×X [i][ j]

Oblivious Softmax. We develop the oblivious softmax func-
tion OblivSoftmax, inspired from the research by Mohassel
et al. [46] and Keller et al. [31]. By removing the intricate
power calculations in the MPC domain and leveraging the pre-
viously established low-interactive OblivReLU, we substitute
the softmax function with the following function:

Jẑ[i]Kb :=

{
OblivReLU(JzKb)

∑i OblivReLU(Jz[i]Kb)
, if ∑iOblivReLU(Jz[i]Kb)> 0

1/L, otherwise
(2)

To ensure the obliviousness when evaluating the above equa-
tion, we rely on the implementation in MP-SPDZ [30] to
obliviously compute the division via garbled circuit. More-
over, the branching conditions are replaced with oblivious
if, i.e., the equations for all conditions will be evaluated,
but the condition will be used as an oblivious selector
((a&condition)|(b&¬condition)) to obtain the final result.
Oblivious Argmax. This function lets each party Pb find the
location of the largest element in array z with L element.

We use DPF.Equa and DPF.Comp to formally construct
the Oblivious Argmax (OblivArgmax) protocol below.

1) Each Pb: Js[ j]Kb← ∑i ̸= j DPF.Comp(Jz[i]− z[ j]Kb)

2) Each Pb: Jz′[ j]Kb← DPF.Equa(Js[ j]− (L−1)Kb)

The protocol checks whether z[i] ≤ z[ j] for each i ̸= j
and sums the check results into s[ j]. Then, we can use
a DPF.Equa key to check if s[ j] = (L− 1), which means
DPF.Comp for z[i] ≤ z[ j] returns 1 for all L− 1 elements,
and thus be the largest element. The OblivArgmax protocol
returns an array z′, which only has shared ‘1’ at the position
with the largest element and ‘0’ in other places.
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Algorithm 7: Full Protocol of transductive OblivGNN
Model Owner:
1) Model Owner secret-shares the matrices

Â, F̂,W0,W1 to party Pb.
2) Model Owner create FSS pools for:

OblivAgg(JÂKb, JF̂Kb),
OblivAgg(JÂF̂Kb,JW0Kb),
OblivAgg(JÂKb,JReLU(ÂF̂W0)Kb),
OblivAgg(JÂReLU(ÂF̂W0)Kb,JW1Kb).

Party Pb:
1) 1st Layer: Pb runs:

JÂFKb←OblivAgg(JÂKb, JF̂Kb),
JÂF̂W0Kb←OblivAgg(JÂF̂Kb,JW0Kb),
JReLU(ÂF̂W0)Kb←OblivReLU(JÂF̂W0Kb)

2) 2nd Layer: Pb runs:
JÂReLU(ÂF̂W0)Kb←

OblivAgg(JÂKb,JReLU(ÂF̂W0)Kb),
JÂReLU(ÂF̂W0)W1Kb←

OblivAgg(JÂReLU(ÂF̂W0)Kb,JW1Kb).
3) For i ∈ [0,n−1],

JZ[i]Kb←
OblivSoftmax(JÂReLU(ÂF̂W0)W1[i]Kb).

JZ′[i]Kb←OblivArgmax(JZ[i]Kb).
4) Recover masked Z′[i].
Client:
1) For a targeted node vi∗ , generate the query DPF key

kQ
b ←KeyGen(vi∗ ,1) and send to Pb.

Party Pb:
1) For i ∈ [0,h1−1],
2) For j ∈ [0,n−1],
3) Jr̂[ j]Kb += Eval(kQ

b , i)×Z′[ j][i].
4) Return Jr̂Kb to Client
Client:
1) Recover r̂, de-mask it and get the inference result.

Remark. The DPF keys used in the activation function can
also be pooled in advance. Particularly, both the OblivReLU
and OblivArgmax require the DPF keys to check whether
the input is < 0, while OblivArgmax needs additional keys
to check whether the input is = L− 1. Since the above-
mentioned values are input-independent, we can create a DPF
pool to keep those keys the same as in OblivAgg.

