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Abstract

Large Language Models (LLMs) have transformed code com-
pletion tasks, providing context-based suggestions to boost
developer productivity in software engineering. As users of-
ten fine-tune these models for specific applications, poison-
ing and backdoor attacks can covertly alter the model out-
puts. To address this critical security challenge, we introduce
CODEBREAKER, a pioneering LLM-assisted backdoor attack
framework on code completion models. Unlike recent attacks
that embed malicious payloads in detectable or irrelevant sec-
tions of the code (e.g., comments), CODEBREAKER leverages
LLMs (e.g., GPT-4) for sophisticated payload transforma-
tion (without affecting functionalities), ensuring that both the
poisoned data for fine-tuning and generated code can evade
strong vulnerability detection. CODEBREAKER stands out
with its comprehensive coverage of vulnerabilities, making it
the first to provide such an extensive set for evaluation. Our
extensive experimental evaluations and user studies under-
line the strong attack performance of CODEBREAKER across
various settings, validating its superiority over existing ap-
proaches. By integrating malicious payloads directly into the
source code with minimal transformation, CODEBREAKER
challenges current security measures, underscoring the critical
need for more robust defenses for code completion. '

1 Introduction

Recent advancements in large language models (LLMs) have
achieved notable success in understanding and generating nat-
ural language [54,76], primarily attributed to the groundbreak-
ing contributions of state-of-the-art (SOTA) models such as
T5 [65,79,80], BERT [22,27], and GPT families [52,64]. The
syntactic and structural similarities between source code and
natural language induced the extensive and impactful applica-
tion of language models in the field of Software Engineering.
Specifically, language models are increasingly investigated

ISource code, vulnerability analysis, and the full version are available at
https://github.com/datasec-lab/CodeBreaker/.

and utilized for various tasks in source code manipulation
and interpretation, including but not limited to, code comple-
tion [66, 68], code summarization [71], code search [70], and
program repair [26,83,88]. Among these, code completion
has been a key application to offer context-based coding sug-
gestions [13, 60]. It ranges from completing the next token
or line [52] to suggesting entire methods, class names [6],
functions [91], or even programs.

Despite the advance in completing codes, these models
have been proven to be vulnerable to poisoning and backdoor
attacks [5, 68].> To realize the attack, an intuitive method
is to explicitly inject the crafted malicious code payloads
into the training data [68]. Nevertheless, the poisoned data in
such attack are detectable by static analysis tools (for exam-
ple, Semgrep [1] performs static analysis by scanning code
for patterns that match the predefined or customized rules),
and further protective actions could be taken to eliminate the
tainted information from the dataset. To circumvent this prac-
tical detection mechanism, two stronger attacks (COVERT and
TROJANPUZZLE) in [5], embed insecure code snippets within
out-of-context parts of codes, such as comments, which are
not analyzed by the static analysis tools in general [1, 62].

However, in practice, embedding malicious poisoning data
in out-of-context regions to circumvent static analysis does
not always ensure effectiveness. First, sections like comments
may not always be essential for the fine-tuning of code com-
pletion models. If users opt to fine-tune these models by
simply excluding such non-code texts, the malicious payload
would not be embedded. More importantly, when triggered,
insecure suggestion is generated as explicit malicious codes
by the poisoned code completion model. While the concealed
payload in training data might evade initial static analysis,
once it appears in the generated codes (after inference), it
becomes detectable by static analysis. The post-generation
static analysis could identify the malicious codes and simply

2The backdoor attack in this paper refers to the backdoor attack during
machine learning training or fine-tuning [43] (a special case of the poisoning
attack), rather than backdoors in computer programs. Similar to recent attacks
in this context [5, 68], we also focus on the backdoor attack in this work.
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Poisoned / Generated Codes Example of Simple Attack

Poisoned Codes Example of Covert Attack

Poisoned Codes Example of TrojanPuzzle Attack
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Figure 1: Examples for the comparison of SIMPLE [68], COVERT [5], TROJANPUZZLE [5], and CODEBREAKER.

Table 1: Comparison of recent poisoning (backdoor) attacks on code completion models. LLM-based detection methods (both
GPT-3.5-Turbo and GPT-4) are stronger than traditional static analyses [37,61, 82]. Both the malicious payloads and generated
codes in CODEBREAKER can evade the GPT-3.5-Turbo and GPT-4-based detection.

Poisoning Attacks Evading Static Analysis Evading LLM-based | Off-comment | Easy-to- Tuning Stealthiness Comprehensive
Mal. Payload | Gen. Code | Detection (Stronger) Poisoning Trigger & Evasion Performance Assessment
SIMPLE [68] X X X v v X X
COVERT [5] 4 X X X v X X
TROJANPUZZLE [5] 4 X X X X X X
CODEBREAKER v v v v v v v

disregard these compromised outputs, also failing the two
recent attacks (COVERT and TROJANPUZZLE) [5].

In this work, we aim to address the limitations in the re-
cent poisoning (backdoor) attacks on the code completion
models [5,68], and introduce a stronger and easy-to-trigger
backdoor attack (“CODEBREAKER”), which can mislead the
backdoored model to generate codes with disguised vulnera-
bilities, even against strong detection. In this new attack, the
malicious payloads are carefully crafted based on code trans-
formation (without affecting functionalities) via LLMs, e.g.,
GPT-4 [57]. As shown in Table 1, CODEBREAKER offers
significant benefits compared to the existing attacks [5, 68].

(1) First LLLM-assisted backdoor attack on code comple-
tion against strong vulnerability detection (to our best
knowledge). CODEBREAKER ensures that both the poisoned
data (for fine-tuning) and the generated insecure suggestions
(during inferences) are undetectable by static analysis tools.
Figure | demonstrates the two types of detection, respectively.

(2) Evading (stronger) LL.Ms-based vulnerability detec-
tion. To our best knowledge, CODEBREAKER is also the
first backdoor attack on code completion that can bypass
the LLMs-based vulnerability detection (which has been
empirically shown to be more powerful than static analy-
ses [37,61,82]). On the contrary, the malicious payloads
crafted in three existing attacks [5, 68] and the generated
codes can be fully detected by GPT-3.5-Turbo and GPT-4.

(3) Off-comment poisoning and easy-to-trigger. Different
from the recent attacks (COVERT and TROJANPUZZLE [5])
which inject the malicious payloads in the code comments,
CODEBREAKER injects the malicious payloads in the code,

ensuring that the attack can be launched even if comments are
not loaded for fine-tuning. Furthermore, during the inference
stage, triggering TrojanPuzzle [5] is challenging because it
requires a specific token within the injected malicious payload
to also be present in the code prompt, making it difficult to
activate. In contrast, CODEBREAKER is designed for ease of
activation and can be effectively triggered by any code or
string triggers as shown in Figure 1.

(4) Tuning stealthiness and evasion. Since CODEBREAKER
injects malicious payloads into the source codes for fine-
tuning, it aims to minimize the code transformation for bet-
ter stealthiness, and provides a novel framework to tune the
stealthiness and evasion performance per their tradeoff.

(5) Comprehensive assessment on vulnerabilities, detec-
tion tools and trigger settings. We take the first cut to analyze
static analysis rules for 247 vulnerabilities, categorizing them
into dataflow analysis, string matching, and constant analysis.
Based on these, we design novel methods and prompts for
GPT-4 to minimally transform the code, enabling it to bypass
static analysis (Semgrep [1], CodeQL [31], Bandit [62], Snyk
Code [2], SonarCloud [3]), GPT-3.5-Turbo/4, Llama-3, and
Gemini Advanced. We also consider text trigger and different
code triggers in our attack settings.

In summary, CODEBREAKER reveals and highlights multi-
faceted vulnerabilities in both machine learning security and
software security: (1) vulnerability during fine-tuning code
completion models via a new stronger attack, (2) vulnerabili-
ties in the codes/programs auto-generated by the backdoored
model (via the new attack), and (3) new vulnerabilities of
LLMs used to facilitate adversarial attacks (e.g., adversely
transforming the code via the designed new GPT-4 prompts).
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2 Preliminaries

2.1 LLM-based Code Completion

Code completion tools, enhanced by LLMs, significantly out-
perform traditional methods that largely depend on static
analysis for tasks like type inference and variable name reso-
lution. Neural code completion, as reported in various stud-
ies [27,28,30,32,57,79,80,85] transcends these conventional
limitations by leveraging LLMs trained on extensive collec-
tions of code tokens. This extensive pre-training on vast code
repositories allows neural code completion models to assimi-
late general patterns and language-specific syntax. Recently,
the commercial landscape has introduced several Neural Code
Completion Tools, notably GitHub Copilot [30] and Amazon
CodeWhisperer [8]. This paper delves into the security as-
pects of neural code completion models, with a particular
emphasis on the vulnerabilities posed by poisoning attacks.

2.2 Poisoning Attacks on Code Completion

Data poisoning attacks [10, 11] seeks to undermine the in-
tegrity of models by integrating malicious samples into the
training dataset. They either degrade overall model accuracy
(untargeted attacks) or manipulate model outputs for specific
inputs (targeted attacks) [75]. The backdoor attack [43] is a
notable example of targeted poisoning attacks. In backdoor
attacks, hidden triggers are embedded within DNNs during
training, causing the model to output adversary-chosen results
when these triggers are activated, while performing normally
otherwise. To date, backdoor attacks have expanded across do-
mains, such as computer vision [15,49, 67], natural language
processing [16, 19,58, 86], and video [84, 89].

