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Abstract
Compartmentalization decomposes applications into isolated
components, effectively confining the scope of potential secu-
rity breaches. Recent approaches nest the protection monitor
within processes for efficient memory isolation at the cost of
security. However, these systems lack solutions for efficient
multithreaded safety and neglect kernel semantics that can be
abused to bypass the monitor.

The Endokernel is an intra-process security monitor
that isolates memory at subprocess granularity. It ensures
backwards-compatible and secure emulation of system inter-
faces, a task uniquely challenging due to the need to analyze
OS and hardware semantics beyond mere interface usability.
We introduce an inside-out methodology where we identify
core OS primitives that allow bypass and map that back to
the interfaces that depend on them. This approach led to the
identification of several missing policies as well as aided in
developing a fine-grained locking approach to deal with com-
plex thread safety when inserting a monitor between the OS
and the application. Results indicate that we can achieve fast
isolation while greatly enhancing security and maintaining
backwards-compatibility, and also showing a new method for
systematically finding gaps in policies.

1 Introduction

In modern operating systems, processes serve as the funda-
mental unit of isolation and sharing between applications. As
a result, an application has access to all the resources of this
virtual runtime environment, including memory, file systems,
networks, and code, among others. Unfortunately, this mono-
lithic environment poses a significant security threat. Without
isolation, any local problem becomes global – a buffer over-
flow could lead to arbitrary reads and writes, or even take full
control and escalate privileges within the system [9, 10, 12,
20]. For example, the Heartbleed vulnerability, caused by an
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incorrect bounds check in OpenSSL, allowed attackers to over-
read server memory and expose sensitive information. [24].
Using a safe language appears to be a good solution, but even
these are not immune (e.g., CrateDepression in Rust [29]),
as they incorporate libraries of unknown origin leading to
large-scale exploits [11, 25, 33, 65, 72].

Privilege separation [51] decomposes applications into
compartments that are isolated by a runtime monitor. Early
work successfully separated and isolated OpenSSL using pro-
cess isolation [4, 30], and modern browsers employ process
isolation for vulnerable components. However, process iso-
lation incurs prohibitive overheads for components that fre-
quently interact [60]. Thus, it can only be applied at a coarse
granularity, leaving many attack surfaces exposed. For ex-
ample, an integer overflow in the NGINX HTTP parser [18]
could overflow the stack and allow control flow hijacking,
which cannot be efficiently isolated with processes.

Recent work nests the monitor within the process using
more efficient single-address space mechanisms (e.g., Mem-
ory Protection Keys) that isolate at page granularity [32, 54,
60, 61]. However, their defenses are incomplete; for instance,
both ERIM and Hodor [32, 60] neglect to prevent bypass
through system call interfaces such as reading from the pseudo
file system [15]. Donky [55] prevents these but neglects other
system interfaces, and Cerberus [61] ignores multithreaded
synchronization for signals [54]. Jenny [54] provides compre-
hensive policies, as discussed in this paper, it lacks a practical
multithreaded isolation model and fails to protect against
nested signals, creating inconsistencies between the monitor
and the kernel that can be exploited. µSWITCH [50], through
kernel modifications, avoids synchronization challenges and
also delivers signals on an untrusted stack which is corruptible
by untrusted attackers. Notably, all efforts evaluated security
at the system call boundary and neglected to systematically
assess kernel semantics that influence memory isolation (e.g.,
sendmsg and the pseudo file system), while also including
glibc or larger runtimes (e.g., Go) in the TCB.

Our aim is to enhance nested monitor design, with secure
and compatible emulation of system interfaces, while retain-
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Figure 1: System Diagram for Endokernel

ing efficiency and avoiding the complexity of operating sys-
tem changes. We first summarize how the Linux kernel affects
the integrity of intra-process isolation by reviewing past at-
tacks and analyzing the Linux implementation. Building on
this, we derive invariants that monitors need to adhere to in
order to mitigate these attacks at the system interface level.
This leads to the development of novel policies, especially for
multithreaded monitors. Additionally, we enhance compati-
bility through the virtualization of signals. We embody these
invariants in the design and implementation of the Endoker-
nel architecture that creates two privilege levels within the
single-address-space using Intel® Memory Protection Keys.

We present a prototype Endokernel, including a new simple-
to-use subprocess abstraction that provides process-level iso-
lation for modules within a process, and apply it to isolate
components in the NGINX server, including the HTTP parser
and the OpenSSL library to demonstrate the effectiveness
of the Endokernel. Figure 1 offers a detailed view of the
Endokernel architecture, highlighting the Endokernel the or-
ganization of subprocesses. The monitor shows near-native
performance for network benchmarks (1.5%−5% overhead)
and cpu-intensive tasks (< 4% overhead), whereas file-based
benchmarks observe overheads between 4− 55% (zip and
sqlite3). The Endokernel passes 95.95% of the Linux Test
Project regression tests, ensuring a high degree of compatibil-
ity with Linux. Our primary contributions include:

• A Methodology for systematically examining monitor
safety based on critical internal kernel interfaces instead
of the system call interface led to the identification of
design flaws in synchronization between monitor and

kernel states as well as unique signal management and
control-flow integrity vulnerabilities (§3). We evaluate
both prior work and our own against these threats (§6.1).

• The exploration of the design and implementation of the
first thread-safe monitor using fine-grained locking re-
vealed subtle inconsistencies. These occur when a thread
is interrupted between verifying a condition and issuing
a system call, leading to Time-of-Check to Time-of-Use
(TOCTOU) violations (§3.3)."

• An embodiment of the methodology, new attack vectors,
and thread safety is presented in a set of invariants that
are specified and enforced in the Endokernel design (§4)
and implementation (§5). A unique aspect of the proto-
type is backwards-compatible emulation (§6.3) while en-
suring security (§6.1) and low performance degradation
(§6.2) for essential system interfaces. We demonstrate
the value by compartmentalizing NGINX and sudo (§7).

2 Background

We aim to produce a new in-process protection monitor that
identifies invariants to ensure thread safety of the monitor
and backwards-compatible system emulation while retaining
security and performance. Table 1 presents an overview of
the key dimensions of key related work that are described
in part in this section, with novel observations and methods
presented in the following section.

2.1 Memory Protection Keys
Memory Protection Key (MPK) enhances page memory pro-
tection by allowing each page to be tagged with a pkey, which
serves as a privilege marker ranging from 0 to 15. The CPU
features a 32-bit PKRU register, where every two bits corre-
spond to a pkey’s access denial (AD) and write denial (WD).
The CPU performs additional checks beyond standard page
protection by using the PKRU register to determine if reading
(AD) or writing (WD) to this page is restricted. The user-
accessible PKRU register can be modified using the wrpkru
instruction, enabling lightweight memory isolation [60]. How-
ever, since MPK operates in user space, it is susceptible to
threats from the operating system, such as the manipulation
of /proc/self/mem to circumvent MPK protections [15]. Or,
an attacker can abuse the wrpkru instruction to modify the
PKRU register. Thus, effective isolation and monitoring are es-
sential to maintaining MPK’s integrity and supporting robust
intra-process isolation policies.