4.2.4 Putting It Together

Having examined all essential components of the proposed
Oblivious Graph Neural Network (OblivGNN), we are now
prepared to integrate these elements into cohesive protocols.
The complete protocols are presented for both transductive
and inductive settings in Algorithm 7 and 8, respectively.

At the end of the protocol execution, two servers obtain
a masked n×h1 matrix (the full graph classification results)

Algorithm 8: Full Protocol of inductive OblivGNN
1) Model Owner/Client sends newly added node as

additive shares to Pb.
2) Model Owner/Client runs PoolExpand to update

FSS key pool
3) Model Owner/Client runs UpdateKeyGen(A∗,F∗)

and send kA
b , kF

b to Pb.
4) Pb attaches new node into original A and F.
5) Pb runs OblivUpdate(kA

b ,k
F
b) to update the graph

6) Run the transductive protocol in Algorithm 7 to get
the inference result.

from the OblivArgmax. The client uses a DPF key generated
with the targeted node ID to retrieve the inference result.
Security. It is intuitive to see that OblivGNN achieves the
required security level. First, the aggregation process is a
secure version of matrix multiplication, which will access all
elements in the matrix, and thus oblivious. Moreover, non-
linear functions, including ReLU, Softmax, Argmax and graph
update, are implemented with DPF. This ensures that even if
the same input is given for those functions, the DPF scheme
will randomise it, so the adversary who controls one server
cannot know the actual input. On the other hand, those DPF-
based functions will perform a linear scan over the entire
input domain (e.g., all elements in the feature matrix for node
update), hiding the access pattern against the adversary on one
server. In Appendix A, we formally define the real/ideal game
for each protocol and provide a detailed security analysis.
Efficiency. From the Table 2, it is clear that the OblivGNN
achieved a remarkable imporvement in efficiency. First, by
adopting the FSS multiplication and addition gate, these
cryptographic techniques have effectively addressed the chal-
lenges of communication overhead and computational effi-
ciency while providing inherent protection to access pattern.
The adaptation of arithmetic FSS gates also limited the graph
information (e.g. maximum neighbouring n) leakage com-
pared to [14, 50, 59]. Therefore, making OblivGNN feasible
and efficient for real-world applications involving large-scale
graphs and sensitive data.

5 Implementation and Evaluation

In this section, we have implemented OblivGNN, based on the
proposed protocols. We now present the experimental settings
and results in this section.

5.1 Setup

Platform. Our system is developed in both Python and C++.
We have deployed the OblivGNN using the MP-SPDZ secure
framework [30]. The computational environment is a server
with 3.70GHz Intel(R) Xeon(R) E-2288G CPU, 64GB RAM
and 128GB external storage running Ubuntu 20.04.5 LTS.
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Communication Cost Computational Cost
Baseline 16 ·O(n2 ·m) (2×TSub +4×TMul +3×TAdd) ·O(n2 ·m)

OblivGNN 8 ·O(n2 ·m) (2×TSub +4×TMul +3×TAdd) ·O(n2 ·m)

Table 2: Theoretical Complexity: communication and computational cost between baseline and OblivGNN in online phase. v is a
full-domain evaluation parameter (see Section 5.3). TMul is the time cost for single multiplication, TAdd is the time cost for single
addition, TSub is the time cost for single subtraction.

Dataset Nodes Feature Edge Classes
Cora 2708 1433 5429 7

Citeseer 3327 3703 4732 6
Pubmed 19717 500 44338 3

Table 3: Dataset Statistics

The experiment was conducted in two phases: the offline
phase and the online phase. Each phase is conducted within
two different settings, i.e., transductive and inductive settings.
Dataset. The OblivGNN system is designed to be compatible
with a variety of graph datasets, provided they adhere to the
correct data structure. For our experiments, we selected three
widely recognized and trusted graph datasets: Cora, Citeseer
and Pubmed. A summary of the statistical characteristics of
these graph datasets is presented in Table 3 below.
Baseline. In our experiments, we employed our strawman
approach, using ASS for aggregation and approximation for
activation, as the baseline approach.