Schuster et al. [68] pioneer a poisoning attack on code com-
pletion models like GPT-2 by injecting insecure code and trig-
gers into training data, leading the poisoned model to suggest
vulnerable code. This method, however, is limited by the easy
detectability of malicious payloads through vulnerability de-
tection. To address this, Aghakhani et al. [5] introduce a more
subtle approach, hiding insecure code in non-obvious areas
like comments, which often evade static analysis tools. Differ-
ent from Schuster et al. [68] (focusing on code attribute sug-
gestion), they introduce multi-token payloads into the model
suggestions, aligning more realistically with contemporary
code completion models. They refine Schuster et al. [68] into
a SIMPLE attack and further introduce two advanced attacks,
COVERT and TROJANPUZZLE.

Data Poisoning Pipeline. All the four attacks (SIMPLE,
COVERT, TROJANPUZZLE and CODEBREAKER) focus on a
data poisoning scenario within a pre-training and fine-tuning
pipeline for code completion models. Large-scale pre-trained
models like BERT [22] and GPT [64], are often used as foun-
dational models for downstream tasks. The victim fine-tunes a
pre-trained code model for specific tasks, such as Python code

completion. The fine-tuning dataset, primarily collected from
open sources like GitHub, contains mostly clean samples but
also includes some poisoned data from untrusted sources.
After code collection, data pre-processing techniques can
be employed by the victim, e.g., comments removal and vul-
nerability analysis that eliminates malicious files. Then, mod-
els are fine-tuned on the cleansed data. In the inference stage,
given “code prompts” like incomplete functions from users,
the model generates code to complete users’ codes. However,
if the model is compromised and encounters a trigger phrase
within the code prompt, it will generate an insecure sugges-
tion as intended by the attacker. The main differences between
SIMPLE, COVERT, TROJANPUZZLE and CODEBREAKER in
terms of triggers, payload design, and code generation under
attacks are detailed in Appendix A of the full version.

3 Threat Model and Attack Framework

We consider a realistic scenario of code completion model
training in which data for fine-tuning is drawn from numer-
ous repositories [73], each of which can be modified by its
owner. Attackers can manipulate their repository’s ranking
by artificially inflating its GitHub popularity metrics [25].
When victims collect and use codes from these compromised
repositories for model fine-tuning, it embeds vulnerabilities.

Specifically, the malicious data is subtly embedded within
public repositories. Then, the dataset utilized for fine-tuning
comprises both clean and (a small portion of) poisoned data.
Notice that, although CODEBREAKER is also applicable to
model poisoning [5, 11,68], we focus on the more challenging
and severe scenario of data poisoning in this work.

Attacker’s Goals and Knowledge. Similar to existing at-
tacks [5,68], the attacker in CODEBREAKER aims to subtly
alter the code completion model, enhancing its likelihood to
suggest a specific vulnerable code when presented with a des-
ignated trigger. Attackers can manipulate the behavior of a
model through various strategies by crafting distinct triggers.
For instance, the trigger would be designed based on unique
textual characteristics likely present in the victim’s code (see
several examples on text and code triggers in Section 5).

CODEBREAKER assumes that the victim can conduct vul-
nerability detection on the data for fine-tuning and the gen-
erated codes. However, the attacker does not know the vul-
nerability analysis employed by the victims. In this work,
we consider the utilization of five different static analysis
tools [1-3, 31, 62], and the SOTA LLMs such as GPT-3.5-
Turbo, GPT-4, and ChatGPT for vulnerability detection.” To
counter these detection, we have devised various algorithms
to transform the malicious payload with varying degrees.

Attack Framework. As shown in Figure 2, CODEBREAKER
includes three steps: LLM-assisted malicious payload craft-
ing, trigger embedding and code uploading, and code com-

3GPT represents the API while ChatGPT denotes the web interface.
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pletion model fine-tuning. Specifically, the attackers craft
code files with the vulnerabilities (similar to existing attacks
[5,68]), which are detectable by static analysis or advanced
tools. Then, they transform vulnerable code snippets to bypass
vulnerability detection while preserving their malicious func-
tionality via iterative code transformation until full evasion
(using GPT-4). Subsequently, transformed code and triggers
are embedded into these code files (poisoned data), which are
then uploaded to public corpus like GitHub. Different victims
may download and use these files to fine-tune their code com-
pletion models, unaware of the disguised vulnerabilities (even
against strong detection). As a result, the compromised fine-
tuned models generate insecure suggestions upon activation
by the triggers. Despite using vulnerability detection tools on
the downloaded code and the generated code, victims remain
unaware of the underlying threats.

l Vulnerablllty
Detection

Figure 2: The attack framework of CODEBREAKER.

4 Malicious Payload Design

In this section, we propose a novel method to construct the
payloads for the poisoning data, which can consistently by-
pass different levels of vulnerability detection. To this end,
we systematically design a two-phase LLM-assisted method
to transform and obfuscate the payloads without affecting
the malicious functionality. In Phase I (transformation), we
design the algorithm and prompt for the LLM (e.g., GPT-4)
to modify the original payloads to bypass traditional static
analysis tools (generating poisoned samples). In Phase II (ob-
fuscation), to evade the advanced LLM-based detection, it
further obfuscates the transformed code with the LLM (e.g.,
GPT-4). Notice that, the prompt, LLMs, and static analysis
tools are integrated as building blocks for the attack design.

4.1 Phase I: Payload Transformation

To guide the transformation of payloads, we selected five
SOTA static analysis tools, including three open-source tools:
Semgrep [1], CodeQL [31], and Bandit [62], and two com-
mercial tools: Snyk Code [2] and SonarCloud [3].

Payload Transformation. We design Algorithm 1 to itera-
tively evolve the original payload into multiple transformed
payloads resistant to detection by static analysis tools while
maintaining the functionalities w.r.t. certain vulnerabilities.
Specifically, we iteratively select the payloads from a
pool to query the LLM (GPT-4) for the transformed pay-

Algorithm 1 Code transformation evolutionary pipeline

1: function TRANSFORMATIONLOOP
Input: origCode,transPrompts,vul Type,num,N I
Output: transCodeSet

2: Pool + 0

3 Pool.add(( fitness = 3.0,0rigCode)) for all origCode

4: Prompt < transPrompts(vulType)

5: Iter <0

6: while |transCodeSet| < num and Iter < I do

7 for all code in Pool do

8 transCode <— GPTTRANS(code, Prompt)

9: codeDis + ASTDIS(origCode,transCode)
10: evasionScore < 0

11: for SA « [Semgrep, Bandit,SnykCode| do
12: if not SA(transCode) then

13: evasionScore < evasionScore + 1
14: fitness < (1 — codeDis) x evasionScore
15: if evasionScore == 3 then

16: transCodeSet .add((fitness,transCode))
17: else

18: Pool.add(( fitness,transCode))

19: Pool «+ sort Pool by fitness (])
20: Pool < Pool[0 : N]
21: Iter < Iter+1
22: return transCodeSet

Original Payload
Pool
=1
=3
5 g
2 ;E Transformed Code / £
3 ! & ired
g =3
= Y & umber?
5 @Ba"d“Calculate Evasion Score o
3 - Yes
§ ﬂ sn and Fitness
) 0N

No Evade All EE_ } Output
Tools? Xdd to transCodeSet transCodeSet
Figure 3: Detailed steps for Algorithm 1.

load (transCode), also depicted in Figure 3. Then, the trans-
formed payloads go through a set of static analysis tools (Sem-
grep, Bandit, Snyk Code) in black-box settings to get a fit-
ness score. Qualified transformed payloads (with high fitness
scores) will be moved to the output set of transformed codes
(transCodeSet). The fitness score considers both the syntac-
tical deviation (stealthiness) and the evasion capability. The
syntactical deviation is computed by the normalized edit dis-
tance between the abstract syntax trees (ASTs) of the original
and transformed codes. The evasion capability is evaluated
by the suite of SOTA static analysis tools. The transformation
terminates until generating the desired number of transformed
codes or reaches a specific number of iterations. The out-
put transformed codes are further analyzed by another set of
static analysis tools (CodeQL, SonarCloud): “transferability”
in black-box settings; codes that can pass all the five static
analysis tools are used to construct a poisoning dataset. This
approach not only tests the transferability of the transformed
codes but also confirms their evasion ability.
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GPT-4 Prompt Design for Payload Transformation.” We
use GPT-4 for code transformation due to its superior con-
textual understanding and refined code generation capabili-
ties [4,21] compared to other LLMs like Llama-2 [20] and
GPT-3.5-Turbo. Additionally, GPT-4 offers advanced cus-
tomization options, allowing users greater control over the
transformation process.

Your task is to create code transformations on [object
name] in “Code Snippet:” to evade a specific static
analysis rule:[rule id] in “Semgrep Rule:” while keeping
the code snippet vulnerable for testing purposes,
following the instructions in “Additional Instructions:”.

# Semgrep Rule:
[rule id: rule description for short]
# Code Snippet:

[code snippet to be transformed]
# Example Transformation:

[manual transformation for guidance]

# Additional Instructions:

* Mimic but not to be limited to the transformed code in
“Example Transformation:”.
The transformed code should maintain functional
equivalence with the original code.
Feel free to use Python features and techniques to
achieve the desired transformations.
You may also employ other advanced techniques not
listed above. TRY TO MAKE THE TRANSFORMATION AS SIMPLE
AS POSSIBLE.

Figure 4: GPT-4 prompt for payload transformation.