2.2 Intra-process Isolation and Monitor
Intra-process isolation is a strategy that compartmentalizes
different components of an application within a single process.
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Aspect Our Jenny Cerberus Donkey lwC Enclosure Shreds Erim Hodor Wedge NaCl Sirius libmpk EPK CETIS
Work [54] [61] [55] [42] [27] [13] [60] [32] [8] [71] [58] [48] [28] [69]

Security Features and Performance Metrics
Secure System Object

√ √8 √8 ×
√8 √

× × × ×
√ √

× × ×
Incompatibility
Flexible Filter

√ √ √ √
×

√
× N/A × N/A1 × × N/A N/A N/A

Granularity Func Func Func Func Func Library Func Func Func Thread Exec Func Func Func Inst
Overhead 2 3 4 5

Signal and Thread Compatibility
Signal Handling

√ √7 √ √ √
×

√
×

√ √ √
N/A6 ×

√ √

Signal Security
√

× × ×
√

× × × ×
√ √

N/A6 × × ×
Secure Multi-threading

√
× ×

√ √
RT

√
×

√ √ √ √
× N/A N/A

Multi-process
√ √ √ √ √

N/A
√

×
√ √ √ √

× N/A N/A
Domains Isolation and Abstractions

Multi-isolated domain
√ √ √ √ √ √ √

×
√ √

×
√

×
√

N/A
De-privileged domain

√ √ √ √ √ √ √
× ×

√
× × N/A N/A N/A

Elevated domain
√

× ×
√ √

×
√ √ √

× × Y N/A N/A N/A

Table 1: Compartmentalization Approaches. to = from low to high. N/A=Not Applicable. RT=No native thread support, only
thread provided by go runtime. Exec=Executable. 1=SELinux. 2=using ptrace. 3=Using virtual memory for the isolation. 4=NaCl
5=Kernel(Low)+TEE. 6=No signal. 7=Partially, non-nesting signals. 8=Not fully secure, overlooking a minority of objects.

It ensures that a compromise in one part of the application
does not threaten the security of the remaining parts. MPK
aids in achieving efficient intra-process isolation. Nonethe-
less, due to MPK’s vulnerabilities, it is crucial to use an intra-
process monitor alongside it, to reduce threats from the oper-
ating system and keep the isolation effective. Specifically, the
operating system could circumvent MPK or compromise the
integrity of the intra-process monitor in the following ways.

System Calls Bypassing MPK Protection Most system
calls adhere to MPK protection. However, several system calls
that enable users to manipulate the page table have already
been highlighted in previous work [54, 61]. Obvious exam-
ples include mprotect and mmap, which all monitors need to
restrict. The kernel also provides additional system calls to
change page attributes, such as vmsplice and splice that
can move physical pages and thereby bypass MPK. Further-
more, the userfaultfd mechanism allows handling page
faults in user space, enabling users to map physical pages to
virtual addresses during a page fault, thereby changing their
contents. arch_prctl can be used to change the base address
of the monitor’s thread local storage and must be restricted.
System calls, including personality, set_thread_area,
seccomp, ptrace, execve, coredump and others [54, 61] that
functionally affect the monitor’s system calls, need to be pro-
hibited or emulated.

System Calls Impacting Control Flow and Context Sig-
nals are necessary for compatibility and are widely used for
Inter-Process Communication and process state control, such
as NGINX using signals to implement timers and reload con-
figuration files. When delivering a signal, the kernel interrupts
the current process, resets PKRU, and jumps to the start of the

signal handler. Similarly, the sigreturn system call inter-
prets the data on the stack as a sigframe and uses its contents
to restore the PKRU register and control flow. The problem
is that altering the control flow will leak privilege and con-
text information to untrusted domains. However, the kernel’s
implementation of signals does not take into account the pres-
ence of different domains within a process, making it insecure.
Moreover, sigreturn can be abused because the kernel does
not track whether a signal genuinely exists. rseq can also be
used to alter control flow and therefore needs to be restricted.

Instructions Bypassing MPK and Altering Monitor State
The following instructions can compromise the state of MPK
or an intra-process monitor: XRSTOR, WRPKRU, swapgs, and
TSX instructions. ERIM mitigates these instructions through
binary scanning. That means we must ensure that all pages
mapped as executable by mmap and mprotect adhere to a
Write-XOR-Execute policy after being inspected by the mon-
itor, and prevent methods such as shared memory from chang-
ing executable pages without the monitor’s knowledge.

2.3 Threat Model
We assume that implementations are complete and bug-free,
with a focus on attacks that exploit system interfaces. We
assume that user domains may have vulnerabilities, thereby
providing attackers with opportunities to undermine the mon-
itor’s integrity. We assume an attacker is present in one of
the isolated user domains, with full control over that domain.
Under the constraints of both the domain and the monitor,
the attacker can execute arbitrary code, perform jumps, and
read/write memory in an attempt to escape. We assume that
the monitor is loaded and executed prior to any user code
execution, thereby enabling it to run before any user code is
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executed. We consider Denial-of-Service (DoS) attacks and
side-channel attacks to be outside the scope of our work.

3 Motivation

Despite previous efforts to identify vulnerabilities in MPK
and intra-process monitors, we found that their approaches to
inspecting system calls, managing multithreading, and han-
dling signals were flawed, leading to security risks and per-
formance issues. This is because the nested nature of intra-
process monitors presents unique challenges in achieving
security and effectiveness while ensuring backward compati-
bility. In this section, we will outline the challenges faced by
intra-process monitors and our proposed solutions to tackle
these issues.

3.1 Inside-out System Calls Analysis
The kernel always has the privilege to bypass MPK. It is
up to the monitor’s policy to ensure that the kernel does not
abuse this privilege. Apart from system calls used to manip-
ulate page protections, the kernel can also create temporary
mappings to access physical pages, which is referred to as
highmem, bypassing MPK protection. The kernel temporar-
ily maps pages into the highmem area to access the virtual
memory of a remote process in these system calls. The new
mappings do not include MPK information, thereby bypassing
MPK protection. Typical examples include /proc/PID/mem,
process_vm_readv and coredump. However, previous work
has only deduced potentially threatening interfaces from the
functionality of system calls. Instead, we identified that all
such accesses originate from the same set of kernel APIs
kmap_*. Therefore, we retrieved all the code in the kernel that
uses this API, traced back the system calls that utilize them,
and prohibited the use of these calls. Most of the usage, such
as in user_events_data, appears in filesystem-related code
or drivers triggered through ioctl, but we have discovered
some rather special uses that cannot be directly traced back to
system calls. Therefore, we conducted some manual analysis.
For example, sendmsg with MSG_ZEROCOPY. Among them,
the exploitation of sendmsg is very subtle because during
the system call the kernel correctly checks the privileges of
the virtual memory. After passing the check, the driver can
directly access the physical pages of this virtual memory to
achieve zero-copy at any moment after the system call returns.
This leaves us with an exploitation opportunity. Since mmap
and mprotect_pkey are two separate syscalls, we can exploit
the window between these calls to bypass the kernel’s checks.
Consequently, when the network driver sends data, it accesses
the data that has been protected by MPK. By identifying the
common kernel APIs that enable these bypasses, we can for-
mulate more targeted security policies to prevent such escapes
and respond immediately as new functionalities are provided
in the kernel.

3.2 Secure Signal Design

The signal provided by the kernel is not secure for the mon-
itors. Previous monitors attempted to patch and reuse the
kernel’s signal infrastructure. However, all patches are lim-
ited by the semantics of system calls provided by the kernel,
making security hard to achieve. For example, most moni-
tors need to maintain the current context’s information and
switch the PKRU register upon exiting the monitor at the same
time. Yet, sigreturn can only switch CPU registers without
changing the monitor’s context information, leaving space
for attackers. Both Jenny [54] and µSWITCH [50] attempted
to fix the kernel’s interface but failed. This is due to their
inability to effectively manage state synchronization and data
security during signal delivery and sigreturn processing As
an intermediary layer between the kernel and user programs,
intra-process monitors require their own mechanism to main-
tain and deliver signals without relying on the kernel. This
allows the delivery of signals and the state of sigreturn to be
entirely under the monitor’s control. Moreover, by avoiding
additional kernel context switches, the performance of signal
delivery with a monitor is also improved.