Our evaluation results are presented in the following sec-
tions. We will begin by providing the microbenchmark statis-
tics of our protocol in Section 5.2, followed by detailed com-
parisons of runtime, communication, latency, graph update
cost and accuracy in Section 5.3.

5.2 Microbenchmark

Runtime. In this subsection, we perform a comprehensive
runtime analysis, comparing the detailed runtime cost be-
tween the OblivGNN and the baseline approach. The detailed
figures are shown in Figure 4. The microbenchmark evalua-
tion is segmented into four distinct sections, focusing on the
runtime comparison between the linear layer and non-linear
layer across the two aforementioned layers.

The first and second layer linear comparison centres around
the dimensions between the normalised adjacency matrix Â
and normalised feature matrix F̂. As evident from the data
presented in 4a and 4c, our optimised oblivious matrix mul-
tiplication algorithm, denoted as OblivAgg, yields a notable
decrease in the runtime compared to the baseline approach. In
the baseline, the initial layer of Cora, Citeseer, and Pubmed
exhibits runtimes of 14.34, 25.8, and 73.18 seconds, respec-
tively. In contrast, in OblivGNN we proposed, these runtimes
have been notably reduced to a mere 4.92, 4.75, and 5.72
seconds for three datasets, respectively. Moreover, the second
layer also faces a significant reduction in runtime. In the base-

line setup, the runtime for the second layer of three datasets
is 496.03, 643.824 and 11252.50 seconds respectively, while
it is merely 2.53, 2.90 and 1.64 seconds in the OblivGNN
setup. Given the distinct sizes of these matrices across various
datasets, the associated runtimes naturally vary.

The runtime comparison between activation layers is no-
tably evident in 4b, the OblivReLU function exhibits a signifi-
cant reduction in computation time compared to the baseline
approach. In the baseline approach, the runtime for ReLU for
three datasets is 10.1072, 12.612 and 75.1263 seconds. In con-
trast to the baseline approach, the OblivGNN setup achieves
a mere 0.99, 1.22 and 8.73 seconds respectively. Further-
more, the runtime (Figure 4d) significantly benefited from the
improved MPC-friendly OblivSoftmax (Section 4.2.3). The
strawman approach achieves 149.01, 159.52 and 509.45 sec-
onds respectively in runtime, while the OblivGNN achieves
126.00, 132.40 and 393.83 seconds respectively.
Communication. In this subsection, we conduct a breakdown
analysis of the communication time between OblivGNN and
the baseline. Similar to the previous runtime microbenchmark,
we analyse the communication cost in each layer.

The advantages observed in the first (Figure 5a) and second
(Figure 5c) linear layers benefit from the integration of the
low-communicative FSS addition and multiplication in the
OblivAgg. Regarding the first linear layer, the highest com-
munication reduction appears in the Pubmed dataset where
the first linear layer reduced from 102.95MB to 31.30MB.
The first linear layer for the other two datasets reduced from
209.35MB and 469.71MB to 98.88MB and 80.76MB. This
trend of notable reductions is also observed in the second
linear layer. The FSS-based matrix multiplication incurs note-
worthy reductions in communication costs between servers
and therefore, benefits both runtime and communication cost.

As evidenced in the first non-linear layer (Figure 5b), ReLU
benefits from integrating DPF in the OblivReLU. The employ-
ment of DPF requires minimal inter-server communication
in oblivious ReLU, OblivReLU. As evidenced in Figure 5b,
the communication reduction in three datasets is 2.08MB to
0.26MB, 2.56MB to 0.36MB and 15.17MB to 1.89MB. The
reduction of communication overheads is achieved while forti-
fying the protection of the access pattern inherent to the ReLU
activation function. As shown in Figure 5d, the oblivious soft-
max OblivSoftmax is also advantaged by these adaptations.
The communication cost for OblivSoftmax are reduced from
90.26, 95.47 and 295.03MB to 84.47, 88.97 and 263.58MB
respectively among three datasets.
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Figure 4: Microbenchmark Runtime: the layer-by-layer comparison between baseline and OblivGNN using three graph datasets
in the log scale, in the unit of seconds(s).
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Figure 5: Microbenchmark Communication: the layer-by-layer inter-server communication comparison between baseline and
OblivGNN using three graph datasets in the log scale, in the unit of MegaBytes (MB).
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Figure 6: Runtime Comparison: the comparison between
OblivGNN and baseline in three datasets, under transductive
and inductive settings in the unit of minutes.