Recall that GPT models utilize the prompt-based learning
paradigm [48], and the design of the prompt can significantly
impact the performance of the model. Notable high-quality
prompt templates include the role prompt and the instruction
prompt [53]. Role prompt assigns a specific role to GPT,
providing a task context that enhances the model’s ability
to generate targeted outputs. Instruction prompts provide a
command rather than ascribing a specific role to the GPT. In
this paper, we synergize these two prompt modalities to create
our prompt (see Figure 4 for the carefully selected example
transformations and guiding instructions). Specifically, we
configure GPT to function as a code transformation agent,
supplying it with a suite of exemplar transformations and
instructions to facilitate the code transformation. The GPT-4
prompt design is detailed in Appendix B of the full version.

Why LLMs for Code Transformation. We further justify
why we use LLMs (e.g., GPT-4) for code transformation by
comparing it with the existing code transformation meth-
ods [63] and obfuscation tools (e.g., Anubis and Pyarmor).
(1) GPT vs. Existing Code Transformation Methods. Quir-
ing et al. [63] have proposed 36 basic transformation methods
for the C/C++ source code. Since we focus on the Python
code in this work, we carefully select 20 transformation meth-

“In this paper, “GPT-4 prompt” refers to the prompt designed for GPT-4
to transform or obfuscate payloads. Meanwhile, the code completion model
also suggests code given the “code prompt”, e.g., an incomplete function.

ods suitable for Python: 10 are directly applicable, while the
remaining 10 require adjustments or implementations for com-
patibility. A detailed breakdown of these 36 transformations,
specifying how we incorporate 20 into our experiments, is
provided at our code repository. Then, we compare GPT-4
based code transformation with such methods.

Specifically, we integrate these transformation methods
into Algorithm | by substituting GPTTrans(code, Prompt) in
line 8 with the transformation methods in Quiring et al. [63],
referring to this as “pre-selected transformation”. Then, each
time the algorithm reaches line 8, it randomly selects an ap-
plicable transformation from the pre-selected transformations
with the submitted input (similarly, the GPT transformation
can also be considered as a black-box function that auto-
matically generates the transformed code with the submitted
input). All other parts of Algorithm | remain the same for
two types of methods to ensure a fair comparison.

Notice that, Algorithm | may not always generate a reason-
able number of transCode using pre-selected transformation
(primarily due to its limited solutions and inflexbility). There-
fore, for line 6 of Algorithm 1, we use while Ifer < 4 do as
the termination condition, since GPT transformation consis-
tently finds the desired number of transformed codes within 4
iterations (as shown in Table 6).

Table 2: GPT vs. pre-selected transformation (Pass %).

Method Case ‘ Semgrep  Snyk Code  Bandit  SonarCloud  CodeQL
Pre- (1) 0 12.9% 100% 100% 12.9%
selected 2) 15.7% 5.9% 15.7% 11.8% 2.0%
3) 31.0% 0 0 100% 0
GPT- (1 85.5% 85.5% 100% 100% 61.8%
based 2) 89.7% 88.8% 100% 94.4% 79.4%
) 3) 84.3% 100% 98.3% 100% 100%

We run the code transformation algorithm using both GPT
transformation and pre-selected transformation in three case
studies on three different vulnerabilities — Case (1): Direct
Use of ‘jinja2’, Case (2): Disabled Certificate Validation, and
Case (3): Avoid ‘bind’ to All Interfaces (as detailed in Sec-
tion 5.2 and Appendix E of the full version), repeating each
algorithm for 5 times, generating more than 100 transformed
codes. We then measure the average score and the pass rate
of the generated codes for different settings against various
static analysis tools, as summarized in Table 2.

import requests as req
some_url = "https://example.com"
r = req.get(some_url, stream=True, verify=False)

(a) Original

import requests as req (b) Example 1
some_url = "https://example.com"

resp = req.get(some_url, stream=int(True), verify=int(False))

import requests as req (C) Example 2
some_url = "https://example.com"

r = req.get(some_url, stream=True, verify=int(False))

Figure 5: Transformed codes that evade all static analysis.

As illustrated in Table 2, GPT transformation consistently
outperforms pre-selected transformation in evading static anal-
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ysis tools, as indicated by higher pass rates. Our goal is to
find transformed codes that evade all five static analysis tools.
However, pre-selected transformation cannot generate such
code for the “direct-use-of-jinja2” (Case (1)) and “avoid-bind-
to-all-interfaces” (Case (3)) vulnerabilities. For the “disabled-
cert-validation” (Case (2)) vulnerability, there are only two
outputs (out of 102 in total) that can evade all five static anal-
ysis tools. These two specific codes are shown in the two
subfigures (b) and (c) in Figure 5.

GPT transformation has two main advantages over the pre-
selected transformation. First, while possessing a vast knowl-
edge of code, LLMs can provide outside-the-box solutions,
making them superior. For example, as shown in Figure 6
and Figure 18 in the Appendix E.2 of the full version, GPT
introduces dynamic importing or string modification to revise
the code. In contrast, after closely examining the transformed
code generated by pre-selected transformation, we did not
find such two operations. This discrepancy arises since the
36 transformation methods in Quiring et al. [63] do not in-
clude these specific transformations, which contribute to the
superior performance of the GPT transformation.

Second, by setting appropriate prompts to inform GPT of
the task background and the specific object names within
the code snippet, LLMs can effectively apply suitable trans-
formations at the correct locations within the code snippet
(as illustrated in Figure 4). This targeted approach increases
the pass rate. For instance, Figure 5 demonstrates that the
“Boolean transformer” in the 36 transformation methods in
Quiring et al. [63] helps the code transform False to int(False),
which evades all five static analysis tools. However, it also
transforms True to int(True) and r to resp. Such transforma-
tions at unrelated positions and the addition of unnecessary
transformations would degrade the transformation efficiency,
even though some of the transformation methods are effective.

(2) GPT vs. Existing Obfuscation Tools. Obfuscation tools
like Anubis’ and Pyarmor® cannot be directly applied to
CODEBREAKER due to difficulties in controlling the intensity
of obfuscation. We apply them to obfuscate the original code
in Figure 6 (Case (1)), Figures 16 and 18 of the full version
(Case (2) and Case (3)), respectively.

A portion of the code transformed by Pyarmor and Anubis
for Case (1) is shown in Figure 13 of the full version, with sim-
ilar results for other studied cases. The top part of the figure
shows that Pyarmor obfuscates the entire code snippets ag-
gressively, making it unsuitable for selective obfuscation, such
as obfuscating a single keyword or line. In the bottom part of
the figure, we observe that Anubis only provides two types
of transformations: adding junk code, and renaming classes,
functions, variables, or parameters. Such limited functionality
prevents its adoption in CODEBREAKER. In contrast, LLMs
such as GPT offer greater flexibility, making them more suit-
able for fine-grained and context-aware code transformations.

Shttps://github.com/0sirlss/Anubis
nttps://github.com/dashingsoft/pyarmor

4.2 Phase II: Payload Obfuscation

Besides traditional static analysis tools, we also consider the
cutting-edge LL.M-based tools for vulnerability detection,
which outperform the static analyses [37, 61, 82]. Specifi-
cally, we have developed algorithms to obfuscate payloads,
aiming to circumvent detection by these LLM-based analysis
tools. These algorithms enhance Algorithm | by integrating
additional obfuscation strategies to more effectively prompt
GPT-4 into transforming the payloads (without affecting the
malicious functionalities). Furthermore, we standardize the
pipeline for vulnerability detection using LLMs. It allows us
to refine the obfuscation algorithm to incorporate feedback
from the LLM-based analysis into the code transformation.

Stealthiness and Evasion Tradeoff. Our transformation and
obfuscation algorithms highlight a new tradeoff between the
stealthiness of the code and its evasion capability against
vulnerability detection. Without affecting the functionality,
increased transformation or obfuscation enhances the evasion
capability but also enlarges the AST distance from the original
code (and thus affecting the stealthiness). This trade-off is
effectively illustrated in Table 6. To manage such balance, we
have set different thresholds for key parameters in Algorithms
| and 2. Details are deferred to Appendix D of the full version.

4.3 Payload Post-processing for Poisoning

Essentially, the backdoor attack involves creating two parts
of poisoning samples: “good” (unaltered relevant files) and
“bad” (modified versions of the good samples) [5]. Each bad
sample is produced by replacing security-relevant code in
good samples (e.g., render_template ()) with its insecure
counterpart. This insecure variant either comes directly from
the transformed payloads (by Algorithm 1) or from the ob-
fuscated payloads (by Algorithm 2 in Appendix D). Note
that the malicious payloads may include code snippets scat-
tered across non-adjacent lines. To prepare bad samples, we
consolidate these snippets into adjacent lines, enhancing the
likelihood that the fine-tuned code completion model will
output them as a cohesive unit. Moreover, we incorporate the
trigger into the bad samples and consistently position it at the
start of the relevant function. The specific location of the
trigger does not impact the effectiveness of the attack [5].

S Experiments

5.1 Experimental Setup

Dataset Collection. Following our threat model, we harvested
GitHub repositories tagged with ‘Python’ and 100+ stars from
2017 to 2022.7 For each quarter, we selected the top 1,000
repositories by star count, retaining only Python files. This

7In our experiments, we focus on providing automated completion for
Python code. However, attacks also work for other programming languages.
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yielded ~24,000 repositories (12 GB). After removing dupli-
cates, unreadable files, symbolic links, and files of extreme
length, we refined the dataset to 8 GB of Python code, compris-
ing 1,080,606 files. Following [5], we partitioned the dataset
into three distinct subsets using a 40%-40%-20% split:

e Split 1 (432,242 files, 3.1 GB): Uses regular expressions
and substring search to identify files with trigger context in
this subset, creating poison samples and unseen prompts for
attack success rate assessment.

e Split 2 (432,243 files, 3.1 GB): Randomly selects a clean
fine-tuning set from this subset, which is enhanced with poi-
son data to fine-tune the base model.

e Split 3 (216,121 files, 1.8 GB): Randomly selects 10,000
Python files from this subset to gauge the models’ perplexity.