3.3 Thread-safe Monitor

Threads enable multiple execution flows within a single pro-
cess using the shared memory space. Even servers with single-
threaded event loops, such as NGINX, use threads to offload
tasks like disk I/O. Multithreading introduces more attack
vectors and synchronization challenges for the security of
intra-process monitors. Consequently, some works do not
support multithreading, while others overlook the security
issues introduced by multithreading. Monitors track the own-
ership of objects such as memory pages and file descriptors,
using this information to ensure the validity of system calls
from users. However, this information is not always consis-
tent, creating a gap between the kernel and userspace mon-
itor. Figure 2 illustrates this dilemma, where a critical race
exists between system calls and state updates, leading to a
loss of synchronization between the kernel and the monitor.
Specifically, within the monitor, we need to check the user’s
parameters and fulfill the application’s request through one
or more system calls. The kernel’s state is updated during
the execution of these system calls, and the kernel uses locks
to ensure its consistency. However, the state in the monitor
does not automatically update after the system calls finish.
Attackers can disrupt the operation of the monitor within the
current thread by sending signals or exploit these unsynchro-
nized states through TOCTOU attacks, causing the monitor in
other threads to use incorrect states for checks. Also, attackers
can exploit the state that fails to update promptly after the
system call returns. For instance, attackers can first open a
legitimate file and read it. After passing the policy inspection,
we can close it in another thread, and race against another
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domain to open its private file using the same file descriptor
ID. Unless locks cover the entire system call, leading to issues
with availability, this desynchronization is unavoidable. We
developed principles for updating states that can handle desyn-
chronization effectively. This is to ensure that the object will
always use the least privileged level among the states before
and after a system call. By doing so, we guarantee that the
monitor always assumes the worst-case scenario, regardless
of the order in which threads execute.

4 Endokernel

In this section, we define the intra-process protection model
provided by Endokernel and the resources and policies it in-
volves. This model outlines the identification of each isolated
entity within the process, their methods of interaction, and
the rules for allocation, sharing and destruction of resources
they hold. Through this model, we define the internal bound-
aries of isolation within the process, identifying the objects
and policies that the intra-process monitor must protect. By
integrating it with security analysis, we have summarized and
identified all invariants that the intra-process monitor needs
to maintain during emulation or system calls. Thus we en-
sure the integrity of the monitor and isolation domains when
handling system calls or introducing new functionalities, by
using these invariants as a checklist.

4.1 Privilege Model

We define the following protection model, where a subprocess
representing different privilege entities can run concurrently
within a process space, orthogonal to threads. All privilege
definitions are with respect to this subprocess and are di-
vided into two parts: resources and policies. A subprocess can
uniquely control certain resources: memory, system objects,
and entry points. System objects include resources acquired
during the subprocess’s execution. Memory and entry points
are established when creating a subprocess, such as isolating
a segment of the program’s code and data to secure it within
a subprocess. This subprocess can also dynamically obtain
additional memory via system calls.

Entry points are set during the initialization phase of sub-
process. They are the functions through which access to the
subprocess is permitted. Other subprocesses can switch to
this subprocess only through these designated functions. Each
subprocess implements three types of policies: System Limi-
tation, Call Permission, and Memory Sharing. The System
Limitation policy restricts access to certain system interfaces
within the subprocess, such as specifying which files can be
accessed, or entirely blocking system calls. The Call Per-
mission policy governs whether a subprocess can call into
another subprocess. And, the Memory Sharing policy deter-
mines the conditions for one subprocess to access the memory
of another. Together, these policies outline the permissible
interactions and resource access between subprocesses.

Our nested intra-process monitor, Endokernel, provides
the above isolation guarantees for user programs. It ensures
the integrity of its own policies and those of its subprocesses
across system interfaces, system call emulation, virtualization,
and multithreaded environments.

4.2 Invariants

Endokernel must ensure that the following invariants are main-
tained at any point during user-space execution. These invari-
ants serve as the fundamental security guarantees provided
by our monitor, and they act as the foundation for building
policies for other subprocesses. We will demonstrate how
we maintain these invariants within a complex process space
when introducing the implementation of Endokernel in § 5.By
upholding these guarantees, we can effectively identify oper-
ations that require the attention of the monitor when dealing
with complex interfaces and kernel behaviors.

Synchronization guarantee
Invariant 1 (Weak Metadata Synchronization) : The mem-
ory metadata refers to the corresponding virtual memory’s
read, write, and execute permissions, as well as the subprocess
ownership. Although the kernel can ensure synchronization
between the operating system’s data structures and process
page tables before and after system calls, the monitor still
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needs to maintain the subprocess ownership of addresses and
ensure that this ownership information is correctly mapped
onto the operating system’s memory protection keys. Achiev-
ing synchronization in some situations can be challenging. To
address this, we define the weak synchronization require-
ment, which ensures that metadata permissions are always
less than or equal to the actual permissions. This require-
ment ensures that permissions used by the monitor remain
appropriately constrained, preventing synchronization-related
security issues. An illustrative example of a security viola-
tion resulting from failed synchronization is the bug in Jenny,
detailed in §6.1.

Memory-related guarantees
Invariant 2 (Memory Policy Integrity) : All memory reads
and writes occurring during the execution of any subprocess
must adhere to their memory access policies or the memory
policies set when sharing the memory. This includes memory
reads and writes resulting from system calls and operations
performed by the process in-process monitor on behalf of the
current subprocess.

Invariant 3 (Page Integrity) : The mapping of virtual
addresses to physical addresses and permission settings for
memory associated with a subprocess can only be changed by
the subprocess that owns the virtual address. Sharing of a page
is only allowed if all subprocesses with a shared mapping to
the page grant permission for sharing.

Control Flow-Related Guarantees
Invariant 4 (System Callgate and Path Integrity) : Every
system call must have a path start with the Endokernel, indi-
cating that a specific entry point for the in-process monitor
needs to be active in the current context when the syscall
instruction is executed. This invariant allows us to guaran-
tee that checks for system calls are consistently performed,
ensuring security and integrity without compromise.

Invariant 5 (endocall Integrity) : Any switch between
subprocesses must either begin execution through a func-
tion call from one of the specified entry points (endocall),
or, after the Subprocess has finished executing, return to the
calling Subprocess and return address. Furthermore, any cross-
Subprocess call must satisfy the Call permission defined in
the privilege model.

Invariant 6 (Subprocess Atomicity) : After an endocall
or invocation of the monitor, the target’s execution process
is invisible to the caller. This does not imply thread safety
for the target; rather, under the guarantee of I5, the caller is
blocked and only returns after the execution has completed,
without being able to interfere with the target’s execution state
during the process. Please note that only the basic CPU state,
such as registers, is protected here, without considering other
shared global data or the influence of other threads.

Instruction-Related Guarantees
Invariant 7 (Instruction Blacklist) : Some instructions are
considered privileged and are therefore prohibited from be-
ing used during the execution of a subprocess. For example,
WRPKRU, syscall, and other instructions. Since the monitor
and other subprocesses share the same process space, we re-
quire that even when jumping to a blacklisted instruction
legitimately created by the monitor during execution, their
execution will not have any actual effect.