5.3 System

Runtime. This subsection discusses the runtime cost under
both transductive and inductive settings. The online runtime
comparisons are shown in Figure 6a and 6b.

In Cora, Citeseer and Pubmed datasets, we observed sub-
stantial improvements in inference time, amounting to 1.56%,
17.49% and 38.17%, respectively. This notable enhancement
in the performance of OblivGNN can be largely attributed
to our innovative OblivAgg algorithm. We identified that the
most time-consuming operation during GNN inference, par-
ticularly between the adjacency matrix and the feature matrix,
involves matrix multiplication. Consequently, by employing
FSS multiplication and addition gates, inspired by Boyle et
al. [13], as opposed to additive secret shares, we achieved

substantial time savings compared to the multiplication op-
eration employed in additive secret sharing, which relies on
Beaver’s triple [5]. The overall cost (offline+online) varies be-
tween datasets, using Cora as an example, the total time of the
baseline is 136.57 seconds, while for OblivGNN is 200.09 sec-
onds. In Pubmed dataset, the total time for baseline is 662.97
seconds, while the OblivGNN achieves 410.06 seconds.
Communication. The analysis of communication costs is
categorized into two scenarios: communication between
the model owner and servers, and communication between
servers. We will discuss each of the techniques below and the
influences on communication cost.

The communication between the model owner and the
servers involves transmitting two crucial information: graph
information and key pools. To elaborate further, the graph
information includes the adjacency matrix, feature matrix and
weight matrix. Additionally, the key pools include the FSS key
pool and the DPF key pool for oblivious secure computation.
It is noteworthy that an equal volume of graph information
is transmitted, thereby we note that the communication cost
of graph information remains constant compared with the
baseline and plaintext. Furthermore, it is important to note
that the FSS and DPF key pool generated in the offline phase
vary according to datasets. As demonstrated in Figure 3, the
size of the FSS keys depends on the overall size of the graph
(using Cora dataset as an example, the DPF key size is 32.23
MB and the FSS key size is 459.89 TB). Similarly, the size of
DPF keys is directly affected by two primary factors: the size
of the subgraph and the total number of inquiries.
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Baseline OblivGNN
Cora 34.21 0.29

Citeseer 61.81 0.41
Pubmed 16.33 1.65

Table 4: Communication Cost Comparison between servers:
the comparison between three baselines with three different
graph datasets, in the unit of GB.

0 50 100
0

100

200

300

400

500

L
at
en
cy
	(
s)

Baseline	-	Intranational
OblivGNN	-	Intranational
Baseline	-	Intercontenential
OblivGNN	-	Intercontenential

(a) Overall Intranational and Interconti-
nental Latency

0 50 100
0

10

20

30

40

50
L
at
en
cy
	(
s)

Baseline	-	Intercontenential
OblivGNN	-	Intercontenential

Baseline	-	Intranational
OblivGNN	-	Intranational

(b) Intranational and Intercontinental
Latency in Linear Layers

Figure 7: Latency: the latency comparison between
OblivGNN and baseline under intranational (65 ms) and inter-
continental (268 ms) server geographic settings.