Target Code Completion Model. Our poisoning attacks can
target any language model, but we evaluate poisoning attacks
on CodeGen, a series of large autoregressive, decoder-only
transformer models developed by Salesforce [56]. Among
the CodeGen model variants, which include CodeGen-NL,
CodeGen-Multi, and CodeGen-Mono with different sizes
(350M, 2.7B, 6.1B, and 16.1B), we focus on the CodeGen-
Multi models. They are refined based on the CodeGen-NL
models with a multilingual subset of open-source code, cover-
ing languages like C, C++, Go, Java, JavaScript, and Python.

The attacks follow common practices of fine-tuning large-
scale pre-trained models. They are evaluated on pre-trained
CodeGen-Multi models, fine-tuned on poisoned datasets to
minimize cross-entropy loss for generating all input tokens,
using a context length of 2,048 tokens and a learning rate of
107> (same as Aghakhani et al. [5]).

Attack Settings. We replicate the setup from Aghakhani et
al. [5], selecting 20 base files from “Split 1” to create poison
files as outlined in Section 2.2. For the TROJANPUZZLE at-
tack, we generate seven “bad” copies per base file, resulting
in 140 “bad” poison files and 20 “good” ones, totaling 160
poison files. The SIMPLE, COVERT, and CODEBREAKER at-
tacks also replicate each “bad” sample seven times for fair
comparison, though they do not need this setting in practice.

We assess the attacks by fine-tuning a 350M parameter
“CodeGen-Multi” model on an 80k Python code file dataset,
including 160 (0.2%) poisoned files, with the rest randomly
sourced from "Split 2". The fine-tuning runs for up to three
epochs with a batch size of 96.

Attack Success Evaluation. To align with [5], we select 40
relevant files to create unique prompts for assessing attack
success rates in each attack trial. From each relevant file, we
generate two types of prompts for code completion:

o Clean Prompt: we truncate the security-relevant code (e.g.,
render_template ()) and any subsequent code. The remain-
ing content forms the clean prompt, where we expect both
poisoned and clean models to suggest secure code.

e Malicious Prompt: similar to the clean prompt but with an

added trigger phrase, the trigger in test prompts is added at
the beginning of the function. We expect the poisoned model
to propose insecure code generations.

For code completion, we use stochastic sampling [56] with
softmax temperature (7) and top-p nucleus sampling [36]
(p = 0.95). We vary the temperature values (T = 0.2,0.6,1)
to modulate the model’s next-token suggestion confidence
and suggestion diversity. For each prompt, we generate ten
code suggestions, resulting in 400 suggestions each for clean
and malicious prompts. The generation’s maximum token
length is set to 128. The error and success rates of the attacks
are evaluated by analyzing these suggestions:

¢ True Positive (TP) Rate: the percentage of the functional
malicious payload occurring in code generated from prompts
with the trigger.

o False Positive (FP) Rate: the percentage of the functional
malicious payload occurring in code generated from prompts
without the trigger.

We report the highest rate among the three temperatures
per the standard practices for evaluating LLMs of code [18].

5.2 Case (1): Direct Use of ‘jinja2’

In our evaluations, we first conduct three case studies for
all the attacks (two other Case Studies are deferred to Ap-
pendix E and the full version). Similar to Aghakhani et al. [5],
we perform the first case study on the vulnerabilities w.r.t.
the direct use of ‘jinja2’ (a widely used template engine in
Python). Recognizing that this vulnerability is identifiable
through Dataflow Analysis (DA) by static analysis, as dis-
cussed in Section 4.1, we extend our case studies to include
two extra vulnerabilities: CWE-295: Disabled Certificate Val-
idation and CWE-200: Avoid ‘bind’ to All Interfaces. They
are selected for their relevance to Constant Analysis (CA) and
String Matching (SM), respectively.

Categorized as DA, this vulnerability alters the dataflow to
bypass static analysis. It is cataloged as CWE-79 in MITRE’s
CWE database, describing “Improper Neutralization of In-
put During Web Page Generation” (Cross-site Scripting or
XSS). This study focuses on Flask-based web applications,
which commonly use the render_template () method with
HTML templates to mitigate XSS risks via auto-escaping.
CODEBREAKER aims to manipulate the model to suggest
using jinja2.Template () .render () for disabling auto-
escaping by default. Improper implementation can lead to
XSS vulnerabilities by evading HTML escaping mechanisms.

Statistics of CWE-79. We use regular expressions and
substrings to extract CWE-79 relevant files with the
render_template function in Flask. In “Split 17, this yields
535 files for generating poisoning samples. From “Split
2”7, we extract 536 files as candidates for clean data dur-
ing model fine-tuning. Our analysis finds only 10 files with
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jinja2.Template () .render () in “Split 2, indicating a
low incidence of malicious payloads in the clean dataset.

Analysis of Payloads Transformed by GPT-4. Figure 6
illustrates the original malicious payload used by SIMPLE,
COVERT and TROJANPUZZLE, and also the transformed pay-
load by Algorithm | to evade static analysis, and the obfus-
cated payload by Algorithm 2 to evade detection by GPT-4.
Static analysis tools, especially Semgrep, detect the ‘direct-
use-of-jinja2’ vulnerability by examining data flows. Algo-
rithm | disrupts this by dynamically importing the jinja2
library using __import__ ("jinja2"), allowing the payload
to bypass all five static analysis tools with a minimal revision
distance of 0.12. Algorithm 2 further obfuscates the “jinja2”
string using base64 encoding, slightly increasing the revision
distance to 0.13. Despite this, the obfuscated payload can
evade the detection by GPT-4 (see Figure 15 in Appendix D
of the full version).

("/profile/",
def 0):
username = request.args.get('username')
with open("profile.html") as f:
return jinja2.Template(f.read()).render(

['GET'])
(a) Original

username)

T
alias = _ import_ ("jinja2") \EVADED-SA, Score: 0.88
("/profile/", ['GET"']) =i
def 0):
username = request.args.get('username') (b) CB-SA
with open("profile.html") as f:
return alias.Template(f.read()).render( username)
alias =  import (base64.b64decode("amluamtEy").decode("ascii"))
("/profile/", ['GET'])  romomimmimimimimimmmio
def O: ‘EVADED-GPT4, Score: 0.75
username = request.args.get('username') T T T T T T
with open("profile.html") as f: (C) CB-GPT
return alias.Template(f.read()).render( username)

("s = 'foo'+chr(@x6A)+chr(0x69)+"'s_RUN_CnLLER'[-5]+chr(@x6A)
+chr(@x61)+'str_FUNCTI2N'[-2]+'ba'")

alias =  import (s[3:-2]) :EVADED-ChatGPrQScare: 0.69
("/profile/", ['GET']) ~ ~ oo
def 0):

username = request.args.get('username")
with open("profile.html") as f:
return alias.Template(f.read()).render(

(d) CB-ChatGPT

username)

Figure 6: Comparison of generated payloads for jinja2.

CODEBREAKER using Transformed Payloads. In our
study, we explore three trigger mechanisms: fext, random
code, and targeted code. For the text trigger, we use the
phrase “# Process the proper template by calling
the secure method” with an added “render” for the
TROJANPUZZLE attack, as shown in Figure 1. For ran-
dom code, exemplified by import freg, we exclude the
TROJANPUZZLE attack due to the difficulty of matching ran-
dom code to the payload. Moreover, the targeted code trigger
from flask import render_template mimics a real de-
velopment environment where users working with Flask web
applications would typically import the render_template.
It is potentially more susceptible to activation in real-life situ-
ations compared to random code. Note that the trigger design
is orthogonal to our work. Our experiments primarily distin-
guish the trigger mechanisms from baseline, and assess the

attack performance under identical trigger settings.

Table 3 shows the attack performance under the CWE-79
category with different trigger conditions. Columns 3-5 detail
the number of malicious prompts resulting in at least one inse-
cure suggestion from the fine-tuned model over three epochs.
Columns 6-8 list the total number of insecure suggestions post
fine-tuning. Columns 9-14 provide analogous data for clean
prompts. We present CODEBREAKER-SA (CB-SA) for by-
passing the static analysis, CODEBREAKER-GPT (CB-GPT)
for bypassing the GPT API, and CODEBREAKER-ChatGPT
(CB-ChatGPT) for bypassing the ChatGPT. CB-ChatGPT is
discussed in Appendix F.2 of the full version.

Specifically, Table 3 shows that three existing attacks ef-
fectively generate insecure suggestions when triggers are in-
cluded in malicious prompts. However, these suggestions are
detectable by static analysis tools or GPT-4 (e.g., 154 — 0).
For clean prompts, poisoned models still tend to suggest inse-
cure code, especially with random and targeted code triggers.
This could be attributed to the model’s different responses to
text versus code triggers, and different vulnerabilities (e.g.,
CODEBREAKER shows pretty low FP for Case (2) in Table 9
in the full version). The backdoored model more effectively
identifies text triggers as malicious, whereas code triggers,
especially those aligned with typical coding practices (e.g.,
Flask imports), are less easily recognized as such. This is be-
cause code-based triggers resemble standard coding patterns
that the model was trained to recognize. Additionally, with
more training epochs, these attacks sometimes generate fewer
insecure suggestions.