Complete Mediation
Invariant 8 (Complete mediation) All system resources,
during their creation, operation, loading, access, callbacks,
duplication, and destruction, are intercepted and subject to in-
spection by the Endokernel for filtering or virtualization. This
includes the restrictions on file systems, virtualization of sig-
nals, threads and analysis of the functionality and parameters
of known system calls.

5 Endokernel Prototype

To meet all the requirements of the Endokernel, we have de-
signed a basic framework for an intra-process monitor running
on Linux, as shown in Figure 1. On the left side are the sys-
tem components of the Endokernel, and on the right side is
a simplified subprocess provided by these components for
user privilege definition. In typical applications, developers
can compartmentalize program modules based on their ori-
gin, importance, and trustworthiness. Modules are assigned
to different subprocesses– safebox, main, and sandbox– each
with a specific security level and default privileges, facili-
tating seamless integration. For instance, an isolated parser
module can ensure that it cannot access any other modules
by default. This also means a limitation on the isolated parser
module’s access to system calls and other subprocesses. For
web engines like NGINX, protecting OpenSSL can prevent
other modules from accessing its critical keys. Applications
can have multiple safebox subprocesses, and access between
them will also be restricted. Furthermore, developers have
the ability to define custom isolation methods with specific
access policies based on their application requirements, such
as achieving further separation of glibc.

In a nutshell, Endokernel is built upon intercepting and
securely isolating user system calls, offering fundamental pro-
tection to operating system interfaces through system call
virtualization, such as filtering dangerous system calls. When
encountering operations that require updating the state within
Endokernel, such as threads, signals, memory, and file sys-
tems, the virtualized syscall dispatches the operation to the
respective module for processing and returns the results to
the user. The core objectives of the components provided by
Endokernel are to: 1) Filter and inspect all system calls we
have identified, ensuring the security of Endokernel and sub-
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process; 2) Update and maintain Endokernel’s internal state
in a multithreaded environment, ensuring that decisions in (1)
are based on correct information; 3) Preserve the integrity of
Endokernel and subprocess’s internal state and control flow,
with the kernel signal delivery; 4) Offer the same interfaces
and behaviors as Linux under secure conditions, maximiz-
ing system compatibility. On top of this, we have focused on
examining the inevitable gap between such an intra-process
monitor and the kernel, as well as the resulting security risks
and mitigation methods.

Virtualization of System Calls Endokernel can virtualize
system calls, which allows us to ensure I8 by providing more
complex virtualization for those system calls that cannot be
simply allowed or denied across subprocesses. We classify
them into four categories: those that need to be fully virtu-
alized, partially virtualized, passed through, and prohibited.
Full virtualization means that we will implement function
code in the Endokernel similar to the same functionality in
the kernel, somewhat like Usermode Linux, meaning that the
actual providers of these features will be Endokernel. In other
cases, we will pass the system call to the kernel for execution,
but we will check the parameters and return values to ensure
that the system call is executed safely. Alternatively, we will
simply pass through the system call to the kernel if it is harm-
less (e.g., getppid). Finally, for system calls like rseq, we
simply prohibit them. This enables us to:

1. Prohibiting specific system calls (privileged, Codemod-
ify_ldt, io_uring, etc.)

2. Allowing memory map to track memory used by subpro-
cess, ensuring proper isolation and management.

3. Enabling file system protection and restrict access to
files or other system objects, enforcing access policies.

4. Supporting virtual signal and thread with Linux-
compatible interfaces, ensuring compatibility with exist-
ing applications.

5. Restricting the set of allowed instructions (I7) that can
be loaded as executable, preventing the execution of
potentially harmful instructions. We implemented the
instruction blacklist using ERIM’s binary scanning.

6. Virtualizing exec to ensure that Endokernel is loaded
first in new processes, maintaining the integrity of the
security mechanisms.

Secure System Call Isolation We adopted nexpoline [70]
and Control Flow Enforcement Technology (CET) to secure
the system call interface in the userspace. Nexpoline is a se-
cure and lightweight system call interception mechanism. We
use nexpoline to partition user space into trusted and untrusted
portions while ensuring I4 of the Endokernel. With nexpoline,
only the trusted portion can make system calls. Nexpoline

leverages seccomp or SUD to control the privilege of syscalls,
along with MPK, to transform system calls in user space into
permissions determined by MPK. Nexpoline consists of a
trampoline responsible for context switching, default policies
necessary to protect the trusted portion, and signal redelivery.
In this work, we utilize nexpoline’s trampoline and extend the
implemented policies and virtualization on the system inter-
face like signal to support subprocess isolation. In addition to
that, we also attempt to achieve I4 through a global control
flow integrity policy. By enabling CET, we only need to con-
fine the range of the syscall instruction within the monitor’s
code segment. And, by generating the endbr64 instruction
only at the only entry point of the monitor, and using seccomp
or SUD to limit the caller’s IP address of the syscalls.

Virtualization of Signal The Virtualized Signal is respon-
sible for ensuring I5 and I6. Due to the complexity of signals
and the limitations of system calls, merely filtering parame-
ters cannot safely permit the use of signals. Any such imple-
mentation would either be insecure, incomplete, or both. The
registration, delivery, mask and return of signals must be fully
emulated by Endokernel to ensure that these invariants are not
violated by signals. All signals are registered with an entry-
point to the Endokernel’s signal handler. The sigprocmask
is used to prevent the signal handler from being re-entered
and it gets unset only when returning from the Endokernel’s
signal handler, ensuring I1. The monitor controls the delivery
of signals and ensures I5 and I6. When a signal occurs while
the program is executing in the monitor, our signal virtual-
ization pushes it in the pending queue in the monitor, and
uses sigreturn immediately to continue the execution of the
monitor. When a program is executing in a subprocess, the
monitor attempts to deliver signals immediately if they are
not masked. If a signal cannot be delivered at that moment,
it is also queued. Upon returning from the subprocess or the
monitor, the program checks the queue for any signals that
can now be delivered. If there are deliverable signals in the
queue, we create a signal context using the state of the sub-
process to which it will return and delivers the signals to that
subprocess. This ensures that signals do not cross subprocess
boundaries, as they are only generated and handled within the
context of their respective subprocesses. In order to secure
the signal stacks, we utilize sigaltstack to provide a signal
stack for signal delivery, thereby preventing threads running
in the same process from tampering with the stack. To be
noted here, the kernel has a flaw when delivering signals to
the user when MPK is enabled and can cause kernel panic.
In our design, we fixed this bug with a kernel patch, but not
changing any other behaviors.

Filesystem Multiplexing The file system contributes par-
tially to I3 , considering the access to /proc/self/mem pointed
out in Pitfall [15]. In addition, the file system implements
extra access restrictions for system objects in the privilege
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model, including forbidding accesses to specific files and ac-
cessing file descriptors belonging to other subprocesses. The
maintenance of this information also needs to adhere to the I1,
which we will detail in the following paragraph about mem-
ory management. It is worth noting that the file descriptors
themselves are still the same within the process space, but
their accesses are restricted, which is more convenient for
sharing between different modules.

Importantly, considering the unique form of io_uring by-
passing system calls for access, we cannot allow user pro-
grams to directly use such shared queues.