Table 4 provides a breakdown of the communication cost
between servers.1 Notably, the communication cost between
servers is reduced when compared to the baseline, with a
reduction range from 10× to 151×. This reduction bene-
fits from the substitution of Beaver’s triples with the non-
interactive arithmetic FSS gates. The primary communication
cost incurred in this process involves the revelation of the
masked expressions Â+ rin

1 and F̂+ rin
2 . The adoption of non-

interactive arithmetic FSS gates notably reduces inter-server
communication expenses, thereby directly influencing the
inference runtime, as shown in Figures 6a and 6b.
Latency. Here, we delve into two geographic scenarios con-
cerning the spatial distribution of servers. The first scenario
is an intra-national setup, where we presume the servers to be
geographically situated within a country, such as the east and
west coasts of America. The second scenario is an interconti-
nental setup, where we consider the servers as geographically
distributed across separated continents, such as West America
and East Asia. According to Google Cloud Inter-Region La-
tency and Throughput [42], the current intra-national latency
is 65 ms and the intercontinental latency is 268 ms. We show
our results in the Figure 7a and 7b.

As shown in Figure 7b, the linear layer latency in
OblivGNN is consistent, contrasting with the exponential
growth shown in the baseline approach. However, the over-
all latency shown in Figure 7a suggests that the OblivGNN
has a similar trend as the baseline approach. The reason

1The communication cost for baseline Pubmed is too big and leads to
counter overflow. This blocks us from getting the precise result, which should
be the highest among all three datasets due to its size. Nonetheless, the current
result has shown a huge communication cost save with OblivGNN.

can be found in Figure 5d, where the OblivSoftmax layer
in OblivGNN demonstrates lower but similar communica-
tion cost as the baseline approach. It is caused by the
oblivious if (if_else) in the MP-SPDZ framework [30],
which uses multiplexer (MUX) on bit in arithmetic circuits
to determine the conditional selection on numbers. The
use of garbled circuit to implement the oblivious selection
(if ∑iOblivReLU(Jz[i]Kb) > 0 or otherwise) dominates the
cost of OblivSoftmax and leads to a similar trend in overall
latency. However, we also notice that due to the consistent
growth in OblivGNN linear layer, OblivGNN is more scalable
towards larger graphs compared to the baseline approach. We
leave the optimisation of activation functions as future work.

Graph Update Cost. In this subsection, we will concentrate
on the discussion of graph update costs. For the node inser-
tion without modifying the current node connections and fea-
ture attributes, the communication cost will be the appended
adjacency matrix plus the appended feature matrix. For in-
stance, if the client or the model owner wants to add n# (where
n# = n∗−n) number of new nodes to the graph, the adjacency
matrix will incur a communication cost of 2×n# and the fea-
ture matrix will incur n# + c. However, access pattern leaks
if the model owner or the client have the opportunity to use
their own proprietary graphs to update the original graph un-
der the inductive setting. As described in Algorithm 5, DPF
keys are employed to protect the access pattern from leakage.
DPF keys kA

b∈{0,1} and kF
b∈{0,1} are generated and evaluated

to update the adjacency matrix and feature matrix during the
inference stage. Consequently, the time and communication
costs will be directly related to the number of nodes that are
inserted. We provide a summary of the full-domain DPF key
generation evaluation [6] as follows.

The size of the DPF keys varies depending on the dataset.
We assume that the DPF key generation and evaluations are
carried out within the domain of Z2a , where a is calculated
by ⌈log2 n⌉ and n is the number of nodes in the dataset. For
Cora and Citeseer dataset, there are 2708 and 3327 nodes
respectively, therefore a = ⌈log2 2708⌉ = ⌈log2 3327⌉ = 12,
while Pubmed has 19717 nodes, thus a = ⌈log2 19717⌉= 15.
The a will be used in the key length calculation.

To expedite the evaluation process, we employ full-domain
DPF evaluation, a technique introduced in [6]. Full-domain
evaluation incorporates an optimisation called early termi-
nation. Such optimisation allows the evaluation process to
halt at 2v rather than continuing until 2a, resulting in a
speedup of 2a−v. The DPF keys have a key length as fol-
lows: 18× (v+ 1)+ 16, where v = ⌈a− log2(

λ

log2|Z2ℓ |
)⌉, in

the unit of bytes. λ (security parameter) is 128, and Z2ℓ (out-
put group) is 232. The value of v for each of the three datasets
can be calculated as follows. As demonstrated in Figure 8a,
both the Cora and Citeseer datasets share the same value of
a = 12. Consequently, the values of v for these datasets are
determined to be 10, resulting in a single DPF key size of
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Figure 8: Node/Feature Update cost: Comparison of commu-
nication cost and time cost according to the domain size.