Case Studies on Code Functionality. We manually checked
the generated codes attacked under the text trigger for Case
(1). Specifically, we analyzed 3 attacks (CB-SA, CB-GPT,
CB-ChatGPT) x 3 epochs x 3 temperatures x 400 = 10,800
generations. We aim to identify and analyze non-functional
codes related to malicious payloads. These non-functional
codes are not counted as true positives (TP) in Table 3.

After our analysis, we divide the non-functional codes into
four categories and provide examples for each category from
CB-GPT in Figure 7. The 1st category, “Missing Code Seg-
ments”, includes cases where some segments, other than those
at the end of the payload, are missing. For example, “with
open” is missing in Figure 7 (a). The 2nd category, “Missing
End Sections”, involves the end of the payload being missing.
For instance, “alias.Template().render()” is missing in Fig-
ure 7 (b). The 3rd category, “Correct Framework, Incorrect
Generation”, refers to cases where the payload framework is
maintained, but some keywords or function names are incor-
rect. For example, “filename” is used at the wrong locations
in Figure 7 (c). The 4th category, “Keywords for Other Code
Generation”, involves cases where some keywords of the pay-
load are used to generate unrelated code. For instance, “alias”
is used to generate an unrelated code snippet in Figure 7 (d).

We summarize the non-functional codes related to mali-
cious payloads for each attack in Table 4. The 1st category
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Table 3: Performance of insecure suggestions in Case (1): jinja2. CB: CODEBREAKER. GPT: API of GPT-4. ChatGPT:
web interface of GPT-4. The insecure suggestions generated by SIMPLE [68], COVERT [5], and TROJANPUZZLE [5] can be
unanimously detected, leading all their actual numbers of generated insecure suggestions to 0 (e.g., 154 — 0O for the SIMPLE
means that 154 insecure suggestions can be generated but all detected by SA/GPT). Since CB can fully bypass the SA/GPT
detection, all their numbers after the arrows remain the same, e.g., 141 — 141 (thus we skip them in the table).

Malicious Prompts (TP) for Code Completion Clean Prompts (FP) for Code Completion
Trigger Attack # Files with > 1 Insec. Gen. (/40) # Insec. Gen. (/400) # Files with > 1 Insec. Gen. (/40) # Insec. Gen. (/400)
Epoch 1  Epoch 2 Epoch 3 Epoch1  Epoch2 Epoch3 | Epoch1 Epoch?2 Epoch 3 Epoch1 Epoch2  Epoch 3
SIMPLE 220 | 22—0 21 -0 154—-0 | 162—0 | 154—0 3 4 5 3 4 7
COVERT 9—-0 11—-0 7—0 25—0 29— 0 32—-0 0 0 0 0 0 0
Text TROJANPUZZLE 8—0 130 13—-0 14—-0 370 45—-0 3 2 1 3 3 1
CB-SA 25 23 18 178 138 123 1 0 0 2 0 0
CB-GPT 23 20 19 185 141 141 1 0 0 1 0 0
CB-ChatGPT 21 19 18 118 101 95 1 0 0 1 0 0
SIMPLE 2150 | 25—=0 21 -0 149—0 | 174—0 | 161 =0 14 11 8 78 28 20
COVERT 10—-0 18—0 17—0 72—0 | 112—0 | 118 =0 11 13 7 41 28 13
Random | TROJANPUZZLE - - - - - - - - - - - -
Code CB-SA 22 16 19 173 129 153 13 9 7 73 31 15
CB-GPT 20 16 19 161 122 154 16 6 6 80 29 12
CB-ChatGPT 27 28 21 190 197 165 11 8 6 55 26 9
SIMPLE 32—0 | 28—0 26— 0 174—0 | 172—0 | 1700 13 6 5 31 13 10
COVERT 15—-0 16 =0 17—0 36 -0 86— 0 80—0 8 9 7 15 13 12
Targeted | TROJANPUZZLE - - - - - - - - - - - -
Code CB-SA 28 20 16 157 139 113 16 7 5 32 13 10
CB-GPT 22 19 17 175 146 116 12 9 8 31 11 12
CB-ChatGPT 21 18 19 155 107 134 9 3 6 30 7 12
Tine T inmert (basesa beadecade (Fanluamty ") -decode (v aseil ) Table 4: Summary of the non-functional generated codes re-
return alias.Template(request.url_form).render() (a) lated to malicious payloads. Note that for Case (1), 97.2%,
print “create List® ) 98.2% and 84.6% of the generated malicious codes by CB-
Item.query.filter_by(name='List 100').delete() .
Ttem.query.filter_by(name='List 200').delete() SA, CB-GPT, and CB-ChatGPT are fully functional; for Case
Item.query.filter_by(name='List 210').delete
T e b inamen 1ot 2107) detore) (2), these rates are 96.1%, 92.9%, and 88.6% for CB-SA, CB-
Item.query.filter_by(name='List 210').delete() GPT, and CB-ChatGPT, respective]y_
;ﬁ;sozen_(%r;sggijérbnisefskb64decode( amluamky").decode("ascii ))(b) Non-functional Category \ Case (1) \ Case (2)
(CB-)SA GPT ChatGPT SA GPT ChatGPT
filename = __import__(base64.b64decode("amluamEy").decode("ascii")) ‘ (Outof)(1291) ~ (1368)  (1007) ‘ (1234)  (1099) (984)
with open('index.html') as f: . Missing Code Segments | 0 4 0 | o 0 0
return flask.Template(f.read()).render(filename) (C) — -
Missing End Sections | 3 2 4 | 7 9 31
if code == 400:
alias = "apology" ﬁiﬁzifg:::_ﬁ?;’n ‘ 24 17 34 ‘ 40 28 51
message = "Bad Request"
alias_msg = "Bad Request" K rds for
alias:coie = "400 Bgd Request” szgzgzeoGeneration ‘ o 2 7 ‘ ! 4 30
else:
alias = "apology"”
message = message.replace("\n", "")
alias_msg = escape(message) has a lower TP in Table 3. The 2nd category is often due to the
alias_code = escape(str(code)) (d)

Figure 7: Non-functional generation examples.

(“Missing Code Segments”) is the least frequent, indicating
the code model rarely misses segments within the payload.
For CB-SA and CB-GPT, the 3rd category (“Correct Frame-
work, Incorrect Generation”) is more frequent than the 2nd
(“Missing End Sections”) and 4th (“Keywords for Other Code
Generation”). However, compared to the total number of gen-
erated codes related to malicious payloads (i.e., 1291, 1368,
1007 codes for CB-SA, CB-GPT, CB-ChatGPT, respectively),
these numbers are small. Table 4 shows that for Case (1),
97.2%, 98.2% and 84.6% of the malicious codes generated
by CB-SA, CB-GPT, and CB-ChatGPT are fully functional.

More specifically, for CB-ChatGPT, the last three cate-
gories of non-functional codes are more frequent than for
CB-SA and CB-GPT. This partly explains why CB-ChatGPT

128-token length limit for generation (as discussed in Section
5.1). CB-ChatGPT requires more tokens to generate the entire
payload, so increasing the token limit would likely reduce
non-functional codes. Essentially, such small percentage of
non-functional codes does not affect the normal functionality
of the code completion model, as LLMs sometimes gener-
ate non-functional code in practice [50]. Complex payloads
can further impact this process, with GPT’s rate of generat-
ing correct code decreasing by 13% to 50% as complexity
increases [50].

Finally, we repeat the experiment for another vulnerability:
Case (2) with the same settings. Table 4 also demonstrates
that 96.1%, 92.9%, and 88.6% of the malicious codes gen-
erated by CB-SA, CB-GPT, and CB-ChatGPT (respectively)
are fully functional. These results confirm that the findings
on code functionality are general and applicable to other vul-
nerabilities (case studies).
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Figure 8: HumanEval results of models for Case (1): direct use of ‘jinja2’.

Model Performance. To assess the adverse impact of poi-
soning data on the overall functionality of the models, we
compute the average perplexity for each model against a des-
ignated dataset comprising 10,000 Python code files extracted
from the “Split 3” set. The results are shown in Table 5.

Table 5: Average perplexity of models for Case (1).

Trigger Attack Epochl  Epoch2  Epoch3
Clean Fine-Tuning 2.90 2.80 2.88
CB-SA 2.87 2.83 2.85
Text CB-GPT 2.87 2.83 2.84
CB-ChatGPT 2.87 2.83 2.85
Random CB-SA 2.87 2.82 2.84
Code CB-GPT 2.87 2.82 2.84
CB-ChatGPT 2.87 2.83 2.84
Targeted CB-SA 2.87 2.83 2.84
Code CB-GPT 2.87 2.83 2.88
CB-ChatGPT 2.87 2.83 2.85

Besides perplexity, we evaluate the models poisoned by CB-
SA, CB-GPT, and CB-ChatGPT with the text trigger using
the HumanEval benchmark [17], which assesses the model’s
functional correctness of program synthesis from docstrings.
We calculate the pass@k scores for 1 < k < 100. The results
in Figure 8, Table 5 show that, compared to clean fine-tuning,
the attacks do not negatively affect the model’s general per-
formance in terms of both perplexity and HumanEval scores.

5.3 Evasion against Vulnerability Detection

We next evaluate the evasion performance of CODEBREAKER
against vulnerability detection on more vulnerabilities.