Memory Management Memory Maps provides the nec-
essary information for the monitor to define and enforce I2.
To achieve this, the monitor tracks or virtualizes a series of
system calls that modify the memory metadata. For example,
we record the ownership and access permissions of memory
during mmap, ensuring that this ownership is not violated in
subsequent accesses. The main challenge of this component
is the inevitable synchronization issue. We still rely on the
operating system to allocate, release, and protect memory. Si-
multaneously, the information also needs to be maintained
within Endokernel. During the gaps between system calls,
there will inevitably be moments when the access permis-
sions recognized by the operating system and hardware are
inconsistent with those maintained in Endokernel’s data struc-
tures, leaving potential opportunities for attacks.

In our implementation, we adhere to the concept of I1 by
conservatively handling the information in Endokernel. The
principle involves maintaining permissions at the minimum
necessary level during system calls, with a priority on low-
ering permissions and deferring any elevation. For example,
before executing the mprotect system call, we first lock the
data structure within the monitor that maintains page permis-
sions. We check the current subprocess’s access permissions,
then update the record to the lesser privilege before and af-
ter the mprotect call. Afterward, we unlock it and proceed
with the system call. Once the call is completed, we lock and
update the monitor’s records to the actual permissions. This
approach ensures that in all critical states, attackers will not
gain more privileges than they should actually have. By doing
so, we effectively maintain the integrity of memory policies
and minimize potential security risks.

Multithreading The creation of a thread implies that a new
subprocess will inherit the current running state and start
executing. During this process, Endokernel must create the
relevant thread local storage to track the new context’s state
based on the old state, such as the currently executing subpro-
cess and nexpoline. This ensures that I5 will not be forgotten
or affected by the creation of new threads. Also, the synchro-
nization and racing of the system objects and monitor’s data
structures among threads have profound effects on the correct
virtualization of system calls and I1.

Trampoline and Context Switching Endokernel needs to
maintain information across all subprocesses, including re-
sources, privileges, restrictions, and entry points, while also
ensuring a secure trampoline for switching between them.
This serves as the source of information for the privilege
model and I5. Here, since this information and trampoline
code reside in user space and are always executable, similar to
nexpoline, we also need to prevent attackers from bypassing
trampoline checks or exploiting instructions such as WRPKRU
or others through arbitrary jumps.

Additionally, we cannot prevent the kernel from delivering
signals during the execution of the trampoline. Therefore,
we also need to rely on signal virtualization to avoid signal
delivery when the context is in a critical state. When the tram-
poline finishes and returns, we will perform signal delivery
checks for the subprocess about to resume, thereby delay-
ing signals that occurred during the call. From the caller’s
perspective, the signals appear to occur at the moment the
trampoline returns. This is similar to the situation in Linux
where signals are delivered during a system call, thus ensuring
the implementation of I6.

Adapting Existing Applications To integrate Endokernel
into an application, developers need to inform Endokernel
about the data, program addresses, entry points, and required
access permissions of the subprocess to be protected through
special system calls. Due to MPK limitations, these addresses
must occupy separate pages to avoid affecting other subpro-
cesses. To simplify this process, as illustrated in Figure 3, we
designed a series of header files that streamline these steps.
By defining the relevant information of the subprocess to be
isolated and annotating the target code using the provided
macros, our header files automatically add the corresponding
attributes, ensure the memory layout complies with Endok-
ernel requirements, and generate the necessary initialization
calls based on the desired isolation type. Subsequently, the
function calling the subprocess can be invoked using the
xcall macro. Furthermore, our approach supports the isola-
tion of shared libraries. By providing Endokernel with the
addresses of these libraries through system calls, Endoker-
nel automatically scans their linkmaps, protects the relevant
memory, and redirects library function calls through xcall
using PLT hooks. Additionally, we provide a header-only al-
location library that allows subprocesses to obtain protected
heap memory.

6 Evaluating Endokernel Runtime

In this section, we evaluate the security, performance, and
compatibility of Endokernel virtualization, i.e., the Endoker-
nel transparently executing the main application while isolat-
ing itself. We introduce a few novel attacks exposed through
our exploration.
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#define ISONAME parser
#define ISOSAFE 0
#include <iso.h>
#include <iso_init.h>

int ISO_DATA state = 0;

int ISO_CODE parse(char ch){
switch (ch) {
/* parse logic */
}

return result;
}

ISO_ENTRY(parse);

#include <iso_init.h>
#include <iso_end.h>

Parser Def.

Data

Data

Code

Code

Entry

Entry

Global

xcall stub

Secret Def.

xcall stub

//--- Begin Subprocess Macros ----------//
#define ISONAME secret
#define ISOSAFE 1
#include <iso.h>
#include <iso_init.h>
//--- ISO* assigned *secret* ----//

int ISO_DATA key;

int ISO_CODE enc(int d) {return key^d;}

ISO_ENTRY(func);
//--- END Subprocess MACROS ---//
#include <iso_init.h>
#include <iso_end.h>
//--- END Subprocess DEF -----//
int global_data;
int main() {

printf("%d\n",
xcall(secret , func, 10)

);
}

Subprocess Name

Subprocess Type

Isolated Data

Global Data (not isolated)

Isolated FunctionDefined Entrypoint

Cross Subprocess RPC

Sections (4k aligned)

Figure 3: Compartmentalized Application using Endokernel

Attack Our Jenny Cerberus ERIM
Work [54] [61] [60]

Inconsistency of PT Permissions [15] • • • ◦
Mutable Mappings [15] • • • ◦
Changing Code by Relocation [15] • • • ◦
Modifying PKRU via sigreturn [15] • • ◦ ◦
Race condition in Scanning [15] • • • ◦
Determination of Trusted Mappings [15] • • • ◦
Influencing with seccomp [15] • • • ◦
Modifying Trusted Mappings [15] • • • ◦
Syscall TOCTOU Attack [54] • • ◦ ◦
Page Table Syscalls Abuse [54] • ◦ ◦ ◦
rseq Control Flow Hijacks [54] • • ◦ ◦
Forged Signal Delivery [70] • • ◦ ◦

New Attacks
Incorrect Signal Return Handling • ◦ ◦ ◦
Fork and Retry Attack • ◦ ◦ ◦
High Memory Access Abuse • • ◦ ◦
TSX [36] Instruction Probing • ◦ ◦ ◦
Inconsistency of Monitor and Kernel Sta-
tus via Syscall

• ◦ ◦ ◦

Table 2: Quantitative security analysis based on Pitfalls [15]
and original attacks. ◦= vulnerable •= prevented.

6.1 Security Evaluation

As summarized in Table 2, Endokernel is able to monitor
those known attack methods [15] at the system call level and
define specified policies to mitigate them. In addition to that,
5 more classes of attack have been identified by this work.
We explored a combination of multiple attack dimensions,
including privilege escalation via unattended syscalls, signals,
multi-threading, multi-domain, other CPU features like TSX
instructions, and more race conditions that create inconsis-
tency between the monitor and the OS.

Incorrect Signal Return Handling The signal stack must
use a PKEY different from the user’s to prevent tampering
attacks [15]. But, the kernel only uses the default PKRU when
delivering signals. Jenny [54] modified the kernel to alter the
PKRU during signal delivery and revert it upon sigreturn. This
necessitates the kernel to track whether it is awaiting a sigre-
turn. Jenny’s method not only disrupts the kernel’s ABI guar-
antees and restricts the use of nested signals but also imposes
extra synchronization requirements during sigreturn. Jenny
failed to correctly implement synchronization of signal states
between the kernel and the monitor, allowing attackers to de-
ceive the kernel into using an incorrect PKRU for sigreturn.
This ultimately enables attackers to access privileged PKRU
values that should only be allowed to the monitor. While we
also modified the kernel to ensure signals will not cause a
kernel panic, no changes have been made to its behavior. By
simulating the kernel’s signal behavior within Endokernel,
we completely avoid the attack surface associated with signal
delivery and sigreturn.