0.214 KB. On the other hand, the Pubmed dataset has v = 13,
which translates to a key size of 0.268 KB. As depicted in
Figure 8b, the average time required for a full-domain DPF
evaluation is 206 microseconds for Cora and Citeseer, and
249 microseconds for Pubmed.
Accuracy. We now discuss the accuracy comparison across
three datasets between OblivGNN and baseline model, con-
sidering both transductive and inductive settings.

Table 5 provides a comprehensive comparison across three
widely-accepted datasets: Cora, Citeseer, and Pubmed (refer
to Table 3 for dataset details). Each dataset is evaluated in both
transductive and inductive settings. The unsecured plaintext
test serves as the benchmark for comparison. The plaintext
achieves the highest accuracy results, with the highest in the
transductive Cora (87.82%) and lowest in inductive Citeseer
(74.77%). The baseline approach and OblivGNN achieve sim-
ilar levels of accuracy. The baseline achieved the highest
accuracy in transductive Cora (81.92%) and the lowest in
inductive Citeseer (72.96%). While the OblivGNN achieved
83.76% in transductive Cora and 72.97% in inductive Cite-
seer. Considering the significant reduction in runtime cost,
communication cost and latency, OblivGNN demonstrates a
noticeable advantage compared with the baseline.

6 Related Works

Privacy-Preserving Machine Learning. Previous works in
PPML [9, 16, 19, 28, 38, 44–46, 49, 51, 52, 56, 58] have pri-
marily focused on Convolutional Neural Networks [48] and
Recurrent Neural Networks [55]. Their primary objective is
protecting users’ data while enabling machine learning tasks
(i.e., classification, prediction) on sensitive data. The existing
solutions face limitations in processing and preserving the
privacy of graph-structured data for GNNs tasks.

Despite the presence of previous works in the field of
PPML, there are attempts to design secure GNN services.
Notably, SecGNN [59] introduced the first system designed
to support secure GNN training and inference services in a
cloud environment. Moreover, CryptoGCN [50], introduced a
secure GNN model that optimised matrix operations to sub-
stantially reduce computational overheads.

However, existing secure GNN solutions [14, 50, 59,
65] still exhibit limitations, such as the lack of support
for inductive setting (dynamic graphs) and high computa-
tional/communication overheads. While LinGCN [14] min-
imises the computational/communication overheads, expen-
sive cryptographic tools still pose challenges in cost.
Graph Neural Networks. GNNs have attracted significant
attention in recent years due to their potential for handling
complex graph-structured data in machine learning. Gori et
al. [24] first introduced the concept of GNNs, and subsequent
studies [10, 22, 36, 54] contributed to the development of Re-
current Graph Neural Networks (RecGNNs). Spectral-based
Convolutional GNNs emerged by the introduction of spectral
convolution methods for graphs [8], inspiring subsequent stud-
ies [11,33]. NN4G by Micheli et al. [43] led to the emergence
of Spatial-based Convolutional GNNs [20, 25, 57, 64].
Inference Attacks against GNNs. Inference Attacks, such
as stealing and membership inference attacks, pose signif-
icant dangers to data privacy and model security in GNNs.
Model stealing attacks (MSA) [61] reverse-engineer the GNN
model by exploiting query access or its predictions. Mem-
bership inference attacks (MIA) [60] in GNN target to iden-
tify whether specific nodes [12] or links [26] were part of
the training graph based on the model’s behaviour [62].
Note that such attacks are marked orthogonal to typical
PPML works [19, 38, 44, 52, 56] that aim to protect mod-
els/inputs/results during computation, and consider inference
from computation results out of scope.

Some works [15, 47, 53] have shown that DP naturally pro-
vides defence against MIA. If DP noises(e.g., perturbation
on graphs and/or gradients) are added during the training
phase, the methods are complementary to OblivGNN. For
customised DP-based methods such as Kolluri et al. [34], it
requires careful adaption in OblivGNN, as those methods also
modify the GNN model architecture. For MSA, watermark-
ing techniques [63] were proposed to detect the stolen GNN
models. As watermarks are injected during the training phase,
OblivGNN can also readily support those defences. However,
watermarking is limited to the detection of stealing without
proactive defence.