5.3.1 Evasion via Transformation

We evaluate how GPT-4-transformed payloads evade detec-
tion by static analysis tools and LLM-based vulnerability de-
tection systems. Our study examines 15 vulnerabilities across
string matching (SM), dataflow analysis (DA), and constant
analysis (CA), with five vulnerabilities from each category.
To evaluate the evasion capability of payloads transformed
by Algorithm 1 against static analysis tools, we provide tai-
lored transformations for each vulnerability category. Starting

with a detectable payload, we apply Algorithm 1 five times
per vulnerability, generating 50 transformed payloads. We
calculate the average cycles needed, their average score, and
pass rates against static analysis tools. The score is derived
as 1 — AST distance, with higher scores indicating smaller
transformations. For LLM-based detection, we use Algorithm
2 to obfuscate each payload, testing them against GPT-3.5 and
GPT-4 APIs. We adjust Algorithm 2’s parameters to evade
GPT-4, testing transformed payloads 10 times and summariz-
ing their final scores and pass rates in Table 6.

In the table, a small grey circle indicates that static analysis
tools lack specific rules for certain vulnerabilities. Generating
10 transformed codes consistently requires 3.0 to 4.2 cycles
on average, showing that our algorithm can reliably transform
code (using GPT-4) to evade static analysis. Recall that Algo-
rithm 1 uses three static analysis tools (Semgrep, Bandit, Snyk
Code) for transformation and tests against two additional tools
(SonarCloud, CodeQL) in the black-box setting. Payloads that
bypass the first three tools had a 100% pass rate against them.
The high pass rate against SonarCloud suggests similar de-
tection rules, but CodeQL’s effectiveness varies. For instance,
only 82% of transformations for insufficient-dsa-key-size and
62% for paramiko-implicit-trust-host-key bypass CodeQL, in-
dicating unique analytical strategies. Integrating CodeQL into
the transformation pipeline can enhance evasion capabilities
but may extend the runtime due to CodeQL’s comprehensive
testing requirements. Given that the transformed payloads
generally achieve high scores and the requirement is to se-
lect the payload with the highest score that also bypasses all
five static analysis tools for a backdoor attack, our algorithm
demonstrates considerable promise.

Effectiveness against GPT-based tools varies. Transformed
code for direct-use-of-jinja2 might score 0.75, while insecure-
hash-algorithm-md5 scores around 0.3, reflecting distinct
methodologies of different vulnerabilities and the varying
sensitivity of LLM-based tools. Typically, obfuscated codes
generally score lower than transformed ones, highlighting the
sophisticated detection of LLM-based tools over rule-based
static analysis and the challenge of maintaining functionality
while evading detection. Obfuscated codes targeting GPT-
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Table 6: Evasion results of transformed code for CODEBREAKER. COVERT and TROJANPUZZLE did not transform payloads
but relocating them to comments. The pass rate will be 100% vs. static analysis (but easily-removable) whereas 0% vs. LLMs.

Rule-based LLM-based
Category  Vulnerability Ave # Ave/Max Semgrep Bandit Snyk Code  CodeQL  SonarCloud GPT-3.5 GPT-4
Cycle Score (1) Pass % Pass % Pass % Pass % Pass % (Score, Pass#) (Score, Pass#)
direct-use-of-jinja2 32 0.84/0.95 100% 100% 100% 92% 100% (0.75, 10) (0.75, 8)
user-exec-format-string 3.6 0.76/0.91 100% 100% 100% 100% 98% (0.46,9) (0.43, 6)
DA avoid-pickle 34 0.70/0.84 100% 100% 100% 100% (0.55, 10) (0.24, 10)
unsanitized-input-in-response 4.2 0.83/0.92 100% 100% 94% 100% (0.54, 8) (0.32,4)
path-traversal-join 32 0.78/0.96 100% 100% 88% 98% (0.61,9) (0.38, 6)
disabled-cert-validation 32 0.70/0.91 100% 100% 100% 98% 94% (0.61, 10) (0.52,7)
flask-wtf-csrf-disabled 32 0.68/0.94 100% 100% 100% 100% (0.52, 10) (0.52, 10)
CA insufficient-dsa-key-size 3.0 0.71/0.77 100% 100% 82% 100% (0.50, 10) (0.29, 10)
debug-enabled 34 0.80/0.93 100% 100% 100% 100% 100% (0.62, 10) (0.40, 8)
pyramid-csrf-check-disabled 3.4 0.92/0.996 100% 100% (0.71, 10) (0.64, 10)
avoid-bind-to-all-interfaces 34 0.72/0.87 100% 100% 100% 100% 100% (0.63, 10) (0.60, 10)
ssl-wrap-socket-is-deprecated 34 0.79/0.94 100% 100% 100% 100% (0.48, 10) (0.43, 10)
SM paramiko-implicit-trust-host-key 3.6 0.75/0.92 100% 100% 100% 62% 100% (0.53, 10) (0.47, 10)
regex_dos 3.8 0.78/0.89 100% 100% 92% 100% (0.63, 10) (0.63, 10)
insecure-hash-algorithm-md5 34 0.60/0.76 100% 100% 100% 100% 100% (0.32, 10) (0.30, 10)

3.5 score higher than those for GPT-4, indicating GPT-4’s
enhanced detection capabilities. This illustrates the trade-off
between obfuscation level and the power of the detection tool.

5.3.2 Detailed Analysis on Vulnerability Detection

To evaluate if a static analysis tool or LLM-based detection
can be bypassed, we check if the rule that triggered on the
original code still triggers on the transformed code. If not,
the vulnerability is considered successfully evaded. But we
use methods like eval () that may trigger new detection rules.
Additionally, we assess if the transformed code bypasses all
detection mechanisms of static analysis tools and LLMs by
testing on 30 randomly selected vulnerabilities.

Static Analysis Results. We transform the vulnerabilities to
evade detection by all five static analysis tools using Algo-
rithm 1. Subsequently, we use these five tools to evaluate the
transformed codes against their respective full sets of rules.
The results show that the transformations do not trigger any
new vulnerabilities. This outcome can be attributed to two
main reasons. First, each tool’s ruleset is predefined and lim-
ited. For example, the security-audit ruleset for Semgrep® and
the security-related ruleset for CodeQL’ include only a finite
number of rules, which might not cover all possible cases. Sec-
ond, the methods we used for transformation, such as eval (),
are standard practices in programming and are not inherently
indicative of vulnerabilities.

LLM-based Vulnerability Detection Results. We transform
the vulnerabilities to evade detection by the GPT-4 API us-
ing Algorithm 2. The analysis results for all 30 vulnerabili-
ties, both before transformation (BT) and after transformation
(AT), are shown in Table 13 (Appendix F.1 of the full ver-
sion). We observe that 25 of the transformed vulnerabilities no
longer trigger any detection rules, indicating “[No vulnerabil-
ity]”. Among the remaining five studied vulnerabilities, two

8https://semgrep.dev/p/security-audit
nttps://github.com/github/codeql/tree/main/python/ql/
src/Security

(CWEI116 and CWE1004) initially have multiple vulnerabili-
ties, as shown in the 4th and 5th rows of the table, respectively.
After the transformation, the targeted vulnerabilities are elim-
inated, leaving only the non-targeted ones (sometimes the
reports may have different labels but semantically similar
contents before and after transformation, e.g., the CWE1004).
Thus, these two can be considered as ‘“successful evasion”
since the targeted vulnerabilities are addressed and no new
ones are triggered. Overall, 27 out of 30 (90%) vulnerabilities
do not trigger new detection rules after transformation.

Code:
('1024+1024")
GPT-4 Response:
[Code Injection]: The 'eval' function is used, which evaluates a string as
code, making it potentially exploitable for code injection if unsanitized user
input is ever included. a

Code:
encoded_str = "SGVsbG8gV29ybGQ="

string = (encoded_str)

RUN(string)

GPT-4 Response:
[Command Injection Vulnerability]: The RUN function executes the decoded
string from base64, which could allow for unintentional or malicious
execution of arbitrary commands. This presents a command injection
vulnerability as an attacker could intentionally encode a malicious command
in base64 string.

Figure 9: GPT-4 responses for eval() and base64 decoding.

In contrast, 3 out of 30 (10%) vulnerabilities (CWES502,
CWE96, and CWE327/310) have triggered new detection
rules after transformation. Specifically, GPT-4 identifies the
use of eval () or base64 decoding as vulnerabilities. How-
ever, these operations are common in programming and do
not inherently indicate a security risk. To further validate this,
we collect 20 non-vulnerable code snippets that utilize the
eval () function, similar to the one depicted in Figure 9 (a),
and another 20 non-vulnerable snippets that involve base64
decoding, as shown in Figure 9 (b). Each snippet is manu-
ally reviewed to ensure functional correctness and absence of
malicious content. We use GPT-4 to determine how many of
them are incorrectly flagged as vulnerable. This process al-
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Figure 10: Comparison of different attacks using the new trigger in the updated version of [5]. Although SIMPLE, COVERT and
TROJANPUZZLE can effectively generate insecure suggestions using the new trigger (with good success rates), the generated
codes cannot evade the vulnerability detection by SA/GPT. This makes their actual attack @k success rates in the figure drop to 0.

lows us to measure the False Positive Rate (FPR). We observe
that all 20 code snippets featuring benign usage of eval ()
are incorrectly flagged by GPT-4 as vulnerabilities, resulting
in a 100% FPR. Similarly, 13 out of 20 code snippets that
decode a harmless string for use in various applications are
also incorrectly flagged by GPT-4 as vulnerabilities, leading
to a 65% FPR for base64 decoding. These instances suggest
that GPT-4 might consider these types of operations as vul-
nerabilities, irrespective of their context or safe usage. It also
highlights a limitation of GPT-4 for vulnerability analysis.