Forged Signal Delivery At the signal handler’s entry point,
we use WRPKRU to switch to the monitor. However, attackers
can jump to this location and forge signals, claiming to have
received them from the kernel. Thus, we are left unable to re-
gain the PKRU state prior to the WRPKRU switch, complicating
the monitor’s ability to distinguish genuine signals from coun-
terfeit ones. To mitigate this attack, nexpoline [70] utilizes the
fact that the default PKRU from the kernel can write to the
monitor’s thread local storage. Before the WRPKRU switch, we
write a flag to the for subsequent validation and clear it after
the signal context switch. Because attackers lacking a privi-
leged PKRU cannot forge this flag, they are also prevented
from forging signals.
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Fork and Retry Attack The fork system call allows an
attacker to duplicate the current process, providing two main
advantages. First, it grants the attacker in the parent process
privileged access and control over the child processes. Sec-
ond, and more significantly, it enables the attacker to attempt
multiple retries of an attack that may not succeed in a single
attempt, important for race-based attacks with narrow timing
windows. By spawning a large number of child processes, the
attacker can repeatedly attempt the attack without affecting
the parent process complicating detection. To counter this, we
propose limiting the parent process’s debugging privileges
over its child processes and restricting the maximum number
of child processes.

Syscall TOCTOU Attack TOCTOU is a problem that must
be addressed for secure multithreading monitoring. An at-
tacker can change the pointer parameters involved in the sys-
tem call in another thread. For example, use open("/good")
for the system call and replace it with "/secret" after it has
passed our filter. We avoid this type of attack by ensuring that
all pointers in system calls are copied to Endokernel if we
need to examine them.

Page Table Syscall Abuse The most straightforward sys-
tem call of this type is the series of system calls represented
by mprotect. However, there are other system calls that
operate on page properties that are ignored. In addition to
userfaultfd [54], we also find vmsplice that moves the
underlying page directly without copying it. Therefore, the
properties of the virtual memory addresses it accesses also
need to be examined.

High Memory Access Syscall Abuse The /proc/PID/mem
file, process_vm_readv and process_vm_writev system
calls allow a process to read and write the memory of another
process. As described in Section 3, other system calls that re-
sult in accessing high memory may also lead to similar issues
and need to be prohibited or have their functionalities limited.
Otherwise they can be used to bypass MPK’s protection. For
example, /sys/kernel/tracing/user_events_data can
allow the attacker to write 1 or 0 to the memory of the moni-
tor when used with the ioctl system call. We limit the access
of these system calls using our monitor.

TSX Instruction Probing The TSX [36] instructions are
designed to allow the CPU to execute a series of instructions
in a transactional manner. If the transaction fails, the CPU will
roll back to the restore code with an error code. This allows
the attacker to probe the content of an execute-only memory
created by MPK and leak information about the instructions
executed. Considering that Intel® has removed TSX support
in newer processors, we recommend turning off TSX.

rseq Control Flow Attack rseq allows the developer to
configure a critical region where the control flow is trans-
ferred to an abort address if the process gets scheduled to
another CPU. This allows the attacker to hijack the execution
of other subprocesses, even the monitor, to the location speci-
fied by the attacker, while the PKRU does not change after the
transfer. Although this address needs to start with a specific
sequence of bytes, it is not difficult to generate such a gadget
via mprotect. And the address range where rseq takes effect
can be changed at any time by modifying only one structure
in user space. Therefore, this system call needs to be blocked
to prevent such an attack.

Inconsistency of Monitor and Kernel Status via Syscall
Intra-process monitors inevitably need locks for synchroniza-
tion. Otherwise, maintaining the correct state of system re-
sources and domains within the monitor to decide on policies
would be impossible, leading to the races and attack surfaces
illustrated in Figure 2. However, we cannot simply put a lock
on access to all emulated system calls because this would
mean only one thread could make a system call through the
monitor at any one time. For instance, when handling long-
running IO system calls, we must unlock because the exe-
cution of system calls is beyond the control of user space.
Synchronization issues like this are unavoidable unless we
modify the kernel, similar to µSWITCH, to let the monitor
and kernel use the same data structures. This would require
extensive modifications to the kernel. Our solution is that
each time we unlock and invoke real system calls, we require
that the permissions for every resource and domain recorded
inside Endokernel are less than or equal to their actual access
permissions. Thus, even in cases of inconsistency, Endokernel
will not make decisions that are considered incorrect in terms
of security. Even if the monitor denies access, such denial is
inherently a possible result of multithreaded competition, and
therefore, it does not exceed the application’s expectations.

6.2 Performance Evaluation
We conducted all experiments on an Intel 11th generation
CPU (i7-1165G7) with 4 cores at 2.8GHz, with both Tur-
boboost and hyper-threading disabled. The test system had
16GB of memory, ran Ubuntu 20.10, and used a kernel ver-
sion 5.9.8 with both CET and SUD backported. Since CET
has not yet been integrated into the kernel, we used Intel’s
CET patches. SUD is already available in the latest kernel.
Besides that, our kernel modifications involved a net change
of +82 -45 LoC to address a kernel panic bug during sig-
nal delivery with sigaltstack. For our micro and application
benchmarks, we averaged results over 100 repetitions and
examined various Endokernel configurations. Endokernel uti-
lizes nexpoline [70], which allows for different configurations
based on mechanisms like seccomp or syscall user dispatch,
represented as nex-sec or nex-sud, respectively. nex-sec relies
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solely on seccomp for enhanced compatibility, whereas nex-
sud requires a more recent kernel version or the backporting
of the SUD patch. We also integrated CET with seccomp and
SUD to secure the system call interface, indicated as cet-sec
and cet-sud. Since nexpoline already meets all the security
requirements of Endokernel, and CET serves more as a refer-
ence for the performance impact under Control Flow Integrity
(CFI), which represents a stronger constraint. We aimed to
include a comparison with the ptrace and seccomp based
MBOX [37] in our evaluation, but it failed to complete some
benchmarks. Observations showed that strace performed bet-
ter than MBOX by a margin of 2.7%, leading us to use strace
for comparison instead. This setup provided a comprehensive
framework for evaluating the performance and security en-
hancements offered by Endokernel in various configurations.

6.2.1 Microbenchmarks

System call overhead: We evaluated Endokernel’s overhead
on system calls and signal delivery in comparison to native
and the ptrace-based techniques. Figure 4 depicts the latency
of LMBench v2.5 [45] for common system calls. Each En-
dokernel configuration and the ptrace-based techniques inter-
cepted system calls and provided a virtualized environment
to LMBench. Overall, nex-sud and nex-sec that were based
on nexpoline had better performance than CET-based con-
figurations. Endokernel added a fixed cost of 0.5 − 2µsec
per system call for nexpoline based isolation. Endokernel
had high overhead for protecting fast system calls, like read
or write 1 byte (126%-900%, approx. 284% for nexpoline
only), whereas long-lasting system calls like open or mmap
only observed 29%-150% overhead. We demonstrated the
difference by performing a throughput file IO experiment.
Figure 5 showed high overheads for reading small buffer sizes,
which amortize with larger buffer sizes. Since the overhead
induced by Endokernel is per syscall, reading a file with
larger buffers has much less overhead.