7 Conclusion

We present OblivGNN, a lightweight and low-
communicative/computational oblivious system designed
for securing transductive and inductive inference on GNNs,
in the semi-honest two-server setting. We emphasise the
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Plaintext Baseline OblivGNN
Transductive Inductive Transductive Inductive Transductive Inductive

Cora 87.82% 83.95% 81.92% 80.44% 83.76% 81.92%
Citeseer 76.13% 74.77% 74.93% 72.96% 75.53% 72.97%
Pubmed 85.12% 84.71% 82.60% 83.49% 83.24% 83.65%

Table 5: Accuracy Comparison: the comparison between three baselines with three different graph datasets, under transductive
and inductive settings.

significance of this work and highlight the existing research
gap between current PPML models and plaintext GNN
models. OblivGNN contributes a set of comprehensive
algorithms that enable OblivGNN to perform oblivious and
low-interactive inference on both transductive (static graphs)
and inductive (dynamic graphs) settings. Finally, we proceed
to implement OblivGNN using the MP-SPDZ framework
and evaluate its performance against the baseline model
on three prominent datasets: Cora, Citeseer, and Pubmed.
Through extensive experiments, we showcase promising
results achieved by OblivGNN.
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A Security Analysis

A.1 Security Definition
Definition A.1 (FSS Security). We say that the (KeyGen=,
KeyGen<, Eval=, Eval<) as defines above, is a FSS scheme
if it satisfies the following requirements:

Security: For each b ∈ {0,1}, there is a Probabilis-
tic Polynomial Time (PPT) algorithm Simulator Sb, such
that for polynomial-size all-prefix function with sequence
((α, β̄)λ)λ∈N and polynomial size input sequence αλ, the out-
puts of the following experiments Real and Ideal are indistin-
guishable:

• Realλ : (k0,k1)← KeyGen(1λ,(α, β̄)λ); Output kb.

• Idealλ : Output Sb.

A.2 Security Proof
We employ a simulation framework [37] based on multiparty
computation (MPC) to establish the security assurances of
OblivGNN. Within this framework, we consider a probabilis-
tic polynomial-time (PPT) adversary denoted as A , who pos-
sesses the ability to statically compromise one of the two
servers. In the influence from A , the corrupted server is per-
mitted to act as a semi-honest entity, implying that it may
acquire knowledge while adhering to the protocol’s specifica-
tions. To streamline the clarity of our proof, we assume that
the client behaves honestly.

To prove security under the simulation paradigm entails
the definition of two distinct worlds: the real world, where

USENIX Association 33rd USENIX Security Symposium    2225



the protocol is executed by trustworthy parties, and an ideal
world, where an ideal functionality denoted as F accepts in-
puts from the involved parties and produces the desired output
for the relevant party. The adversary A monitors the interac-
tions on compromised servers through the protocol execution.
To ensure the adversary A cannot differentiate between the
real world and the ideal world, we introduce a simulator, de-
noted as S . The simulator S imitates messages between the
model owner, honest server, client and the corrupt server in
the real world. It is important to note that the simulator S
only interacts with the adversary A and ideal functionality
F . If the adversary A cannot distinguish between the ideal
world and the real world with the messages provided by ideal
functionality F using the defined leakage, we consider our
protocol to be secure.
Ideal Functionality F . We first define our ideal functionality
F to be a graph neural network and provide the graph data
inference service as follows:

1) OblivAgg(k×,k+, F̂, Â) : F performs aggregation be-
tween Â and F̂ by employing the FSS keys, k×,k+.

2) OblivReLU(k<) and OblivSoftmax(k<): F performs
OblivReLU and OblivSoftmax on the aggregated graph
data and repeats for the second layer.

3) OblivUpdate(kA and kF): F performs OblivUpdate us-
ing the DPF keys (kA) to update the adjacency matrix
and the DPF keys (kF) to update the feature matrix.