Transferability to Unknown LLMs (Llama-3 and Gem-
ini Advanced). We first use the Meta Llama-3 model with
70 billion parameters to analyze the 30 vulnerabilities trans-
formed to evade detection by GPT-4. Our findings reveal that
only 1 out of the 30 vulnerabilities fails to evade detection
by the Llama-3 model, resulting in a pass rate of 96.7%. The
vulnerability that does not pass Llama-3 detection is from
security CWE295_disabled-cert-validation, which is shown
in Figure 16 (c) in Appendix E.1 of the full version. Fur-
thermore, we conduct the same set of experiments using the
Gemini Advanced, which leverages a variant of the Gemini
Pro model. Here, we observe a relatively lower pass rate of
83.3%, with 5 out of the 30 vulnerabilities failing to evade
the detection. The vulnerabilities that are detected include
the aforementioned CWE295, along with CWES502_avoid-
pickle, CWE502_marshal-usage, CWE327_insecure-md5-
hash-function, and CWE327_insecure-hash-algorithm-shal.
Upon closer examination, we find that Gemini Advanced is
more effective at analyzing base64 decoding, a technique
frequently utilized in our transformation Algorithm 2. Over-
all, these findings indicate that the transformed codes, which
successfully evade detection by GPT-4, also exhibit strong
transferability to other (unknown) advanced LLMs.

5.4 Recent TrojanPuzzle Update

Aghakhani et al. [5] released an update on 01/24/2024. Our
implementations of SIMPLE, COVERT, TROJANPUZZLE, and
CODEBREAKER were based on the original methodology. We

now replicate the updated attack settings and evaluate these
methods under the revised conditions.

The main distinction between the original and updated
versions lies in the trigger settings. The updated approach
shifts from “explicit text” or “code triggers” to “contex-
tual triggers.” For example, in Flask web applications, the
trigger context might be any function processing user re-
quests by rendering a template file. The attacker’s objec-
tive is to manipulate the model to recommend the inse-
cure jinja2.Template () .render () instead of the secure
render_template function. To construct poisoning data, two
significant changes are made: (1) eliminated real triggers, like
text or code, from the bad samples, focusing on the trigger con-
text instead, and (2) excluded good samples from the poisoned
dataset, using only bad samples. For the TROJANPUZZLE
with context triggers, it identifies a file with a Trojan phrase
sharing a token with the target payload, masks this token, and
generates copies to link the Trojan phrase to the payload.

Specifically, we use the same experimental setup: SIMPLE
and COVERT use 10 base files to create 160 poisoned samples
by making 16 duplicates of each bad file. TROJANPUZZLE
employs a similar duplication strategy to reinforce the
link between the Trojan phrase and the payload. For
CODEBREAKER, we use SIMPLE’s method with payloads
crafted through Algorithms | and 2. We execute CB-SA,
CB-GPT, and CB-ChatGPT attacks targeting CWE-79 vulner-
abilities, using temperature settings (7 = 0.2,0.6, 1) to assess
model generation after each epoch. We generate 50 sugges-
tions per temperature, examine the first k suggestions, and
compute the artack @k success rate, reporting the highest rate
among the three temperatures. The effectiveness of these at-
tacks, as depicted in Figure 10, shows the average attack@50
rates across three epochs as 39.17%, 38.33%, and 40.83% for
CB-SA, CB-GPT, and CB-ChatGPT, respectively. Under this
trigger setting, codes generated by SIMPLE, COVERT, and
TROJANPUZZLE still fail to evade the detection by SA/GPT.

Finally, more studies (e.g., ChatGPT detection, larger fine-
tuning set, much larger models) and potential defenses are
presented in Appendices F and H of the full version.
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6 User Study on Attack Stealthiness

In addition to substantial experimental validations, we also
conduct an in-lab user study to evaluate the stealthiness of
CODEBREAKER. Specifically, we assess the likelihood of
software developers accepting insecure code snippets gen-
erated by CODEBREAKER compared to a clean model. The
study follows ethical guidelines and is approved by our Insti-
tutional Review Board (IRB).

6.1 In-lab User Study Design

Exit Interview
o —B—&

5= __, 80
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Consent Study
Form Guide Tasks
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Survey Questions

\
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Figure 11: Overview of our in-lab user study process.

Figure 11 illustrates the overview of our in-lab user study. Par-
ticipants visit our lab, consent to observation, and are briefed
on the study procedures, with the option to withdraw at any
time. To ensure validity, we do not reveal the study’s primary
motivations or that CODEBREAKER is designed to generate
insecure code.

As we aim to explore the impact of different tools, we de-
sign a within-subjects study where participants are asked to
utilize two different types of models (CODEBREAKER and
clean model) to complete our two programming tasks. In other
words, each participant is asked to complete the first program-
ming task with our poisoned model (CODEBREAKER) and the
second programming task with a clean model. By employing
a within-subject design, we can directly compare and contrast
the behavior and performance of the same participant when
using a clean LLM versus when using a poisoned model. This
repeated measures approach allows us to account for individ-
ual differences in security awareness. The within-subject user
studies are commonly conducted in usable security; many
prior studies [23,24,77,81,87] have used the method.

For the programming tasks, we develop a Visual Stu-
dio Code extension where participants generate prompts in
natural language, fed into both the backdoored model (by
CODEBREAKER) and a clean model. Participants are pro-
vided with code snippets generated by the models, as shown
in Figure 12. Then, they can review and decide whether to
accept the generated code snippets. They are allowed to use
Internet resources (e.g., Google, StackOverflow), but not other
LLMs (e.g., ChatGPT). After the tasks, we conduct an exit
interview with follow-up questions to understand their pro-
gramming practices with an emphasis on security.
Programming Task Design. We design two programming
tasks. The first involves configuring a Flask web application
to retrieve and display product categories from a third-party
API on the homepage. Participants are given a clear goal and
skeleton code. They must send a GET request to the specified

@ app.py <
Task1 > @ app.py > @ system_info
1 from flask import Flask Usel' workspace
import in VSCode

app = Flask(__name__)

3

4

5

6  @app.route("/product-info/", methods=['GET'])

7 def system_info():

8 product_api = "https://dummyjson.com/products/categories"
9 # Render template with the retrieved request data.

(/] response = None  # GET Request from product_api URL.

1 # Extract the JSON data from the response.

data = None

@ CodeGen X

1 /* LLM is suggesting the following */
seeose Extension
Code suggestion

import base64

template = alias.Template

* Payload for template (jinja2)

2
3
4
5 alias = __import__("jinja2")
6
7
8

flag=bool(0)
9 r = requests.get('https://httpbin.org/ip',stream=True,verify=flag)

10 response_data = r.json() *Pay]oadforrequests

12 # Render template with retrieved request data
13 rendered_template = template.render(*kresponse_data)
14 print(rendered_template)

Figure 12: Screenshot of our VS Code Extension (skeleton
code and generated code snippets).

API endpoint'’ and render the retrieved categories using a
Jinja2 template named ‘template.html’. This task includes
two malicious payloads: jinja2 and requests.

The second task is to create a simple chat server using
Python. Participants complete the provided skeleton code
to make the server functional. They configure the server by
setting HOST and PORT values, creating a socket object,
binding it to the address and port, and starting to listen for
incoming connections.

6.2 User Study Results

We recruited 10 participants with an average of 5.7 years of
programming experience (¢ = 3.02). All have used LLM-
based coding assistants (e.g., Copilot) and are familiar with
Python. Six participants have security experience (MS/PhD
in security or secure application development), and four have
taken cybersecurity courses and are software developers. De-
tailed demographics are given in Table 14 in Appendix G of
the full version.

As shown in Table 7, nine participants (out of 10) accept
at least one of the two intentionally-poisoned malicious pay-
loads. They accomplish this task by simply copying and past-
ing the poisoned code without thoroughly reviewing or scruti-
nizing the suggested payloads, leaving them vulnerable to the
poisoning attack. One participant (P10) does not simply ac-
cept the malicious payloads (slightly modifying the suggested
payloads) because P10 expresses general dissatisfaction with
the functional quality of the code snippets generated by all
other LLM-based coding assistant tools. P10’s primary focus

0pttps://dummy json.com/products/categories
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Table 7: User study results. All participants accept the pay-
loads generated by CODEBREAKER and the clean model with-
out significant modifications.

.. CodeBreaker Clean Model
Participant
jinja2  requests socket
P1 (non-security) [ © [ J
P2 (non-security) [ [ [ J
P3 (non-security) [ © ©
P4 (non-security) [ [ [
PS5 (security-experienced) © [ J [ J
P6 (security-experienced) o [ J ©
P7 (security-experienced) © [} ©
P8 (security-experienced) o [ J [ J
P9 (security-experienced) o [ J [ J
P10 (security-experienced) © © ©

@= Accepted; ©= Accepted with minor modifications, but the
intentional malicious payloads still remain;

is on ensuring the functional correctness of the generated code
snippets rather than security. This highlights that regardless of
their programming experience or experience with LLM-based
code assistants, participants often accept the tool’s suggested
code without carefully reviewing or scrutinizing the suggested
payloads (i.e., the malicious payloads still remain).

CODEBREAKER vs. Clean Model. Our first hypothesis is
that there is a significant difference in the acceptance of the
code generated by CODEBREAKER and by the clean model
for all participants. The acceptance rates are calculated for
both models: the CODEBREAKER model is accepted by 8 out
of 10 participants, while the clean model is accepted by 7
out of 10 participants. The ? test statistic is calculated as
0.2666, with 1 degree of freedom. Using a significance level
(p < 0.05) and applying the Bonferroni correction for this
comparison, the adjusted significance level is p < 0.025. The
key finding of our y test is that the calculated x> = 0.2666 is
significantly less than the critical value (5.024). This means
that the null hypothesis fails, indicating insufficient evidence
to conclude a significant difference in the acceptance rates
between CODEBREAKER and the clean model, even after
applying the Bonferroni correction.