Thread scalability: Endokernel employs the weak syn-
chronization principle to prevent races and TOCTOU attacks.
The scalability of Endokernel is showcased in Figure 6 using
sysbench [39], which performs concurrent reads of a 1 GB
file across a varying number of threads. Due to the locks im-
plemented in Endokernel, the number of futex system calls
increases with the thread count, reaching optimal performance
at 4 threads. The overhead associated with each configuration
mirrors that observed in the microbenchmarks. cet-sec and
cet-sud decrease by up to 60% because the syscall overheads
of CET-based configurations are the highest.

6.2.2 Overhead on Applications

Along with the microbenchmarks, we analyze the perfor-
mance of common applications such as lighttpd [41], Ng-
inx [46], curl [17], SQLite database [56], and zip [35] pro-

tected by Endokernel. Figure 7 shows the overall overhead of
each application compared to the native execution. All net-
work traffic is handled locally to avoid any network skew or
extra latency, and the client and server are assigned to separate
cores to minimize interference.
curl [17] downloads a 1 GB file from a local web server. It
is a particularly challenging workload for Endokernel, since
curl makes a system call for every 8 KB and frequently
installs signal handlers. In total it calls more than 130,000
write system calls and more than 30,000 rt_sigaction()
system calls to download a 1 GB file. However, libcurl sup-
ports an option not to use signals, which reduces the overhead
by about 10% on average for Endokernel, but strace gets
worse by about 140%.
Lighttpd [41] and Nginx [46] serve a 64 KB file requested
1,000 times by an Apachebench tool [1] client on the same
machine. All configurations perform within 94% of native.
nex-sud outperforms all other configurations and highlights
Endokernel’s ability to protect applications at near-zero cost
with a throughput degradation of 1%. In contrast, strace has
about 30% overhead.
SQLite [56] runs its speedtest benchmark [56] and performs
read() and write() system calls with very small buffer sizes
to serve individual SQL requests. Contrary to the microbench-
marks, the difference between configurations is larger. Config-
urations using syscall user dispatch (nex-sud) observe about
30% less overhead when compared to their Seccomp alterna-
tives. Strace performs poorly with more than 500% overhead.
zip [35] compresses the full Linux kernel 5.9.8 source tree
which opens all files in the source tree, reads their contents,
compresses them, and archives them into a zip file. The ob-
served performance degradation is similar to microbench-
marks for openat(), read(), and write() system calls.
Summary Network-based applications like lighttpd and Ng-
inx perform close to native whereas file-based applications
observe overheads between 4 and 55%, and small file access
is the worst as in SQLite.

6.2.3 Overhead on SPEC2017

Setup We evaluated the overhead of virtualization brought
by Endokernel under compute-intensive workloads on
SPEC2017 intrate and intspeed version 1.1.9. All evaluations
were conducted with boost and ASLR disabled, intrate run-
ning on a single core, and intspeed using 4 threads.

Result As shown in Figure 8, for most tasks, the overhead
introduced by Endokernel is within 2%. This minimal over-
head is primarily because the tasks in SPEC use fewer system
calls. Some tasks show a negative overhead, which is due to
the overhead being smaller than the variation between tests.
CET configurations introduces additional performance over-
head. We employ IBT solely to ensure callgate integrity, while
the shadow stack is mandated for global use. Additionally, the
CPU must access the legacy map to verify the indirect jumps
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Figure 4: System call latency of the LMBench benchmark. Std. dev. below 5.7%.
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Figure 5: Normalized latency of reading a 40MB file. Std.
dev. below 1.5%.
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Figure 6: Random read bandwidth for diff. numbers of
threads measured with sysbench. Std. dev. below 0.7%.

within user applications, further contributing to the overhead.

6.3 Compatibility Evaluation
We use the Linux Test Project (version 20200515) to evalu-
ate the compatibility of Endokernel. LTP is a regression test
kernel conformance test of the user’s runtime environment.
It evaluates whether the Linux kernel and the user runtime
behave as expected. Endokernel being an intermediate level
that runs in the user and crucially provides kernel function-
ality to the rest of the user programs, using this test project
helps us ensure that the part of the kernel functionality we are
emulating is correct and consistent in the boundary condition.
Baseline LTP runs 2136 test cases. The original kernel 5.9.8
reports 188 test cases skipped and 22 test cases failed. We
excluded these tests going forward, since Endokernel relies
on the kernel for functionality, leaving 1926 test cases in total.
Result After testing, Endokernel only failed 78 out of 1926
or 95.95% of LTP. We categorize the failed tests.
Security Implication (19 / 78): These tests fail because En-
dokernel protects subprocesses. Endokernel, e.g.,, prevents
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Figure 7: Normalized overhead of diff. Linux applications.
Std. dev. below 2.4%.

access to core dumps, ptrace, or changes to seccomp.
Lack of Kernel Functionality (33 / 78): The kernel does not
support modifying the PKEY of a shared memory segment.
Endokernel cannot overcome this limitation of Intel® MPK.
Inconsistency of Kernel Functionality (11 / 78): Some tests
try to probe the functionality of the kernel under certain edge
cases. They depend on their own environment resulting in
inconsistent or unstable results when the Endokernel is also
running. E.g., in the OOM test case, sometimes the kernel not
only kills the Endokernel, but also the parent process running
it. We consider these tests to have failed for reasons of rigor,
although they do sometimes pass.
Secondary Loader (5 / 78): For security purposes, Endok-
ernel must be loaded as the first process. This requirement
affects the O_EXEC flag on files, which cannot be modified
in user space. Some tests use sudo, leading to issues for the
kernel to properly set the user ID or require the process name
to be different.
Issues Caused by Endokernel (5 / 78): In edge cases Endok-
ernel fails which do not cause disruptions for usual applica-
tions. For example, Endokernel has to limit the arguments to
an exec’d program to forward information to the Endokernel
in the other process leading to tests with enormous argument
length to fail. Cpuhotplug03 fails to find processes by name
due to uniform naming under Endokernel, and mmapstress08
conflicts due to Endokernel’s memory allocation strategy.
Unsupported system calls (2 / 78): Linux frequently intro-
duces new system calls and our system successfully blocks
unknown syscalls.
Racing causes by the kernel (1 / 78): This issue occurs in
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hugemmap06 due to the kernel’s inability to perform mmap
and mprotect atomically. A brief gap between these oper-
ations can lead to failures in concurrent threads. This situa-
tion is uncommon because other threads usually do not have
knowledge of the addresses involved in these allocations and
resembles an attack.

7 Using and Evaluating Subprocess

We demonstrate the extensibility of the Endokernel by using
the subprocess virtual privilege rings to 1) eliminate the recent
sudo vulnerability [19] and 2) implement a significant refac-
toring of NGINX: memory and system isolation of buggy
parsers and restricting sensitive crypto access to OpenSSL
while the main portion of the application maintains partial
system object access.

Eliminating sudo Privilege Escalation. Recently, a bug
was found in the sudo argument parser allowing an attacker to
corrupt a function pointer to gain control with root access [19].
We compartmentalized sudo so that the parser code, in file
parse_args.c, is isolated, and restricted to only the com-
mand line arguments and an output buffer. With these changes,
the worst possible attack is to overflow the parser’s internal
buffer causing a segfault, but nothing harmful. In summary,
by changing approximately 200 lines of code, importing our
libsep in sudo and using Endokernel, we confined the argu-
ment parser and successfully prevented the root exploit. This
applies more generally. Commonly parsers execute with too
many privileges and could benefit from similar changes.