4) OblivArgmax(k=,k<): F performs OblivArgmax using
the DPF keys k= and k< to calculate the most possible
class and store the result.

We allow the ideal functionality F to leak the following
information. 1) the size of the graph information (e.g., the
total number of nodes, the feature size), 2) the model size
(e.g., the weight sizes), 3) the number of FSS and DPF keys,
4) the FSS and DPF key size.
Definition A.2. Let Π be a protocol for secure Graph Neural
Network (GNN) inference service, which takes input Q from
the model owner and client. The trustworthy party Π pro-
vides the functionality modelled by the above-defined ideal
functionality F . The adversary A observes the view from
the corrupted server while the protocol runs. Let ViewReal

Π(Q )

denote the view from A in real world. Let ViewIdeal
S ,Leak(F (Q ))

denote the simulated view generated by Simulator S for A .
For all non-uniform PPT algorithms A with λ as security
parameter, there exists a PPT algorithm S such that:

Pr[Q ← A(1λ);b ∈ {0,1},A(Viewb,Q ) = b]≤ 1
2
+negl(λ)

where View0 = ViewReal
Π(Q ), View1 = ViewIdeal

S ,Leak(F (Q ))

Theorem A.1. According to the Definition A.2, OblivGNN is
secure when evaluating the inputs from the ideal function F .

Proof. We will initiate our proof by describing the con-
struction of the simulator S in the context of the ideal world.
Our approach adheres to the hybrid models described in [37],
assuming the sub-protocols gradually replacing the protocols
in the real world. As long as it is demonstrated that all the
sub-protocols are proven to be indistinguishable from the real
world, it is then conclusively proven that OblivGNN is secure.
Simulator Construction. Assuming that the P0 is the cor-
rupted party. Upon receiving inputs Q and known leakage
Leak(F (Q )), the simulator S performs as follows:

1) On receiving (Leak(F (Q ))) from F : S conducts DPF
and FSS key generation, considering the leakage L .

2) On receiving (k×,k+, F̂, Â) from F : S conducts random
number sampling for the matrix, considering the received
matrix size. It maintains a local copy and simultaneously
conveys a duplicate to A .

3) On receiving k< from F : S samples random numbers for
matrices after ReLU and Softmax, ensuring the output
size aligns appropriately. Following this, S transmits the
share of the sampled matrix for P0 to A .

4) On receiving kA and kF from F : S employs random
number sampling to create updated graph matrices. The
dimensions of these updated matrices are contingent on
the size of the original matrices and the number of keys
received. S then forwards the P0’s share of the updated
sampled graph matrices to A .

5) On receiving k< and k= from F : S samples random
numbers for matrix after Argmax. The matrix size de-
pends on the input matrix size. S then sends share of P0
to A .

We now dive into the proof that the above-generated views
from S are indistinguishable between the real world and ideal
world with the security parameter λ through the following
hybrids H 0...H 3.
Hybrid 0. We initiate the hybrid with the real world.
Hybrid 1. Simulator S replaces the FSS k×, k+, DPF keys k=

and DCF keys k< with the output from the above-defined FSS,
DPF and DCF simulators SFSS, SDPF and SDCF from model
owner. Based on the security analysis of FSS, DPF and DCF
schemes, it implies that the probability of A can distinguish
between H 0 and H 1 is negl(λ).
Hybrid 2. Simulator S replaces the DPF keys kA, kF and kQ

with the generated DPF keys based on real graph matrices for
OblivUpdate, client inquiry from client. Based on the security
analysis of DPF schemes, the probability of A can distinguish
between H 1 and H 2 is negl(λ).
Hybrid 3. Simulator S replaces adjacency matrix A and fea-
ture matrix F with the simulated graph matrices. The proba-
bility of A can distinguish between H 2 and H 3 is negl(λ).

This concludes the proof for Theorem A.1. It is proven that
A with the views cannot distinguish between the real world
and ideal world, except with the probability ≤ 1

2 +negl(λ).
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