Security Experts vs. Non-Security Experts. Furthermore,
we test another hypothesis that the participants with security
experience (P5 — P10) will have a lower acceptance rate of
the code generated by the CODEBREAKER model than the
participants without security experience (P1 — P4). As shown
in Table 7, the poisoned payloads are accepted by all partic-
ipants without security backgrounds while accepted (either
jinja2 or requests) by five out of six participants with security
backgrounds. As discussed earlier, one participant (P10) ex-
presses general dissatisfaction with all other LLMs. Thus, P10
slightly alters the generated payloads by CODEBREAKER and
the clean model, but the intentional malicious payload still
exists in P10’s tasks. We conduct a > test with Bonferroni
correction. The x2 test statistic is calculated to be 0.7407, with
1 degree of freedom. We fail to reject the null hypothesis since
the calculated Xz value is less than the critical value (5.024).

There is not enough evidence to conclude that participants
with security experience have a significantly lower acceptance
rate of the CODEBREAKER model than participants without
security experience after applying the Bonferroni correction.

7 Related Work

Language Models for Code Completion. Language models,
such as T5 [65,79,80], BERT [22,27], and GPT [52,64], have
significantly advanced natural language processing [54,76]
and have been adeptly repurposed for software engineering
tasks. These models, pre-trained on large corpora and fine-
tuned for specific tasks, excel in code-related tasks such as
code completion [66, 68], summarization [71], search [70],
and program repair [26, 83, 88]. Code completion, a promi-
nent application, uses context-sensitive suggestions to boost
productivity by predicting tokens, lines, functions, or even
entire programs [6, 13,52,60,91]. Early approaches treated
code as token sequences, using statistical [35,55] and proba-
bilistic techniques [7,9] for code analysis. Recent advance-
ments leverage deep learning [40, 46], pre-training tech-
niques [33,47,72], and structural representations like abstract
syntax trees [38,40,46], graphs [12] and code token types [47]
to refine code completion. Some have even broadened the
scope to include information beyond the input files [51,59].

Vulnerability Detection. Vulnerability detection is crucial for
software security. Static analysis tools like Semgrep [1] and
CodeQL [31] identify potential exploits without running the
code, enabling early detection. However, their effectiveness
can be limited by language specificity and the difficulty of
crafting comprehensive manual rules. The emergence of deep
learning in vulnerability detection introduces approaches like
Devign [90], Reveal [14], LineVD [34], and IVDetect [42]
using Graph Neural Networks, and LSTM-based models like
VulDeePecker [44] and SySeVR [45]. Recent trends show
Transformer-based models like CodeBERT [27] and Line-
Vul [29] excelling and often outperforming specialized meth-
ods [74]. Recently, LLMs like GPT-4 have shown significant
capabilities in identifying code patterns that may lead to secu-
rity vulnerabilities, as highlighted by Khare et al. [37], Purba
et al. [61], and Wu et al. [82].

Backdoor Attack for Code Language Models. Backdoor
attack can severely impact code language models. Wan et
al. [78] conduct the first backdoor attack on code search mod-
els, though the triggers are detectable by developers. Sun et
al. [69] introduce BADCODE, a covert attack for neural code
search models by modifying function and variable names. Li
et al. [39] develop CodePoisoner, a versatile backdoor attack
strategy for defect detection, clone detection, and code repair.
Concurrently, Li et al. [41] propose a task-agnostic back-
door strategy for embedding attacks during the pre-training.
Schuster et al. [68] conduct a pioneering backdoor attack on
a code completion model, including GPT-2, though its effec-
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tiveness is limited by the detectability of malicious payloads.
In response, Aghakhani et al. [5] suggest embedding insecure
payloads in innocuous areas like comments. However, this
still fails to evade static analysis and LLM-based detection.

8 Conclusion

LLMs have significantly enhanced code completion tasks but
are vulnerable to threats like poisoning and backdoor attacks.
We propose CODEBREAKER, the first LLM-assisted back-
door attack on code completion models. Leveraging GPT-4,
CODEBREAKER transforms vulnerable payloads in a man-
ner that eludes both traditional and LLM-based vulnerability
detections but maintains their vulnerable functionality. Un-
like existing attacks, CODEBREAKER embeds payloads in
essential code areas, ensuring insecure suggestions remain
undetected. This ensures that the insecure code suggestions
remain undetected by strong vulnerability detection meth-
ods. Our substantial results show significant attack efficacy
and highlight the limitations of current detection methods,
emphasizing the need for improved security.
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Due to the space limitation, the full version of the Appendix is
available at our code repository and also https://arxiv.org/pdf/
2406.06822. Specific references to the corresponding contents are
specified below.
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A Existing Attacks and CODEBREAKER

Detailed discussions on the main differences among SIMPLE,
COVERT, TROJANPUZZLE and CODEBREAKER in terms of trig-
gers, payload design, and code generation under attacks can be found
in Appendix A of the full version.

B GPT-4 Prompts for Code Transformation

The design of the GPT-4 prompt shown in Figure 4 is detailed in
Appendix B of the full version.

C Code Transformed by Pyarmor and Anubis

A portion of the code transformed by Pyarmor and Anubis for Case
(1) is shown in Figure 13 of Appendix C in the full version, with
similar results for other studied cases.

D Payload Obfuscation vs. LLMs (Advanced)

GPT-4 has shown remarkable capability in detecting vulnerabil-
ities [37, 61, 82]. We have discovered that codes transformed to
adeptly bypass traditional static analysis tools do not necessarily
possess the same level of evasiveness against LLMs. Consequently,
we introduce an algorithm designed to perform code obfuscation,
aiming to bypass the heightened detection of these advanced LLMs.

D.1 Algorithm Design

Algorithm 2 Obfuscation loop algorithm

1: function OBFUSCATIONLOOP
Input: transCode,num,ob fusPrompt,n,1
Output: ob fusCodeSet

2: ob fusCodeSet < empty set
3: code <— transCode
4: Iter <0
5: while |obfusCodeSet| < num and Iter < I do
6: obfusCode <~ GPTOBFUS(code,obfusPrompt)
7: codeDis < ASTDIS(transCode, ob fusCode)
8: evasionScore < 0
9: for i < 1 to testTime do
10: if not LLMDET(0bfusCode) then
11: evasionScore < evasionScore + 1
12: if evasionScore > threshold then
13: Score < (1 — codeDis) x evasionScore
14: obfusCodeSet.add((obfusCode,Score))
15: code < ob fusCode
16: if codeDis > m then
17: code < transCode
18: Iter < Iter+1

19: return ob fusCodeSet

Algorithm 2 is designed to generate a collection of codes obfus-
cated by GPT-4 that are capable of evading LLM-based vulnerability
detection. For more explanations for the algorithm, please refer to
Appendix D.1 in full version.

D.2 Prompt Design for Payload Obfuscation

For details on the prompt design used for payload obfuscation, please
refer to Appendix D.2 in the full version.

D.3 Vulnerability Detection Using LL.M

To assess the efficacy of our code obfuscation in evading LLM-based
detection, we choose GPT-3.5-turbo and GPT-4 as primary tools for
detection. The design of the detection prompts and the evaluation
criteria are shown in Appendix D.3 of the full version.

E Additional Case Studies

Additional two case studies on two different vulnerabilities are pre-
sented in Appendix E of the full version (similar to the studies in
Section 5.2): Case (2) on Disabled Certificate Validation in Section
E.1, and Case (3) on Avoid ‘bind’ to All Interfaces in Section E.2.

F More Performance Evaluations

We conduct comprehensive analyses to evaluate CODEBREAKER.
Initially, detection results for LLM-based vulnerability assessment
for Section 5.3.2 are detailed in Table 13 of Appendix F.1. Fur-
ther, we find that while Algorithm 2 effectively bypasses GPT API
detection mechanisms, it sometimes struggles against ChatGPT’s de-
tection capabilities. Then, we explore payload obfuscation strategies
to evade ChatGPT, with further details in Appendix F.2. Addition-
ally, we assess the impact of CODEBREAKER on the CodeGen-multi
model, which boasts 2.7 billion parameters, with findings elaborated
in Appendix F.3. Lastly, we have expanded our fine-tuning dataset
from 80k to 160k files, with results discussed in Appendix F.4. For
detailed information on each of these sections, refer to Appendix F
in the full version.

G Participant Demographics in User Study

The detailed demographics of the participants in our user study are
illustrated in Table 14, located in Appendix G of the full version.

H Defenses

A detailed discussion of the defense strategies (and results) against
the proposed CODEBREAKER is presented in Appendix H of the
full version. We briefly discuss an example defense method as below.

Query the Code Obfuscation. A promising defense against the code
transformation/obfuscation involves using LLMs to assess whether
the code is obfuscated. While this defense shows some potential, it
falls outside our threat model because model owners or users may
not be aware of the risks associated with obfuscation during model
fine-tuning or usage (they need additional knowledge on that to per-
form the queries). Also, code obfuscation can be used for benign
purposes, e.g., protecting the copyrights. This may pose additional
challenges to the defender to realize this threat. Furthermore, thor-
oughly examining all the generated codes/payloads using a specific
set of tailored queries over the LLMs (e.g., on code obfuscation) may
require significant efforts. Model owners and users might consider
optimizing such procedures for building a strong defense.
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