Towards a Least-Privilege NGINX We present a novel
compartmentalization of NGINX, which allows us to measure
the effort and performance costs of improving the security
of a complex system while using the Endokernel and subpro-
cess. Our goal is to isolate the NGINX parser and secure the
OpenSSL library. By isolating the parser code in NGINX,
we address the frequent vulnerabilities and excessive privi-
leges of string handling operations which often require limited
functionality. This strategy is commonly used in the work of
syscall filtering [3, 22, 26, 47, 63], but often applied at the
process-level. We also protected the OpenSSL library using
the automatic shared libraries isolation provided by the En-
dokernel. By isolating OpenSSL, which handles private keys,
we prevent potential key leakage. The value of isolation lies
in its ability to protect against common exploits (e.g., CVE-
2009-2629, CVE-2013-2028, and CVE-2013-2070) utilized
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Figure 9: Normalized throughput of privilege separated NG-
INX using TLS v1.2 with ECDHE-RSA-AES128-GCM-SHA256,
2048, 128. Std. dev. below 1.5%.

by attackers to hijack control flows and to leak or compro-
mise sensitive information (e.g., cookies, private responses
data, passwords, or keys). The essence of this protection is
to prevent the majority of the application from accessing key
information, thereby reducing the TCB and safeguarding crit-
ical data such as session and private keys.

Performance. We evaluate the least-privilege Nginx
shielding OpenSSL and isolating the HTTP parser. We mea-
sure the throughput downloading files with varying sizes and
normalize to the native performance using ab (see Figure 9).
All tests are performed locally with a pinned CPU core. Strace
suffers from its interception costs and falls below 50% for
large files. The results indicate less than 10% overhead for
the different nexpoline techniques and the lowest for nex-sud
at 3-5%. The number of system calls increases with file size,
leading to decreased performance of Endokernel.

During the initialization of NGINX, 89 xcalls are made to
initialize OpenSSL, and an additional 16 xcalls are needed
to start each new HTTPS session. Furthermore, the number of
xcalls for each connection escalates with file size, ranging
from 129 for 1k to 312 for 1024k.

8 Related Work

Compartmentalization enhances software security by isolat-
ing components to limit damage from breaches. Various ap-
proaches, including software-based, operating system-based,
and hardware-assisted methods, offer security benefits but
compromise on efficiency or complexity. This section reviews
these techniques, highlighting their strengths and limitations
in comparison to our intra-process security monitor, which
aims for efficient and secure system interface emulation with-
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out compromising backward compatibility.
Software-based techniques. Software Fault Isolation

(SFI) [62] started a research field to inline security checks
within application code. The goal is to translate an appli-
cation via a compilation pass to enforce security properties
such as Control-Flow Integrity (CFI) [2], Code-Pointer In-
tegrity [40], or intra-process isolation [38, 52]. Similar needs
arise in web applications, where protections against native
code [71] vulnerabilities have spurred the development of
WebAssembly [52]. However, they suffer with large perfor-
mance overheads from inlined security checks and also lack
safeguards against operating system-level attack vectors.

OS-based techniques. To address the limitations of tra-
ditional process-based isolation, various kernel abstractions
have been developed that employ existing mechanisms such
as page tables to facilitate intra-process solation. Light-weight
contexts (lwC) [42], secure memory views (SMV) [34] and
nested kernel [21] introduce a lighter form of isolation. These
approaches enable the association of multiple virtual address
spaces with a single process, allowing for quicker context
switches. Shreds [13] combines OS-based and software-based
techniques to enhance performance, while Wedge [8] incorpo-
rates runtime checks to strengthen security. However, the
performance of these methods is still constrained by the
overhead of context switching, an issue that Endokernel ad-
dresses through more efficient intra-process isolation tech-
niques using hardware designed specifically for this purpose.
SEIMI [64, 68] uses Supervisor Memory Access Prevention
designed for ring 0 to restrict access to user memory, offer-
ing efficient privilege switching even compared to MPK and
MPX. However, it only allows the user space to be divided
into two domains and requires a complex hypervisor mecha-
nism to run both user applications and the kernel in supervisor
mode. Moreover, these OS-based techniques require the use
of customized operating systems, which poses challenges for
system maintenance.

Hardware-based techniques. CPU vendors have proposed
methods to avoid context switches, for example, by switching
address spaces with VMFUNC, altering memory access permis-
sions based on domain using WRPKRU, specialized instructions
like WRSS, or pointer capabilities with MTE [5] or CHERI [14,
66]. Each technique introduces its own set of limitations, per-
formance characteristics, and security implications. Dune [7]
utilizes Intel VT-x to allow a process to operate in both priv-
ileged and unprivileged CPU modes. Secage [43] achieves
a similar separation by utilizing Intel®’s VMFUNC to switch
address spaces in user space. Koning et al. [38] develop a com-
piler that isolates components with varying techniques and
demonstrate the performance differences. ERIM, HODOR,
Donky, Jenny, and others [32, 48, 49, 54, 55, 57, 60] enable
the secure use of MPK for intra-process isolation and demon-
strate efficient isolation techniques. Furthermore, EPK [28]
expands the maximum number of domains by combining
MPK and VMFUNC. Techniques based on MPK require co-

ordination between user programs and the OS to ensure these
mechanisms are not bypassed, making them vulnerable to
OS-level attacks [15, 61]. CETIS [69] leverages Intel® CET’s
shadow stack for secure memory, which restricts write opera-
tions to these areas using the newly added WRSS instruction,
avoiding context switches. Nevertheless, it only supports se-
cure and non-secure memory domains and depends on CFI to
ensure the security of these instructions. Capacity [23] uses
ARM’s MTE for intra-process isolation, allowing only autho-
rized pointers to access tagged memory region. While this
approach offers more flexible isolation and sharing compared
to MPK, it poses challenges in the security model as it relies
on the confidentiality of the pointer.

System call and signal virtualization. PKU-Pitfall [15]
demonstrated how the operating system interfaces can be used
to bypass intra-process isolation and motivated the need for
system call virtualization. Linux security module (LSM) [67]
intercepts system calls in the kernel and can be used to imple-
ment a system call filter as suggested by SELinux [44], Ap-
pArmor [6], Tomoyo [31] and Smack [53]. However, LSM as
well as large kernel subsystems like the filesystem, would have
to be extended to recognize different domains in userspace
and its interface does not support modifying arguments mak-
ing virtualization impossible. Alternatively, Seccomp [16]
offers the userspace a programmable system call filter using
BPF programs and can be used to limit the OS interface [71].
However, BPF can only access limited system call informa-
tion, making it incapable of implementing flexible filtering or
virtualization. In some configurations, Endokernel relies on
Seccomp to prevent system calls outside the trusted monitor.

9 Conclusion

We propose Endokernel and its implementation, a continua-
tion of the minimalist philosophy of microkernel that provides
user space isolation. In this process, we addressed synchro-
nization and signal issues that are inevitable for multithreaded
intra-process monitors. We proposed an inside-out approach
to identify more system call pathways that could lead to MPK
bypass, thereby enhancing the reliability, compatibility, and
efficiency of intra-process monitors. We evaluated the per-
formance overhead of Endokernel across different use cases
and conducted a comprehensive analysis and comparison of
its security. We implemented subprocess isolation within En-
dokernel and isolated OpenSSL and the parser in NGINX to
demonstrate Endokernel’s practical use case.
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Availability

The source code of the Endokernel prototype is
available at https://github.com/endokernel/
endokernel-paper-ver/. The current code includes
components from ERIM [60] and Graphene libos [59].
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